
JWBK853-c01 JWBK853-Darbyshire October 5, 2016 21:44 Printer Name: Trim: 244mm × 170mm

CHAPTER 1
Essential C++

T his chapter covers the fundamental requirements necessary to allow the reader to
get up and running building quantitative models using the C++ programming lan-

guage. This introduction is in no way intended to be an in-depth treatment of the C++
programming language but more an overview of the basics required to build your own
efficient and adaptable programs. Once the key concepts have been developed, object-
oriented principles are introduced and many of the advantages of building quantita-
tive systems using such programming approaches are outlined. It is assumed that the
reader will have some prerequisite knowledge of a low-level programming language
and the necessary computation skills to effectively grasp and apply the material pre-
sented here.

1.1 A BRIEF HISTORY OF C AND C++

C is a procedural1 programming language developed at Bell Laboratories between
1969 and 1973 for the UNIX operating system. Early versions of C were known as
K&R C after the publication of the book The C Programming Language written by
Brian Kernighan and Dennis Ritchie in 1978. However, as the language developed
and became more standardised, a version known as ANSI2 C became more prominent.
Although C is no longer the choice of many developers, there is still a huge amount of
legacy software coded in it that is actively maintained. Indeed, C has greatly influenced
other programming languages, in particular C++ which began purely as an extension
of C.

1 Procedural programming is a form of imperative programming in which a program is built from one or
more procedures i.e. subroutines or functions.
2 Founded in 1918, the American National Standards Institute (ANSI) is a private, non-profit membership
organisation that facilitates the development of American National Standards (ANS) by accrediting the
procedures of the Standards Developing Organizations (SDOs). These groups work cooperatively to
develop voluntary national consensus standards.

1

CO
PYRIG

HTED
 M

ATERIA
L

JWBK853-c01 JWBK853-Darbyshire October 5, 2016 21:44 Printer Name: Trim: 244mm × 170mm

2 HEDGE FUND MODELLING AND ANALYSIS

Often described as a superset of the C language, C++ uses an entirely differ-
ent set of programming concepts designed around the Object-Oriented Programming
(OOP) paradigm. Solving a computer problem with OOP involves the design of so-
called classes that are abstractions of physical objects containing the state, members,
capabilities and methods of the object. C++ was initially developed by Bjarne Strous-
trup in 1979 whilst at Bell Laboratories as an enhancement to C; originally known
as C with Classes. The language was renamed C++ in the early 80s and by 1998,
C++ was standardised as ANSI/ISO3 C++. During this time several new features
were added to the language, including virtual functions, operator overloading, multi-
ple inheritance and exception handling. The ANSI/ISO standard is based on two main
components: the core language and the C++ Standard Library that incorporates the
C Standard Library with a number of modifications optimised for use with the C++
language. The C++ Standard Library also includes most of the Standard Template
Library (STL); a set of tools, such as containers and iterators that provide array-like
functionality, as well as algorithms designed specifically for sorting and searching
tasks. C++11 is the most recent complete overhaul of the C++ programming lan-
guage approved by ANSI/ISO on 12 August 2011, replacing C++03, and superseded
by C++14 on 18 August 2014. The naming convention follows the tradition of naming
language versions by the year of the specification’s publication, although it was for-
merly known as C++0x to take into account many publication delays. C++14 is the
informal name for the most recent revision of the C++ ANSI/ISO standard, intended
to be a small extension over C++11, featuring mainly bug fixes and small syntax
improvements.

1.2 A BASIC C++ PROGRAM

Without doubt the best method of learning a programming language is to actually start
by writing and analysing programs. Source 1.1 implements a basic C++ program that
simply outputs a string of text, once the program has been compiled and executed, to
the console window. Although the program looks very simple it nevertheless contains
many of the fundamental components that every C++ program generally requires.

SOURCE 1.1: A BASIC C++ PROGRAM

// main.cpp
#include <windows.h>
#include <iostream>

3 The International Organisation for Standardisation (ISO) is an international standard-setting body
made up of representatives from a range of National Standards Organisations (NSOs).

JWBK853-c01 JWBK853-Darbyshire October 5, 2016 21:44 Printer Name: Trim: 244mm × 170mm

Essential C++ 3

using std::cout;
using std::cin;

int main()
{
SetConsoleTitle(L"Console Output"); // Set title of console
window

cout << "\n " << "Hedge Fund Modelling and Analysis: An Object
Oriented Approach Using C++";

cin.get(); // Pause console window
return 0; // Return null integer and exit

}

Statements beginning with a hash symbol (#) indicate directives to the preproces-
sor that initialise when the compiler is first invoked, in this case, to inform the compiler
that certain functions from the C++ Standard Library must be included. #include
<windows.h> gives the program access to certain functions in the library, such as
SetConsoleTitle() whilst #include <iostream> enables console input and
output (I/O). Typical objects in the iostream library include cin and cout which
are explicitly included through the using statement at the top of the program. Writ-
ing using std::cout at the top of the program avoids the need to keep retyp-
ing std through the scope resolution operator (::) every time cout is used. For
example, if we had not specified using std::cout we would have to explicitly
write std in front of each usage throughout the program, that is:

JWBK853-c01 JWBK853-Darbyshire October 5, 2016 21:44 Printer Name: Trim: 244mm × 170mm

4 HEDGE FUND MODELLING AND ANALYSIS

std::cout << "\n " << "Hedge Fund Modelling and Analysis: An Object
Oriented Approach Using C++";
std::cin.get();

Although in this case there are only two occasions where we need std, you can
imagine how this could quickly clog up code for very large programs. Note also that
all C++ statements must end with a semi-colon (;).

A commonly identified problem with the C language is the issue of running out of
names for definitions and functions when programs reach very large sizes eventually
resulting in name clashes. Standard C++ has a mechanism to prevent such a clash
through the use of the namespace keyword. Each set of C++ definitions in a library
or program is wrapped into a namespace, and if some other definition has an identical
name, but is in a different namespace, then there is no conflict. All Standard C++
libraries are wrapped in a single namespace called std and invoked with the using
keyword:

using namespace std;

Whether to use using namespace std or explicitly state their use through
using std::cout, for example, is purely a preference of programming style. The
main reason we do not invoke using namespace std in our programs is that this
leaves us the opportunity of defining our own namespaces if we wish and it is generally
good practice to have only one namespace invocation in each program.

The main() function is the point at which all C++ programs start their execution
even if there are several other functions declared in the same program. For this reason,
it is an essential requirement that all C++ programs have a main() function within
the body at some point in the program. Once the text is output to the console window,
cin.get() is used to cause the program to pause so that the user can read the output
and then close and exit the window by pressing any key. Technically, in C or C++
the main() function must return a value because it is declared as int i.e. the main
function should return an integer data type. The int value that main() returns is
usually the value that will be passed back to the operating system; in this case it is 0
i.e. return 0 which indicates that the program ran successfully. It is not necessary
to state return 0 explicitly, because the compiler invokes this automatically when
main() terminates, but it is good practice to include a return type for all functions
(including main()).

1.3 VARIABLES

A variable is a name associated with a portion of memory used to store and manipulate
the data associated with that variable. The compiler sets aside a specific amount of
memory space to store the data assigned to the variable and associates the variable
name with that memory address. As the name implies, variables can be changed within
a program as and when required. When new data is assigned to the same variable, the
old data is overwritten and restored in the same memory address. The data stored in a

JWBK853-c01 JWBK853-Darbyshire October 5, 2016 21:44 Printer Name: Trim: 244mm × 170mm

Essential C++ 5

TABLE 1.1 Reserved C++ keywords

asm, auto, bool, break, case, catch, char, class, const,
const_cast, continue, default, delete, do, double,
dynamic_cast, else, enum, explicit, export, extern, false,
float, for, friend, goto, if, inline, int, long, mutable,
namespace, new, operator, private, protected, public,
register, reinterpret_cast, return, short, signed, sizeof,
static, static_cast, struct, switch, template, this,
throw, true, try, typedef, typeid, typename, union,
unsigned, using, virtual, void, volatile, wchar_t, while

variable is only temporary and only exists as long as the variable itself exists (defined
by the scope of the variable). If the data stored in a variable is required beyond its
existence then it must be written to a permanent storage device, such as a disk or file.

A variable name can be any length and composed of lower and upper case letters,
numbers and the underscore (_) character, but keep in mind that variables are case-
sensitive. In practice, a programmer will usually develop their own variable naming
convention but bear in mind that C++ reserves certain keywords for variable names
so try not to clash with these. Table 1.1 shows a list of reserved C++ keywords.

There are sevenal built-in data types provided by C++ along with specific type
modifiers to further quantify the data. A complete list of all the data types and their
associated modifiers are described in Table 1.2.

In Table 1.2, other than char (which has a size of exactly one byte), none of
the fundamental types has a standard size (only a minimum size, at most). This does
not mean that these types are of an undetermined size, but that there is no standard
size across all compilers and machines; each compiler implementation can specify
the sizes that best fit the architecture where the program is going to be executing. This
rather generic size specification of data types allows the C++ language a lot of flexi-
bility in adapting to work optimally on all kinds of platforms, both present and future.

1.3.1 Characters and Str ings

When using the char data type, we use single quotes, for example:

char Stock = 'MSFT';

Certain characters, such as single ('') and double ("") quotes have special mean-
ing in C++ and have to be treated with care. In addition, C++ reserves special
characters for formatting text and other processing tasks known as character escape
sequences (or backslash character constants) as shown in Table 1.3.

A more versatile data type than char is string which can be a combination of
characters, numbers, spaces and symbols of any length. C++ does not have a built-in
data type to hold strings instead it is defined in the C++ Standard Library through
the inclusion of the header file <string>. An example of using string variables is
shown in Source 1.2.

JWBK853-c01 JWBK853-Darbyshire October 5, 2016 21:44 Printer Name: Trim: 244mm × 170mm

6 HEDGE FUND MODELLING AND ANALYSIS

TABLE 1.2 Common C++ data types

Name Description
Size
(Bytes) Range

char

Character

1 -128 to 127

unsigned char 1 0 to 255 (ASCII characters)

signed char 1 -128 to 127 (ASCII characters)

int

Integer number

4 -2,147,483,648 to
2,147,483,647

unsigned int 4 0 to 4,294,967,295

signed int 4 -2,147,483,648 to
2,147,483,647

short int 2 -32,768 to 32,767

unsigned short int 2 0 to 65,535

signed short int 2 -32,768 to 32,767

long int 4 Same as int

unsigned long int 4 Same as unsigned int

signed long int 4 Same as signed int

float Floating point number 4 3.4E-38 to 3.4E+38

double Double precision
floating point number

8 1.7E-308 to 1.7E+308

long double 10 3.4E-4932 to 1.1E+4932

bool Boolean value 1 True or False

string As required Any length

wchar_t Wide character 2 0 to 65,535

TABLE 1.3 Character escape sequences

Sequence Output

\n New line

\t Tab

\b Back space

\? Question mark

\f Page feed

\a Alert (beep)

\\ Backslash

\’ Single quote

\” Double quote

JWBK853-c01 JWBK853-Darbyshire October 5, 2016 21:44 Printer Name: Trim: 244mm × 170mm

Essential C++ 7

SOURCE 1.2: STRING VARIABLES

// main.cpp
#include <windows.h>
#include <iostream>
#include <string>
using std::cout;
using std::cin;
using std::string;

int main()
{
SetConsoleTitle(L"Console Output"); // Set title of console
window

//declare two string variables
string strFirstName = "Paul";
string strLastName = "Darbyshire";

//concatenate the two strings
string strFullName = strFirstName + " " + strLastName;

cout << "\n " << strFullName;

cin.get(); // Pause console window
return 0; // Return null integer and exit

}

JWBK853-c01 JWBK853-Darbyshire October 5, 2016 21:44 Printer Name: Trim: 244mm × 170mm

8 HEDGE FUND MODELLING AND ANALYSIS

In Source 1.2, two string variables are declared and initialised and then joined
together to form another string. The (+) symbol is used for joining (or concatenating)
two variables together, and in this context the (+) symbol is often referred to as the
concatenation operator.

1.3.2 Variab le Declarat ions

Before a variable can be used in a program it must first be declared as shown in
Source 1.3. Declaring the variable and its data type allows the compiler to set aside
the appropriate amount of memory for storage and subsequent manipulation.

SOURCE 1.3: DECLARING VARIABLES

// ...

// Declare variables
int x, y;
int result;
// Assign values
x = 4;
y = 2;
x = x + 1;
//Do something
result = x - y;

cout << "\n " << result << "\n ";

// ...

JWBK853-c01 JWBK853-Darbyshire October 5, 2016 21:44 Printer Name: Trim: 244mm × 170mm

Essential C++ 9

It is possible to declare more than one variable of the same type in the same dec-
laration statement. It is also possible to assign initial values to variables whilst they
are being declared through the process of initialisation, for example:

int x, y = 4, z = 3;

There is another useful method of initialising a variable known as constructor
initialisation:

int x(0);

1.3.3 Type Cast ing

One way to force an expression to produce a result that is of a different type to the
variables declared in the expression is to use a construct calledcast (i.e. type casting).
Source 1.4 shows an example of declaring two variables as int and dividing them to
produce an int and double division through type casting.

SOURCE 1.4: TYPE CASTING

// ...

int a = 6, b = 4;

cout << "\n " << a/b << "\n"; // Integer division
cout << " " << (double)a/b << "\n "; // Type casting to double
division

// ...

JWBK853-c01 JWBK853-Darbyshire October 5, 2016 21:44 Printer Name: Trim: 244mm × 170mm

10 HEDGE FUND MODELLING AND ANALYSIS

Note that type casting will not change the type of the variables from integer only
the type of the result to double.

1.3.4 Variab le Scope

A variable can have either global (i.e. public) or local (i.e. private) scope depending
on where it is declared within the program. Any variables declared with global scope
should be prefixed with the keyword const. An example is shown in Source 1.5.

SOURCE 1.5: VARIABLE SCOPE

// ...

// GLOBAL variable

int globalN = 144;

int main()

{

SetConsoleTitle(L"Console Output"); // Set title of console

window

// LOCAL variable

int localN = 72;

cout << "\n " << "# of data points (LOCAL) = " << localN;

cout << "\n " << "# of data points (GLOBAL) = " << globalN;

cin.get(); // Pause console window

return 0; // Return null integer and exit

}

JWBK853-c01 JWBK853-Darbyshire October 5, 2016 21:44 Printer Name: Trim: 244mm × 170mm

Essential C++ 11

In Source 1.5, you can see that the variable globalN has been declared globally
and initialised to the value 144. Global variables can be accessed from anywhere in
the program once they have been declared. Local variables, on the other hand, such
as localN can only be used within the block enclosed by the braces ({}) in which it
is declared.

1.3.5 Constants

Constants are fixed values assigned to variables that cannot be changed once they have
been declared and initialised. We have already used literal constants when a variable
was declared and initialised in Source 1.2:

string FirstName = "Paul";

Or, as in Source 1.5:

int localN = 72;

With symbolic constants the const keyword is used in front of the declaration
and initialisation, for example:

const double Volatility = 0.18;

Enumerated constants are an alternative way of creating a series of integer con-
stants. Suppose you wanted to assign an integer value of 0 to 6 to the days of the week
starting at Sunday. This could be achieved using a list of symbolic constants written as:

const int Sun = 0;
const int Mon = 1;
const int Tue = 2; etc.

However, with enumeration it is possible to write:

enum WeekDays
{
Sun,
Mon,
Tue,
Wed,
Thu,
Fri,
Sat
};

JWBK853-c01 JWBK853-Darbyshire October 5, 2016 21:44 Printer Name: Trim: 244mm × 170mm

12 HEDGE FUND MODELLING AND ANALYSIS

If each week day is not explicitly initialised, they are automatically assigned the
values 0, 1, 2, 3, etc., starting with the variable Sun. Note that the default value starts
at 0 and not 1. Alternatively, it is possible to initialise one or more of the variables to
any integer value, for example:

enum WeekDays
{
Sun = 10,
Mon,
Tue,
Wed = 6,
Thu,
Fri,
Sat
};

Variables that are not explicitly initialised are given initial values count-
ing upwards from the preceding initialised variable i.e. Sun = 10, Mon = 11,
Tue = 6, Wed = 7, Thu = 8 and so on.

1.4 OPERATORS

Operators are used to perform a specific operation on a set of operands in an expres-
sion. Operators can be of two types:

Unary – take only one argument and

Binary – take two arguments.

1.4.1 The Assignment Operator

The assignment operator simply assigns a value to a variable, for example:

x = 4;

The statement above assigns to the variable x the value 4. Note that the assign-
ment operator always reads from right -> left, and never the other way around. The
following statement is valid in C++:

x = y = z = 3;

In this statement, the value 3 is assigned to all three variables x, y and z. Expres-
sions that are evaluated within the assignment operator, such as:

x = x + 1;

JWBK853-c01 JWBK853-Darbyshire October 5, 2016 21:44 Printer Name: Trim: 244mm × 170mm

Essential C++ 13

are read as ‘add the value 1 to x and assign this value to x’ i.e. increase the value
of x by 1. Indeed, this statement can also be written in a more compact form using
compound assignment operators, written as:

x += 1;

In this statement, as before, x is simply incremented by 1 and the value assigned
to x. Alternatively, if x is decremented by 1 we can write:

x -= 1;

The increase (++) and decrease (--) operators can also be used to get the same
result as above, that is:

x++; and x--;

An interesting characteristic of the increase and decrease operators is that they can
be used either prefix or postfix. If the increase operator is used as a prefix i.e. ++x; the
value of x is increased before the expression is evaluated. When used as a postfix i.e.
x++; the value of x is increased after being evaluated. Source 1.6 shows an example
of the prefix and postfix increase operators.

SOURCE 1.6: PREF IX AND POSTFIX OPERATORS

// ...

// Declare variable
int y = 3;

// Prefix
cout << "\n " << "Prefix ++y" << "\n ";
cout << "x = " << ++y << "\n ";
cout << "y = " << y << "\n\n";

// Reset y
y = 3;

// Postfix
cout << "\n " << "Postfix y++" << "\n ";
cout << "x = " << y++ << "\n ";
cout << "y = " << y << "\n ";

JWBK853-c01 JWBK853-Darbyshire October 5, 2016 21:44 Printer Name: Trim: 244mm × 170mm

14 HEDGE FUND MODELLING AND ANALYSIS

// ...

1.4.2 Arithmet ic Operators

There are five basic C++ arithmetic operators as shown in Table 1.4. The only one
that may not be familiar is the modulo operator (%) used for determining the remainder
of integer division as shown in Source 1.7.

TABLE 1.4 Arithmetic operators

Operator Name

+ Addition

- Subtraction

* Multiplication

\ Division

% Modulo

SOURCE 1.7: MODULO OPERATOR

// ...

// Declare variables
int x = 11, y = 3;

JWBK853-c01 JWBK853-Darbyshire October 5, 2016 21:44 Printer Name: Trim: 244mm × 170mm

Essential C++ 15

cout << "\n " << "Remainder of 11 divided by 3 = " << x%y << "\n ";

// ...

1.4.3 Relat ional Operators

Sometimes it is necessary to test the relationship between two expressions so that some
action can be performed based on the outcome of the result. Relational operators can
be used to perform such tasks. The most common C++ relational operators are shown
in Table 1.5.

The only result of a relational operator expression when evaluated is either 1
(true) or 0 (false) i.e. a Boolean value. C++ automatically converts a Boolean
value to an integer as shown in Source 1.8.

TABLE 1.5 Common relational operators

Operator Name

== Equal to

!= Not equal to

> Greater than

>= Greater than or equal to

< Less than

<= Less than or equal to

JWBK853-c01 JWBK853-Darbyshire October 5, 2016 21:44 Printer Name: Trim: 244mm × 170mm

16 HEDGE FUND MODELLING AND ANALYSIS

SOURCE 1.8: RELATIONAL OPERATORS

// ...

cout << "\n " << "4 is greater than 3 = " << (4 > 3) << "\n ";
cout << "4 is less than 3 = " << (4 < 3) << "\n ";
cout << "4 is equal to 3 = " << (4 == 3) << "\n ";
cout << "4 is not equal to 3 = " << (4 != 3) << "\n ";

// ...

In Source 1.8, the relational expressions are enclosed in parentheses so that C++
evaluates the relationship first and then sends the result to cout. Note that the relation
operator to test for equality is == and not a single = which refers instead to the
assignment of a value to a variable.

1.4.4 Logica l Operators

In order to test for more complex expressions, logical operators can be combined with
relational operators. Logical operators are normally associated with Boolean algebra4

and as such, produce a Boolean result. The three most common C++ logical operators
are shown in Table 1.6.

4 Boolean algebra is a logical calculus of truth values 0 and 1 developed by George Boole in the 1840s.

JWBK853-c01 JWBK853-Darbyshire October 5, 2016 21:44 Printer Name: Trim: 244mm × 170mm

Essential C++ 17

TABLE 1.6 Common logical operators

Operator
Boolean
Operation

&& AND

∥ OR

! NOT

For example, suppose you wanted to select only those equities that had a price
(Price) above P and market capitalisation (MarketCap) above MC. This could be
expressed in C++ as follows:

(Price > P) && (MarketCap > MC)

1.4.5 Condit ional Operator

The conditional operator (?) can be used in the following shorthand format:

(condition) ? result1 : result2

Which is read ‘if condition is true the expression returns result1, if it is not
it will return result2’. Source 1.9 shows a typical example of using the conditional
operator in this format.

SOURCE 1.9: THE CONDIT IONAL OPERATOR (?)

// ...

// Declare variables
int a, b, c;
// Assign values to a and b
a = 4;
b = 6;
// Use conditional expression
c = (a > b) ? a : b;

cout << "\n " << "Conditional expression gives " << c << "\n ";

// ...

JWBK853-c01 JWBK853-Darbyshire October 5, 2016 21:44 Printer Name: Trim: 244mm × 170mm

18 HEDGE FUND MODELLING AND ANALYSIS

In Source 1.9, a and b are assigned the values of 4 and 6, respectively, which
makes the expression (a > b) evaluate to false, thus the first value after the question
mark is ignored and the second value (after the colon) accepted; resulting in the value
of 6 for the conditional expression.

1.5 INPUT AND OUTPUT

For the majority of cases, programs will require inputs from the keyboard and outputs
to the console window. We have already encountered the <iostream> header file
from the C++ Standard Library which allows us to handle I/O in our programs. As
we have already seen in all of the above programs, output to the console window is
handled with cout along with the insertion operator (<<). Inputs from the keyboard
are handled by cin along with the extraction operator (>>). Source 1.10 shows an
example of using both cout and cin.

SOURCE 1.10: INPUT AND OUTPUT

// ...

// Declare variable
int n;
// Get value from keyboard
cout << "\n " << "Enter # of data points: ";

JWBK853-c01 JWBK853-Darbyshire October 5, 2016 21:44 Printer Name: Trim: 244mm × 170mm

Essential C++ 19

// Assign value to a
cin >> n;
// Output result
cout << " " << "You entered " << n << "\n ";

system("PAUSE"); // Pause console window
return 0; // Return null integer and exit
}

In Source 1.10, an integer a holds the value entered by the user when prompted by
the cout statement. Once the user inputs a value and presses Enter the value is stored
in a and subsequently output to the screen through the second cout statement. cin
can only store the value into a once the Enter key has been pressed. It is possible to
allow the user to input several values when prompted by using the concept of chaining
as shown in Source 1.11.

SOURCE 1.11: CHAINING

// ...

// Declare variables
int a, b;
// Get values from keyboard

JWBK853-c01 JWBK853-Darbyshire October 5, 2016 21:44 Printer Name: Trim: 244mm × 170mm

20 HEDGE FUND MODELLING AND ANALYSIS

cout << "\n " << "Enter two values: ";
// Assign valuse to a and b using chaining
cin >> a >> b;

cout << " " << "The two values were " << a << " and " << b << "\n ";

// ...

In Source 1.11:

cin >> a >> b;

is equivalent to the two statements:

cin >> a;
cin >> b;

In both cases the user must input two values before pressing Enter for the pro-
gram to continue. Note that in Source 1.10 and 1.11 I used system("PAUSE") to
hold the console window instead of cin.get() so as not to confuse the compiler
when using console input within the main body of the program.

JWBK853-c01 JWBK853-Darbyshire October 5, 2016 21:44 Printer Name: Trim: 244mm × 170mm

Essential C++ 21

1.6 CONTROL STRUCTURES

It is possible to control the order of execution of statements in a program through two
special types of structure, namely branching and looping.

1.6.1 Branching

The most common type of branching statement is the decision-making (or selection)
structure. Decision-making structures control program execution through the depen-
dence on one or more specified conditions being satisfied. The if structure is by far
the most popular type of decision-making structure and there are two basic forms,
namely:

if (condition) statement;
and
if (condition)
{
statement;
}

The if … else and if … else if structures are extensions of the if struc-
ture that allows further conditions to be tested, that is:

if (condition)
{
statement1;
}
else
{
statement2;
}
and
if (condition)
{
statement1;
}
else if
{
statement2;
}
else
{
statement3;
}

JWBK853-c01 JWBK853-Darbyshire October 5, 2016 21:44 Printer Name: Trim: 244mm × 170mm

22 HEDGE FUND MODELLING AND ANALYSIS

By mixing relational and logical operators it is possible to create increasingly
complex decision-making structures. The if structure can also be nested (or embed-
ded) within a set of if structures. Source 1.12 and 1.13 show examples of using the
if and if … else if structures.

SOURCE 1.12: IF … ELSE STATEMENT

// ...

int x;

cout << "\n " << "Enter a number: ";
cin >> x;

//if...else statement
if (x > 100)
{

cout << "\n " << "Number greater than 100" << "\n ";
}
else
{

cout << " " << "Number less than 100" << "\n ";
}

// ...

JWBK853-c01 JWBK853-Darbyshire October 5, 2016 21:44 Printer Name: Trim: 244mm × 170mm

Essential C++ 23

SOURCE 1.13: IF … ELSE … I F STATEMENT

// ...

int a;

cout << "\n " << "Enter a +ve or -ve number (a): ";
cin >> a;

// if ... else if statement
if (a > 0)
{

cout << " " << "a is positive" << "\n ";
}
else if (a < 0){

cout << " " << "a is negative" << "\n ";
}
else
{

cout << " " << "a is 0" << "\n ";
}

// ...

Another type of decision-making structure in C++ is the switch statement that
allows the execution of different sets of statements depending on the value of one
expression. The syntax for the switch structure is as follows:

JWBK853-c01 JWBK853-Darbyshire October 5, 2016 21:44 Printer Name: Trim: 244mm × 170mm

24 HEDGE FUND MODELLING AND ANALYSIS

Switch (expression)
{
Case constant1:
statement1;
break;
Case constant2:
statement2;
break;
.
.
.
default:
statement;
}

The switch statement works in the following way:
switch evaluates expression and checks to see if it is equivalent to

constant1, if it is, execute statement1 until it reaches break. When the break
statement is reached the program jumps to the end of the switch structure. If
expression is not equal to constant1 it is checked against constant2 and if it
is equal to this, the program will execute statement2 until break is reached when
it then jumps to the end of the switch structure. If expression does not match any
of the constants, the program executes the statement after default, if it exists
(optional).

Unlike if structures that can test for a variety of conditions, switch structures
can only test for equality. Also, only constants can follow the case statement and
not variables or expressions. Source 1.14 shows an example of using the switch
structure.

SOURCE 1.14: THE switch STATEMENT

int n;
...
cout << "\n " << "Choose 1, 2, 3 or 4: ";
cin >> n;

// Switch statement
switch (n)
{

case 1:
cout << " " << "You chose 1" << "\n ";

break;

JWBK853-c01 JWBK853-Darbyshire October 5, 2016 21:44 Printer Name: Trim: 244mm × 170mm

Essential C++ 25

case 2:
cout << " " << "You chose 2" << "\n ";

break;
case 3:
cout << " " << "You chose 3" << "\n ";

break;
case 4:
cout << " " << "You chose 4" << "\n ";

break;
default:
cout << " " << "1, 2, 3, or 4 not chosen!" << "\n ";

}

// ...

1.6.2 Looping

In C++, looping involves using iteration structures in which a particular statement is
repeated a certain number of times, or, while a condition is satisfied.

1.6.3 The for Loop

The for loop performs a repetitive task with a counter which is initialised and
changes on each iteration. The general syntax of the for loop is as follows:

for (initialisation; condition; action) statement;

JWBK853-c01 JWBK853-Darbyshire October 5, 2016 21:44 Printer Name: Trim: 244mm × 170mm

26 HEDGE FUND MODELLING AND ANALYSIS

Alternatively, the for loop with a statement block is written as follows:

for (initialisation; condition; action)
{
statements;
}

In general, the action involves incrementing or decrementing the value of the
counter. Source 1.15 shows an example of using the for loop.

SOURCE 1.15: THE FOR LOOP

// ...

cout << "\n";

// for loop
for (int i = 3; i > 0; i--)
{

cout << " " << i << ",";
}

cout << " " << "Go!" << "\n ";

// ...

JWBK853-c01 JWBK853-Darbyshire October 5, 2016 21:44 Printer Name: Trim: 244mm × 170mm

Essential C++ 27

It is possible to specify more than one expression in any of the fields in the paren-
theses using the comma operator (,) which acts as a separator for more than one
expression. For example, suppose you wanted to initialise more than one variable in
the for loop, that is:

for (n = 0, m = 10; n! = m; n++, m--)
{

statements;
}

In this case, n and m are initialised with a value of 0 and 10, respectively. Since n
is incremented by one and m decremented by one after each iteration, n! = m (i.e., n
not equal to m) condition will become false after the 10th iteration when both n and m
equal 10. Also note that any of the fields inside the parentheses of the for loop can
be omitted although there must be a semi-colon (;) in their place. For example:

for (; i < 100; i++) statement;

is perfectly valid if there is no need to initialise the counter i.

1.6.4 The whi le Loop

The syntax for the while loop is written as:

while (condition) statement;

Alternatively, the while loop with a statement block is written as:

while (condition)
{
statements;
}

The while loop repeats the statement while the condition is true, when the con-
dition is false, looping ends. A key difference between the while and for loops
is that the former does not require an initialisation (or action) in the loop structure.
Source 1.16 shows an example of using the while loop.

SOURCE 1.16: THE WHILE LOOP

// ...

int n;

cout << "\n " << "Enter countdown number: ";

JWBK853-c01 JWBK853-Darbyshire October 5, 2016 21:44 Printer Name: Trim: 244mm × 170mm

28 HEDGE FUND MODELLING AND ANALYSIS

cin >> n;
cout << " ";

// while loop
while (n > 0)
{

cout << n << ", ";
–n;

}
cout << "Go!" << "\n ";

// ...

Source 1.16 can be interpreted in the following steps:

Step 1: User assigns a value to integer n.

Step 2: The while condition (n > 0) is checked:

– true: go to Step 3.

– false: go to Step 5.

Step 3: Execute statement block.

Step 4: Return to Step 2.

Step 5: End program.

JWBK853-c01 JWBK853-Darbyshire October 5, 2016 21:44 Printer Name: Trim: 244mm × 170mm

Essential C++ 29

Note that the while loop must end at some point, therefore a provision must
be made inside the statement block to force the condition to become false. In
Source 1.16, n is decremented by 1 after each loop until it reaches 0 when the
condition n > 0 is no longer satisfied and the loop is forced to end.

1.6.5 The do … whi le Loop

The do … while loop is exactly the same as the while loop, except that the state-
ment block (or single statement) is evaluated at least once even if the condition is not
satisfied. The do … while loop is written as:

do
{

statements
}
while(condition)

A typical use of the do … while loop is when the condition that determines the
end of the loop is determined within the loop as shown in Source 1.17.

SOURCE 1.17: THE DO … WHILE LOOP

// ...

int n;

// do...while loop
do
{

cout << "\n " << "Enter number (0 to end loop): ";
cin >> n;
cout << " " << "The number was " << n << "\n ";

}
while(n != 0);

cout << "0 ends the loop!" << "\n ";

// ...

JWBK853-c01 JWBK853-Darbyshire October 5, 2016 21:44 Printer Name: Trim: 244mm × 170mm

30 HEDGE FUND MODELLING AND ANALYSIS

1.7 ARRAYS

C++ provides a data structure, the array, which stores a fixed-size sequential collec-
tion of elements (data) of the same type. All arrays consist of contiguous memory
locations with the lowest address corresponding to the first element and the highest
address to the last element. Source 1.18 shows a typical initialisation and implemen-
tation of an array structure. Note that in C++ the first element of an array is [0] i.e.
indexing starts at 0 not 1.

SOURCE 1.18: ARRAYS

// ...

// Declare an array of 10 integers
int n[10];

// Initialise elements of array
for (int i=0; i<10; i++)
{

n[i] = i + 100; // Set element at location i to i + 100
}

cout << "\n " << "Element" << setw(13) << "Value" << "\n";

JWBK853-c01 JWBK853-Darbyshire October 5, 2016 21:44 Printer Name: Trim: 244mm × 170mm

Essential C++ 31

// Output each array element and value
for (int j=0; j<10; j++)
{

cout << setw(7) << j << setw(13) << n[j] << "\n";
}
cout << " ";

cin.get();
return 0;
}

In Source 1.18, we have made use of setting field width to make the output look
more tidy using setw() which is declared in the header <iomanip>.

1.8 VECTORS

Just like arrays, vectors use contiguous storage locations for their elements (data)
within so-called sequence containers. However, unlike arrays, their size can change
dynamically, with their storage being handled automatically by the container. Inter-
nally, vectors use a dynamically allocated array to store their elements. Arrays need to
be reallocated in order to grow in size when new elements are inserted, which implies
allocating a new array and moving all elements to it. This is a relatively expensive
task in terms of processing time, and thus, vectors do not reallocate each time an ele-
ment is added to the container. Instead, vector containers may allocate some extra

JWBK853-c01 JWBK853-Darbyshire October 5, 2016 21:44 Printer Name: Trim: 244mm × 170mm

32 HEDGE FUND MODELLING AND ANALYSIS

storage to accommodate for possible growth, and thus the container may have an
actual capacity greater than the storage strictly needed to contain its elements (i.e.
its size). Source 1.19 shows a typical initialisation and implementation of a vector.

SOURCE 1.19: VECTORS

// ...

vector<double> v; // Vector of doubles

v.push_back(3.796);
v.push_back(7.56989857);
v.push_back(0.054);
v.push_back(12.33);
v.push_back(3987.231);

cout << "\n ";
cout << fixed << setprecision(4); // Set number precision

for (unsigned int i=0; i<v.size(); i++)
{

cout << v.at(i) << "\n ";
}

// ...

JWBK853-c01 JWBK853-Darbyshire October 5, 2016 21:44 Printer Name: Trim: 244mm × 170mm

Essential C++ 33

In Source 1.19, we include the header <vector> to use the functions to manip-
ulate vectors e.g. push_back() and size(). Note that when using vectors within
for loops it is often necessary to explicitly set the increment counter to unsigned
int. For example, when using the size() method of vector the returned value is
always going to be positive and so declared unsigned int in the official C++ doc-
umentation. If we just use an int for the increment counter in the for loop the two
variable types will clash since unsigned int is not the same as int. The at()
function returns a reference to the element at position n in the vector and automati-
cally checks whether n is within the bounds of valid elements in the vector, throwing
an out_of_range exception if it is not (e.g. if n is greater than its size). Note that
we have made use of setting number precision using the statement:

cout << fixed << setprecision(4)

where both fixed and setprecision() are declared in the header <iomanip>.

1.9 FUNCTIONS

Often programs can become long and hard to follow making them difficult to under-
stand and debug. In C++ it is possible to break down a program into smaller more
manageable units of code known as modules, or more formally functions. A function
is a unit of code that operates on one or more parameters passed into the function
which, in general, returns a value based on a set of mathematical operations. The gen-
eral structure of a function is written as:

type function_name(type param1, type param2, ...)
{
statements;
return expression;
}

The first line of the function is known as the function header where the type,
function name and parameter list are declared. The function header and body together
are known as the implementation of the function. A function can return only one value
(e.g. int, double, etc.) or if there is no value to return the function is declared of
type void. A function can have as many parameters, each separated by a comma, as
necessary or no parameters at all. Indeed, functions can also pass other functions as
parameters provided they are declared correctly. Note that the data type returned by a
function must match that of the header declaration. Source 1.20 below shows a simple
program for multiplying two type double variables.

JWBK853-c01 JWBK853-Darbyshire October 5, 2016 21:44 Printer Name: Trim: 244mm × 170mm

34 HEDGE FUND MODELLING AND ANALYSIS

SOURCE 1.20: A SIMPLE FUNCTION

// ...

// Function prototype

double Product(double a, double b);

int main()

{

SetConsoleTitle(L"Console Output"); // Set title of console window

// Declare variables

double x, y;

cout << "\n " << "Enter x and y: ";

cin >> x >> y;

cout << " " << "Product = " << Product(x,y) << "\n ";

system("PAUSE");

return 0;

}

// Function definition

double Product(double a, double b)

{

return(a*b);

}

JWBK853-c01 JWBK853-Darbyshire October 5, 2016 21:44 Printer Name: Trim: 244mm × 170mm

Essential C++ 35

In Source 1.20, the function is first declared using a function prototype above
the main() subroutine. The prototype is a copy of the function header terminated
with a semi-colon (;). Be aware that when declaring a function (through the function
prototype) we refer to parameters, however, when calling the function, we refer to
arguments. Arguments are the parameters passed to the function when it is called,
and once inside the function, these parameters can be used, and changed, just like
any other variable. Within a function prototype, it is possible to omit their names, for
example we could have written the prototype for the Product() function as:

double Product(double, double);

In Source 1.20, x and y are the parameters of the Product() function and a and
b are the arguments of the Product() function call. When Product() is called the
values entered for a and b are passed to x and y and subsequently used in the function
body. The function can change the values of x and y but cannot change the values of
a and b. If it is a requirement that the value of a parameter passed to a function is only
allowed to read it and not change the value inside the function, the parameter can be
set to constant in both the prototype and header declaration. For example:

double Product(const double x, double y);

In this case, the value of x cannot be changed in the body of the function; however,
y still can be changed. When using arguments in a function call it is also possible to
initialise the values for the parameters in the function prototype. For example:

int Init(int x, int y = 10, int = 30);

Note that once a parameter has an initial value then all other parameters to the
right of it must also be declared with initial values. We have already seen that it is
not explicitly necessary to state parameter names in function prototypes, so the third
parameter in Init() is equally acceptable.

In C++, function prototypes are usually put in files with extension .h, known as
header files, while function definitions go into files with the extension .cpp, known
as source files (see Classes later). Preprocessor directives (#) can be used to avoid
multiple includes during compilation, for example:

#ifndef HEADERNAME_H
#define HEADERNAME _H
... contents of the header file.
#endif

On most modern compilers it is possible to replace the above statements with a
single pragma statement as follows:

#pragma once

JWBK853-c01 JWBK853-Darbyshire October 5, 2016 21:44 Printer Name: Trim: 244mm × 170mm

36 HEDGE FUND MODELLING AND ANALYSIS

1.9.1 Cal l -by-Value vs. Cal l -by-Reference

When function arguments are call-by-value it implies that copies of any variables
within the parameter list are made as they are called. So, in Source 1.20, copies of a
and b in the body of Product() are made during execution and not a and b them-
selves. This works fine but can be inefficient when dealing with large numbers of
parameters and function calls in a program. In order to get around this problem, we
can use call-by-reference which passes the memory address of the argument variables
to the function rather than the variables themselves. The function body can then act
directly on the variables and dynamically change them in memory as required. Chang-
ing the value of the variable stored in the allocated memory address is the same as
changing the value of the variable itself. If we are passing an argument a by reference
to a parameter variable x, then x is said to be an alias for a and both share the same
address in memory. That is, when the function acts on x in its body, it essentially also
acts on a, so when it changes x, it changes a as well. In order to pass an argument by
reference, the reference operator (&) is placed in front of the parameter name in both
the function prototype and definition.

A major disadvantage of using references in argument lists is that the function
is able to modify the input arguments. What we would ideally need is the address
of a variable while at the same time not being able to modify it in any way. In this
case, we can define the variable to be a constant reference. Source 1.21 shows how
call-by-value, call-by-reference and constant reference are used to control access to
arguments in a function.

SOURCE 1.21: CALL-BY-VALUE, CALL-BY-REFERENCE AND
CONSTANT REFERENCE

// ...
// Function prototype
void swap(int i, int j);

int main()
{

SetConsoleTitle(L"Console Output");

//declare variables
int i = 1, j = 2;

cout << "\n " << " i = " << i << " j = " << j << "\n ";
swap(i,j);
cout << " i = " << i << " j = " << j << "\n ";

JWBK853-c01 JWBK853-Darbyshire October 5, 2016 21:44 Printer Name: Trim: 244mm × 170mm

Essential C++ 37

cin.get();
return 0;

}

// Function definition
void swap(int i, int j)
{

int t;
t=i;
i=j;
j=t;

}

// ...
// Function prototype
void swap(int &i, int &j);

int main()
{

SetConsoleTitle(L"Console Output");

//declare variables
int i = 1, j = 2;

cout << "\n " << " i = " << i << " j = " << j << "\n ";
swap(i,j);
cout << " i = " << i << " j = " << j << "\n ";

JWBK853-c01 JWBK853-Darbyshire October 5, 2016 21:44 Printer Name: Trim: 244mm × 170mm

38 HEDGE FUND MODELLING AND ANALYSIS

cin.get();
return 0;

}

// Function definition
void swap(int &i, int &j)
{

int t;
t=i;
i=j;
j=t;

}

// ...
// Function prototype
void swap(const int &i, const int &j);

int main()
{

SetConsoleTitle(L"Console Output");

//declare variables
int i = 1, j = 2;

cout << "\n " << " i = " << i << " j = " << j << "\n ";
swap(i,j);
cout << " i = " << i << " j = " << j << "\n ";

JWBK853-c01 JWBK853-Darbyshire October 5, 2016 21:44 Printer Name: Trim: 244mm × 170mm

Essential C++ 39

cin.get();
return 0;

}

// Function definition
void swap(const int &i, const int &j)
{

int t;
t=i;
i=j;
j=t;

}

In Source 1.21, when we make i and j const and pass-by-reference (&), both i
and j are shown as errors in the swap() function since we cannot change a variable
that is declared const.

Also, note that vectors are very large on memory and as such should always be
passed into functions by reference, for example:

void fillVector(vector<int>&);

If you do not plan to make any changes to the vector it is still necessary to pass it
in by reference but in this case add a const modifier, for example:

void fillVector(const vector<int>&);

1.9.2 Overloading Funct ions

In C++, it is possible to create functions that have the same type and name but
different number of parameters or data types. This is known as overloading a
function (or polymorphism). The main reason for overloading functions would be
where two or more functions perform similar tasks but have different parameters.
For example, we could use operator overloading to declare two swap() func-
tions; one that accepts integer values and another that accepts doubles as shown in
Source 1.22.

JWBK853-c01 JWBK853-Darbyshire October 5, 2016 21:44 Printer Name: Trim: 244mm × 170mm

40 HEDGE FUND MODELLING AND ANALYSIS

SOURCE 1.22: OVERLOADING THE FUNCTION swap()

// ...
// Function prototype
void swap(int &i, int &j);
void swap(double &k, double &m);

int main()
{

SetConsoleTitle(L"Console Output");

//declare variables
int i = 1, j = 2;
double k = 2.86, m = 3.84;

cout << "\n " << " i = " << i << " j = " << j << "\n ";
swap(i,j);
cout << " i = " << i << " j = " << j << "\n ";

cout << "\n " << " k = " << k << " m = " << m << "\n ";
swap(k,m);
cout << " k = " << k << " m = " << m << "\n ";

cin.get();
return 0;

}

// Function definition (integers)
void swap(int &i, int &j)
{

int t;
t=i;
i=j;
j=t;

}

// Function definition (doubles)
void swap(double &k, double &m)
{

double t;
t=k;
k=m;
m=t;

}

JWBK853-c01 JWBK853-Darbyshire October 5, 2016 21:44 Printer Name: Trim: 244mm × 170mm

Essential C++ 41

In Source 1.22, the compiler decides the definition to use based on the arguments
provided when the function is called. To choose the definition to use, the compiler first
searches for a definition with parameters that match an invocation exactly. If an exact
match is not found, the compiler tries to match by converting types where possible. If
a suitable definition cannot be found, a compilation error occurs.

1.10 OBJECT ORIENTED PROGRAMMING

As already mentioned, only those parts of the C++ language that we need to success-
fully implement the tools and techniques in the rest of the book have been covered.
However, one very useful development in C++, and something we will make great use
of in this book, is the concept of Object-Oriented Programming (OOP). OOP allows
the building of large and complex programs that can be broken down into smaller
self-contained reusable code units known as classes. In OOP, data and its manipula-
tion are brought together into a single entity called an object. Programs then consist
of one or more objects interacting with each other to solve a particular problem. The
object is responsible for its data and its data can only be manipulated by a predefined
list of acceptable operations. In essence, OOP aims to emulate the way humans inter-
act with the world around them. In this way, pretty much anything can be modelled
as an object. Consider a typical day, get out of bed, have a cup of coffee, catch a bus
to work, go to a restaurant for lunch, go to your home, eat your dinner with a knife
and fork, watch television etc. It is possible to look on life as a series of interactions
with things. These things we call objects. We can view all of these objects as con-
sisting of data (properties) and operations that can be performed on them (methods).

JWBK853-c01 JWBK853-Darbyshire October 5, 2016 21:44 Printer Name: Trim: 244mm × 170mm

42 HEDGE FUND MODELLING AND ANALYSIS

Consider the simple example of a motor car that has hundreds of properties e.g. colour,
model type, year, engine capacity, leather interior etc. Let us concentrate on a single
property: velocity. Every car has the property of velocity. If it is parked the velocity is
zero, if it is on the road it is moving at a certain speed in a particular direction. What
are the methods that can modify the car’s velocity? We can press the accelerator to
increase the speed, we can press the brake to reduce the speed and finally we can turn
the steering wheel to alter the direction of the motion. The speedometer is a method
we can consult at any time to access the value of the speed component of velocity.
However, it is clear that without using any of the other methods we cannot directly
manipulate the velocity (unless we have a crash in which case the velocity goes to
zero very rapidly).

1.10.1 Classes and Abstract Data Types

The basic building block of OOP is the class. A class defines the available charac-
teristics and behaviour of a set of similar objects. A class is an abstract definition
that is made concrete at run-time when objects based upon the class are instantiated
and take on the behaviour of the class. Data abstraction is the process of creating an
object whose implementation details are hidden (or encapsulated) and the object is
used through a well-defined interface. Data abstraction leads to an abstract data type
(ADT), e.g. when you use a floating point number in a program you are not really
bothered about exactly how it is represented inside the computer, provided it behaves
in the manner you expect. ADTs should be used independent of their implementa-
tion meaning that even if the implementation changes the ADT can be used without
modification. Most people would be unhappy if they took their car to the garage for a
service and afterwards the mechanic said ‘She’s running lovely now, but you’ll have
to use the pedals in reverse from now on’. If this were the case, we could not think
of the car as an ADT. However, the reality is that we can take a car to a garage for
a major overhaul (which represents a change of implementation) and still drive it in
exactly the same way afterwards.

Consider the concept of a ‘Vehicle’ class. The class would include methods such
asSteer(),Accelerate() andBrake(). The class would also include properties
such as Colour, NumberOfDoors, TopSpeed. The class is an abstract design that
becomes real when objects such as Car, RacingCar and Tank are created, each with
its own version of the class’s methods and properties. Furthermore, message pass-
ing (or interfacing) describes the communication between objects using their pub-
lic interfaces. There are three main ways to pass messages: properties, methods and
events:

� Properties can be defined in a class to allow objects of that type to advertise and
allow changing of state information, such as the 'TopSpeed' property.

JWBK853-c01 JWBK853-Darbyshire October 5, 2016 21:44 Printer Name: Trim: 244mm × 170mm

Essential C++ 43

� Methods can be provided so that other objects can request a process to be under-
taken by an object, such as the Steer() method.

� Events can be defined that an object can raise in response to an internal action.

Other objects can subscribe to these so that they can react to an event occurring.
An example for vehicles could be an 'ImpactDetected' event subscribed to by
one or more 'AirBag' objects.

1.10.2 Encapsulat ion and Interfaces

Encapsulation refers to the process of hiding the implementation details of an object.
A washing machine is a good example of an encapsulated object. We know that inside
a washing machine are a whole series of complex electronics, however, we do not
need to understand them to wash our clothes. In terms of our concept of an object,
encapsulation hides the properties, some methods, and all method implementation
details of an object from the outside. For example, the velocity of a car cannot be
magically changed, we have to press the accelerator or brake – methods that we do
not need to know the details of. In this respect the velocity of the car is hidden from
outside interference, but can be changed by visible methods.

An interface is a simple control panel that enables us to use an object. The great
benefit of the interface is that we only need to understand the simple interface to use
the washing machine or drive the car. This is much easier than understanding the
internal implementation details.

Another benefit is that the implementation details can be changed or fixed and we
can still use the washing machine or car. For example, suppose your car breaks down
and you take it to the garage and they replace the engine with a bigger and better one.
The car operates in exactly the same way since the interface has remained unchanged.
So, it is extremely important to design a good interface that will not change. The inner
workings can be modified and cause no external operational effect. That is, once the
user understands the interface, the implementation details can be modified, fixed or
enhanced, and once the interface is unchanged the user can seamlessly continue to use
the object.

The interface establishes what requests you can make for a particular object. How-
ever, there must be code somewhere to satisfy that request. This, along with the hid-
den data, comprises the implementation. The goal of the class creator is to build a
class that exposes only what’s necessary to the user and keeps everything else hid-
den. Why? Because if it’s hidden, the programmer cannot use it, which means that
the class creator can change the hidden portion at will without worrying about the
impact on anyone else. The hidden portion usually represents the tender insides of
an object that could easily be corrupted by a careless or uninformed programmer, so
hiding the implementation reduces program bugs. Once a class has been created and
tested, it should (ideally) represent a useful unit of code. Code reuse is one of the

JWBK853-c01 JWBK853-Darbyshire October 5, 2016 21:44 Printer Name: Trim: 244mm × 170mm

44 HEDGE FUND MODELLING AND ANALYSIS

greatest advantages that OOP languages provide. The simplest way to reuse a class is
to just use an object of that class directly.

1.10.3 Inheritance and Overrid ing Funct ions

It seems a pity, however, to go to all the trouble of creating a class and then be forced
to create a brand new one that might have similar functionality. It would be nicer if
we could take the existing class, clone it and then make additions and modifications to
the clone. This is effectively what you get with inheritance, with the exception that if
the original class (the base class) is changed, the modified ‘clone’ (the derived class)
also reflects those changes. For example, consider the base type Shape in which each
shape has a size, a colour, a position and so on. Each shape can be drawn, erased,
moved, coloured, etc. From this, specific types of shapes are derived (inherited) e.g.
circle, square, triangle and so on, each of which may have additional characteristics
and behaviours. Certain shapes can be flipped, for example. Some behaviours may
be different, such as when you want to calculate the area of a shape. The type hier-
archy embodies both the similarities and differences between the shapes as shown in
Figure 1.1.

When you inherit from an existing type, you create a new type. This new type con-
tains not only all the members of the existing type but more importantly it duplicates
the interface of the base class.

So, all the messages you can send to objects of the base class you can also send
to objects of the derived class. Since we know the type of a class by the messages we
can send to it, this means that the derived class is the same type as the base class e.g. a
circle is a shape. This type equivalence through inheritance is one of the fundamental
gateways to understanding the meaning of OOP.

In reality, you have two ways to differentiate your new derived class from the
original base class. You can simply add brand new functions to the derived class.
These new functions are not part of the base class interface. This means that the base
class simply does not do as much as you wanted it to, so you added more functions.

Shape

Circle Square Triangle

draw()
erase()
move()
getColor()
setColor()

F IGURE 1.1 Schematic of a typical class
hierarchy

JWBK853-c01 JWBK853-Darbyshire October 5, 2016 21:44 Printer Name: Trim: 244mm × 170mm

Essential C++ 45

Shape

Circle Square Triangle

draw()
erase()
move()
getColor()
setColor()

FlipVertical()
FlipHorizontal()

F IGURE 1.2 Adding new functions to the
derived class

This simple and primitive use for inheritance is, at times, the perfect solution to your
problem (see Figure 1.2).

The second and more important way to differentiate your new class is to change
the behaviour of an existing base-class function. This is referred to as overriding that
function.

To override a function, you simply create a new definition for the function in the
derived class. You’re saying, ‘I’m using the same interface function here, but I want
it to do something different for my new type’, as shown in Figure 1.3.

1.10.4 Polymorphism

We briefly touched upon polymorphism when discussing functions above. It is gen-
erally perceived as the most feared part of object orientation. Polymorphism, which

Shape

Circle Square Triangle

draw()
erase()
move()
getColor()
setColor()

draw()
erase()

draw()
erase()

draw()
erase()

F IGURE 1.3 Overriding base-class functions

JWBK853-c01 JWBK853-Darbyshire October 5, 2016 21:44 Printer Name: Trim: 244mm × 170mm

46 HEDGE FUND MODELLING AND ANALYSIS

literally means poly (many) and morph (forms), will again only be mentioned here
for completeness. Objects interact by calling each other’s methods. How does some
object A know the supported methods of another object B, so that it can call a valid
method of B? In general, there is no magic way for A to determine the supported meth-
ods of B. A must know in advance the supported methods of B, which means A must
know the class of B. However, polymorphism means that A does not need to know the
class of B in order to call a method of B. In other words, an instance of a class can call
a method of another instance, without knowing its exact class. The calling instance
need only know that the other instance supports a method, it does not need to know
the exact class of the other instance. It is the instance receiving the method call that
determines what happens, not the calling instance.

1.10.5 An Example of a Class

Source 1.23 shows an example of a simple class named AClass created using the
Generic C++ Class Wizard in Visual Studio Express 2012 Windows Desktop as
shown in Figure 1.4. Source 1.24 shows an implementation of the simple AClass

F IGURE 1.4 The Generic C++ Class Wizard dialogue box

JWBK853-c01 JWBK853-Darbyshire October 5, 2016 21:44 Printer Name: Trim: 244mm × 170mm

Essential C++ 47

class. Note that for all classes, the ending brace (}) is followed by a semi-colon (;) to
indicate it is a class.

SOURCE 1.23: THE .h AND .cpp F ILES AUTOMATICALLY
GENERATED BY THE VISUAL STUDIO 2013 CLASS WIZARD

// AClass.h
#pragma once

class AClass
{
public:

AClass();
virtual ~AClass();

private:
};

// AClass.cpp
#include "AClass.h"

AClass::AClass()
{
}
AClass::~AClass()
{
}

SOURCE 1.24: A SIMPLE IMPLEMENTATION OF THE AClass
CLASS

// AClass.h
#pragma once

class AClass
{
public:

AClass();
virtual ~AClass();

JWBK853-c01 JWBK853-Darbyshire October 5, 2016 21:44 Printer Name: Trim: 244mm × 170mm

48 HEDGE FUND MODELLING AND ANALYSIS

// Function declaration
void sayHello();

private:
};

// AClass.cpp
#include <iostream>
using std::cout;

#include "AClass.h"

// Default constructor
AClass::AClass()
{
}

// Default destructor
AClass::~AClass()
{
}

// Function definition
AClass::sayHello()
{

cout << " Hello\n";
}
// main.cpp
#include "AClass.h"

#include <windows.h>
#include <iostream>
using std::cout;
using std::cin;

int main()
{

SetConsoleTitle(L"Console Output");

// Create an instance of the AClass class (instantiation)
AClass obj;
// Call the sayHello() function using the dot operator
obj.sayHello();

cin.get();

JWBK853-c01 JWBK853-Darbyshire October 5, 2016 21:44 Printer Name: Trim: 244mm × 170mm

Essential C++ 49

return 0;
}

1.10.6 Getter and Setter Methods

Both member data and functions can be declared either private or public
(protected will not be discussed in this book). Those declared public can be
accessed from any part of a program that includes the class with use of the dot nota-
tion (.). Those declared as private can only be accessed by member functions of
the class. The default declaration for member data and functions is private and to
access these private variables from outside of the class we generally use public
setter (or mutator) and getter (or accessor) methods as shown in Source 1.25. In gen-
eral, getters do not modify any of the member variables in the class and so it is good
practice to make them constant by adding the const modifier.

SOURCE 1.25: USING SETTER AND GETTER METHODS

// AClass.h
#pragma once

#include <string>
using std::string;

JWBK853-c01 JWBK853-Darbyshire October 5, 2016 21:44 Printer Name: Trim: 244mm × 170mm

50 HEDGE FUND MODELLING AND ANALYSIS

class AClass
{
public:

AClass();
void setName(string x); // Setter prototype
string getName() const; // Getter prototype with const
modifier

virtual ~AClass();
private:

string m_name; // Member variable
};

// AClass.cpp
#include <iostream>
using std::cout;

#include "AClass.h"

AClass::AClass()
{
}

AClass::~AClass()
{
}

// Setter function
void AClass::setName(string name)
{

m_name = name;
}

// Getter function with const modifier
string AClass::getName() const
{

return m_name;
}

// main.cpp
#include "AClass.h"

#include <windows.h>
#include <iostream>

JWBK853-c01 JWBK853-Darbyshire October 5, 2016 21:44 Printer Name: Trim: 244mm × 170mm

Essential C++ 51

using std::cout;
using std::cin;

int main()
{

SetConsoleTitle(L"Console Output");

// Create an instance of the AClass class (instantiation)
AClass obj;
// Call the sayHello() funtion using the dot operator
obj.setName("Paul");

cout << '\n' << obj.getName() << '\n'; // Call getter
using dot operator

cin.get();
return 0;

}

In Source 1.25, each function prototype in the .h file is attached to the relevant
class definition in the .cpp file using the scope resolution operator (::). Subsequently,
each member function of the class is accessed in the main body using the dot operator
notation. When we instantiate an object (obj) of the class in the main program, the
compiler creates a copy of all member data and functions of the class for that par-
ticular object. If more objects of the same class are declared additional copies of the
member data and functions are created for each object. The compiler actually handles
all of the same data and functions for each of the objects so that nothing gets mixed

JWBK853-c01 JWBK853-Darbyshire October 5, 2016 21:44 Printer Name: Trim: 244mm × 170mm

52 HEDGE FUND MODELLING AND ANALYSIS

up. Although the code will work correctly it is not necessarily efficient. A more prac-
tical solution is to use the address of the object and the call-by-reference technique as
described above for functions.

1.10.7 Constructors and Destructors

The default constructor is a member function that has the same name as the class
and invoked automatically once an instance of an object is created. Similarly, the
default destructor has the same name as the class prefixed with a tilde (~) and invoked
automatically once an object is destroyed. In practice, there is only ever one default
destructor although the constructor can have several overloaded methods. It is gener-
ally considered good practice to include the keyword virtual before the destructor
so as to alleviate any potential memory leaks. An example of the default constructor
and destructor is shown in Source 1.26.

SOURCE 1.26: THE DEFAULT CONSTRUCTOR AND
DESTRUCTOR

// AClass.h

#pragma once

#include <string>

using std::string;

class AClass

{

public:

AClass(); // Default constructor

void setName(string x); // Setter prototype

string getName() const; // Getter prototype with const modifier

virtual ~AClass();// Default destructor

private:

string m_name; // Member variable

};

// AClass.cpp

#include <iostream>

using std::cout;

#include "AClass.h"

JWBK853-c01 JWBK853-Darbyshire October 5, 2016 21:44 Printer Name: Trim: 244mm × 170mm

Essential C++ 53

// Default constructor

AClass::AClass()

{

cout << " Default constructor called ...\n";
}

// Default destructor

AClass::~AClass()

{

cout << " Default destructor called ...\n";
}

// Setter function

void AClass::setName(string name)

{

m_name = name;

}

// Getter function with const modifier

string AClass::getName() const

{

return m_name;

}

// main.cpp

#include "AClass.h"

#include <windows.h>

#include <iostream>

using std::cout;

using std::cin;

int main()

{

SetConsoleTitle(L"Console Output");

// Create an instance of the AClass class (instantiation)

AClass obj;

// Call the sayHello() funtion using the dot operator

obj.setName("Paul");

cout << '\n' << obj.getName() << '\n'; // Call getter using

dot operator

JWBK853-c01 JWBK853-Darbyshire October 5, 2016 21:44 Printer Name: Trim: 244mm × 170mm

54 HEDGE FUND MODELLING AND ANALYSIS

cin.get();

return 0;

}

Both default constructors and destructors are provided automatically in C++ so
do not have to be explicitly implemented in the class. However, experienced program-
mers usually include them for completeness and especially if any member variables
need to be initialised with default values. Constructors are generally used to initialise
data whereas destructors are used to tidy up any outstanding code issues once an object
has been destroyed. There are several methods of initialising data with constructors,
for example initialising the data inside the constructor:

AClass::AClass()
{

m_x = 5;
}

It is also possible to write parameterised constructors, for example:

AClass::AClass(int x, int y, int z)
{

m_x = x;
m_y = y;
m_z = z;

}

JWBK853-c01 JWBK853-Darbyshire October 5, 2016 21:44 Printer Name: Trim: 244mm × 170mm

Essential C++ 55

Obviously in all cases the prototype function for the constructor must match the
function definition. The above constructor can also be written using the following
notation:

AClass::AClass(int x, int y, int z)
{

m_x(x);
m_y(y);
m_z(z);

}

It is also possible to initialise member variables using the colon operator (:), that
is:

AClass::AClass : x(5)
{
}

Any additional member variables are initialised by separating with commas, for
example:

AClass::AClass : x(5), y(4), z(3)
{
}

1.10.8 A More Deta i led Class Example

Source 1.27 shows a more detailed example of a class dealing with bank accounts and
balances. Many of the issues already discussed are covered in the example as well as
some new concepts.

SOURCE 1.27: A DETAILED IMPLEMENTATION OF A BANK
ACCOUNT AND BALANCES CLASS

// Bank.h

#pragma once

#include <string>

using std::string;

class Bank

JWBK853-c01 JWBK853-Darbyshire October 5, 2016 21:44 Printer Name: Trim: 244mm × 170mm

56 HEDGE FUND MODELLING AND ANALYSIS

{

public:

// Default constructor

Bank();

// Overloaded constructor

Bank(string, int, double);

// Default destructor

virtual ~Bank();

// Accessor functions

string getName() const;

int getAccNum() const;

double getBalance() const;

// Mutator functions

void setName(string);

void setAccNum(int);

void setBalance(double);

// Member functions

void withdraw(double);

void deposit(double);

// We are printing static variables so must prefix the

function with the keyword static.

// NOTE: only add static in the declaration (.h) NOT

definition (.cpp)

static void printBankInfo();

private:

// Member variables

string m_name;

int m_accNum;

double m_balance;

// Static member variables

static int m_totalAccounts;

static double m_bankBalance;

};

// Bank.cpp

JWBK853-c01 JWBK853-Darbyshire October 5, 2016 21:44 Printer Name: Trim: 244mm × 170mm

Essential C++ 57

#include "Bank.h"

#include <iostream>

using std::cout;

// Initialise static member variables

int Bank::m_totalAccounts = 0;

double Bank::m_bankBalance = 10000;

// Every time we instantiate a new user in the bank either tho-

rugh the default

// or overloaded constructor we must increment the number of accounts.

Bank::Bank()

{

m_accNum = 0;

m_balance = 0.0;

m_totalAccounts++;

}

// We do not need to modify the default constructor wrt the bank

balance because it is simply

// initialised to zero and there are no parameters.

However, for the overloaded constructor there

// is a newBalance parameter for user deposits. So every time a

user deposits some money the

// new balance must be added to m_bankBalance.

Bank::Bank(string name, int accNum, double balance)

{

m_name = name;

m_accNum = accNum;

m_balance = balance;

m_totalAccounts++;

m_bankBalance += balance;

}

// Once an object is destroyed, m_totalAccounts and m_bankBalance

change i.e, we must decrement

// totalAccounts and bankBalance of the user being destroyed.

Bank::~Bank()

{

m_totalAccounts--;

m_bankBalance -= m_balance;

}

JWBK853-c01 JWBK853-Darbyshire October 5, 2016 21:44 Printer Name: Trim: 244mm × 170mm

58 HEDGE FUND MODELLING AND ANALYSIS

// Accessor functions

string Bank::getName() const

{

return m_name;

}

int Bank::getAccNum() const

{

return m_accNum;

}

double Bank::getBalance() const

{

return m_balance;

}

// Mutator functions

void Bank::setName(string name)

{

m_name = name;

}

void Bank::setAccNum(int accNum)

{

m_accNum = accNum;

}

// The setBalance mutator must also be updated. So before doing

anything we

// must take m_bankBalance and substract the balance they may

already have

// (it could be zero but we don not know). Then add on the new

balance to the

// m_bankBalance.

void Bank::setBalance(double balance)

{

m_bankBalance -= balance;

m_balance = balance;

m_bankBalance += balance;

}

// Member functions

void Bank::withdraw(double withdraw)

JWBK853-c01 JWBK853-Darbyshire October 5, 2016 21:44 Printer Name: Trim: 244mm × 170mm

Essential C++ 59

{

m_balance -= withdraw;

m_bankBalance -= withdraw;

}

void Bank::deposit(double deposit)

{

m_balance += deposit;

m_bankBalance += deposit;

}

void Bank::printBankInfo()

{

cout << "\n " << "Number of Accounts: " << m_totalAccounts << "\n ";

cout << "Total Balance: " << m_bankBalance << "\n ";

}

// main.cpp

#include <windows.h>

#include <iostream>

using std::cout;

using std::cin;

#include "Bank.h"

int main()

{

SetConsoleTitle(L"Console Output");

cout << '\n' << "Adam created an account and deposited 500";

Bank Adam("Adam", 0001, 500); // Calling overloaded constructor

Bank::printBankInfo(); // Calling printBankInfo() inside a class

without instantiating an object

Bank Sarah; // Calling default constructor

cout << '\n' << "Sarah created an account and deposited 1000";

Sarah.setName("Sarah"); // Calling mutator function setName()

Sarah.setAccNum(0002); // Calling mutator function setAccNum()

Sarah.setBalance(1000); // Calling mutator function setBalance()

Bank::printBankInfo();

JWBK853-c01 JWBK853-Darbyshire October 5, 2016 21:44 Printer Name: Trim: 244mm × 170mm

60 HEDGE FUND MODELLING AND ANALYSIS

cout << '\n' << "Eric created an account and deposited 1500";

Bank Eric("Eric", 0003, 1500); // Calling overloaded constructor

Bank::printBankInfo(); // Calling printBankInfo() inside a class

without instantiating an object

cout << "\n" << "\n" << "Eric set his balance to 1200";

Eric.setBalance(1200);

Bank::printBankInfo(); // Calling printBankInfo() inside a class

without instantiating an object

cout << "\n" << "\n" << "Sarah deposited 700";

Sarah.deposit(700);

Bank::printBankInfo(); // Calling printBankInfo() inside a class

without instantiating an object

cout << "\n" << "Adam's account was terminated due to lack of

use";

Adam.~Bank(); // Calling destructor

Bank::printBankInfo(); // Calling printBankInfo() inside a class

without instantiating an object

cin.get();

return 0;

}

JWBK853-c01 JWBK853-Darbyshire October 5, 2016 21:44 Printer Name: Trim: 244mm × 170mm

Essential C++ 61

In Source 1.27, we have overloaded the Bank() constructor, that is:

Bank();
Bank(string, int, double);

This gives us several methods of instantiating an object of the class within the
main body of the program e.g. both Adam and Sarah objects are created using different
constructors. We have also added some tidying up code to the default destructor for
dealing with closing or terminating accounts.

Bank::~Bank()
{

m_totalAccounts--;
m_bankBalance -= m_balance;

}

Another important concept we have included is that of static member
variables and functions. Static member variables e.g. m_totalAccounts and
m_bankBalance have the same value in any instance of a class and do not even
require an instance of the class to exist. However, we must initialise static member
variables using a specific scope operator (::) syntax, that is:

int Bank::m_totalAccounts = 0;
double Bank::m_bankBalance = 10000;

It is also possible to have static member functions of a class, for example:

static void printBankInfo();

Static member functions are functions that do not require an instance of the class,
and are called the same way as you access static member variables i.e. with the class
name rather than a variable name, for example:

Bank::printBankInfo();

Be clear that static member functions can only operate on static members, as they
do not belong to specific instances of a class.

1.10.9 Implement ing Inheritance

Recall our initial discussion of inheritance above. Suppose you have a Class A that
has several functions and variables you want to access in another Class B. In this case,

JWBK853-c01 JWBK853-Darbyshire October 5, 2016 21:44 Printer Name: Trim: 244mm × 170mm

62 HEDGE FUND MODELLING AND ANALYSIS

it is possible to inherit the functions and variables from Class A and use them as you
would in Class B. Whenever you inherit from a class, the main class you inherit from
is called the base class and the class that does the inheriting is called the derived class.
Source 1.28 shows an example of implementing inheritance.

SOURCE 1.28: INHERITANCE

// Mother.h
#pragma once

class Mother
{
public:

Mother();
void sayName();

virtual ~Mother();
};

// Mother.cpp
#include "Mother.h"
#include <iostream>
using std::cout;

Mother::Mother()
{
}

void Mother::sayName()
{

cout << "I am part of the Partridge family" << "\n ";
}

Mother::~Mother()
{
}

// Daughter.h
#pragma once

class Daughter: public Mother
{
public:

JWBK853-c01 JWBK853-Darbyshire October 5, 2016 21:44 Printer Name: Trim: 244mm × 170mm

Essential C++ 63

Daughter();

virtual ~Daughter();
};

// Daughter.cpp
#include "Mother.h"
#include "Daughter.h"

Daughter::Daughter()
{
}

Daughter::~Daughter()
{
}

// main.cpp
#include <windows.h>
#include <iostream>
using std::cout;
using std::cin;

#include "Mother.h"
#include "Daughter.h"

int main()
{
SetConsoleTitle(L"Console Output");

Mother mum;
cout << "\n " << "Mother" << "\n ";
mum.sayName();

// Daughter object inherits sayName() from the Mother class
Daughter helen;
cout << "\n " << "Daughter" << "\n ";
helen.sayName();

cin.get();
return 0;
}

JWBK853-c01 JWBK853-Darbyshire October 5, 2016 21:44 Printer Name: Trim: 244mm × 170mm

64 HEDGE FUND MODELLING AND ANALYSIS

1.10.10 Operator Overloading

Operator overloading allows the manipulation of standard C++ operators to change
the way they are implemented. For example, suppose you had two class objects that
you wanted to add together, operator overloading allows you to treat the operator +
differently for these objects. Table 1.7 shows a list of operators that can be overloaded
in C++.

TABLE 1.7 Operators that can be overloaded in C++
+ - * / = < > += -= *= /= << >>
<<= >>= == != <= >=
++ –- % & ˆ ! | ~ &= ˆ= |= && ∥ %= [] () , ->* ->
new delete new[] delete[]

Source 1.29 shows an example of overloading the (+) operator.

SOURCE 1.29: OVERLOADING THE (+) OPERATOR

// Vec2D.h
#pragma once

#include <iostream>
using std::ostream;

JWBK853-c01 JWBK853-Darbyshire October 5, 2016 21:44 Printer Name: Trim: 244mm × 170mm

Essential C++ 65

class Vec2D
{
public:

int m_x, m_y;

Vec2D();
Vec2D(int, int);

// Oveloaded (+) operator declared constant and by reference
Vec2D operator+(const Vec2D&) const;

virtual ~Vec2D();
};

// Vec2D.cpp
#include "Vec2D.h"

#include <iostream>
using std::cout;

Vec2D::Vec2D() : m_x(0), m_y(0)
{
}

Vec2D::Vec2D(int x, int y) : m_x(x), m_y(y)
{
}

Vec2D Vec2D::operator+(const Vec2D& v) const
{

// Uses an anonymous Vec2D object
return Vec2D(m_x + v.m_x, m_y + v.m_y);

}

Vec2D::~Vec2D()
{
}

// main.cpp
#include <windows.h>
#include <iostream>
using std::cout;
using std::cin;

JWBK853-c01 JWBK853-Darbyshire October 5, 2016 21:44 Printer Name: Trim: 244mm × 170mm

66 HEDGE FUND MODELLING AND ANALYSIS

#include "Vec2D.h"

int main()
{

SetConsoleTitle(L"Console Output");

Vec2D a(3,3); // Create Vec2D object a
Vec2D b(4,2); // Create Vec2D object b

// Use (+) overloaded operator
Vec2D c = a + b;

cout << '\n' << c.m_x;
cout << '\n' << c.m_y; << '\n';

cin.get();
return 0;

}

Note that there are three objects involved in the operator+ member function:
the current object that plays the role of the left operand, the argument v that plays
the role of the right operand and a new object with a return type the same as that
of the member function. Furthermore, neither the current object nor the v object are
modified by the operation so we can add the const keyword. What if we wanted to
print out c directly? For example:

cout << "\n " << c << "\n ";

JWBK853-c01 JWBK853-Darbyshire October 5, 2016 21:44 Printer Name: Trim: 244mm × 170mm

Essential C++ 67

This would lead to an error of the type ‘no operator “<<” matches these
operands’. Source 1.30 shows how we can overload the insertion (<<) operator in
Source 1.29 so that we can overcome this error and print out object c directly without
needing to call its individual member variables i.e. c.m_x and c.m_y.

SOURCE 1.30: OVERLOADING THE (<<) OPERATOR

// Vec2D.h
#pragma once

#include <iostream>
using std::ostream;

class Vec2D
{
public:

int m_x, m_y;

Vec2D();
Vec2D(int, int);

// Oveloaded (+) operator declared constant and by reference
Vec2D operator+(const Vec2D&) const;

// Overload (<<) operator
// ostream is not a member of the Vec2D class but wants to
consume its
// member variables so we make it a friend of the Vec2D class.
friend ostream& operator<<(ostream& stream, const Vec2D&);

virtual ~Vec2D();
};
// Vec2D.cpp
#include "Vec2D.h"

#include <iostream>
using std::cout;

Vec2D::Vec2D() : m_x(0), m_y(0)
{
}

Vec2D::Vec2D(int x, int y) : m_x(x), m_y(y)

JWBK853-c01 JWBK853-Darbyshire October 5, 2016 21:44 Printer Name: Trim: 244mm × 170mm

68 HEDGE FUND MODELLING AND ANALYSIS

{
}

Vec2D Vec2D::operator+(const Vec2D& v) const
{

// Uses an anonymous Vec2D object
return Vec2D(m_x + v.m_x, m_y + v.m_y);

}

ostream& operator<<(ostream& stream, const Vec2D& v)
{

cout << "(" << v.m_x << ", " << v.m_y << ")";
return stream;

}

Vec2D::~Vec2D()
{
}

// main.cpp
#include <windows.h>
#include <iostream>
using std::cout;
using std::cin;

#include "Vec2D.h"

int main()
{

SetConsoleTitle(L"Console Output");

Vec2D a(3,3); // Create Vec2D object a
Vec2D b(4,2); // Create Vec2D object b

// Use (+) overloaded operator
Vec2D c = a + b;

cout << "\n " << c;
cout << "\n " << c << "\n ";

cin.get();
return 0;
}

JWBK853-c01 JWBK853-Darbyshire October 5, 2016 21:44 Printer Name: Trim: 244mm × 170mm

Essential C++ 69

With the statement:

cout << "\n " << c << "\n ";

the first << invokes the left shift operator and shifts c into cout, then it reads the
next << and invokes the left shift operator again and shifts "\n " into cout i.e. it
reads left -> right. In Source 1.30, since we are constantly modifying the ostream
object (i.e. using multiple insertion operations) we must pass it by reference so that
it takes into account this operator chaining process. Note also that ostream is not a
member (i.e. it is a non-member) of the Vec2D class but wants to be able to access the
private members of the class. In this case, we make ostream a friend of the Vec2D
class. By default, a non-member function cannot access the private member data of a
class unless the class explicitly states that that function is allowed to do so, i.e. a class
must give away its friendship, a friend cannot be simply assumed by a non-member
function.

Chapter 1 has provided an overview of the key C++ programming ideas and con-
cepts required to develop and build fairly robust quantitative analysis models. All of
the programs introduced throughout the book will reply on methods and principles
discussed in this chapter. By no means is this a complete resource for developing
commercial level software systems but does give an adequate level of experience to
begin prototyping such systems. We have also introduced the very powerful concept
of OOP hopefully without burdening the reader with too much information and syn-
tax. The idea, as with the other content, is to cover the necessary requirements needed
to understand, develop and implement object-oriented programs in order to efficiently
solve many of the problems encountered throughout the book. However, there may be
several instances when we will be introducing some new C++ not covered explic-
itly here to solve a particular challenging problem. These will likely rely on more
advanced methods in C++ and it makes more sense to discuss these implementations
on an individual basis as they are encountered.

JWBK853-c01 JWBK853-Darbyshire October 5, 2016 21:44 Printer Name: Trim: 244mm × 170mm

70

