
1
DESIGNING AND CARRYING OUT
A STATISTICAL STUDY

In this chapter we study random behavior and how it can fool us, and we learn how to design
studies to gain useful and reliable information. After completing this chapter, you should
be able to

• use coin flips to replicate random processes and interpret the results of coin-flipping
experiments,

• define and understand probability,

• define, intuitively, p-value,

• list the key statistics used in the initial exploration and analysis of data,

• describe the different data formats that you will encounter, including relational
database and flat file formats,

• describe the difference between data encountered in traditional statistical research and
“big data,”

• explain the use of treatment and control groups in experiments,

• explain the role of randomization in assigning subjects in a study,

• explain the difference between observational studies and experiments.

You may already be familiar with statistics as a method of gathering and reporting data.
Sports statistics are a good example of this. For many decades, data have been collected
and reported on the performance of both teams and players using standard metrics such as
yards via pass completions (quarterbacks in American football), points scored (basketball),
and batting average (baseball).
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Sports fans, coaches, analysts, and administrators have a rich array of useful statistics at
their disposal, more so than most businesses. TV broadcasters can not only tell you when
a professional quarterback’s last fumble was but they can also queue up television footage
almost instantly, even if that footage dates from the player’s college days. To appreciate the
role that statistical analysis (also called data analytics) plays in the world today, one needs
to look no further than the television broadcast of a favorite sport—pay close attention to
the statistics that are reported and imagine how they are arrived at.

The whole point in sports, of course, is statistical—to score more points than the other
player or the other team. The activities of most businesses and organizations are much more
complex, and valid statistical conclusions are more difficult to draw, no matter how much
data are available.

Big Data

In most organizations today, raw data are plentiful (often too plentiful), and this is a
two-edged sword.

• Huge amounts of data make prediction possible in circumstances where small
amounts of data do not help. One type of recommendation system, for example,
needs to process large numbers of transactions to locate transactions with the same
items you are looking at—enough so that reliable information about associated items
can be deduced.

• On the other hand, huge data flows can obscure the signal, and useful data are often
difficult and expensive to gather. We need to find ways to get the most information
and the most accurate information for each dollar spent in gathering and preparing
data.

Data Mining and Data Science

The terms big data, data mining, data science, and predictive analytics often go together,
and when people think of data mining various things come to mind. Laypersons may think
of large corporations or spy agencies combing through petabytes of personal data in hopes
of locating tidbits of information that are interesting or useful. Analysts often consider
data mining to be much the same as predictive analytics—training statistical models to use
known values (“predictor variables”) to predict an unknown value of interest (loan default,
acceptance of a sales offer, filing a fraudulent insurance claim, or tax return).

In this book, we will focus more on standard research statistics, where data are small and
well structured, leaving the mining of larger, more complex data to other books. However,
we will offer frequent windows into the world of data science and data mining and point
out the connections with the more traditional methods of statistics.

In any case, it is still true that most data science, when it is well practiced, is not just
aimless trolling for patterns but starts out with questions of interest such as:

• What additional product should we recommend to a customer?

• Which price will generate more revenue?

• Does the MRI show a malignancy?

• Is a customer likely to terminate a subscription?
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All these questions require some understanding of random behavior and all benefit from
an understanding of the principles of well-designed statistical studies, so this is where we
will start.

1.1 A SMALL EXAMPLE

In the fall of 2009, the Canadian Broadcasting Corporation (CBC) aired a radio news report
on a study at a hospital in Quebec. The goal of the study was to reduce medical errors.
The hospital instituted a new program in which staff members were encouraged to report
any errors they made or saw being made. To accomplish that, the hospital agreed not to
punish those who made errors. The news report was very enthusiastic and claimed that
medical errors were less than half as common after the new program was begun. An almost
parenthetical note at the end of the report mentioned that total errors had not changed much,
but major errors had dropped from seven, the year before the plan was begun, to three, the
year after (Table 1.1).

TABLE 1.1 Major Errors in a Quebec Hospital

Before no-fault reporting Seven major errors
After no-fault reporting Three major errors

1.2 IS CHANCE RESPONSIBLE? THE FOUNDATION
OF HYPOTHESIS TESTING

This seems impressive, but a statistician recalling the vitamin E case might wonder if the
change is real or if it could just be a fluke of chance. This is a common question in statistics
and has been formalized by the practices and policies of two groups:

• Editors of thousands of journals who report the results of scientific research because
they want to be sure that the results they publish are real and not chance occurrences.

• Regulatory authorities, mainly in medicine, who want to be sure that the effects of
drugs, treatments, and so on are real and are not due to chance.

A standard approach exists for answering the question “is chance responsible?” This
approach is called a hypothesis test. To conduct one, we first build a plausible mathematical
model of what we mean by chance in the situation at hand. Then, we use that model to
estimate how likely it is, just by chance, to get a result as impressive as our actual result. If
we find that an impressive improvement like the observed outcome would be very unlikely
to happen by chance, we are inclined to reject chance as the explanation. If our observed
result seems quite possible according to our chance model, we conclude that chance
is a reasonable explanation. We now conduct a hypothesis test for the Quebec hospital
data.

What do we mean by the outcome being “just” chance? How should that chance model
look like? We mean that there is nothing remarkable going on—that is, the no-fault report-
ing has no effect, and the 7+ 3= 10 major errors just happened to land seven in the first
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year and three in the second. If there is no treatment effect from no-fault reporting and
only chance were operating, we might expect 50/50 or five in each year, but we would
not always get five each year if the outcome were due to chance. One way that we could
see what might happen would be to just toss a coin 10 times, letting the 10 tosses rep-
resent the 10 major errors, and letting heads represent the first year and tails the sec-
ond. Then a toss of HTTHTTHHHH would represent six in the first year and four in the
second.

Try It Yourself 1.1

Toss a coin 10 times and record the number of heads and the number of tails. We will
call the 10 tosses one trial. Then repeat that trial 11 more times for a total of 12 trials
and 120 tosses. To try this exercise on your computer, use the macro-enabled Excel
workbook boxsampler1.xlsm (located at the book website), which contains a Box
Sampler model.

The textbook supplements contain both Resampling Stats for Excel and StatCrunch
procedures for this problem.

Did you ever get seven (or more) heads in a trial of 10 tosses? (Answers to “Try it
Yourself” exercises are at the end of the chapter.)

Let us recap the building blocks of our model:

• A single coin flip, representing the allocation of a single error to this year (T in the
above discussion) or the prior year (H in the above discussion).

• A series of 10 coin flips, representing a single simulation, also called a trial, that has
the same sample size as the original sample of 10 errors.

• Twelve repetitions of that simulation.

At this stage, you have an initial impression of whether seven or more heads is a rare
event. But you only did 12 trials. We picked 12 as an arbitrary number, just to get started.
What is next?

One option is to sit down and figure out exactly what the probability is of getting seven
heads, eight heads, nine heads, or 10 heads. Recall that our goal is to learn whether seven
heads and only three tails are an extreme, that is, it is an unusual occurrence. If we get lots
of cases where we get eight heads, nine heads, and so on, then clearly, seven heads is not
extreme or unusual.

Why do we count ≥7 instead of =7? This is an important but often a
misunderstood point. If it is not clear, please raise it in class!

We have used the terms “probability” and “chance,” and you probably have a good sense
of what theymean, for example, probability of precipitation or chance of precipitation. Still,
let us define them—the meaning is the same for each, but probability is a more specific
statistical term so we will stick with that.



IS CHANCE RESPONSIBLE? THE FOUNDATION OF HYPOTHESIS TESTING 5

Definition: A somewhat subjective definition of probability

The probability of something happening is the proportion of time that it is expected to
happen when the same process is repeated over and over (paraphrasing from Freedman,
et al., Statistics, 2nd ed., Norton, 1991, 1st ed. 1978).

Definition: Probability defined more like a recipe or formula

First, turn the problem into a box filled with slips of paper, with each slip representing a
possible outcome for an event. For example, a box of airline flights would have a label for
each flight: late, on time, or canceled. The probability of an outcome is the number of slips
of paper with that outcome divided by the total number of slips of paper in the box.

Question 1.1

From the above, particularly the second definition, you can see that the probability of some-
thing happening must always lie between ____ and ____, inclusive.

You can speak in terms of either proportions or percentages—40% is the same as 0.40.
Earlier, we calculated all the possible outcomes for three flips of a coin. Can we do the

same thing for 10 flips? If you try it, you will see that this method of counting will quickly
become tedious.

Three flips is easier—here is a video from the Khan Academy that illustrates how to
calculate the probability of two heads in three tosses by counting up the possibilities.

https://www.youtube.com/watch?v=3UlE8gyKbkU&feature=player_embedded
With 10 flips, one option is to do many more simulations. We will get to that in a bit,

but, for now, we will jump to the conclusion so that we can continue with the overall story.
The probability of getting seven or more heads is about 2/12= 0.1667.

Interpreting This Result

The value 0.1667 means that such an outcome, i.e., seven or more heads, is not all that
unusual, and the results reported from Canada could well be due to chance. This news story
was not repeated later that day nor did it appear on the CBC website, so perhaps they heard
from a statistician and pulled the story.

Question 1.2

Would you consider chance as a reasonable explanation if there were 10 major errors the
year before the change and none the year after? Hint: use the coin tosses that you already
performed.

Suppose it had turned out the other way. If our chance model had given a very low
probability to the actual outcome, then we are inclined to reject chance as the main factor.

Definition: p-value

If we examine the results of the chance model simulations in this way, the probability of
seeing a result as extreme as the observed value is called the p-value (or probability value).
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Even if our chance model had produced a very low probability, ruling out chance, this
does not necessarily mean that the real cause is the new no-fault reporting policy. There
are many other possible explanations. Just as we need to rule out chance, we need to
rule out those as well. For example, we might be more impressed if our hospital was
unique—reducing its errors while every other hospital in Quebec had more major errors
the second year. Conversely, we would be less impressed if the number of errors went down
at all hospitals that second year—including those with no new program.

Do not worry if this definition of p-value and the whole hypothesis testing process are
not fully clear to you at this early stage. We will come back to it repeatedly.

The use of p-values is widespread; their use as decision-making criteria lies more in the
research community than in the data science community.

Increasing the Sample Size

Intuition tells us that small samples lead to fluke results. Let us see what happens when we
increase the sample size.

Try It Yourself 1.2

Let us double the sample size and imagine that the study had revealed 14 errors in 1
year and six the following, instead of seven and three. Now, regroup your 12 simulations
of 10 tosses into six trials of 20 tosses each. Combine the first and the second sets, the
third and fourth, and so on. Then do six more trials of 20 tosses each for a total of 120
additional tosses. You should now have 12 sets of 20 tosses. If you want to try a com-
puter simulation, use the Box Sampler macro-enabled Excel workbook boxsampler2.
xlsm.

The textbook supplements contain a Resampling Stats procedure for this problem.
Did you ever get 14 or more heads in a trial of 20 tosses?

Technique

We will use the “Technique” heading for the details you need to do the analyses.
We illustrate the use of a computer to generate random numbers, which is shown as
follows.

In our original example, we saw seven errors in the first year and three errors
in the next, for a reduction of four errors. As we develop this example further,
we will deal exclusively with data on reduction in errors.

Tossing coins can get tiresome and can only model events that have a 50/50 chance of
either happening or not happening. Modeling random events is typically done by generating
random numbers by computer.

Excel, for example, has two options for generating random numbers:

RAND generates a random number between 0 and 1.

RANDBETWEEN generates a random integer between two values that you specify.
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You then need to map the random digit that is generated to the outcome of an event that
you are trying to model. For example:

1. A customer of a music streaming subscription service has a 15% probability of can-
celing the service in a given year. This could be modeled by generating a random integer
between 1 and 100 and labeling 1–15 as “cancel” and 16–100 as “maintain subscription.”

In Excel, the function would be entered as =RANDBETWEEN(1,100).
After generating, say, 1000 random numbers (and putting them in cells A1:A1000), you

could count the number of cancelations using COUNTIF:
=COUNTIF(A1:A1000,"<=15").

What is a Random Number?

For our purposes, we can think of a random number as the result of placing the digits 0–9
in a hat or a box, shuffling the hat or box, and then drawing a digit.Most random numbers
are produced by computer algorithms that produce series of numbers that are effectively
random and unpredictable, or at least sufficiently random for the purpose at hand. But
the numbers are produced by an algorithm that is technically called a pseudo-random
number generator. There have been many research studies and scholarly publications
on the properties of random number generators (RNGs) and the computer algorithms
they use to produce pseudo random numbers. Some are better than others; the details
of how they work are beyond the scope of this book. We can simply think of random
number generators as the computer equivalent of picking cards from a hat or a box that
has been well shuffled.

1.3 A MAJOR EXAMPLE

To tie together our study of statistics, we will look at one major example. Using the study
reported by the CBC as our starting point, we introduce basic but important statistical con-
cepts.

Imagine that you have just been asked to design a better study to determine if the sort of
no-fault accident reporting tried in a Quebec hospital really does reduce the number of seri-
ous medical errors. The standard type of study in such a situation would be an experiment.

Experiment versus Observational Study

In the fifth inning of the third game of the 1932 baseball World Series between the NY
Yankees and the Chicago Cubs, the great slugger Babe Ruth came to bat and pointed
toward center field as if to indicate that he planned to hit the next pitch there. On the
next pitch, he indeed hit the ball for a home run into the centerfield bleachers.∗

A Babe Ruth home run was an impressive feat but not that uncommon. He hit one
every 11.8 at bats. What made this one so special is that he predicted it. In statistical
terms, he specified in advance a theory about a future event—the next swing of the
bat—and an outcome of interest—home run to centerfield.

In statistics, we make an important distinction between studying preexist-
ing data—an observational study—and collecting data to answer a prespecified
question—an experiment or a prospective study.
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We will learn more about this later but keep in mind that the most impressive and
durable results in science come when the researcher specifies a question in advance
and then collects data in a well-designed experiment to answer the question. Offering
commentary on the past can be helpful but is no match for predicting the future.

∗There is some controversy about whether he actually pointed to center field or to left field and whether he
was foreshadowing a prospective home run or taunting Cubs players. You can Google the incident ("Babe
Ruth called shot") and study videos on YouTube and then judge for yourself.

1.4 DESIGNING AN EXPERIMENT

The principles of designing an experiment are fundamental and should be studied by both
data scientists and research statisticians.When it comes to practice and implementation, this
material will be of primary interest to the research community identified at the beginning
of the introduction.

In our errors experiment, we could compare two groups of hospitals. One group uses
the no-fault plan and the other does not. The group that gets the change in treatment you
wish to study is called the treatment group. The group that gets no treatment or the stan-
dard treatment is called the control group. Normally, you need some reference group for
comparison, although in some studies you may be comparing multiple treatments with no
control. How do you decide which hospitals go into which group?

You would like the two groups to be similar to one another, except for the treat-
ment/control difference. That way, if the treatment group does turn out to have fewer
errors, you can be confident that it was due to the treatment. One way to do this would
be to study all the hospitals in detail, examine all their relevant characteristics, and assign
them to treatment/control in such a way that the two groups end up being similar across all
these attributes. There are two problems with this approach.

1. It is usually not possible to think of all the relevant characteristics that might affect
the outcome. Research is replete with the discovery of factors that were unknown
prior to the study or thought to be unimportant.

2. The researcher, who has a stake in the outcome of the experiment, may consciously
or unconsciously assign hospitals in a way that enhances the chances of the success
of his or her pet theory.

Oddly enough, the best strategy is to assign hospitals randomly—perhaps by tossing
a coin.

Randomizing

True random assignment eliminates both conscious and unconscious bias in the assignment
to groups. It does not guarantee that the groups will be equal in all respects. However, it
does guarantee that any departure from equality will be due simply to the chance allocation
and that the larger the number of samples, the fewer differences the groups will have. With
extremely large samples, differences due to chance virtually disappear and you are left with
differences that are real—provided the assignment to groups is really random.
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Law of Large Numbers

The law of large numbers states that, despite short-term average deviations from an
event’s theoretical mean, such as the chance of a coin landing heads, the long-run
empirical—actual—average occurrence of the event will approach, with greater and
greater precision, the theoretical mean. The short-run deviations get washed out in a
flood of trials. During World War II, John Kerrich, a South African mathematician,
was imprisoned in Denmark. In his idle moments, he conducted several probability
experiments.

In one such experiment, he flipped a coin repeatedly, keeping track of the number
of flips and the number of heads. After 20 flips, he was exactly even—10 heads and
10 tails. After 100 flips, he was down six heads—44 heads and 56 tails—or 6%. After
500 flips, he was up five heads—255 heads and 245 tails—or 1%. After 10,000 flips,
he was up 67 heads or 0.67%.

A plot of all his results with the proportion of heads on the y-axis and the number
of tosses on the x-axis shows a line that bounces around a lot on the left side but settles
down to a straighter and straighter line on the right side, tending toward 50%.

Do not confuse the Law of Large Numbers with the popular conception of
the Law of Averages.

Law of Large Numbers

Long run actual average will approach the theoretical average.

Law of Averages

A vague term, sometimes meaning as mentioned earlier but also used popularly to refer
to the mistaken belief that, after a string of heads, the coin is “due” to land tails, thereby
preserving its 50/50 probability in the long run. One often encounters this concept in
sports, for example, a batter is “due” for a hit after a dry spell.

Random assignment let us make the claim that any difference in the group outcomes that
can more than might happen by chance is, in fact, due to the different treatment received
by the groups. Kerrich had a lot of time on his hands and could accumulate a huge sample
under controlled conditions for his simple problem. In actual studies, researchers rarely
have the ability to collect samples sufficiently large that we can dismiss chance as a factor.
In the study of probability in this course, lets us quantify the role that chance can play and
take it into account (Figure 1.1).

Even if we performed a dummy experiment in which both groups got the same treatment,
wewould expect to see some differences from one hospital to another. An everyday example
of this might be tossing a coin. You get different results from one toss to the next just by
chance. Check the coin tosses you did earlier in connection with the CBC news report on
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Figure 1.1 Kerrich coin tosses. Number of tosses on the x-axis and the proportion of heads on the
y-axis.

medical errors. If you toss a coin 10 times, you will get a certain number of heads. Do it
again and you will probably get a different number of heads.

Although the results vary, there are laws of chance that allow you to calculate things like
how many heads you would expect on average or how much the results would vary from
one set of 10 tosses to the next. If we assign subjects at random, we can use these same
laws of chance—or a lot of coin tosses—to analyze our results.

If we have Doctor Jones assign subjects using her own best judgment, we will have no
mathematical theory to guide us. That is because it is very unlikely that we can find any
books on how Doctor Jones assigns hospitals to the treatment and control groups. However,
we can find many books on random assignment. It is a standard, objective way of doing
things that works the same for everybody. Unfortunately, it is not always possible. Human
subjects can neither be assigned a gender nor a disease.

Planning

You need some hospitals and you estimate that you can find about 100 within reasonable
distance. You will probably need to present a plan for your study to the hospitals to get
their approval. This seems like a nuisance, but they cannot let just anyone do any study
they please on the patients. Studies of new prescription drugs require government approval
as well, which is a long and costly process. In addition to writing a plan to get approval,
you know that one of the biggest problems in interpreting studies is that many are poorly
designed. You want to avoid that so you think carefully about your plan and ask others for
advice. It would be good to talk to a statistician who has experience in medical work. Your
plan is to ask the 100 or so available hospitals if they are willing to join your study. They
have the right to say no. You hope that quite a few will say yes. In particular, you hope to
recruit 50 willing hospitals and randomly assign them to two groups of 25.

Try It Yourself 1.3

Suppose you wanted to study the impact of watching television on violent behavior with
an experiment. What issues might you encounter in trying to assign treatments to sub-
jects? What would the treatment be?
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Blinding

We saw that randomization is used to try to make the two groups similar at the beginning. It
is important to keep them as similar as possible. We want to be sure that the treatment is the
only difference between them. One subtle difference we have to worry about when working
with humans is that their behavior can be changed by the fact that they are participating in
a study.

Out-of-Control Toyotas?

In the fall of 2009, the National Highway Transportation Safety Agency received several
dozen complaints per month about Toyota cars speeding out of control. The rate of
complaint was not that different from the rates of complaint for other car companies.
Then, in November of 2009, Toyota recalled 3.8 million vehicles to check for sticking
gas pedals. By February, the complaint rate had risen from several dozen per month to
over 1500 per month of alleged cases of unintended acceleration. Attention turned to
the electronic throttle.

Clearly, what changed was not the actual condition of cars—the stock of Toyotas
on the road in February of 2010 was not that different from November of 2009. What
changed was car owners’ awareness and perception as a result of the headlines sur-
rounding the recall. Acceleration problems, whether real or illusory, that escaped notice
before November 2009 became causes for worry and a trip to the dealer. Later, the
NHTSA examined a number of engine data recorders from accidents where the driver
claimed to have experienced acceleration despite applying the brakes. In all cases, the
data recorders showed that the brakes were not applied.

In February 2011, the US Department of Transportation announced that a 10-month
investigation of the electronic throttle showed no problems.

In April 2011, a jury in Islip, NY took less than an hour to reject a driver’s claim
that a mispositioned floor mat caused his Toyota to accelerate and crash into a tree. The
jury’s verdict? Driver error.

As of this writing, we still do not know the actual extent of the problem. But from
the evidence to date, it is clear that public awareness of the problem boosted the rate of
complaint far out of proportion to its true scope.

Lesson: Your perception of whether you personally experience a problem or benefit
is substantially affected by your prior awareness of others’ problems/benefits.

Sources:Wall Street Journal, July 14, 2010; TheAnalysis Group (http://www.analysisgroup.com/auto_safety_
analysis.aspx—accessed July 14, 2010); A Today online, April 2, 2011.

In some situations, we can avoid telling people that they are participating in a study. For
example, a marketing study might try different ads or products in various regions without
publicizing that they are doing so for research purposes. In other situations, we may not be
able to avoid letting subjects know they are being studied, but we may be able to conceal
whether they are in the treatment or control group. One way is to impose a dummy treatment
on the control group.

Such a dummy treatment is called a placebo. It is especially important when we decide
how well the treatment worked by asking the subjects. Experience has shown that subjects
will often report good results even for dummy treatments. Part of this is that people want
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to please, or at least not offend, the researcher. Another part is that people may believe in
the treatment and therefore think that it helped even when it did not. The researcher may
communicate this positive expectation. For this reason, we prefer that neither the subjects
nor any researchers in contact with the subjects know whether the subjects are getting the
real treatment or the placebo. Then we hope that the researchers will communicate identical
expectations to both groups, and the subjects will be equally eager to please or to expect
equally good results. Experience has also shown that people respond positively to attention
and just being part of a study may cause subjects to improve. This positive response to the
knowledge that you are being treated is called the placebo effect. More specifically, positive
response to the attention of participating in a study is called the Hawthorne effect.

We say a study is single-blind when the subjects—the hospitals in our medical errors
example—do not know whether they are getting the treatment. It is double-blind if the staff
in contact with the subjects also does not know. It is triple-blind if the people who evaluate
the results do not know either. These people might be lab technicians who perform lab tests
for the subjects but never meet them. They cannot communicate any expectations to the
subjects, but they may be biased in favor of the treatment when they perform the tests.

It is not always practical to have all these levels of blinding. A reasonable compromise
might be necessary. For our hypothetical study of medical errors, we cannot prevent the
hospitals from knowing that they are being studied because we need their agreement to
participate. It may be unethical to have the control group do nothing to reduce medical
errors. What we might be able to do is consult current practices on methods for reducing
medical errors and codify them. Then ask the treatment hospitals to implement those best
practices PLUS no-fault-reporting and those at the control hospitals to simply implement
the basic best practices code. This way, all hospitals receive a treatment but do not know
which one is of actual interest to the researcher.

Try It Yourself 1.4

How would you use blinding in a study to assess the effects of watching television on
violent behavior?

In addition to the various forms of blinding, we try to keep all other aspects of each
subject’s environment the same. This usually requires spelling out in great detail what will
be done. For example, when no experiment is being conducted, each individual hospital
might decide on how to deal with medical errors. In an experiment, we need to agree on a
common method that will be applied to all hospitals. We would try to find hospitals that are
as similar as possible and maintain patient conditions as similarly as possible. By keeping
the two groups the same in every way except the treatment, we can be confident that any
differences in the results were due to it. Any difference in the outcome due to nonrandom
extraneous factors is called bias. Statistical bias is not the same as the type that refers to
people’s opinions or states of mind.

Try It Yourself 1.5

What factors other than watching television might affect violent behavior? How would
you control these in a study to assess the effects of watching television on violent
behavior?
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Before-After Pairing

We could run our study for a year and measure the total number of medical errors each
hospital had by the end of that period. A better strategy is to measure how many errors they
had the year before the study as well. Then, we have paired data—two measurements on
each unit. This allows us to compare the treatment to no treatment at the same hospitals.
The study reported by the CBC had both before and after data on the same hospital.

Even if we use before/after measurements on the same hospitals, we should also retain
the control group. Having both a control group and a treatment group allows us to separate
out the improvement due to no-fault-reporting from the improvement due to the more gen-
eral best practices treatment. Having a control group also controls for trends that affect all
hospitals. For example, the number of errors could be increasing due to an increased patient
load at hospitals, generally, or decreasing due to better doctor training or greater awareness
of the issue—perhaps generated by CBC news coverage. The vitamin E study compared
two groups over the same time period but did not have before and after data.

Try It Yourself 1.6

How could you use a control group or pairing in a study to assess the effects of watching
television on violent behavior?

1.5 WHAT TO MEASURE—CENTRAL LOCATION

Part of the plan for any experiment will be the choice of what to measure to see if the treat-
ment works. This is a good place to review the standard measures with which statisticians
are concerned: central location of and variation in the data.

Mean

The mean is the average value—the sum of all the values divided by the number of values.
It is generally what we use unless we have some reason not to use it.

Consider the following set of numbers: {3 5 1 2}
The mean is (3 + 5 + 1 + 2)∕4 = 11∕4 = 2.75.
You will encounter the following symbols for the mean:
x represents the mean of a sample from a population. It is written as x-bar in inline text.
𝜇 represents the mean of a population. The symbol is the Greek letter mu.

Why make the distinction? Information about samples is observed, and information
about large populations is often inferred from smaller samples. Statisticians like to keep
the two things separate in the symbology.

Median

The median is the middle number on a sorted list of the data. Table 1.2 shows the sorted
data for both groups in the hospital.

The middle number on each list would be the 13th value (12 above and 12 below). If
there is an even number of data values, the middle value is one that is not actually in the
data set but rather is the average of the two values that divide the sorted data into upper and
lower halves.
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TABLE 1.2 Hospital Error Reductions,
Treatment, and Control Groups

Control Treatment

1 2
1 2
1 2
1 2
1 2
1 2
1 2
1 2
1 2
1 2
1 2
1 2
2 2
2 2
2 2
2 2
2 2
2 2
2 3
2 3
3 4
3 4
4 5
4 6
5 9

We find that the median is the same for both lists! It is 2. This is not unusual for data with
a lot of repeated values. The median is a blunt instrument for describing such data. From
what we have seen so far, the groups seem to be different. The median does not capture
that. Looking at the numbers, you can see the problem. In the control group, the numbers
coming before the 2 at Position 13 are all ones; for the treatment group they are all 2s. The
median reflects what is happening at the center of the sorted data but not what is happening
before or after the center.

The median is more typically used for data measured over a broad range where we want
to get an idea of the typical case without letting extreme cases skew the results. Let us saywe
want to look at typical household incomes in the neighborhoods around Lake Washington
in Seattle. In comparing the Medina neighborhood to the Windermere neighborhood, using
the mean would produce very different results because Bill Gates lives in Medina. If we use
the median, it will not matter how rich Bill Gates is—the position of the middle observation
will remain the same.

Question 1.3

A student gave seven as the median of the numbers 3, 9, 7, 4, 5. What do you think he or
she did wrong?
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Mode

The mode is the value that appears most often in the data, assuming there is such a value.
In most parts of the United States, the mode for religious preference would be Christian.
For our data on errors, the mode is 2 for all 50 subjects and 1 for the control group. The
mode is the only simple summary statistic for categorical data, and it is widely used for
that. At different times in the history of the United States, the mode for the make of new
cars sold each year has been Buick, Ford, Chevrolet, and Toyota. The mode is rarely used
for measurement data.

Expected Value

The expected value is calculated as follows.

1. Multiply each outcome by its probability of occurring.
2. Sum these values.

For example, suppose that a local charitable organization organizes a game in which
contestants purchase the right to spin a giant wheel with 50 equal-sized sections and an
indicator that points to a section when the wheel stops spinning. The right to spin the wheel
costs $5 per spin. One section is marked $50—that is how much the purchaser wins if the
spinner ends up on that section. Five sections are marked $15, 10 sections are marked $5,
and the remaining sections are marked $0.

To calculate the expected value of a spin, the outcomes, with the purchase price of the
spin subtracted from the prize, are multiplied by their probabilities and then summed.

EV =
( 1
50

)
($50 − $5) +

( 5
50

)
($15 − $5) +

(10
50

)
($5 − $5) +

(34
50

)
($0 − $5)

EV = − $1.50

The expected value favors the charitable organization, as it probably should. For each
ticket you purchase, you can expect to lose, on average, $1.50. Of course, you will not lose
exactly $1.50 in any of the above scenarios. Rather, the $1.50 is what you would lose per
ticket, on average, if you kept playing this game indefinitely.

The expected value is really a fancier mean; it adds the ideas of future expectations and
probability weights. Expected value is a fundamental concept in business valuation and
capital budgeting—the expected number of barrels of oil a new well might produce, for
example, the expected value of 5 years of profit from new acquisition or the expected cost
savings from new patient management software at a clinic.

Percents

Percents are simply proportions multiplied by 100. Percents are often used in reporting as
they can be understood and visualized a bit more easily and intuitively than proportions.

Proportions for Binary Data

Definition: Binary data

Binary data is data that can take one of only two possible outcomes—win/lose,
survive/die, purchase/do not purchase.
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When you have binary data, the measure of central tendency is the proportion. An
example would be the proportion of the survey approving of the president. The propor-
tion for binary data fully defines the data—once you know the proportion, you know all
the values. For example, if you have a sample of 50 zeros and ones, and the proportion for
one is 60%, then you know that there are 30 ones and 20 zeros.

For the convenience of software and analysis, binary data are often represented as 0s and
1s. For purely arbitrary reasons, a “1” is called a success, but this term has no normative
meaning and simply indicates the outcome associated with some action or event of interest.
For example, in a data set used to analyze college dropouts, a “1” might be used to indicate
dropout. With binary data in which one class is much more scarce than the other (e.g.,
fraud/no-fraud or dropout/no-dropout), the scarce class is often designated as “1.”

1.6 WHAT TO MEASURE—VARIABILITY

If all the hospitals in the control group had one fewer error and all those in the treatment
group had two fewer, our job would be easy. We would be very confident that the treat-
ment improved the reduction in the number of errors by exactly one. Instead, we have
a lot of variability in both batches of numbers. This just means that they are not all the
same.

Variability lies at the heart of statistics: measuring it, reducing it, distinguishing ran-
dom from real variability, identifying the various sources of real variability, and making
decisions in the presence of it.

Just as there are different ways to measure central tendency—mean, median,
mode—there are also different ways to measure variability.

Range

The range of a batch of numbers is the difference between the largest and smallest number.
Referring to Table 1.2, the range for the control group is 5− 1= 4. Note that in statistics
the range is a single number.

Try It Yourself 1.7

Referring to the same table, what is the range for the treatment group?

The range is very sensitive to outliers. Recall the two similar Seattle neighborhoods—
Windermere and Medina. The range of income in Medina, where Bill Gates lives, will be
much larger than the range in Windermere.

Percentiles

One way to get around the sensitivity of the range to outliers is to go in a bit from each
end and take the difference from there. For example, we could take the range between
the 10th percentile and the 90th percentile. This would eliminate the influence of extreme
observations.
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Definition: Pth percentile

In a population or a sample, the Pth percentile is a value such that at least P percent of the
values take on this value or less and at least (100− P) percent of the values take on this value
or more. Sometimes, there is a single value in the data that satisfies this requirement and
sometimes there are two. In the latter case, it is best to take the midpoint between the two
values that do. Software may have slightly differing approaches that can produce differing
answers.

More intuitively: to find the 80th percentile, sort the data. Then, starting with the smallest
value, proceed 80% of the way to the largest value.

Interquartile Range

One common approach is to take the difference between the 25th percentile and the 75th
percentile.

Definition: Interquartile range

The interquartile range (or IQR) is the 75th percentile value minus the 25th percentile value.
The 25th percentile is the first quartile, the 50th percentile is the second quartile, also called
the median, and the 75th percentile is the third quartile. The 25th and 75th percentiles are
also called hinges.

Here is a simple example: 3, 1, 5, 3, 6, 7, 2, 9. We sort these to get 1, 2, 3, 3, 5, 6, 7,
9. The 25th percentile is at 2.5 and the 75th percentile is at 6.5, so the interquartile range
is 6.5− 2.5= 4. Again, software can have slightly differing approaches that yield different
answers.

Try It Yourself 1.8

Find the IQR for the control data, the treatment data, and for all 50 observations com-
bined.

Deviations and Residuals

There are also a number of measures of variability based on deviations from some typical
value. Such deviations are called residuals.

Definition: Residual

A residual is the difference between a mean value and an observed value or the difference
between a value predicted by a statistical model and an actual observed value.

For 1, 4, 4, the mean is 3 and the median is 4. The deviations from the mean are the
differences

1 − 3 = −2 4 − 3 = 1 4 − 3 = 1
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Mean Absolute Deviation

One way to measure variability is to take some kind of typical value for these residuals.
We could take the absolute values of the deviations—{2 1 1} in the above case and then
average them: (2+ 1+ 1)/3= 1.33. Taking the deviations themselves, without taking the
absolute values, would not tell us much—the negative deviations exactly offset the positive
ones. This always happens with the mean.

Variance and Standard Deviation

Another way to deal with the problem of positive residuals offsetting negative ones is by
squaring the residuals.

Definition: Variance for a population

The variance is the mean of the squared residuals, where 𝜇= population mean, x
represents the individual population values, and N= population size.

Variance = 𝜎
2 =

∑
(x − 𝜇)2

N

The standard deviation 𝜎 is the square root of the variance. The symbol 𝜎 is the Greek
letter sigma and commonly denotes the standard deviation.

The appropriate Excel functions are VARP and STDEVP. The P in these functions indi-
cates that the metric is appropriate for use where the data range is the entire population
being investigated; that is, the study group is not a sample.

The standard deviation is a fairly universal measure of variability in statistics for two
reasons: (i) it measures typical variation in the same units and scale as the original data and
(ii) it is mathematically convenient, as squares and square roots can effectively be plugged
into more complex formulas. Absolute values encounter problems on that front.

Try It Yourself 1.9

Find the variance and standard deviation of 8, 1, 4, 2, 5 by hand. Is the standard deviation
in the ballpark of the residuals, that is, the same order of magnitude?

Variance and Standard Deviation for a Sample

When we look at a sample of data taken from a larger population, we usually want the
variance and, especially, the standard deviation—not in their own right but as estimates of
these values in the larger populations.

Intuitively, we are tempted to estimate a population metric by using the same metric
in the sample. For example, we can estimate the population mean effectively by using the
sample mean or the population proportion using the sample proportion.

The same is not true for measures of variability. The range in a sample (particularly a
small one) is almost always going to be biased—it will usually be less than the range for
the population.
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Likewise, the sample variance and standard deviation are not the best estimates for the
population values because they consistently underestimate the variance and standard devi-
ations in the population being sampled.

However, if you divide by n−1 instead of n, the variance and standard deviation from
a sample become unbiased estimators of the population values. A mathematical proof is
beyond the scope of this course, but you can demonstrate this fact with the “Try It Yourself”
exercise below.

Definition: Sample variance

Sample variance = s2 =

∑
(x − x)2

n − 1

Definition: Sample standard deviation

The sample standard deviation s is the square root of the sample variance.

The appropriate Excel functions are VAR and STDEV.
In statistics, you will encounter the term degrees of freedom. Its exact definition is not

needed for this course, but the concept can be illustrated here. Let us say you have three
observations and you know that their variance is x. Once you know the first two values, the
third is predetermined by the first two and the value for the variance. We say there are n− 1,
in this case, two, degrees of freedom. The denominator in the sample variance formula is
the number of degrees of freedom.

Try It Yourself 1.10

In your resampling software, randomly generate a population of 1000 values. It does not
matter what population you generate—let us say a population of randomly selected num-
bers between 0 and 9. In Excel, you can do this with the RANDBETWEEN function. Next,
find the variance of this population using the population variance formula. Then, repeat-
edly take resamples of size 10 and calculate the variance for each resample according
to the same population formula. How does the mean of the resample variances compare
to the population variance?

Tutorials for this exercise using Resampling Stats for Excel and StatCrunch can be
found in the textbook supplements.

For a Box Sampler resampling tutorial based on this exercise, see the file
box_sampler_tutorial.pdf.

1.7 WHAT TO MEASURE—DISTANCE (NEARNESS)

The concept of statistical distance is of particular interest to the data science community
identified at the beginning of the Introduction.
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Consider a poll in which respondents are asked to assess their preferences for themusical
genres listed below. Ratings are on a scale of 1 (dislike) to 10 (like) and we have poll results
from three students (Table 1.3).

TABLE 1.3 Musical Genre Preferences

Person Rock Rap Country Jazz New Age

A 7 1 9 1 3

B 4 9 1 3 1

C 9 1 7 2 2

Consider person C. Is she more like person A or person B? Looking at the scores, our
guess would be that person C is more like person A. We can measure this distance statis-
tically by subtracting one vector from the another, squaring the differences so they are all
positive, summing them so we have a single number, then taking the square root so the
original scale is restored.

Definition: Vector

A vector is a row of numbers. Vector arithmetic is done by performing the operation on
the corresponding elements of each vector, resulting in a new vector of sums, differences,
products, and so on.

The statistic that we have described is “Euclidean Distance.” Here is the formula, fol-
lowed by the calculations.

As a general example, assume that we have two vectors, w and x, each containing n
values. The Euclidean distance between the two vectors is

Euclidean Distance =
√
(w1 − x1)2 + (w2 − x2)2 + (w3 − x3)2 + · · · + (wn − xn)2

If you look carefully at the formula, you might recognize that this is the general formula
for the distance between two points from high school geometry. The formula mentioned
earlier is for n dimensions, whereas high school math courses usually work with two or
three dimensions.

For a specific example, the Euclidean Distance between vectors A and B—a measure
of how alike person A is to person B—in the table shown earlier is calculated (Table 1.4).

In the table shown earlier, the sum of the squares of the differences of each row is 145.
The square root of 145 is 12.04, which is the Euclidean Distance between the two vectors
representing person A and person B. Looking back at the data in Table 1.3, try the following
problem:

Question 1.4

Let us say that you own a music store. A, B, and C are all customers of yours, and A
and B have both just made purchases. You want to recommend one of these purchases
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TABLE 1.4 Euclidean Distance Between A and B

Rock Rap Country Jazz New Age

Person A 7 1 9 1 3

Person B 4 9 1 3 1

(A−B)2 9 64 64 4 4

Sum (A−B)2 145

Euclidean distance 12.04

for C. Which one would you recommend? See the file euclidean_distance.xls for the
answer.

Distance measures are used in statistics for multiple purposes:

• Finding clusters or segments of customers who are like one another.

• Classifying records by assigning them the same class as nearby records.

• Locating outliers, for example, airport security screening.

• Finding the distance to a benchmark. For example, if you have a list of symptoms for
an individual, what disease is it closest to?

1.8 TEST STATISTIC

Let us continue with our analysis of the hospital data, using the means for error reduction.
Certainly, 2.80 is bigger than 1.88. Howmuch bigger? We could say it is 2.80− 1.88= 0.92
bigger. That is, to say that the treatment seems to reduce the number of errors by nearly one.
But there are other ways to look at this. The ratio 2.80/1.88= 1.49 gives another comparison.
It says the reduction in errors for the treatment group is 1.49 times that in the control group
or nearly 50% greater.

Just counting errors treats them all alike. Ideally, we like to have some sort of mea-
surement along a scale. For example, we assign a number of points to indicate the level of
severity for each error and we total the points for each hospital. That would require training
someone to assign points in a consistent manner from case to case. This could be expensive
and wasteful if the person spends most of their time on minor errors that do not actually
impact patient health.

As a compromise, our researcher decides to count the number of “major” errors and use
that as a measure. The hospitals will be given simple criteria that will allow errors that might
be considered major to be identified. Then, a trained expert will make the final decision as
to which errors are major. To make sure that there are no differences in how the decision is
made from hospital to hospital, the researcher asks that one expert to do all the counting. If
possible, relevant records will be submitted anonymously to the expert so that he or she does
not know which hospital the records came from or whether that hospital is in the treatment
or control group.
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Try It Yourself 1.11

In studying the impact of watching television on violent behavior, how would youmeasure
television watching and violent behavior in an assessment study? Would you consider
an hour of watching Rocky and Bullwinkle reruns to be equivalent to watching an hour of
live coverage of the war in Afghanistan or a boxing match? What violence rating would
you give to robbing a convenience store, becoming a professional boxer, or joining the
army to fight in an active combat theater?

Our test statistic will be calculated as follows.

1. Measure the number of major medical errors for each hospital for the year before and
the year after the treatment is initiated and find the reduction: errors before minus
errors after.

2. Calculate the mean reduction for the control group and the treatment group.

3. Find the difference: treatment minus control= 0.92.

Important: Throughout this example, we will be talking about “reductions in number of
errors,” not in the number of errors.

A test statistic is the key measurement that we will use to judge the results of the exper-
iment or study.

Test Statistic for This Study

Mean reduction in errors (treatment) minus mean reduction in errors (control).

1.9 THE DATA

After performing the study as planned, the researchers will need to enter the data into a
computer and proofread it for errors. After doing that, they obtained the results as shown
in Table 1.5.

TABLE 1.5 Reduction in Major Errors in Hospitals
(Hypothetical Extension of the Earlier Example)

Row Hospital# Treat? Reduction in Errors

1 239 0 3
2 1126 0 1
3 1161 0 2
4 1293 1 2
5 1462 1 2
6 1486 0 2
7 1698 1 5
8 1710 0 1
9 1807 0 1
10 1936 1 2
11 1965 1 2
12 2021 1 2
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TABLE 1.5 (Continued)

Row Hospital# Treat? Reduction in Errors

13 2026 0 1
14 202 0 3
15 208 1 4
16 2269 1 2
17 2381 1 2
18 2388 0 1
19 2400 1 2
20 2475 0 4
21 2548 0 1
22 2551 0 2
23 2661 0 1
24 2677 1 4
25 2739 1 2
26 2795 1 3
27 2889 0 5
28 2892 1 9
29 2991 1 2
30 3166 1 2
31 3190 0 1
32 3254 0 4
33 3312 1 2
34 3373 1 2
35 3403 1 3
36 3403 0 1
37 3429 1 2
38 3441 1 6
39 3520 0 1
40 3568 1 2
41 3580 0 2
42 3599 0 2
43 3660 1 2
44 3985 0 2
45 4014 1 2
46 4060 0 1
47 4076 1 2
48 4093 0 1
49 4230 0 2
50 5633 0 2

Remember, we are counting not the number of errors per hospital but rather
the reduction in errors.

Database Format

This is a standard database format, which all database programs and most standard-purpose
statistical software programs use. The rows represent records or cases—hospitals in this
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example and the columns represent variables, which are data that change from hospital
to hospital. The format has two key features, which is required by most statistical
software.

1. Each row contains all the information for one and only one hospital.
2. All data for a given variable are in a single column.

Spreadsheets like Excel can deal with data equally as rows or columns, but statistical
software expects rows to be records and columns to be variables.

Technique

Although it is possible to enter data into Excel in the above format, not all statistical
analyses in Excel can cope with having “group” as a variable. Some procedures want
the observations arranged in columns according to which group they are in.

Let us look at the parts. The first column is simply the row number.

Column 2, hospital, contains case labels. These are arbitrary labels for the experimental
units—a unique number for each unit. Case labels keep track of the data. For example, if
we find a mistake in the data, we would need to know which hospital that came from so we
could investigate the cause and correct the mistake. Numerical codes are preferred to more
informative labels when we wish to conceal the group to which subjects were assigned.

Column 3 labels observations from the treatment group with a one and those from the
control group with a zero.

Column 4 is the number of major medical errors at the year before the study minus
the number from the following year. A positive number represents a reduction in medical
errors. Note that all the numbers are positive—things got better whether subjects got the
treatment or not! This could be due to the Hawthorne effect or any extra care the subjects got
from being in the experiment or due to any number of other factors that may have changed
between the 2 years.

Relational Database Format

Most statistical procedures work with data that are in the format as mentioned earlier—a
single table in which columns have variables and rows have individual records. And most
statistics courses considerately provide data for students in this format. However, this is not
how most organizations store and use data.

The ability to extract data from relational databases for analysis will be of particular
importance to those in the data science community identified in the Introduction.

Consider a hypothetical jobs database and start with the following information:
Steve Walters, a scientist with 12 years experience who lives in Palo Alto, CA, has

applied for a position at HSBC in London as a Data Scientist; there are two such posi-
tions with HSBC. Data munging (the ability to extract data and prepare it for analysis) is a
required skill. This information might be presented in a single record as follows:

Candidate
Skill
Set Exp Home Company Location

No. of
Positions Position Skill

S Walters Scientist 12 Palo Alto HSBC London 2 Data Scientist Munging
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Consider also that James Morgan, a banker with 17 years of experience who lives in NY,
is also being considered for a position with HSBC in London, but the position title for his
job is Banker and the skill required is fixed equity knowledge. This record might look like
this:

Candidate
Skill
Set Exp Home Company Location

No. of
Positions Position Skill

J Morgan Banker 17 NY HSBC London 2 Banker Fixed equity

When combined, the database now looks like this:

Candidate
Skill
Set Exp Home Company Location

No. of
Positions Position Skill

S Walters Scientist 12 Palo HSBC London 2 Data Munging
Alto Scientist

J Morgan Banker 17 NY HSBC London 2 Banker Fixed
equity

This table format is known as a “flat file.”

Definition: Flat file

A flat file is a table that has two dimensions—rows and columns.

Note the redundancy in the columns for company, location, and number of positions.
This duplication will be multiplied as we consider more candidates, more companies, and
more jobs. In a customer database, for example, hundreds of invoices might be linked to a
single customer. It would be nice to have a structure that allowed for a single table of cus-
tomers (where all their address, demographic, and contact information is stored) and a sepa-
rate table for invoices, with each invoice linked to a customer by a single customer number.
Structured information like this is usually stored not in flat files but in relational databases.

Definition: Relational database

A relational database is composed as a set of tables, each of which has a key column used
to relate the information in one table to another.

Definition: Database normalization

Normalization of a database is the process of organizing data so that it is stored in a set of
related tables with defined linkages. Be sure to distinguish this definition of normalization
from the statistical term.

For example, the above information might be stored in three separate tables—one for
the candidates, one for the employers, and one for the positions (Tables 1.6–1.8).

The left column in each table is a key, used to connect one table to another. Consider
the following table, which uses the keys to establish the relationship among these tables
(Table 1.9).

We interpret the first row as follows:

Candidate c1, S. Walters (the scientist from Palo Alto with 12 years of experience), has
applied for a data scientist job (munging is the required skill) with HSBC in London, which
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TABLE 1.6 Candidate Table

Cno Candidate Skill Set Exp Home

c1 S Walters Scientist 12 Palo Alto
c2 J Morgan Banker 17 NY
c3 W Weingart Graphic designer 17 Berlin
c4 D Hvorostovsky Baritone 19 London

TABLE 1.7 Employer Table

Eno Company No. of Positions Location

e1 HSBC 2 London
e2 Twitter 10 NY
e3 Royal Opera 3 London
e4 Google 3 Palo Alto

TABLE 1.8 Job Table

Jno Position Specialty

J1 Data scientist Munging
J2 Banker Fixed equity
J3 Attorney bankruptcy
J4 Graphic designer 3-D Animation

TABLE 1.9 Relationship Table

Eno Jno Cno Startdate Rate

e1 j1 c1 November 13, 2013 125
e1 j2 c2 November 25, 2013 220
e3 j3 c4 January 12, 2014 180
etc

has two positions open. For the particular job he is applying for, the start data is November
13, 2013 and the pay rate is $125,000 per year.

Organizing the data like this reduces duplication but also allows us to query the database
in a structured manner and efficiently extract information.

Definition: Structured query language (SQL)

SQL is a programming language used to extract information from relational databases and
to manipulate the tables in those databases (e.g., join them together and derive new tables).

Here are a couple of examples of the types of queries supported by SQL:

• List the position descriptions that have been applied for at Twitter.
• List the jobs that S. Walters has applied for.
• How many applications were received in the fourth quarter (Q4) of 2012?
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From an analytical perspective, a key feature of SQL is that it can extract data from a
relational database and put it into a flat tabular form more amenable to analysis.

An introductory statistics course can do no more than scratch the surface of this topic
and show readers one source for data. The small example presented earlier is courtesy of
Katya Vasilaky, who teaches a course on SQL and database queries at Statistics.com.

Big Data

Since the turn of the millennium, organizations have found that they have a lot of data
already on their hands, or being continuously generated, that yield useful information sim-
ply by applying statistical and machine learning models:

• OKCupid, a dating site, uses statistical models with their data to predict what forms
of message content are most likely to produce a response.

• Telenor, a Norwegian mobile phone service company, was able to reduce subscriber
turnover by 37% by using models to predict which customers were most likely to
leave and then lavishing attention on them.

• Allstate, an insurance company, tripled the accuracy of predicting injury liability in
auto claims by incorporating more information about vehicle type.

The above examples are from Eric Siegel’s Predictive Analytics (2013, Wiley).
In other cases, the flow of data can be harnessed for experiments that can be used as the

basis for pricing decisions:

• Orbitz, a travel site, has found that it could price hotel options higher for Mac users
than for Windows users.

• Staples online store found that it could charge more for staplers if a customer lived
far from a Staples store.

The challenge of handling the data, though, is substantial. This challenge is not so much
a function of the static size of the data, rather it results from the enormous flow of
NEW data.

• Walmart, the large retailer, adds to its database more than 1,000,000 transactions per
HOUR.

• JP Morgan reportedly made the decision in 2013 to retain financial data that it had
previously been discarding after a set period; the result is that that it must add the
equivalent of 2002 Terabyte disks DAILY.

Definition: Big data

Big data is a relative term—data are big by reference to the past and to the methods and
devices available to deal with them. The challenge big data presents is often characterized
by the four Vs—volume, velocity, variety, and veracity.Volume refers to the amount of data.
Velocity refers to the flow rate—the speed at which it is being generated.Variety refers to the
different types of data being generated (money, dates, numbers, text, etc.). Veracity refers
to the fact that data are being generated by organic-distributed processes (e.g., millions of
people signing up for services or free downloads) and not subject to the controls or quality
checks that apply to data collected for a study.
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For the practitioner of traditional statistical methods, big data introduce a whole level of
complexity that was previously absent. A traditional large statistical research study might
have involved, say, just 10–15 variables and 5000 records. The data would likely have been
collected expressly for the purpose of conducting a study and the scarcity of data, or expense
of obtaining it, would most likely have been the main issues.

If you consider the traditional statistical study to be the size of a period at the end of a
sentence then the Walmart database is the size of a football field (Figure 1.2).

Figure 1.2 In comparing the Walmart database to a traditional statistical study, the difference in
scale is like the difference in size between a football field (a real one, not the picture) and the period
at the end of this sentence.

Implications for the Practice of Statistics and Statistics Professionals

For traditional research studies involvingmoderate amounts of data, little has changed about
statistical practice or the jobs of statisticians. But the major job growth for statisticians since
2005 has been in the area of what is called data analytics or data science. Both are somewhat
new terms and their definitions are hard to pin down. But central to both is the notion of
using statistical and machine learning methods to extract useful information from available
organizational data (often of huge size).

The great scale of the flow of new data means that the challenge of extracting, manipu-
lating, cleaning, and preparing data is now enormous, and the time spent doing that easily
outweighs the time spent analyzing data. The level of programming expertise required for
these steps is substantial. Having gone to great lengths to prepare the data, adding some sta-
tistical algorithms into the process to gain interesting knowledge seems like a modest step
to the programmer. As a result, statistical models are increasingly finding their way into
the repertoire of computer scientists and IT professionals, and statisticians are increasingly
called upon to apply their methods to big data.

1.10 VARIABLES AND THEIR FLAVORS

The third and fourth columns in Table 1.5 contain variables. These are things we observe,
compute, or measure for each subject. They usually vary from one subject to the next. In
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standard database format, each row represents an experimental unit or subject, while each
column represents a variable. Two variables are missing from this table: the number of
errors at the beginning of the study and the number at the end. From our point of view,
these are intermediate steps.

Quantitative Variables

The numbers in the fourth column are the ones that really interest. They are an example of
a measurement variable or quantitative variable. These are numbers with which you can
do meaningful arithmetic. They fall into two types: discrete and continuous.

Definition: Discrete variable

The values in a discrete variable differ by fixed amounts and do not assume intermediate
values.

The most common type of discrete variable is an integer variable, in which only integers
are legal values. Family size is an example. More restricted discrete variables are often
the result of rounding or choice of scale. For example, elevations might be any value, but
their representations by contour lines on a topographic map are limited to intervals—for
example, 50, 100, 150 foot contour lines.

Definition: Continuous variable

The values in a continuous variable can assume any values and the difference between any
two values can be divided up into any number of legal values.

Age is a continuous variable as is elevation or longitude or latitude. Often, continuous
variables may be binned into discrete variables for convenience, as with the contour lines
on a map.

Categorical Variables

The other main type of variable is called categorical or qualitative.

Definition: Categorical variable

A categorical variable must take one of a set of defined non-numerical values—yes/no,
low/medium/high, mammal/bird/reptile, and so on.

The binary data in column 3 (treatment or control) are categorical variables with two
categories. Other examples that might be in the database (although not printed out earlier)
are the city, county, or province of each hospital or whether it was a government, business,
or charity hospital. Categorical data are often recorded in text labels; for example, male or
female, Christian, Muslim, Hindu, Buddhist, Jew, or other. But it is also common to code
categories numerically. In our database, treatment is a categorical variable and was coded
as one. Control is coded as zero.



30 DESIGNING AND CARRYING OUT A STATISTICAL STUDY

Do not do arithmetic on numerical codes for categorical data when it makes
no sense. If we code Christian, Muslim, Hindu, Buddhist, Jew, or Other as 1,
2, 3, 4, 5, and 6, respectively, then finding the total or average of these codes
is not likely to be meaningful. Coding qualitative data numerically does not
make it quantitative! We will see later that some meaningful arithmetic can
be done on categorical variables.

Computer code in programs will normally have to be told not only what type of variable
to expect but also of any limitations on legal values (e.g., that age cannot be negative or that
family size must be a positive integer).

Table Formats

Let us see how these data might be presented in other formats. One alternative is to present
the error reduction for the control group in one column and the treatment group in the other.
This provides the clearest presentation of how the two groups differ in the extent to which
errors were reduced. The treatment group had, on average, 2.80 fewer errors in the second
year. The control group had 1.88 fewer errors in the second year. Both groups had reduced
errors, but the treatment group does appear to have reduced errors to a greater extent than
the control group (Table 1.10).

TABLE 1.10 Error Reduction (Hypothetical)

Treatment Control

2 3
2 1
5 2
2 2
2 1
2 1
4 1
2 3
2 1
2 4
4 1
2 2
3 1
9 5
2 1
2 4
2 1
2 1
3 2
2 2
6 2
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TABLE 1.10 (Continued)

Treatment Control

2 1
2 1
2 2
2 2

Mean 2.80 1.88

The format in Table 1.10 is one that you might see in print; it might also be used by some
softwares—especially Excel.

Technique

Excel’s hypothesis testing procedures may require this format in which group is not
a separate variable but instead is simply indicated by the column in which a value is
located.

You may also see a format that is used only in print, in which all the data are displayed in
successive rows for compactness. Neither the rows nor the columns have any significance,
so this arrangement is not used with software (Table 1.11).

TABLE 1.11 The Hypothetical Hospital
Error Reduction Data in Compact Format
for Print

Treatment
2 2 2 2 2
2 2 2 2 2
4 4 4 4 4
2 2 2 2 2
6 6 6 6 6

Control
3 3 3 3 3
1 1 1 1 1
1 1 1 1 1
4 4 4 4 4
2 2 2 2 2

1.11 EXAMINING AND DISPLAYING THE DATA

Errors and Outliers are Not the Same Thing!

Suppose that Row 47 of Table 1.5 reads as follows:
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Row Hospital# Treat? Reduction in Errors

47 4076 10 2

10 is not a valid value for the “Treat?” variable, which needs to be either zero or one. We
would then look up hospital number 4076 to see if we could find the reason for this error.
Here is an example of a common error that might lead to a 10 in the Treat? column.

Imagine that we have a study with eight subjects and are supposed to type the eight
values 1 0 0 1 0 0 1 0 into a list. Leaving out one space would give 1 0 0 10 0 1 0. As if that
10 were not bad enough, notice that the numbers for subjects six and seven are wrong now
and there is no number for subject eight. Noticing this one outlier and trying to correct it
helped us to find and fix three other errors.

Definition: Outliers

A value (for a given variable) that seems distant from or does not fit in with the other values
for that variable is called an outlier. It could be an illegal value, as in this case. It could also
be a very odd value or a legitimate one. If we saw a 456 in column four, this would not be
illegal but it would be a very improbable degree of error reduction.

Some statistical software will identify outliers for you, but keep in mind that these
are arbitrary identifications determined by arithmetic. Outliers are not necessarily
errors—some are legitimate values. Consider these annual enrollments at a randomly
selected set of 10 courses at Statistics.com.

8, 12, 21, 17, 6, 13, 29, 180, 11, 13
The 180 is certainly an outlier, but it is not incorrect. It is the enrollment in an introduc-

tory course, whereas the other enrollment figures are for more advanced courses.

Try It Yourself 1.12

Find the average enrollment for the 10 Statistics.com courses whose enrollments
are listed above. Would you say this is a good representation of the typical
enrollment?

Whenever we find an outlier, we need to investigate it and try to understand the reason for
it. If there is an error, we need to try to correct it. Outliers, whether erroneous or legitimate,
can strongly affect the numbers we compute from our data. In some cases, an outlier is a
symptom of a deeper problem that could have an even greater impact on our results.

Outliers and Social Security

The Social Security Administration is a key source for wage data—Social Security
taxes are due on almost all wages and employers must file earnings reports with the tax
authorities.

One statistic reported regularly is the average pay of those receiving more than $50
million in wages. This number receives a great deal of attention in the policy debate over
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income distribution. There were just 74 of these super-earners in 2009 and the govern-
ment reported on October 15, 2010 that the average income of the super-earners more
than quintupled in 2009—to an average of $519 million. This was quite an impressive
feat during a severe recession, and the report came during a highly charged political
atmosphere in which an important bone of contention was the relative share of income
and wealth held by the richest members of society.

Shortly after the report was issued, analysts found that two individuals were respon-
sible for this entire increase. Between them, these two taxpayers reported more than $32
billion in income on multiple W2 (tax) filings. As of November 3, 2010, no information
was available onwho the individuals were or why they reported such astronomical sums.

However, the Social Security Administration did determine that the filings from the
two individuals were in error and issued a revised report. The results?

• 2009 super-earner average wages actually declined by 7.7% from 2008 instead of
quintupling.

• 2009 average wages for all workers declined by $598 from 2008; the original report
was $384.

These two outliers had a huge and misleading impact on key government statistics.
They contributed $214 to the average income of all wage earners, and when they were
removed, the recession’s wage hit grew by more than 50%. At the same time, the fuel
they added to the income distribution debate was illusory.

Question 1.5

What impact would these two outliers have had on statistics that used the median, rather
than the mean?

Frequency Tables

Now that we have our results on 50 individual hospitals, we need a way to summarize
and compare the treatments and controls as groups. We will look first at summaries that
are numbers and then at summaries that are pictures. One numerical summary we could
make here is a table of values and how often those values occur, that is, their frequencies
(Table 1.12).

This is called a frequency table or frequency distribution.

Definition: Frequency table

A frequency table is a table of possible values and the frequencies with which they occur
in the data.

Let us interpret a couple of rows.
The bottom row tells us that there were 25 control group hospitals and 25 treatment

group hospitals, for a total of 50 hospitals.
The first row tells us that 12 of the 25 control hospitals had a reduction in errors of one

and that none of the treatment group hospitals had a reduction in errors of one.
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TABLE 1.12 Frequency Distribution—Reduction
in Errors

Value Control Treatment Total

1 12 0 12
2 8 18 26
3 2 2 4
4 2 2 4
5 1 1 2
6 0 1 1
9 0 1 1
All 25 25 50

The second row tells us that eight of the 25 control hospitals had a reduction in errors of
two and that 18 of the treatment group hospitals had a reduction in errors of two, so that a
total of 26 hospitals had a reduction in errors of two.

Notice that if we did not have a control group, we would overestimate the success of
the treatment. All the hospitals improved. Still, there is some good news. It looks like the
treatment group showed more improvement.

Frequency tables often include cumulative or relative frequencies. Here is an example
for the control group only (Table 1.13).

TABLE 1.13 Error Reduction Frequency Table
(Control)

Error Reduction Freq. Cum. Freq. Rel. Freq.

1 12 12 0.48
2 8 20 0.32
3 2 22 0.08
4 2 24 0.08
5 1 25 0.04
6 0 25 0.00
9 0 25 0.00
All 25 25 1.00

Here is row 2.
2 8 20 0.32

It illustrates that the value of two for reduction in medical errors showed up eight times
in the control group, while a reduction of two or fewer errors showed up 20 times and the
eight times out of 25 constituted 0.32=32% of the total.

Although it is not shown earlier, we could also calculate cumulative relative frequency
in the same way that cumulative frequency is calculated—by adding together the current
row with the preceding rows. For example, the cumulative relative frequency for the third
row (error reduction= 3) is 0.48+ 0.32+ 0.08= 0.88.
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Try It Yourself 1.13

Compute cumulative and relative frequencies for the treatment hospitals. Can you also
find cumulative relative frequencies?

Histograms

We have been looking mostly at single values that summarize the data. Let us return to
looking at all the data. Recall the frequency distribution presented earlier and turn it into a
picture—a frequency histogram. Figure 1.3 shows a histogram of the error reductions for
the treatment group.
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Figure 1.3 Frequency histogram of error reductions in the treatment group.

Interpreting Figure 1.3, we see that 18 hospitals reduced the number of errors by two,
two hospitals reduced the number of errors by three, and so on. No hospitals reduced the
number of errors by as much as seven or eight, but the histogram must leave room for these
values to present an accurate picture.

In Figure 1.3, the histogram is relatively easy to make—there are only eight possible
values, so we can have a vertical bar for each value.

If we are graphing more complex data—say, hospital sizes—we will not have enough
room or visibility to devote one bar to each value. Instead, we group the data into bins. It
is important that the bins be (i) equally sized and (ii) contiguous. By contiguous, we mean
that the data range is divided up into equally sized bins, even if some bins have no data,
like 7 and 8 as mentioned earlier. Consider Figure 1.4, which shows hypothetical data for
hospital sizes in a mid-sized state.

We can see that there were 13 hospitals, with 0–99 beds, 14 hospitals with 100–199
beds, and so on. In Excel’s native histogram function, the final bin on the right may include
all values larger than a certain amount, but this has the disadvantage of not giving an accu-
rate picture of the gaps in the data.

Deciding on how to display these data is not a trivial matter for a computer. The pro-
gram must decide on how many values to place in a bin and where the bin boundaries
are and the various forms of messiness that can arise. Often, the algorithm that is used
results in non-integer values on the x-axis, which may not make sense. For example, the
binning algorithm in one program produced the following histogram for the hospital error
data (Figure 1.5). You can see that it makes much less sense than Figure 1.4.
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Figure 1.4 Hospital sizes by number of beds (hypothetical data for a mid-sized state).
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Figure 1.5 Histogram of hospital error reduction, treatment group (x values are not integers).

Figure 1.6 shows a back-to-back histogram of error reductions. It is described this way
because it shows two sets of data—the control set and the treatment set—on the same
line, with counts for the control set on the left side of the Errors column and counts for the
treatment set on the right side. You may think of it as a horizontal histogram.

Stem and Leaf Plots

A variant of the histogram is the stem-and-leaf plot, in which the counts of x that you
have seen earlier are replaced with numbers denoting the actual values. Figure 1.7 is a
stem-and-leaf plot for hospital sizes in terms of number of beds in a hypothetical set of
rural counties.

The column to the left of the vertical line indicates the “stem digit,” which in this case
represents units of 10. The numbers to the right indicate the “leaves,” or the unit values.
The number of digits on the right—two digits in row 1—tells us that we are counting two
hospitals. In row 6, we see five digits, which means five hospitals.

Now, we read across to count the number of beds at each hospital. The first row tells us
that there were two hospitals of size 23 [2|33]. The second row tells us there was one 35-bed
hospital and one 39-bed hospital [3|59]. Again, row 6 tells us there are five hospitals, one
with 74 beds, one with 76 beds, and three with 75 beds [7|46555]. The stem-and-leaf plot
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Figure 1.6 Back-to-back histogram.
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Figure 1.7 Stem-and-leaf plot, hypothetical rural hospital sizes.

has the advantage of conveying more information than the histogram, but it is somewhat
difficult to manage when the range in the number of digits in the data is larger than 2 or 3.
Most software packages do not implement it easily.

Box Plots

Let us look at another graph of the data distribution—one that has features showing the
percentiles of the distribution, as well as outliers.

With a boxplot,

• A central box encloses the central half of the data—the top of the box is at the 75th
percentile and the bottom of the box is at the 25th percentile.

• The median is marked with a line.

• “Whiskers” extend out from the box in either direction to enclose the rest of the data
or most of it. The whiskers stop when they come to the end of the data or when
they get further than 1.5 inter-quartile range (IQR), from the top and bottom of the
box—whichever comes first.

• Outliers beyond the whiskers are indicated with individual markers.
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Figure 1.8 Boxplot of metropolitan area hospital sizes (y-axis shows the number of beds) (created
using Spotfire).

Consider Figure 1.8, which is a boxplot of hospital sizes by number of beds in a hypo-
thetical metropolitan area. We can glean the following information.

• Half the hospitals are between 150 beds and 450 beds.

• The IQR is 300 beds.

• The median hospital size is 250 beds.

• The rest of the hospitals are spread out between 50 beds and 850 beds, with the excep-
tion of one outlier hospital that has 1050 beds.

Boxplots are a compact way to compare distributions. Below is a side-by-side boxplot
comparison of the reduction in errors for the control and treatment hospitals. It was
created with XLMiner. Different software has varying ways of creating boxplots. In
this case, XLMiner places lines on top of the whiskers, uses a + to indicate the mean,
places horizontal V-shaped notches around the mean, and uses o to indicate an outlier
(Figure 1.9).

Note how these boxes communicate information by the features that are missing—the
top half of the box and the absence of lower whiskers.

Try It Yourself 1.14

What does the absence of the top half of the box and the lower whiskers communicate?

Tails and Skew

Let us review the picture we get from the histograms and the boxplots.
The location of the data is lower for the control group than for the treatment group, which

is reflected in the value of the mean.
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Figure 1.9 Error reductions (y-axis) for control hospitals (0) and treatment hospitals (1).

Other than the value of nine, the shape of the distribution for the treatment groups looks
roughly like that for the control group. Both groups have peaks at the low end around one
or two and trail off toward higher values. We call such a pattern skewed toward high val-
ues. The part of the picture where the data trail off, say around five, six, seven, eight,
or nine, is called the tail of the distribution. The direction of the skew is the direction of
the longer tail. The shape of the distribution is easier to see in the histogram than in the
table.

Please look at the spreadsheet ErrorReductions.xls that summarizes all the relevant mea-
sures for both the treatment and control data. Be sure that you review and understand the
formulas in the highlighted cells.

1.12 ARE WE SURE WEMADE A DIFFERENCE?

We found that the average effect of our treatment was to reduce the number of hospital
errors by almost one—0.92. However, we see that the variability from hospital to hospital
is more than one. Some people define statistics as the art and science of finding patterns in
the midst of variability. We think we found a difference but there is enough variability that
it is hard to be sure. For the original study reported by the CBC, we found that those results
could well be due to chance. In the next chapter, we will try to determine if the difference
we see in this current example is real or might simply be the result of random variability in
the numbers.

APPENDIX: HISTORICAL NOTE

Before the widespread availability of computers and software, analysts relied on published
tables of random numbers. Here is part of one such table (Table 1.14); the digits are arranged
in separate groups of 5 for better visibility.



40 DESIGNING AND CARRYING OUT A STATISTICAL STUDY

TABLE 1.14 Portion of a Random Digit Table

58535 99062 55182 89858 67701 94838 37317 10432 75653 78551
56329 09024 81507 90137 19241 55198 74006 52851 41477 58940
04016 38081 45519 27559 92403 30967 86797 17004 22782 09508
37331 94994 67305 34040 91360 83009 36925 31844 12940 51503
24822 53594 72930 23342 88646

How can we use this table to do the work of 10 coin tosses? We need to convert each
random digit into “heads” or “tails.” There are several ways to do this. Here are two meth-
ods.

Odd= heads, Even= tails.
0–4= heads, 5–9= tails.
Let us select a random spot in the table and read off 10 digits. For example, looking at

the left center of the table, we see
45,519 27,559
Using 0–4= heads, 5–9= tails, this amounts to
HTTHT HTTTT
The result is three heads and seven tails.

1.13 EXERCISES

1. Here are 20 more trials of the exercise you did at the beginning of the readings in which
you investigated the model of a random distribution of 10 hospital errors between 2
years, 2008 and 2009. Each row is a trial—10 coin flips. You will use the results to
determine whether it is unusual for 10 hospital errors over 2 years to be split 7–3 (2008,
2009), just by chance.

Run#
1 HHHTTHTTHH
2 TTHHHTTTHH
3 TTHHTHHTTT
4 HTTHTHHTTT
5 HTHTHTHTTT
6 TTHTTTTHHH
7 HHHTHTHHHH
8 HHTHHHTTTH
9 HHTTTTHTTT
10 THHTTTHTTH
11 TTHHHTTHHT
12 TTTHHHHTHT
13 TTHTHTTTTT
14 THTHHHTTTT
15 THTHHHTTTT
16 HHTTHTHHHH
17 HTTHTHTHTH
18 THHTHHHHHT
19 THHHTTHTTT
20 THTHHHTHTH
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Each “H” or “T” represents an error. Under our chance model, let us say that “H”means
the error happened in 2008 and “T” means 2009. Each row represents one trial (i.e., an
allocation of 10 errors).

a. For each of the twenty runs, count the number of times “H” (2008) occurred.

b. Then make a frequency table for your results.

c. What proportion of the runs gave seven or more 2008s?

d. Comment on whether the difference between 2008 and 2009 might have happened
by chance.

2. There is controversy over the effectiveness of surgery in treating prostate cancer. Give
a design for a study to address this issue. You should address all the issues raised in
this week’s lesson. For each issue either suggest a way to address that issue or give a
reason why there may be no way.

3. Below is a list of numbers of home runs hit by the home runs leaders of the American
league during the years 1951–1965:

33,52,43,32,37,52,42,42,42,40,61,48,45,49,32

Calculate mean, variance, and standard deviation of the data. Note: You can use stan-
dard Excel functions or any other software of your choice here. Although this is a small
data set, most people would consider that it is the population of interest here—not a
sample from some much larger population.

4. Estimate the probability that a family with 10 children would have three or fewer girls.
Explain how you arrived at your estimate. Hint: Assume that each successive child has
a 50/50 probability of being a male or female, and use dice, coins, or random numbers,
not a theoretical formula.

5. Consider the following three customers and the items they have purchased from an
online merchant in the last month. A “1” indicates that item was purchased, a “0”
indicates that item was not purchased.

Book MP3 Power Tool Tablet Game

Cust 1 1 0 0 1 1
Cust 2 1 0 1 0 0
Cust 3 0 0 0 1 1

a. Calculate all the possible Euclidean distances between customer pairs.

b. Suppose that you now want to set up a recommender system that alerts a customer
when a new item is purchased by a like-minded customer. Which customer would
be a good source of recommendations for customer 1?

c. Imagine now that you have millions of items available for purchase, and tens of
millions of customers. How could you use Euclidean distance as part of a system to
keep a customer from being inundated with recommendations?
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Use the PulseNew.xls data for all the remaining questions (see the book website
for these and all data sets):

6. Make a frequency table for the variable Ran? Describe what you find briefly in words.
Although this can be done by hand, this is a good opportunity to get acquainted
with your software program. HINT: In Excel, try the COUNTIF function (make
sure Analysis Toolpak and Analysis Toolpak VBA are installed). In Statcrunch, use
Stat>Tables>Frequency.

7. The numbers for how many ran and how many did not run seem a bit out of balance.
Explain how you would check to see if this could reasonably be considered only due
to chance. (Just explain the plan; you do not have to carry it out.) Hint: Rolling dice,
tossing coins, or using a random number table might be part of your strategy.

8. Consider a metropolitan area with a diversity of neighborhoods (commercial, shop-
ping, residential, industrial, etc.). Restaurants are not spread evenly throughout the
area—they tend to be located in a small number of “restaurant districts.” Below are
three possible histograms for the distribution of restaurants per neighborhood (num-
ber of restaurants is on the x-axis). Which best represents what the above-described
distribution of restaurants looks like?
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Answers to Try It Yourself

1.1 Results will vary, but chances are this happened at least once.

1.2 Results will vary; in a large class about half the students will get a trial with 14 or
more heads, the rest will not.

1.3 You would need to get the subjects to agree to watch TV according to your orders.
This might be feasible for a study of short-term effects, but it would be difficult
to do if the study required a very long-term period (months or years). Also,
some subjects (or their parents) might be averse to watching violent TV, causing
dropouts.

1.4 Certainly, the subjects will know what TV shows they are watching. You may be able
to conceal that you are studying violence. Those who follow the subjects to measure
violent behavior in the future probably can be blind to which subjects received which
treatments.

1.5 So many different factors might affect violent behavior that it would be difficult to
even list them all, let alone control them.

1.6 A control group could watch no television or watch only nonviolent programs. If
we have data for the subjects on other variables we think might also impact violent
behavior, then we could pair subjects who are similar on those other variables

1.7 The range is 9− 2= 7.

1.8 Control group IQR: 2− 1= 1
Treatment group IQR: 3− 2= 1
IQR for all observations: 2− 2= 0

1.9 x mean Residual Residual2

8 4 4 16
1 4 -3 9
4 4 0 0
2 4 -2 4
5 4 1 1
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The mean is (8+ 1+ 4+ 2+ 5)/5= 20/5= 4. The variance is the average of the
sum of the squared residuals= 6. The standard deviation is the square root of
the variance= 2.45. (Note that if this was a sample from a larger population, in
calculating the variance, we would have divided by n− 1= 4.) The standard deviation
is within the range of the residuals, so it is “in the ballpark.”

1.10 If you did enough resamples, the mean of the resample variances will be smaller than
the “population” variance.

1.11 Hours spent watching television should be relatively easy to measure but is that what
you really want to measure? If we try to determine how much violence each subject
watches, we have to find some way to define and measure that. There are a number
of websites such as http://www.kids-in-mind.com/help/ratings.htm that offer some
rating on a scale of 0–10, depending on quantity as well as context.

1.12 The average enrollment is 31. This is well above the enrollment for all but one
course, so it is not typical. The average is skewed high by the enrollment in one large
course—introductory statistics.

1.13 Cumulative, relative, and cumulative relative frequencies

Value Frequency Cum. Freq. Rel. Freq. Cum. Rel. Freq.

2 18 18 0.72 0.72
3 2 20 0.08 0.8
4 2 22 0.08 0.88
5 1 23 0.04 0.92
6 1 24 0.04 0.96
9 1 25 0.04 1.00
All 25 1.00

1.14 They indicate that the bulk of the data is “bunched up” at 1–2 (for the control group)
and 2–3 for the treatment group.

Answers to Questions

1.1 Probabilities must always lie between 0 and 1.

1.2 This would be equivalent to 10 heads in 10 tosses, very unlikely, so chance is not a
reasonable explanation.

1.3 The student failed to sort the data before picking the middle value. If the sorting had
been done, the numbers would be arranged 3, 4, 5, 7, 9 so youwould see that themedian
is 5.

1.5 The median would not be greatly affected by these outliers as their presence or absence
would hardly affect the value of the middle observation of dozens of observations (for
the super-earners) or millions of observations (for the entire wage-earning population).


