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FOUNDATIONS OF CODING

This first chapter is an introduction to the notion of code. It contains the mathematical
background, necessary to manipulate the codes, and the coding operations. Through
this chapter, the reader will understand the constraints of the transmission of informa-
tion, starting from historical examples and eventually learning advanced techniques.
The knowledge of some historical aspects is pedagogically useful to work first on sim-
ple structures. In cryptology, history is also essential for efficient protection against
the whole range of known attacks.

The principle is always to start from examples of codes, showing step by step why
some mathematical notions are useful so that the codes are short, safe, and efficient.
While the following chapters describe recent, elaborate, and currently used protocols
for coding, this chapter provides the foundations of this activity.

Simple objects from probability theory, algebra, or algorithmic are introduced
along the lines of this chapter, when they become necessary. For example, block
coding calls for the definition of structures in which elements can be added, mul-
tiplied, which justifies the introduction of groups and fields. The emphasis is always
put on the effective construction of introduced structures. This calls for a section on
algorithms, as well as polynomials and primitive roots.

This chapter is organized in four sections. The first three allow to focus on the three
important mathematical notions related to coding: algorithms and their complexity,
which is at the core of coding theory; probabilities, related to stream cipher; and
algebra, related to block coding. Then, the last section of this chapter is devoted to
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6 FOUNDATIONS OF CODING

the many facets of decoding, from ambiguity and information loss to secret code
breaking.

We will denote by code a transformation method that converts the representation
of a piece of information into another one. This definition is wide enough to include
several mathematical objects (functions, algorithms, and transforms), which will be
used throughout this book.

The word code will also apply to the result of these transformations1, namely the
encoded information and its structure. But for now, in order to find our way in these
definitions and to understand what is actually a code, here is a simple example mixing
technologies and eras.

1.1 FROM JULIUS CAESAR TO TELECOPY

In this section, we introduce all the fundamental properties of codes, using one of
them built from real examples – currently or formerly used. It is the occasion to define
and use the algorithms and their properties, which are constantly used in the whole
book.

Suppose that we wish to send a piece of information by fax while guaranteeing
the secrecy of the transmission. We could do it with the following code.

1.1.1 The Source: from an Image to a Sequence of Pixels

Transmission by fax enables us to pass images through a phone channel. We want
this code to perform the requested transformations in order to obtain – quickly and
secretly – an image similar to the original one at the end, in a format that could pass
through the channel.

The first transformation process will be performed by the scanner of the device.
It consists in reading the image and transforming it into a sequence of pixels that we
can visualize as small squares either black or white. This is a code, according to the
definition we have given, and we will write it as an algorithm, in a format we will
adopt throughout this book.

Encoding algorithm

Input An image
Output A sequence of pixels

The input of the algorithm is also called the source, and the output is called the
code.

The chosen method will be the following: the width of the source image is split
into 1728 equal parts; the length is then split into lines so that the image is divided into

1The word code in natural languages can have several meanings. In our context, we will see that it applies
to transformations and their results, but in computer science, it can also mean a computer program. This
apparent confusion actually enables one to figure out the link between various mathematical and computer
processes. That is why we will keep the word with its multiple meanings.



FROM JULIUS CAESAR TO TELECOPY 7

squares of the same size, 1728 per line. These squares will be considered as pixels.
Each pixel is given either the color black if the zone of the image is dark enough or
the color white if the image is bright.

This is the first part of our code. The following sections describe the other transfor-
mations; one can use to encode the information: compression, encryption, and error
correction.

1.1.2 Message Compression

In order to formalize source messages and codes, we define the language in which
they are formulated. We call alphabet a finite set V = {𝑣1,… , 𝑣k} of elements (called
characters). The cardinal number of a finite set V is the number of elements it con-
tains and is denoted by |V|.

A sequence of characters belonging to V is called a string . We denote by V∗ the
set of all the strings over V , and V+ the set of all the strings whose length is not equal
to 0. As the alphabet of the code and the alphabet of the source may differ, we will
distinguish the source alphabet and the code alphabet .

For the example of the fax, the source alphabet is the result of the scanner, that
is, {𝑤hite pixel, black pixel} and the code alphabet will be the set of bits {0, 1}. We
could send the sequence of pixels directly as bits, as we have an immediate conversion
to 0 (for white pixels) and 1 (for black pixels).

However, we can apply some compression principles to this sequence of 0s and
1s. We can imagine that the datasheet we want to send has only a few lines of text
and is mainly white – which is very common with faxes. But is there a better way of
sending a sequence of, let us say a 10 000 zeros, than simply using a 10 000 zeros?
Surely such a method exists, and we have just used one by evoking that long sequence
of bits without writing it explicitly. We have indicated that the code is composed of
10 000 zeros rather than writing them down.

The fax code performs that principle of compression line by line (i.e., over
1728-pixels blocks). For each line, Algorithm 1.1 describes precisely the encoding
algorithm.

For example, with this method, a completely white line will not be encoded
with a sequence of 1728 zeros, but with the code “11011000000 0” which repre-
sents “1728 0” in the binary representation that will be sent through the channel.
We have replaced a 1728-bit message by a 12-bit message. This is noticeably
shorter.

We will give details of this principle of message compression – called Run-Length
Encoding (RLE) – in Section 2.3.1.

For a better visibility, we used a space character in our representation (between
1728 and 0) but that character does not belong to the code alphabet. In practice, we
will see later in this chapter what constraints that statement implies.

Exercise 1.1 A pixelized image meant to be sent by fax contains a lot of pairs “01.”
What do you think of the fax code presented before? Give a more effective code.

Solution on page 281.
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Algorithm 1.1 Simplified Fax Encoding for a Line of Pixels
Input M, a sequence of 1728 pixels (from M[0] toM[1727])
Output C, the compressed message of M
1: n ← 1 // counter of consecutive pixels with the same value
2: C ←“” // empty string
3: For i from 1 to 1727 do
4: If M[i − 1] = M[i] then
5: n ← n + 1 // increment counter of consecutive pixels with value M[i]
6: else
7: Append n and the color of the last pixel M[i − 1] to C
8: n ← 1 // re-initialize the counter
9: End If

10: End For
11: Append n and the col-our of the pixel M[1727] to C
12: return C

1.1.3 Error Detection

All the readers who have already used a phone channel will not be surprised to learn
that its reliability is not infinite. Each message is likely to be distorted, and it is
not impossible, assuming that “11011000000 0” was sent on the channel, to receive
“11010000000 0” (modification of one bit) or “1101000000 0” (loss of one bit).

Phone channels usually have an error rate between 10−4 and 10−7, depending on
their nature, which means that they can commit an error every 10,000 bits. This is far
from being negligible when you consider long messages, and it can also modify their
meaning. For an image, if the value 1728 becomes 1664 because of the loss of one
single bit, a shift will occur in the final image and the result will be unusable.

The fax code enables the detection of such transmission errors. If an error is
detected on a line, one can ask for a second transmission of the same line to have
a confirmation and – as it is unlikely to have the same error twice at the same place –
the message will be corrected.

The principle of error detection in the fax code is explained as follows: predeter-
mined sequences are appended at the beginning and at the end of each line. Such flag
sequences are used to establish bit and line synchronization (and in particular detect
loss of bit). In order to illustrate this principle, let us suppose that “0” (respectively
“1729”) is added at the beginning (respectively the end) of each line even if these are
not the exact values that are used in practice. The receiver can then check that each
line is in the format “0 n1b1 … nkbk 1729,” with ni an integer that provides the num-
ber of consecutive bits and bi the color of these bits. In particular, the condition n1 +
· · · + nk = 1728 must be respected and the colors bi must be alternated. Thus, a mod-
ification or the loss of one bit is easily detected as soon as this format is not respected.

All error detection and correction principles, which will be closely studied in
Chapter 4, are based on this principle: the addition of information in order to check
the consistency of the received message.
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1.1.4 Encryption

Now, let us suppose that, after having compressed the message and set up a format
that enables error detection, we wish to keep the message secret for everybody but its
recipient. The phone channel, like most channels, does not provide secrecy in itself.
Every message that is transmitted through it can be easily read by a third party. The
setting up of the secret consists in transforming the original message, the plaintext,
putting it into a nonunderstandable form, the ciphertext, and putting it back into its
original form at the end.

This is a technique that has been used by men as they started to communicate. In
secret codes of Antiquity, the secret resided in themethod that was used to produce the
ciphertext, which is what we call the encryption algorithm nowadays. For example,
historians have discovered messages encrypted by Julius Caesar’s secret services.
The messages were texts, and the algorithm substituted each letter of the original
message M with the letter located three positions later in the alphabet. For the three
last letters of the alphabet, the three first letters were used. For example, the word
TROY becameWURB. Hence, the text did not have any immediate signification. That
is what is called mono-alphabetic substitution, as each letter is replaced by another
one (always the same) in the message.

If Caesar hadwanted to send a fax, hewould have adapted his code to the numerical
format, which would have given the function f (x) = x + 3 mod n for every number
sent on the channel where the number n is the size of the alphabet. Here it would have
been 1730 as no number greater than 1729 would theoretically be used.

These encryption and decryption functions were then extended with a simple key
K, an integer chosen secretly between the interlocutors. This is equivalent to the
construction of a function fK(x) = x + K mod n. As for the Spartans, they used a
completely different encryption algorithm, called transposition encryption. Their sys-
tem is based on the Scytale , a stick on which a strip was rolled. The message was
written on the strip along the stick rather than along the scroll. This means that the
consecutive letters of the message appeared on a circumlocution different from the
one of the strip.

Figure 1.1 illustrates the encryption principle. In order to decrypt the message,
the recipient would have a stick with the same diameter as the stick used for the
encryption.

Other cryptographic systems, more evolved, were created afterward (affine
encryption fa,b(x) = a.x + b mod n – studied in Exercises 1.2 and 3.1; substitution
encryption where each letter is replaced by a symbol of another alphabet – such as
the Morse code, etc…).

Exercise 1.2 Mark Antony intercepts a message sent by Caesar, encrypted with an
affine encryption. Without knowing the key (a, b), how can he decrypt the message?

Solution on page 282.

1.1.5 Decryption

In Section 1.1.4, we have seen some methods for encrypting a message and insur-
ing the secrecy and the efficiency of its transmission. This description would not be
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Figure 1.1 Spartan Scytale principle to transmit the text “HELLOWORLD”

complete without a short presentation of the principles of the complementary opera-
tion – decryption.

1.1.5.1 Attack and Decryption The encrypted message arrives. It is a matter of
decrypting it. If one is not given the key or the encryption method, we talk about an
attack on the code, or a codebreaking. The discipline which handles the development
of methods of attacking existing codes or of building more resistant codes is called
cryptanalysis. For the recipient of the message – who knows the key – we talk about
decryption.

We will soon talk about attacks. For now, the decryption method is very simple
and consists in applying the inverse function of the encryption function, possibly
customized with a key, namely f−1K (y) = y − K mod n. In our case, the recipient
of Caesar’s fax would have to apply f−13 (x) = y − 3 mod 1730 for every number
received on the channel The message is now decrypted.

Now, we still have to perform the inverse of all the remaining transformations. First
of all, the format of each line is checked in order to detect possible errors (in this case,
we ask for a second transmission), then the decoding algorithm is performed which –
given a sequence of numbers – will return the initial pixel sequence. Algorithm 1.2
formalizes this operation for each line.

Algorithm 1.2 Fax Decoding for a Decrypted and Checked Line
Input A sequence of numbers in the format “0 n1 b1 … n1728 b1728 1729”
Output A sequence of 1728 corresponding pixels
1: For i from 1 to 1728 do
2: Draw ni pixels with color bi
3: End For

1.1.5.2 Decompression and Data Loss When we apply this algorithm to all the
lines, we obtain a sequence of pixels, identical to the one we built from the original
image. Now, we can recover the original image, or at least a similar image as the
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only information we have is the value of the pixels. Thus, the method consists in
printing the sequence of corresponding black and white squares on a sheet of paper.
The image resulting from this operation will be a damaged version of the initial one,
as the original squares were not completely black or white. That is what gives the
nonaesthetic aspect of all faxes, but the essential information is preserved.

In this case, initial information is not entirely recovered – and arrives in an approxi-
mate form – thus we talk about encoding with (data-)loss. One often uses codes which
admit a determined level of loss, providing that important information is not distorted.
It is often the case with multimedia information (see Section 2.5).

1.1.6 Drawbacks of the Fax Code

We have completely described the encoding – and decoding – processes, while
respecting the major constraints we will encounter in coding (compression efficiency,
error detection, and secrecy). But for several reasons, the principles used in the fax
code are not very usable in practice in common numerical communications.

Compression: the way the RLE principle is applied here has several drawbacks.
First of all, if the message is only composed of alternating black and white
pixels, the size of the “compressed” message will be greater than that of the
original. Thus, there is absolutely no guarantee of the compression of the mes-
sage. Moreover, including the bits bi is almost useless as they are alternated
and the value of the first one would be enough to determine the value of the
others. The fax code removes them. It then becomes a sequence of numbers
n1 … nk. But that sequence – encoded as bits (to each number its binary repre-
sentation) – is more difficult to decode. Indeed, when receiving a bit sequence
“1001011010010,” how do we know whether it represents a number ni or sev-
eral numbers appended ? In order to solve this issue, for example, we can
encode every number with the same number of bits but then the compression
algorithm is no longer optimal. We are now forced to represent “2” with the
sequence “00000000010,” which increases the size of the message. We will see
how to insure that a message can be decoded later in this chapter. In Chapter
2, we will see how to deduce good compression methods while insuring this
decoding ability.

Error detection: this principle implies that one has to ask for a second transmission
of information each time an error is detected, whereas we could develop codes
that automatically correct the channel errors (Chapter 4). Moreover, there is no
theoretical guarantee that this code adapts to phone channel error rates. We do
not know the error rate detected by the code, nor if it can accomplish the same
performance adding less information in the messages. Efficiency of the trans-
mission may depend on the quality of error detection and correction principles.

Secrecy: Caesar’s code is breakable by any beginner in cryptology. It is easy to
decode any mono-alphabetic substitution principle, even without knowing the
key. A simple cryptanalysis consists of studying the frequency of appearance
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TABLE 1.1 Letter Distribution in this LaTeX Script

E 13.80% T 8.25% I 8.00% N 7.19% A 6.63%
O 6.57% R 6.37% S 6.28% C 4.54% D 4.35%
L 4.34% U 3.34% M 3.15% P 2.92% H 2.81%
F 2.36% G 1.86% B 1.83% X 1.35% Y 1.07%
V 0.87% W 0.69% K 0.57% Q 0.55% Z 0.16%
J 0.14%

of the letters in the ciphertext and of deducing the correspondence with the
letters of the plaintext.

Table 1.1 presents the statistical distribution of the letters in this document writ-
ten in LaTeX (LaTeX special tags are also considered). As this book is quite
long, we can assume that these frequencies are representative of scientific texts
in English written in LaTeX. It is obviously possible to obtain such frequency
tables for literary English texts, scientific French texts, and so on.

Exercise 1.3 Scipio discovers a parchment manuscript with the following cipher-
text: HFJXFW BTZQI MFAJ GJJS UWTZI TK DTZ! Help Scipio decrypt this
message. Solution on page 282.

1.1.7 Orders of Magnitude and Complexity Bounds for Algorithms

We have described a code and we have presented its advantages and disadvantages.
However, there is another critical point we have not yet mentioned: what about encod-
ing and decoding speed? It depends on computer speed, but mostly on the complexity
of the algorithms.

Size of numbers. We consider numbers and their size either in decimal digits or in
bits. Thus, a number m will be ⌈log10(m)⌉ digits long and ⌈log2(m)⌉ bits long. For
instance, 128 bits can be representedwith 39 decimal digits, 512 bits with 155 decimal
digits, and 1024 bits with 309 decimal digits.

Computer speed. Nowadays, the frequency of any PC is at least 1 GHz. That is to
say it can execute 1 billion (109) operations per second. By way of comparison, the
greatest speed in the universe is the speed of light: 300 000 km/s = 3.108 m/s. It takes
only a ten thousand millionth of a second for light to cross a room of 3 m long.
During this period, your computer has performed 10 operations!!! Hence, we can say
that current computers calculate at the speed of light.

Comparison with the size and age of the universe. This computing speed is truly
astronomical; yet the size of the numbers we manipulate remains huge. Indeed, one
has to enumerate 1039 numbers just in order to count up to a 39 digit long number. In
order to see how huge it is, let us calculate the age of the universe in seconds:

Age of the universe ≃ 15 billion years × 365.25 × 24 × 60 × 60 ≈ 5.1017 s.
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Thus, a 1 GHz computer would take more than two million times the age of the
universe just to count up to a number of “only” 39 digits! As for a 155 digit number
(commonly used in cryptography), it is simply the square of the number of electrons
in the universe. Indeed, our universe is thought to contain about 3.1012 galaxies, each
galaxy enclosing roughly 200 billion stars. Knowing that the weight of our sun is
approximately 2.1030 kg and that the weight of an electron is 0.83.10−30 kg, we have

Universe = (2.1030∕0.83.10−30) ∗ 200.109 ∗ 3.1012 ≈ 1084 electrons.

Yet such numbers will have to be manipulated. Their size will represent one of the
algorithmic challenges we will have to take up, as well as a guarantee of the secrecy
of our messages if it takes millions of years of computing – on the billion machines
available on Earth, including the fastest ones – to decrypt them without the key. We
will see how to build algorithms which can handle such numbers later.

Complexity bounds of the algorithms. There may be many different algorithms for
solving the same computational problem. However despite the power of computers,
an ill-conceived algorithm could turn out to be unusable. It is therefore of interest to
find a way to compare the efficiency of two algorithms. This is done on the basis of a
computational model and the size of the problem instance, which is a measure of the
quantity of input data.

There exists many different computational models. For instance, one can use Tur-
ing machines, random-access machines, or Boolean circuits. Yet we will not detail
them in this book (see, e.g., [1] for more details). As for the size and in order to be
able to compute it in every instance, we assume that the input is a sequence of bits
and the size of the input is the length of the sequence. This statement implies that we
have to build a code that transforms the input of an algorithm into a sequence of bits.
This is often a quite simple operation. For instance, it takes about log2(a) bits to code
an integer a (we simply write it in base 2). Thus, the size of an integer is equal to its
logarithm in base 2. The size of a sequence of black and white pixels is the length of
that sequence.

The number of basic computer steps needed by an algorithm expressed as a func-
tion of the size of the problem is called the time complexity2 of the algorithm. This
helps to define a machine-independent characterization of an algorithm’s efficiency
as the naive evaluation of an execution time crucially depends on the processor speed
and various architecture-specific criteria.

Indeed, the notion of basic computer step is vague as the set of processor’s instruc-
tion has a variety of basic primitives (branching, comparing, storing, performing
arithmetic operations, etc.). However, all of them can be evaluated in terms of bit
operations; Therefore, the true complexity of an algorithm is computed using this
elementary unit. For the sake of simplicity, one sometimes counts only the number
of arithmetical operations requested by the algorithm, typically limited to the four

2Analogous definition can be made for space complexity to measure the amount of space, or memory
required by the algorithm.
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classical operations (addition, subtraction, multiplication, and division) and some
binary operations such as bit shift. In that case, it should be reminded that the con-
version to bit operation depends on the base field.

As it is often impossible to count exactly all the basic computer steps performed
during the execution of a program, the complexity of an algorithm is generally given
with asymptotic upper bounds and lower bounds using the Big-O notation (also called
Landau notation). More formally, if f (n) and g(n) are functions from positive integers
to positive reals, then for any n large enough, it is said that

• f (n) = O(g(n)) if there exists a constant c > 0 such that f (n) ≤ c × g(n). This
defines g as an asymptotic upper bound for f . Intuitively, it means that f grows
no faster asymptotically than g(n) to within a constant multiple;

• f (n) = Ω(g(n)) if there exists a constant c > 0 such that f (n) ≥ c × g(n); This
defines g as an asymptotic lower bound for f ;

• f (n) = Θ(g(n)) if f (n) = O(g(n)) and f (n) = Ω(g(n)); and This defines g as an
asymptotic tight bound for f ;

Therefore, if an algorithm takes for instance, 14n2 + 2n + 1 steps on an input of size
n, we simply say it runs with a time complexity bound of O(n2). Table 1.2 summa-
rizes the typically met complexity functions and their associated names. AS Landau
notation enables us to give the complexity to within a constant multiple, we can write
O(log(n)) without giving the base of the logarithm, knowing that the base multiplies
the function by a constant (namely the logarithm of the base).

Exercise 1.4 What is the complexity of the fax code presented in the previous
section? Solution on page 282.

In practice, every algorithm should have a linear complexity O(n) – where n is the
size of the sourcemessage – to be “real-time” efficient, that is, usable in a transmission
when a long latency is not acceptable (telephony, multimedia, etc.).

One of the fields of cryptography relies on the hypothesis that there exists some
problems where no algorithm with such complexity is known. For such problems,
every known algorithm requests astronomical computing time – which makes their
application impossible.

TABLE 1.2 Typical Complexity Bounds Obtained from an Algorithm
Analysis

Function Complexity Example

O(1) Constant Table lookup
O(log n) Logarithmic Binary search on a sorted vector
O(n) Linear Traversing of an unsorted vector
O(n log n) Quasilinear Quicksort, FFT (Section 1.4.2.4)
O(nk), k > 1 Polynomial Naive square matrix multiplication – O(n3)
O(kn), k > 1 Exponential Naive Fibonacci – O(1.6n)
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In this book, we consider that a problem is impossible to solve (one often uses
the euphemism “difficult”) when there is no known algorithm which solves it in
humanly reasonable time, for instance, if its resolution would request more than 1050

operations.

1.2 STREAM CIPHERS AND PROBABILITIES

As mentioned in Section 1.1.3, the probability of transmission error in many com-
munication channels is high. To build an efficient code in such a situation, one can
consider the message to be transmitted as a bit stream, that is, a potentially infinite
sequence of bits sent continuously and serially (one at a time). Each character is then
transformed bit by bit for the communication over the channel. Such an approach has
various advantages:

• the transformation method can change for each symbol;

• there is no error propagation on the channel; and

• it can be implemented on embedded equipment with limited memory as only a
few symbols are processed at a time.

This technique is notably used in cryptography in the so-called stream cipher. Under
some conditions (Section 1.2.1), such systems can produce unconditionally secure
messages: for suchmessages, the knowledge of the ciphertext does not give any infor-
mation on the plaintext. This property is also called perfect secrecy. Thus, the only
possible attack on a perfect encryption scheme given a ciphertext is the exhaustive
research of the secret key (such a strategy is also called brute force attack). We also
use the stream cipher model to build error detection and correction principles (see
convolutional codes in Chapter 4). The one-time-pad (OTP) encryption scheme is
an example of a cryptographic stream cipher whose unconditional security can be
proved, using probability and information theory.

Some notions of probabilities are necessary for this section and also for the rest of
the book. They are introduced in Section 1.2.2.

1.2.1 The Vernam Cipher and the One-Time-Pad Cryptosystem

In 1917, during the first WorldWar, the American company AT&T asked the scientist
Gilbert Vernam to invent a cipher method the Germans would not be able to break.
He came with the idea to combine the characters typed on a teleprinter with the one of
a previously prepared key kept on a paper tape. In the 1920s, American secret service
captain Joseph Mauborgne suggested that the key should be generated randomly and
used only once. The combination of both ideas led to the OTP encryption scheme,
which is up to now the only cipher to be mathematically proved as unconditionally
secure.

The Vernam cipher derived from the method introduced by Gilbert Vernam.
It belongs to the class of secret key cryptographic system, which means that the
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secret lies in one parameter of the encryption and decryption functions, which is
only known by the sender and the recipient. It is also the case of Caesar’s code
mentioned in Section 1.1.4, in which the secret parameter is the size of the shift of
the letters (or the numbers).

Mathematically speaking, the Vernam encryption scheme is as follows: for any
plaintext message M and any secret key K of the same size, the ciphertext C is
given by

C = M ⊕ K,

where⊕ (also denoted by xor) is the bitwise logical “exclusive or” operation. Actu-
ally, it consists in an addition modulo 2 of each bit. This usage of the “exclusive or”
was patented by Vernam in 1919. Decryption is performed using the same scheme
due to the following property:

C⊕ K = (M ⊕ K)⊕ K = M.

If K is truly random, used only once and of the same size as M i.e., |K| = |M|),
then a third party does not obtain any information on the plaintext by intercepting
the associated ciphertext (except the size ofM). Vernam cipher used with those three
assumptions is referred to as a OTP scheme. It is again unconditionally secure, as
proved by Claude Shannon (Section 1.2.5).

Exercise 1.5 Why is it necessary to throw the key away after using it, that is, why
do we have to change the key for each new message? Solution on page 282.

Exercise 1.6 Build a protocol, based on the One-time-pad system, allowing a user
to connect to a secured server on Internet from any computer. The password has to
be encrypted to be safely transmitted through Internet and to avoid being captured
by the machine of the user. Solution on page 282.

Obviously, it remains to formalize the notion of random number generation, give
the means to perform such generation and finally, in order to prove that the system is
secure, make precise what “obtaining some information” on the plaintext means. For
this, the fundamental principles of information theory – which are also the basis of
message compression – are now introduced.

1.2.2 Some Probability

In a cryptographic system, if one uses a key generated randomly, any discrepancy
with “true” randomness represents an angle of attack for the cryptanalysts. Random-
ness is also important in compression methods as any visible order, any redundancy,
or organization in the message can be used not only by code breakers but also by code
inventors who will see a means of expressing the message in a more dense form. But
what do we call discrepancy with true randomness, and more simply what do we call
randomness ? For instance, if the numbers “1 2 3 4 5 6” are drawn at lotto, one will
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doubt that they were really randomly generated, although stricto sensu, this combina-
tion has exactly the same probability of appearing as any other. We do not go deeply
into the philosophy of randomness, but this section provides mathematical material
to address randomness and its effects and to create something close to randomness.

1.2.2.1 Events and Probability Measure An event is a possible result of a random
experiment. For example, if one throws a six face die, getting the number 6 is an
event. The set operators (∪, ∩, ⧵) are used for relations between events (they stand
for or, and, and except). We denote by Ω the set of all possible events for a given
experiment. A probability measure P is a map of Ω onto [0, 1] satisfying:

1. P(Ω) = 1 and P(∅) = 0;

2. For all A,B mutually exclusive events (A ∩ B = ∅), P(A ∪ B) = P(A) + P(B).

If the set of events is a discrete set or a finite set, we talk about discrete probability.
For example, if the random experiment is the throw of a fair six face die, the set of
events is Ω = {1, 2, 3, 4, 5, 6} and the probability of occurrence of each one is 1∕6.

The probability function is called the probability distribution or the law of prob-
ability. A distribution is said to be uniform if all events have the same probability of
occurrence.

Gibbs’ lemma is a result on discrete distributions that will be useful several times
in this book.

Lemma 1 (Gibbs’ Lemma) Let (p1,… , pn), (q1,… , qn) be two discrete probabil-
ity laws with pi > 0 and qi > 0 for all i. Then

n∑
i=1

pi ∗ log2
qi
pi

≤ 0

with equality if and only if pi = qi for all i.

Proof. As log2(x) =
ln x
ln 2

and ln(2) > 0, it is sufficient to prove the statement using
the neperian logarithm. Indeed, ∀x ∈ ℝ+

∗ , ln(x) ≤ x − 1 with equality if and only if
x = 1. Hence

∑n
i=1 pi ∗ ln qi

pi
≤

∑n
i=1 pi ∗ ( qi

pi
− 1) .

Having
∑n

i=1 pi =
∑n

i=1 qi = 1, we can deduce that
∑n

i=1 pi ∗ ( qi
pi
− 1) =

∑n
i=1 qi −∑n

i=1 pi = 0. As a result,
∑n

i=1 pi ∗ ln qi
pi
≤ 0 . The equality holds if qi = pi for all i so

that the approximation ln( qi
pi
) ≤ qi

pi
− 1 is exact. ◽

1.2.2.2 Conditional Probabilities and Bayes’ Formula Two events are said to be
independent if P(A ∩ B) = P(A)P(B).

The conditional probability of an event A with respect to an event B is the prob-
ability of appearance of A, knowing that B has already appeared. This probability is
denoted by P(A|B) and defined by

P(A|B) = P(A ∩ B)
P(B)
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By recurrence, it is easy to show that for a set of events A1,… ,An,

P(A1 ∩… ∩ An) = P(A1|A2 ∩… ∩ An)P(A2|A3 ∩… ∩ An)…P(An−1|An)P(An).
Bayes’ formula enables us to compute – for a set of events A1,… ,An,B – the

probabilities P(Ak|B) as functions of the probabilities P(B|Ak).

P(Ak|B) = P(Ak ∩ B)
P(B)

=
P(B|Ak)P(Ak)∑
i P(B|Ai)P(Ai)

Exercise 1.7 One proposes the following secret code, which encodes two charac-
ters a and b with three different keys k1, k2, and k3: if k1 is used, then a → 1 and
b → 2; if k2 is used, then a → 2 and b → 3. Otherwise, a → 3 and b → 4.
Moreover, some a priori knowledge concerning the message M and the key
K is assumed: P(M = a) = 1∕4, P(M = b) = 3∕4, P(K = k1) = 1∕2, and
P(K = k2) = P(K = k3) = 1∕4.
What are the probabilities of having the ciphertexts 1, 2, and 3? What are the con-
ditional probabilities that the message is a or b knowing the ciphertext? Intuitively,
can we say that this code has a “perfect secrecy”? Solution on page 282.

Having revised the basic theory of random events, now let us present what ran-
domness means for computers.

1.2.3 Entropy

1.2.3.1 Source of Information Let S be the alphabet of the source message. Thus,
a message is an element of S+. For each message, we can compute the frequencies
of appearance of each element of the alphabet and build a probability distribution
over S.

A source of information is constituted by a couple  = (S,) where S = (s1, … ,
sn) is the source alphabet and  = (p1,… , pn) is a probability distribution over S,
namely pi is the probability of occurrence of si in an emission. We can create a source
of information with any message by building the probability distribution from the
frequencies of the characters in the message.

The source of information  = (S,) is said without memory when the events
(occurrences of a symbol in an emission) are independent andwhen their probabilities
remain stable during the emission (the source is stable).

The source is said to follow aMarkov model if the probabilities of the occurrence
of the characters depend on the one issued previously. In the case of dependence on
one predecessor, we have the probability set  = {pij}, where pij is the probability of
appearance of si knowing that sj has just been issued. Hence, we have pi =

∑
j pij.

For instance, a text in English is a source whose alphabet is the set of Latin letters.
The probabilities of occurrence are the frequencies of appearance of each charac-
ter. As the probabilities strongly depend on the characters that have just been issued
(a U is much more probable after a Q than after another U), the Markov model will
be more adapted.
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An image also induces a source. The characters of the alphabet are the color levels.
A sound is a source whose alphabet is a set of frequencies and intensities.

A source  is without redundancy if its probability distribution is uniform. This
is obviously not the case for common messages, in which some letters and words
are much more frequent than others. This will be the angle of attack of compression
methods and also pirates trying to read a message without being authorized.

1.2.3.2 Entropy of a Source Entropy is a fundamental notion for the manipulation
of a code. Indeed, it is a measure of both the amount of information we can allocate to
a source (this will be useful for the compression of messages) and the level of order
and redundancy of a message, the crucial information in cryptography.

The entropy of a source  = (S,), S = (s1,… , sn),  = (p1,… , pn) is

H() = H(p1,… , pn) = −
n∑
i=1

pi log2(pi) =
n∑
i=1

pi log2
( 1
pi

)
.

By extension, one calls entropy of a message the entropy of the source induced
by this message, the probability distribution being computed from the frequencies of
appearance of the characters in the message.

Property 1 Let  = (S,) be a source:

0 ≤ H() ≤ log2 n.

Proof. We apply Gibbs’ lemma to the distribution (q1,… , qn) = ( 1
n
,… , 1

n
), we have

H() ≤ log2 n
∑n

i=1 pi ≤ log2 n for any source S. Finally, positivity is obvious notic-
ing that the probabilities pi are less than 1. ◽

We can notice that for a uniform distribution, entropy reaches its maximum. It
decreases when the distribution differs from the uniform distribution. This is why it
is called a “measure of disorder,” assuming that the greatest disorder is reached by a
uniform distribution.

Exercise 1.8 What is the entropy of a source where the character 1 has probability
0.1 and the character 0 has probability 0.9? Why will a small entropy be good for
compression? Solution on page 282.

1.2.3.3 Joint Entropies, Conditional Entropies The definition of entropy can
be easily extended to several sources. Let 1 = (1,P1) and 2 = (2,P2) be
two sources without memory, whose events are not necessarily independent. Let
1 = (s11,… , s1n), P1 = (pi)i=1…n, 2 = (s21,… , s2m) and P2 = (pj)j=1…m; then
pi,j = P(1 = s1i ∩ 2 = s2j) is the probability of joint occurrence of s1i and s2j and
pi|j = P(1 = s1i|2 = s2j) is the probability of the conditional occurrence of s1i
and s2j.
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We call joint entropy of 1 and 2 the quantity

H(1,2) = −
n∑
i=1

m∑
j=1

pi,j log2(pi,j).

For example, if the sources 1 and 2 are independent, then pi,j = pipj for all i, j. In
this case, we can easily show that H(1,2) = H(1) + H(2).

On the contrary, if the events of 1 and 2 are not independent, we might want
to know the amount of information in one source, knowing one event of the other
source. Thus, we compute the conditional entropy of 1 relative to the value of 2,
given by

H(1|2 = s2j) = −
n∑
i=1

pi|j log2(pi|j).
Finally, we extend this notion to a conditional entropy of 1 knowing 2, which is
the amount of information remaining in 1 if the law of 2 is known:

H(1|2) =
m∑
j=1

pjH(1|2 = s2j) =
∑
i,j

pi,j log2

( pj
pi,j

)
.

This notion is crucial in cryptography. Indeed, it is very important for all ciphertexts to
have a strong entropy in order to prevent the signs of organization in a message from
giving some information on the way it was encrypted. Moreover, it is also important
for entropy to remain strong even if a third party manages to obtain some important
information concerning the plaintext. For instance, if some mails are transmitted,
then they share common patterns in Headers; yet this knowledge should typically not
provide information on the secret key used to encrypt the mails.

Then, we have the simple – but important – following relations:

H(1) ≥ H(1|2)

with equality if and only if 1 and 2 are independent; and also

H(1,2) = H(2) + H(1|2).

However, the entropy of a source without memory does not capture all the order or
the disorder included in a message on its own. For example, the messages “1 2 3 4 5
6 1 2 3 4 5 6” and “3 1 4 6 4 6 2 1 3 5 2 5” have the same entropy; yet the first one
is sufficiently ordered to be described by a formula, such as “1…6 1…6,” which is
probably not the case for the second one. To consider this kind of organization, we
make use of the extensions of a source.

1.2.3.4 Extension of a Source Let  be a Source without memory. The kth exten-
sion k of  is the couple (Sk,k), where Sk is the set of all words of length k over S
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and k the probability distribution defined as follows: for a word s = si1 … sik ∈ Sk,
then Pk(s) = P(si1 … sik ) = pi1 … pik .

Example 1.1 If S = (s1, s2),  = ( 1
4
, 3
4
), then S2 = (s1s1, s1s2, s2s1, s2s2) and P2 =

( 1
16
, 3
16
, 3
16
, 9
16
) .

If  is a Markov source, we define Sk in the same way, and for a word
s = si1 … sik ∈ Sk, then Pk(s) = pi1pi2i1 … pikik−1 .

Property 2 Let  be a source, and k its kth extension, then

H(k) = kH() .

In other words this property stresses the fact that the amount of information of a
source extended to k characters is exactly k times the amount of information of the
original source. This seems completely natural.

However, this does not apply to the amount of information of a message (a file for
instance) “extended” to blocks of k characters. More precisely, it is possible to enu-
merate the occurrences of the characters in a message to compute their distribution
and then the entropy of a source that would have the same probabilistic characteris-
tics. Indeed, this is used to compress files as it will be seen in Chapter 2. Now if the
message is “extended” in the sense that groups of k characters are formed and the
occurrences of each group is computed to get their distribution, then the entropy of
this “message extension” is necessarily lower than k times the entropy corresponding
to the original message as shown in the following.

Property 3 Let  be a message of size n, k be the source whose probabilities
correspond to the occurrences of the successive k-tuples of  and k


be the kth

extension of the induced source . Then

H(k ) ≤ H(k

) .

Proof. We give some details for k = 2. Let (qi) be the probabilities of the induced
source , (qi,j = qi ⋅ qj) those of the second extension 2


and (pi,j) those of an

source induced by the successive pairs of elements of M, 2 . Gibbs lemma, page

17, applied to pi,j and qi,j shows that
∑

i,j pi,j log2

(
qiqj
pi,j

)
≤ 0. This is also

H(2) ≤ −
∑
i,j

pi,j log2(qiqj). (1.1)

Now, denote by ni the number of occurrences of the i symbol in. With n = ||,
we have qi = ni∕n. Also denote by ni,j the number of occurrences of the pair (i, j) in
2. Then |2| = n∕2 and pi,j = 2ni,j∕n. We also have ni =

∑
j ni,j +

∑
k nk,i so that

2qi =
∑

j pi,j +
∑

k pk,i.
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Therefore, the right-hand side of Inequation (1.1) can be rewritten as follows:∑
i,j

pi,j log2(qiqj) =
∑
i,j

pi,j log2(qi) +
∑
i,j

pi,j log2(qj)

=
∑
i

log2(qi)

(∑
j

pi,j

)
+

∑
j

log2(qj)

(∑
i

pi,j

)

=
∑
i

log2(qi)

(∑
j

pi,j +
∑
k

pk,i

)
=

∑
i

log2(qi)
(
2qi

)
= −2H()
= −H(2


).

(1.2)

This proves that Inequation (1.1) is actually

H(2) ≤ H(2

).

This construction generalizes to any k, in the same manner, by enumeration of all the
k-tuples. ◽

The following example illustrates both situations.

Example 1.2 The messages “1 2 3 4 5 6 1 2 3 4 5 6” and “3 1 4 6 4 6 2 1 3 5 2 5”
have the same entropy taking the first extension of the source: six characters of prob-
ability one 1

6
each, giving an entropy of

∑6
i=1

1
6
log2(6) = log2(6) ≈ 2.585. With the

second extension of the source ( 1
6
, 1
6
, 1
6
, 1
6
, 1
6
, 1
6
), we obtain 36 possible groups of

probability 1
36

each and the entropy conforms to Property 2: log2(36) = log2(62) =
2 log2(6). However, for example, when regrouping the messages in blocks of two
characters, we have

• (12)(34)(56)(12)(34)(56): three different couples of probability 1
3
each corre-

sponding to an entropy of log2(3) ≈ 1.585.

• All the same, the sequence (31)(46)(46)(21)(35)(25) gives five different couples
and is of entropy 1

6
log2(6) +

2
6
log2

(
6
2

)
+ 1

6
log2(6) +

1
6
log2(6) +

1
6
log2(6) ≈

2.252.

In both cases, the entropy obtained is definitely lower than twice the entropy of the
original message. We will make this statement precise in Property 4.

Property 4 Let be a message of size n and let k be the source whose proba-
bilities correspond to the occurrences of the successive k-tuples of . Then

H(k ) ≤ log2
(⌈n

k

⌉)
.
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Proof. There are
⌈
n
k

⌉
k-tuples in the message. Besides, entropy is maximal for the

greatest number of distinct possible k-tuples with the same number of occurrences.
In this case, the corresponding source would contain at most

⌈
n
k

⌉
distinct characters

of probability of occurrence 1⌈
n
k

⌉ . Thus, the entropy is log2
(⌈

n
k

⌉)
. ◽

This leads us to the problem of randomness and its generation. A sequence of
numbers randomly generated should meet harsh criteria – in particular, it should have
a strong entropy. The sequence “1 2 3 4 5 6 1 2 3 4 5 6” would not be acceptable as
one can easily notice some kind of organization. The sequence “3 1 4 6 4 6 2 1 3 5
2 5” would be more satisfying – having a higher entropy when considering successive
pairs of characters. We detail the random number generators in Section 1.3.7.

1.2.4 Steganography and Watermarking

Entropy is a powerful tool to model the information in a code. For instance, it can be
used to detect steganography by a study of the quantity of information contained in
a device.

Steganography is the art of covering information. The knowledge of the mere exis-
tence of some covert information could then be sufficient to discover this information.

Steganographic devices include invisible ink, microdot in images, Digital Right
Management (DRM), information encoding in white spaces of a plaintext, and so on.

Nowadays, steganography is quite often combined with cryptography in order to
not only conceal the existence of information but also keep its secrecy even if its
existence is revealed. It is also combined with error-correcting codes. Indeed, even
if the resulting stegotext is modified and some parts of the information are altered,
the information remains accessible if sufficiently many bits remain unchanged by the
media modification.

Digital watermarking is a variant of steganography, which is used to conceal some
information into digital media such as images, audio, or video.

We distinguish two major kinds of watermarking:

• Fragile watermarking is very close to classical steganography, it is usually invis-
ible and used to detect anymodification of the stream. For instance, secure paper
money often encloses fragile watermarks that disappear after photocopy.

• Robust watermarking might be visible and should at least partially resist to sim-
ple modifications of the source as lossy compression. This is what is required
for instance for Digital Right Management.

It is difficult to hide a large quantity of information into a media without begin
detectable. Indeed, consider a covering mediaM, some information X and a stegotext
S where the information is embedded into the covertext. As the stegotext should not
be very different from the covertext to be undetected, the quantity of information
in the stegotext should be very close to that of the covertext added to that of the
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embedded information: H(S) ≈ H(M) + H(X). Therefore, a classical steganalysis is
to compute the entropy of a suspected media and compare it to classical values of
unmarked ones. If the obtained entropy is significantly higher than the average, then
it can mean that some additional information if carried by this media. In other words,
to remain undetected steganography must use a small quantity of information into a
large media.

Exercise 1.9 We have hidden a number in the spacing of
this text. Can you find it? Solution on page 283.

We will see an example of watermarking of digital images using the JPEG format
in Section 2.5.3.

1.2.5 Perfect Secrecy

Using the concept of entropy, it is also now possible to make precise the concept of
unconditional security (also called perfect secrecy).

An encryption scheme is said unconditionally secure or perfect if the ciphertext
C does not give any information on the initial plaintext M; hence, the entropy of M
knowing C is equal to the entropy of M:

H(M|C) = H(M)

In other words, unconditional security means that M and C are statistically indepen-
dent.

Exercise 1.10 (Perfect Secrecy of the One-Time-Pad Encryption Scheme)

1. We consider a secret code wherein the key K is generated randomly for each
message M. Prove that H(M|K) = H(M).

2. Using conditional entropies and the definition of a Vernam code, prove that
in a Vernam code (C = M ⊕ K), we always have H(M,K,C) = H(M,C) =
H(M,K) = H(C,K); deduce the relations between the conditional entropies
of M, C, and K.

3. Prove that the OTP system is a perfect encryption scheme.
Solution on page 283.

1.2.6 Perfect Secrecy in Practice and Kerckhoffs’ Principles

Now, we have an encryption method (the one-time-pad) and the proof of its security.
It is the only known method to be proved unconditionally secure. Yet in order to
use this method in practice, we should be able to generate random keys of the same
size of the message, which is far from being trivial. One solution is to rely on PRNG

(Section 1.3.7) to create the successive bits of the key that are combined with the bit
stream of the plaintext. It leads to a bitwise encryption (stream cipher) as illustrated
in Figure 1.2.
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ki

c0mn mi ci c1mi+1 +

Figure 1.2 Bitwise encryption (Stream cipher)

However, key exchange protocols between the sender and the recipient remain
problematic as the keys cannot be used twice and are generally big (as big as the
message).

Exercise 1.11 (Imperfection Mesure and Unicity Distance) We consider mes-
sages M written in English, randomly chosen keys K and ciphertexts C, produced by
an imperfect code over the 26 letters alphabet. A length l string is denoted by X1 …Xl
and we suppose that any key is chosen uniformly from the space K. The unicity
distance of a code is the average minimal length d (number of letters) of a ciphertext
required to find the key. In other words d satisfies H(K|C1 …Cd) = 0: if you know d
letters of a ciphertext, you have, at least theoretically, enough information to recover
the used key.

1. For a given symmetric cipher, knowing the key and the cleartext is equivalent
to knowing the key and the ciphertext: H(K,M) = H(K,C). From this and the
choice of the key, deduce a relation between H(K), H(M1 …Md), H(C1 …Cd)
with the unicity distance d.

2. Using Table 1.1, the entropy of this book is roughly 4.19 per character. What
is therefore the entropy of a similar plaintext of d letters?

3. What is the entropy of a randomly chosen string over the alphabet with 26
letters ? Use these entropies to bound H(C1 …Cd) for a good cipher.

4. Overall, deduce a lower bound for the unicity distance depending on the infor-
mation contained in the key.

5. If the cipher consists in choosing a single permutation of the alphabet, deduce
the average minimal number of letters required to decipher a message encoded
with this permutation. Solution on page 283.

In general, coding schemes are not perfect, and theoretical proofs of security are
rare. Empirical principles often state the informal properties we can expect from
a cryptosystem. Auguste Kerckhoffs formalized the first and most famous ones in
1883 in his article “La cryptographie militaire,” which was published in the “Journal
des Sciences Militaires.” Actually, his article contains six principles, which are now
known as “Kerckhoffs’ principles.” We will summarize three of them, the most useful
nowadays:

1. Security depends more on the secrecy of the key than on the secrecy of the
algorithm.
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For a long time, the security of a cryptosystem concerned the algorithms that
were used in this system. For instance, this was the case of Caesar encryption
(Section 1.1) or of the ADFVGX code, used by German forces during World
War I. Security is illusory because, sooner or later, details of the algorithm are
going to be known and its potential weaknesses will be exploited. In addition,
it is easier to change a key if it is compromised than to change the whole cryp-
tosystem. Moreover, you can believe in the resistance of public cryptosystems
as they are continuously attacked: selection is rough, therefore if a cryptosys-
tem, whose internal mechanisms are freely available, still resists the continuous
attacks performed by many cryptanalysts, then there are more chances that the
system is really secure.

2. Decryption without the key must be impossible (in reasonable time);

3. Finding the key from a plaintext and its ciphertext must be impossible (in rea-
sonable time).

Therefore, one must always assume that the attacker knows all the details
of the cryptosystem. Although these principles have been known for a long time,
many companies continue to ignore them (voluntarily or not). Among the most
media-related recent examples, one may notice the A5/0 and A5/1 encryption
algorithms that are used in Global System for Mobile Communications (GSM) and
most of all Content Scrambling System (CSS) software for the protection against
DVD copying. The latter algorithms were introduced in 1996 and hacked within
weeks, despite the secrecy surrounding the encryption algorithm.

Following the Kerckhoffs principles, it is possible to devise codes that are not
perfect but tend toward this property. In Section 1.3, we, for instance, see how to
build codes which use a single (short) key and make the exchange protocol less time
consuming than the OTP. The idea is to split the message into blocks such that each
of them is encrypted separately.

1.3 BLOCK CIPHERS, ALGEBRA, AND ARITHMETIC

In this section, we introduce most of the mathematical background used in coding
theory and applications. It contains the bases of algebra, and efficient ways to com-
pute in algebraic structures. Some arithmetics is also useful to construct large finite
structures. All these notions are widely used in the book and become necessary as
soon as block coding methods are envisaged.

Today, the Vernam cipher is the only symmetric cryptographic algorithm that has
been proved unconditionally secure. Thus, all other known systems are theoretically
breakable.

For these systems, we use almost secure encryption schemes: the knowledge of the
ciphertext (or the knowledge of some couples plaintext/ciphertext) does not enable
to recover the secret key or the plaintext in humanly reasonable time (see the orders
of magnitude and computing limits in Section 1.1.7).
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For instance, we can decide to choose a unique key and to reuse it in order to
avoid too frequent key exchange protocols. This implies that we have to split the
source messages into blocks of some size, depending on the size of the key. Block
cipher is also a standard, which is widely used in error detection and correction.

This is also the principle of one of the most famous codes – the ASCII code
(“American Standard Code for Information Interchange”) – which is a numerical rep-
resentation of the letters and signs of the Latin alphabet. In ASCII code, the source
alphabet is the Latin alphabet, and the code alphabet is V = {0, 1}. The set of code-
words is the set of all the words of size 8 over V:

C = {00000000, 00000001, … , 11111111}.

Each one of the 28 = 256 characters (uppercases, lowercases, special characters, and
control characters) is represented with a word of size 8 over V according to an encod-
ing function. The following Table 1.3 gives an extract of this function.

For example, the ASCII code of the message: A KEY, is the string:
0100000100100000010010110100010101011001.

1.3.1 Blocks and Chaining Modes from CBC to CTR

It is possible to encode independently each block of a message with the same algo-
rithm. This is called Electronic Code Book (ECB) cipher mode. More generally, the
independence of encryption between the blocks is not required and the several ways
of combining the blocks are called encryption modes.

ECB mode: Electronic Code Book. In this mode, the message M is split into blocks
mi of constant size. Each block is encrypted separately with a function Ek (the key k
being a parameter of the function) as illustrated in Figure 1.3.

ci = Ek(mi) (1.3)

Thus, a given block of the message mi will always be encrypted in the same way.
This encryption mode is the easiest one but does not provide any security and is
normally never used in cryptography.

TABLE 1.3 Extract of the ASCII Code

A 01000001 J 01001010 S 01010011
B 01000010 K 01001011 T 01010100
C 01000011 L 01001100 U 01010101
D 01000100 M 01001101 V 01010110
E 01000101 N 01001110 W 01010111
F 01000110 O 01001111 X 01011000
G 01000111 P 01010000 Y 01011001
H 01001000 Q 01010001 Z 01011010
I 01001001 R 01010010 Space 00100000
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Figure 1.3 Block ciphers: ECB mode
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Figure 1.4 Block ciphers: CBC mode

CBC mode: Cipher Block Chaining. The CBC mode was introduced to avoid encrypt-
ing a block in the same way in two different messages. We add some initial value
IV = c0, possibly generated randomly. Each block mi is encoded by an XOR opera-
tion with the previous cipherblock ci−1 before being encrypted. Figure 1.4 illustrates
this mode.

ci = Ek(mi ⊕ ci−1) (1.4)

This is the most widely used encryption mode. Decryption uses the inverse of the
encoding function Dk = E−1

k : mi = ci−1 ⊕ Dk(ci).

CFB mode: Cipher FeedBack. To avoid using the inverse function for decryption, it
is possible to perform an XOR after the encryption. This is the principle of the CFB

mode, which is illustrated in Figure 1.5.

m1 mnm2

Ek

c2

IV = c0

c1

EkEk

cn

Figure 1.5 Block ciphers: CFB mode
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ci = mi ⊕ Ek(ci−1) (1.5)

The benefit of this mode is to avoid implementing the function Dk for decryption:
mi = ci ⊕ Ek(ci−1). Thus, this mode is less secure than the CBC mode and is used in
network encryption for example.

OFB mode: Output FeedBack. OFB is a variant of the previous mode and it provides
symmetric encryption and decryption. Figure 1.6 illustrates this scheme.

z0 = c0 ; zi = Ek(zi−1) ; ci = mi ⊕ zi (1.6)

Decryption is performed by zi = Ek(zi−1) ; mi = ci ⊕ zi. This mode is useful when
one needs to minimize the number of embedded circuits, especially for communica-
tions in spacecrafts.

CTR mode: Counter Mode Encryption. The CTR mode is also completely symmetric,
but encryption can be perfomed in parallel. It uses the encryption of a counter of
initial value T (Figure 1.7):

ci = mi ⊕ Ek(T + i) (1.7)

Decryption is performed in the same way: mi = ci ⊕ Ek(T + i). The advantage of
such a mode is that the several computations are independent, as in the ECB mode,
but a block is also never encrypted twice in the same way a priori.

m1 m2 mn

Ek EkIV = c0 Ek

c1 cnc2

Figure 1.6 Block ciphers: OFB mode
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Figure 1.7 Block ciphers: CTR mode
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Exercise 1.12 A message M is split into n blocks M1,… ,Mn that are encrypted
into C = C1,…Cn using an encryption mode. Bob receives the blocks Ci, but unfor-
tunately, he does not know that one (and only one) of the blocks was incorrectly
transmitted (for example, some 0s became 1s and some 1s became 0s during the
transmission of block C1). Show that the number of miss-decrypted blocks is equal to
1 if ECB, OFB or CTR modes were used and equal to 2 if CBC, or CFB modes were used.

Solution on page 283.

1.3.2 Algebraic Structure of Codewords

Developing block ciphers implies that we have to be able to perform operations and
computations over blocks. For example, the ⊕ operation over a block of bits is a
bitwise addition modulo 2 of two vectors. Furthermore, as encoding functions have
to be reversible, we need structures for which we can easily compute the inverse of
a block. In order to perform these computations using solid algebraic bases, let us
recall some fundamental structures. All along the book, ℤ denotes the set of integers,
and ℕ denotes the set of nonnegative integers.

1.3.2.1 Groups A group (G, ∗) is a set equipped with an internal binary operator
satisfying the following properties:

1. ∗ is associative: for all a, b, c ∈ G, a ∗ (b ∗ c) = (a ∗ b) ∗ c.

2. There exists a neutral element e ∈ G, such that for all a ∈ G, one has a ∗ e =
e ∗ a = a.

3. Each element has an inverse: for all a ∈ G, there exists a−1 ∈ G such that a ∗
a−1 = a−1 ∗ a = e.

Moreover, if the law is commutative (a ∗ b = b ∗ a for all a, b ∈ G), G is called
abelian.

A subsetH ofG is called a subgroup ofG if the operations ofG restricted toH give
a group structure to H. For an element a of a group G, we denote by an the repetition
of the law ∗, a ∗ · · · ∗ a, performed on n terms equal to a for all n ∈ ℕ∗. Moreover,
one has a0 = e and a−n = (a−1)n for all n ∈ ℕ∗.

If an element g ∈ G is such that for all a ∈ G, there exists i ∈ ℤ, such that a = gi,
then g is a generator of the group (G, ∗) or a primitive root. A group is called cyclic
if it has generator.

For example, for a given n fixed, the set of integers ℤ∕nℤ = {0, 1,… , n − 1},
equipped with the law of addition modulo n is a cyclic group generated by 1; if
n = 7 and if we choose the multiplication modulo 7 as a law of composition, the
set {1,… , 6} is a cyclic group generated by 3. Indeed 1 = 30, 2 = 32 = 9, 3 = 31,
4 = 34, 5 = 35, 6 = 33.

Let (G, ∗) be a group and a ∈ G. The set {ai, i ∈ ℤ} is a subgroup of G, denoted
by < a > or Ga. If this subgroup is finite, its cardinal number is the order of a.
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Property 5 (Lagrange) If G is a finite group, the cardinal number of any subgroup
of G divides the cardinal number of G. In particular, the order of any elements divides
the cardinal number of G.

Proof. Let H be a subgroup of a finite group G. |H| is the cardinal number of H
and consider the sets aH = {ah, h ∈ H} for any a ∈ G. First of all, all the sets aH
have the same cardinal number: if ah1 = ah2, then since a is invertible h1 = h2, so
that |aH| = |H|. Then these sets form a partition of G: indeed take aH and bH with
a ≠ b and suppose that there exist an element x in their intersection, that is, x = ah1 =
bh2. Then for any element u ∈ aH, u = ahu = b(h2h−11 hu). But as H is a subgroup,
h2h

−1
1 hu ∈ H and thus u ∈ bH. This proves that aH is included in bH.With the reverse

argument, one can prove also that bH is included in aH. Therefore, two sets aH and
bH are either equal or disjoint. Finally, any element x in G is in xH. Now, as the sets
aH form a partition of G and they are all of cardinal number |H|, the cardinal order
of G is a multiple of |H|. ◽

Theorem 1 (Lagrange) In a finite abelian group (G, ∗) of cardinal number n, for
all a ∈ G ∶ an = e.

Proof. Let a be any element inG. The set of the multiples of a,Ga = {y = ax for x ∈
G} is equal to G. Indeed, as a is invertible, for all y ∈ G, we can define x = a−1y.
Reciprocally, if a and x are elements of G a group, then so is their product ((ax)−1 =
x−1a−1). Hence, the two sets being equal, the products of all their respective elements
are also equal: ∏

x∈G
x =

∏
y∈Ga

y =
∏
x∈G

ax.

Yet, as multiplication is commutative in an abelian group, we can then extract a from
the product. Moreover, there are n elements in G and we thus obtain the following
formula: ∏

x∈G
x = an

∏
x∈G

x.

In order to conclude, we use the fact that – all elements in G being invertible – so is
their product and we can simplify the previous formula: e = an. ◽

1.3.2.2 Rings A ring (A,+,×) is a set equipped with two internal binary operators
satisfying the following properties:

1. (A,+) is an abelian group.

2. × is associative: for all a, b, c ∈ A, a × (b × c) = (a × b) × c.

3. × is distributive over +: for all a, b, c ∈ A, a × (b + c) = (a × b) + (a × c) and
(b + c) × a = (b × a) + (c × a).

Moreover, if there exists a neutral element for × in A, A is called unitary. This
neutral element is noted 1A, or simply 1 if it is not ambiguous from the context. If ×
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is commutative, A is called commutative. All elements in A have an opposite, namely
their inverse for the law +. However, they do not necessarily have an inverse for the
law ×. The set of invertible elements for the law × is denoted by A∗.

For an element a in a ring A, one denotes by n ⋅ a (or more simply na) the sum
a + · · · + a of n terms equal to a for all n ∈ ℕ∗.

If the set {k ∈ ℕ∗ ∶ k ⋅ 1 = 0} is not empty, the smallest element of this set is
called the characteristic of the ring. Otherwise, the ring is said to be of characteristic
0. For example, (ℤ,+,×) is a unitary, commutative ring of characteristic 0.

Two rings (A,+A,×A) and (B,+B,×B) are isomorphic if there exists a bijection
f ∶ A −→ B satisfying for all x and y in A:

f (x +A y) = f (x) +B f (y) and f (x ×A y) = f (x) ×B f (y). (1.8)

If E is any set and (A,+,×) is a ring such that there exists a bijection f from E to
A, then E can be equipped with a ring structure:

x +E y = f−1 (f (x) + f (y)) et x ×E y = f−1 (f (x) × f (y)) . (1.9)

The ring (E,+E,×E) defined as such is obviously isomorphic to A. If two rings are
isomorphic, one ring can be identified with the other.

An ideal I is a subgroup of a ring A for the law + and “absorbing” for the law ×:
for g ∈ I, the product a × g remains in I for any element a of the ring A. For all x ∈ A,
the set Ax = {ax; a ∈ A} is an ideal of A, which is generated by x. An ideal I of A is
called principal if there exists a generator x (such that I = Ax). A ring A is principal
if an only if any ideal of A is principal.

A Euclidean function 𝜈 is a mapping of all nonzero elements of a unitary ring to ℕ.
A unitary ring with a Euclidean function is Euclidean if it has the property that for
every couple of elements a and b of the ring, there exist q and r such that a = bq + r
and 𝜈(r) < 𝜈(b). This operation is the Euclidean division, and the numbers q and r
are, respectively, called the Euclidean quotient and the remainder

and are denoted by q = a div b and r = a mod b (for a modulo b). Any Euclidean
ring is principal. This implies that there exists a Greatest Common Divisor (GCD) for
all couples of elements (a, b). Any generator of the ideal Aa + Ab is a gcd.

For example, the ring ℤ with the absolute value as Euclidean function, it is a
Euclidean ring. The following famous theorem of Bézout extends the properties of
Euclidean rings. It is true for any Euclidean ring, and its proof in ℤ will follow from
the Euclidean algorithm page 37.

Theorem 2 (Bézout) Let a and b be two nonzero elements of a Euclidean ring A,
and let d be their GCD. There exist two elements x and y, called the Bézout’s numbers,
such that 𝜈(x) ≤ 𝜈(b) and 𝜈(y) ≤ 𝜈(a) satisfying

ax + by = d.

The modulo operation allows to define a ring on ℤ∕nℤ, the set of nonnegative
integers strictly inferior to n, for n ∈ ℕ ⧵ {0, 1}. The set ℤ∕nℤ equipped with the
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addition and the multiplication modulo n [that is, a +ℤ∕nℤ b = (a +ℤ b) mod n and
a ×ℤ∕nℤ b = (a ×ℤ b) mod n] is a (finite) ring. It is widely used in coding.

Exercise 1.13 Bézout’s theorem is very useful to prove properties in number theory.
In particular, use it to prove the famous Gauss’s lemma stated as follows:

Lemma 2 (Gauss) If an integer number a divides the product of two integers b and
c, and if a and b are coprime, then a divides c.

Solution on page 284.

1.3.2.3 Fields A field (A,+,×) is a set equipped with two internal binary operators
satisfying the following properties:

1. (A,+,×) is an unitary ring.

2. (A ⧵ {0},×) is a group.

If (A,+,×) is commutative, the field is commutative; the inverse (or opposite) of
x with regard to the law + is denoted by −x; the inverse of x with regard to the law ×
is denoted by x−1. The characteristic of a field is its characteristic when considered
as a ring.

For instance, (ℚ,+,×) is a commutative field of characteristic 0.
As all the rings and fields we are dealing with are commutative, thereafter the

word ring (respectively field) will refer to a unitary commutative ring (respectively a
commutative field).

Two fields are isomorphic if they are isomorphic when considered as rings.
A subsetW of a field V is called a subfield of V if the operations of V restricted to

W give a field structure toW.
The standard notation is used for classical fields in this book: ℚ denotes the field

of rational numbers, and ℝ denotes the field of real numbers.
If p is a prime number, the ring ℤ∕pℤ is a field of characteristic p.
Indeed, with Bézout’s theorem (see page 32), we have for all couples of integers

a and b, there exists two integers x and y such that

ax + by = gcd(a, b).

If p is prime and a is a nonzero element of ℤ∕pℤ, this identity applied to a and
p gives ax + bp = 1, hence ax = 1 mod p. Thus, a is invertible and x is its inverse.
This field is denoted by 𝔽p.

The field of rational numbers ℚ and the fields 𝔽p are called prime fields.

1.3.2.4 Vector Spaces and Linear Algebra Rudiments of linear algebra are neces-
sary for the reading of the major part of this book. Without any explicative pretention,
here we define useful concepts and we introduce the main notation. A set 𝔼 is a vector
space over a field V if it has one internal law of composition + and an external law
of composition “.,” such that
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1. (𝔼,+) is a commutative group.

2. For all u ∈ 𝔼, 1V .u = u.

3. For all 𝜆, 𝜇 ∈ V , and u ∈ 𝔼, 𝜆.(𝜇.u) = (𝜆 × 𝜇).u.
4. For all 𝜆, 𝜇 ∈ V , and u ∈ 𝔼, 𝜆.u + 𝜇.u = (𝜆 + 𝜇).u.
5. For all 𝜆 ∈ V and u, 𝑣 ∈ 𝔼, 𝜆.(u + 𝑣) = 𝜆.u + 𝜆.𝑣.

An element of a vector space is called a vector, and the elements of the field V
are called scalars. The set {0, 1} equipped with the addition⊕ and the multiplication
∧ is a commutative field denoted by 𝔽2. Thus, the set of bit tables of size n can be
equipped with a vector space structure. The set of codewords is then 𝔽 n

2 .
A set of vectors x1,… , xn is an independent set if for all scalars 𝜆1,… , 𝜆n,∑n
i=1 𝜆ixi = 0 implies 𝜆1 = · · · = 𝜆n = 0.
The dimension of a vector space V , denoted by dim(V), is the cardinal number of

the greatest set of independent vectors of V .
For example, if V is a field, Vn is a space of dimension n because the vectors

(1, 0,… , 0), (0, 1, 0,… , 0), … , (0,… , 0, 1) are independent.
A linear mapping is an application from one vector space to another, which pre-

serves the laws of composition. Namely, if A and B are two vectors spaces, an appli-
cation f is said to be linear if for all x, y in A, f (x +A y) = f (x) ×B f (y) and for all
𝜆 ∈ V and x ∈ A, f (𝜆 .A x) = 𝜆 .B f (x).

The image of a linear mapping f from a vector space 𝔼 to a vector space 𝔽 , denoted
by Im(f ), is the set of vectors y ∈ 𝔽 such that there exists x ∈ 𝔼 with f (x) = y.

The kernel of a linear application f from a vector space 𝔼 to a vector space 𝔽 ,
denoted by Ker(f ), is the set of vectors x ∈ 𝔼 such that f (x) = 0.

It is easy to verify that Ker(f ) and Im(f ) are vector spaces.
If the dimension of Im(f ) is finite, this quantity is called the rank of the linear

mapping and is denoted by Rk(f ) = dim (Im(f )). Moreover, if the dimension of
𝔼 is also finite, then we have the following result: dim(Ker(f )) + dim(Im(f )) =
dim(𝔼).

A matrix M of size (m, n) is an element of the vector space Vm×n, represented by
a table of m horizontal lines (rows) of size n or n vertical lines (columns) of size m.
The element that lies in the ith row and the jth column of the matrix is written as
Mi,j. Multiplication of a vector x of size n with such as matrix gives a vector y of
size m satisfying yi =

∑n
k=1 Mi,kxk for all i from 1 to m; multiplication is written as

y = Mx.
Each matrix M is associated to a linear application f from Vm to Vn, defined by

f (x) = Mx. Reciprocally, any linear application can be written using a matrix. The
coding processes studied throughout this book – mainly in Chapter 4 – often use
linear applications, which enable us to illustrate the properties of these functions.

Depending on the chosen structure, codewords can be manipulated with additions
and multiplications over integers or vectors. All these structures are very general and
common in algebra. Codes are particular as they are finite sets. Finite groups and
finite fields have some additional properties, which will be widely used throughout
this work.
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1.3.3 Bijective Encoding of a Block

Now that we have some structures, we are able to perform additions, multiplications,
and Euclidean divisions on blocks. We can also compute their inverses. Here, we give
some fundamental examples of computations that can be performed on sets with good
algebraic structure. As blocks are of finite size, we will manipulate finite sets in this
section.

1.3.3.1 Modular Inverse: Euclidean Algorithm Bézout’s theorem (see page 32)
guarantees the existence of Bézout numbers and thus the existence of the inverse of
a number modulo a prime number in ℤ. The Euclidean algorithm makes it possible
to compute these coefficients efficiently.

In its fundamental version, the Euclidean algorithm computes the Greatest Com-
mon Divisor (GCD) of two integers according to the following principle: assuming
that a ≥ b,

gcd(a, b) = gcd(a − b, b) = gcd(a − 2b, b) = · · · = gcd(a mod b, b),

where a mod b are the remainder of the Euclidean division of a by b. Indeed, if a
and b have a common divisor d, then a − b, a − 2b,… are also divisible by d.

The recursive principle appears:

Algorithm 1.3 GCD: Euclidean Algorithm
Input Two integers a and b, a ≥ b.
Output gcd(a, b)
1: If b = 0 then
2: return a;
3: else
4: Compute recursively gcd(b, a mod b) and return the result
5: End If

Example 1.3 (The gcd of 522 and 453)
We compute

gcd(522, 453) = gcd(453, 522 mod 453 = 69) = gcd(69, 453 mod 69 = 39)
= gcd(39, 69 mod 39 = 30) = gcd(30, 39 mod 30 = 9)
= gcd(9, 30 mod 9 = 3) = gcd(3, 9 mod 3 = 0)
= 3.

The gcd of 522 and 453 is equal to 3.

Extended Euclidean algorithm. The “extended” version of the Euclidean algo-
rithm – the one we will use most of the time in this book – enables us to compute
the gcd of two numbers and a pair of Bézout numbers.
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This algorithm is also extended because it is meant to be more general: It can be
not only applied to number sets but also applied to any Euclidean ring. This is the
case for polynomials, as we see in the following sections.

The principle of the algorithm is to iterate with the following function G:

G ∶
[

a
b

]
−→

[
0 1
1 −(a div b)

] [
a
b

]
.

Example 1.4 We wish to find x and y such that x × 522 + y × 453 = gcd(522, 453).
We write the matrices corresponding to the iterations with the function G starting
from [

522
453

]
One first computes −(a div b) with a = 522 and b = 453 and one gets the matrix[

0 1
1 −1

]
.

Then, one iterates the algorithm with

[
0 1
1 −1

] [
522
453

]
. Thus, at the end, one

gets [
3
0

]
=

[
0 1
1 −3

] [
0 1
1 −3

] [
0 1
1 −1

] [
0 1
1 −1

] [
0 1
1 −6

]
[

0 1
1 −1

] [
522
453

]
=

[
46 −53

−151 174

] [
522
453

] .

Hence, we have 46 × 522 − 53 × 453 = 3. Thus, d = 3, and the Bézout’s numbers are
x = 46 and y = −53.

Here is a version of the extended Euclidean algorithm that performs this computa-
tion while storing only the first line of G. It modifies the variables x, y, and d in order
to verify at the end of each iteration that d = gcd(a, b) and ax + by = d.

In order to resolve it “by hand,” we can calculate recursively the following
equations (Ei) (we stop when ri+1 = 0):

(E0) ∶ 1 × a + 0 × b = a
(E1) ∶ 0 × a + 1 × b = b
(Ei+1) = (Ei−1) − qi(Ei) ui × a + 𝑣i × b = ri

.

The following exercise gives examples of resolution using this method.
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Exercise 1.14 (Extended Euclidean Algorithm) Find pairs of Bézout numbers
for the following integers:

• (a, b) = (50, 17)
• (a, b) = (280, 11)
• (a, b) = (50, 35)

Solution on page 284.

Now let us prove that this algorithm is correct if the Euclidean ring is the set ℤ of
integers. This will also provide a constructive proof of Bézout’s theorem (see page 32)
in ℤ.

Theorem 3 The extended Euclidean algorithm is correct in ℤ.

Proof. First of all, let us show that the sequence of remainders is always divisible by
d = gcd(a, b): recursively, if rj−2 = kd and rj−1 = hd, then rj = rj−2 − qjrj−1 = d(k −
qjh) and thus gcd(a, b) = gcd(rj−1, rj). Moreover, the sequence of positive remainders
rj is monotonically decreasing and is bounded below by 0. Hence, the algorithm ends.

Besides, after a finite number of steps, one has rj = 0. Thus, there exists an index
i such that ri−1 = qi+1ri + 0. In that case, gcd(ri−1, ri) = ri and the previous remark
indicates that ri is the gcd we are looking for.

Finally, we need to prove that the Bézout numbers are correct. Let us do it recur-
sively. Obviously, the initial case a mod b = 0 is correct and so is the algorithm.
Then, let us denote r = a mod b and q = a div b. Hence a = bq + r. Recursively, and
using the notation introduced in Algorithm 1.4, we have d = xb + yr with |x| ≤ b and|y| ≤ r. This relation implies that d = ya + (x − qy)b with |y| ≤ r ≤ b and |x − qy| ≤|x| + q|y| ≤ b + qr = a. Thus, the algorithm is correct. ◽

Algorithm 1.4 GCD: Extended Euclidean Algorithm
Input Two elements a and b of an Euclidean ring.
Output d = gcd(a, b) and x,y such that ax + by = d, and 𝜈(x) ≤ 𝜈(b), 𝜈(y) ≤ 𝜈(a).
1: If b = 0 then
2: Return d ← a, x ← 1, y ← 1
3: else
4: Recursive call of extended Euclidean algorithm on b, a mod b
5: Let d, u, 𝑣 be the elements of the result.
6: Compute y ← u − (a div b) ∗ 𝑣
7: return d, x ← 𝑣, y
8: End If

Exercise 1.15 (Modular Computation) The extended Euclidean algorithm also
enables one to solve linear modular equations in ℤ.

Give a method to solve the following equations:

1. 17x = 10 mod 50
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2. 35x = 10 mod 50

3. 35y = 11 mod 50
Solution on page 284.

Complexity of the Euclidean algorithm. At each step, the greatest number is, at least,
divided by two, hence its size decreases by 1 bit, at least. Thus, the number of steps is
bounded byO(log2(a) + log2(b)). At each step, we also compute the remainder of the
Euclidean division. The algorithms for Euclidean division we learned in elementary
school have a cost O(log22(a)). Finally, the overall cost is bounded by O(log32(a)) =
O(n3) if n is the size of the data. However, a closer study of the algorithm can make
this complexity more precise. Indeed, the cost of the Euclidean algorithm is rather of
the order O(log22(a)) !

The proof is technical, but the idea is rather simple: either there are actually about
O(log2(a)) steps, thus each quotient is very small and then each division and multi-
plication can be performed with O(log2(a)) operations, or the quotients are large and
thus each division and multiplication has to be performed with O(log22(a)) operations
(but then the number of steps is small).

Exercise 1.16 Implement the extended Euclidean algorithm on the set of integer
numbers with your favorite programming language (solution coded in C++).

Solution on page 285.

1.3.3.2 Euler’s Totient Function and Fermat’s theorem Let n ≥ 2 be an integer.
We denote by ℤ∕nℤ∗ the set of positive integers lower than n and coprime with n:

ℤ∕nℤ∗ = {x ∈ ℕ ∶ 1 ≤ x < n and gcd(x, n) = 1}.

The cardinal number of ℤ∕nℤ∗ is denoted by 𝜑(n). The function 𝜑 is called
Euler’s totient function. For example,𝜑(8) = 4.Moreover, if p is prime,𝜑(p) = p − 1.
Exercise 1.19 focuses on a more general formula.

Each element in ℤ∕nℤ∗ has an inverse: indeed, as x is coprime with n, Bézout’s
identity guarantees the existence of two integers u and 𝑣 of opposite sign (|u| ≤ n and|𝑣| ≤ x), such that

u.x + 𝑣.n = 1.

Thus, u.x = 1 mod n, that is, u = x−1 mod n. The integer u is nonzero and not
equal to n because of the relation u.x = 1 mod n and n > 1. So it is an element of
ℤ∕nℤ∗ and is called the inverse of x modulo n. Computation of u is performed with
the extended Euclidean algorithm.

Theorem 4 (Euler) Let a be any element in ℤ∕nℤ∗. One has a𝜑(n) = 1 mod n.

Proof. ℤ∕nℤ∗ is a finite multiplicative and abelian group, with neutral element 1 and
of cardinal number 𝜑(n). Therefore, Lagrange Theorem 1, page 31, applies directly
to give a𝜑(n) = 1 mod n. ◽
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Fermat’s theorem can be immediately deduced from Euler’s theorem when n is
prime.

Theorem 5 (Fermat) If p is prime, then any a ∈ ℤ∕pℤ satisfies the following
result: ap = a mod p.

Proof. If a is invertible, then Euler’s theorem gives ap−1 = 1 mod p. We multiply
the equation by a in order to obtain the relation. The only noninvertible element in
ℤ∕pℤ (if p is prime) is 0. In that case, we have obviously 0p = 0 mod p. ◽

The Chinese Remainder Theorem – which was first formulated by Chinese math-
ematician Qin Jiu-Shao during the XIIIth century – enables one to combine several
congruences modulo pairwise coprime numbers in order to obtain a congruence mod-
ulo the product of these numbers.

Theorem 6 (Chinese Remainder Theorem) Let n1,… , nk be positive pairwise
coprime numbers and N =

∏
ni. Then, for all set of integers a1,… , ak, there exists

a unique solution 0 ≤ x < N to the modular equation system {x = ai mod ni, for
i = 1...k}. If we call Ni =

N
ni
, this unique solution is given by

x =
k∑

i=1
aiNiN

−1 mod ni
i mod N,

where N−1 mod ni
i is the inverse of Ni modulo ni.

Proof. Let us proceed in two steps: first, we prove the existence of x, and then
we prove the uniqueness of x. As ni are pairwise coprime, Ni and ni are coprime.
Bézout’s theorem gives us the existence of the inverse of Ni modulo ni, which is
written yi = N−1 mod ni

i . Let x =
∑n

i=1 aiyiNi mod N. It is easy to check that x is a
solution of the system of congruences ! Indeed, for all i, as ni divides all Nj (with
j ≠ i), x = aiyiNi mod ni. According to the definition of yi, we have x = ai.1 = ai
mod ni.

Now let us prove the uniqueness of x. Let us suppose that there exist two solu-
tions x1 and x2. Then x2 − x1 = 0 mod n1 and x2 − x1 = 0 mod n2. Thus, x2 − x1 =
k1n1 = k2n2 for some k1 and k2. Hence, n1 divides k2n2. Yet, n1 and n2 are coprime,
thus n1 also divides k2; hence x2 − x1 = 0 mod n1n2. Processing recursively, as ni+1
is coprime with the product n1n2 … ni, we can deduce that x2 − x1 = 0 mod N, or
x2 = x1 mod N, which gives us the uniqueness of the solution. ◽

Exercise 1.17 Find all integers x such that x = 4 mod 5 and x = 5 mod 11.
Deduce the inverse of 49 modulo 55. Solution on page 285.

Exercise 1.18 Find all integers x whose remainders after division by 2, 3, 4, 5, 6
are, Respectively, 1, 2, 3, 4, 5. Solution on page 285.
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Exercise 1.19 (A formula for Euler’s Totient Function)

1. Let p be a prime number, 𝜑(p) = p − 1. Compute 𝜑(n) with n = pk and k ∈ ℕ∗.

2. Show that 𝜑 is multiplicative, that is, if m and n are coprime, then 𝜑(mn) =
𝜑(m)𝜑(n).

3. Deduce a general formula for Euler’s previous theorem, using the prime factor
decomposition.

Solution on page 286.

Exercise 1.20 (The Chinese Remainder Theorem) Let (n1,… , nk) be pairwise
coprime integers and N =

∏k
i=1 ni. We consider the following application:

Ψ ∶ ℤ∕Nℤ −→ ℤ∕n1ℤ ×… × ℤ∕nkℤ
a −→ (a1,… , ak) ∀i ∈ [1, k], a = ai mod ni

1. Prove that Ψ is a ring isomorphism.

2. Characterize the function Ψ−1

Hint: Use Ni =
N
ni
and notice that gcd(Ni, ni) = 1.

3. Give the unique solution modulo N of the system:

⎧⎪⎨⎪⎩
x = a1 mod n1
⋮
x = ak mod nk

Solution on page 286.

Exercise 1.21 (Application: The Chinese Remainder Problem) This exercise
is a typical application of the Chinese Remainder Theorem. A group of 17 pirates
has laid hands on a booty composed of golden coins of equal value. They decide to
share it equally and to give the rest to the Chinese cook. The latter would receive
three coins. However, the pirates quarrel and six of them are killed. The cook would
receive four coins. Unfortunately, the boat sinks and only six pirates, the treasure
and the cook are saved. The sharing would give five golden coins to the cook. What
is the minimal fortune the latter can expect if he decides to poison the rest of the
pirates ?

Note: one may use the following equalities:

• 17 × 11 × 6 = 1122 and 66 = 3 × 17 + 15

• 8 × 66 × 3 = 1584 and 16 × 102 = 1632

• 4151 = 3 × 1122 + 785

Solution on page 287.
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1.3.3.3 Modular Exponentiation and Discrete Logarithm Modular exponenti-
ation is a form of coding widely used in modern encryption methods. Let a be a
generator of ℤ∕nℤ. Consider the function

Ea ∶ ℤ∕nℤ −→ ℤ∕nℤ
b −→ ab mod n.

It is associated with a decoding function. As a is a generator, every element c in
ℤ∕nℤ may be written as a power of a. The lowest positive integer b such that ab = c
mod n is called the discrete logarithm (or the index) in base a of b modulo n. We
denote b = loga c mod n.

Da ∶ ℤ∕nℤ −→ ℤ∕nℤ
c −→ loga c mod n.

The coding function is easy to compute. The method is called the exponentiation
by squaring (or binary exponentiation, or even square-and-multiply). It consists in
writing b as successive squares.

For example,

a11 = a × a10 = a × (a5)2 = a × (a × a4)2 = a × (a × (a2)2)2.

With this principle, the computation of a11 only requires five multiplications: three
exponentiations by squaring and two multiplications.

More generally, the complexity bound of Algorithm 1.5 is O(log2 n) multiplica-
tions modulo n.

Algorithm 1.5 Modular Exponentiation
Input Three integers a ≠ 0, b and n ≥ 2.
Output ab mod n
1: If b = 0 then
2: return 1
3: else
4: Compute recursively the modular exponentiation a⌊b∕2⌋ mod n
5: Let d be the result
6: Compute d ← d ∗ d mod n
7: If b is odd then
8: Compute d ← d ∗ a mod n
9: End If
10: return d
11: End If

Indeed, at each call, the exponent b is divided by 2. Hence, there are at most log2 b
recursive calls. At each call, we perform at most two multiplications: a squaring and
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possibly a multiplication by a. These operations are performed modulo n, that is to
say on numbers of log2 n bits. Even using the naive multiplication algorithms (those
we have seen in elementary school), the cost of such multiplication is O(log22 n).

Thus, the overall cost of the algorithm is O(log2 b log22 n). This cost is reasonable
with regard to O(log2 n), which is the time required to read a or write the result.

Exercise 1.22 (Computations of the Inverse)

1. Propose an algorithm for the computation of the inverse in ℤ∕nℤ whenever it
exists, based on Euler’s theorem.
Application: compute (quickly) 22−1 mod 63 and 52001 mod 24. One can use
the following results: 222 mod 63 = 43; 224 mod 63 = 22.

2. Give three different algorithms for the computation of the inverse of y modulo
N = p𝛿11 .p

𝛿2
2 .… p𝛿kk , with pi distinct prime integers.

Solution on page 287.

The Discrete Logarithm Problem (DLP) deals with the computation of the inverse
of the modular power. We have seen that modular exponentiation can be computed in
reasonable time. However, this is not the case for discrete logarithms. This skewness
is a fundamental principle in cryptography.

The following result is called the discrete logarithm theorem. Recall that a gener-
ator of the set ℤ∕nℤ∗ is a number g such that {gi, i ∈ ℕ} = ℤ∕nℤ∗.

Theorem 7 (Discrete Logarithm) If g is a generator of ℤ∕nℤ∗, then for all x, y ∈
ℕ: gx = gy mod n if and only if x = y mod 𝜑(n).

Proof. (⇐) If x = y mod 𝜑(n), one has x = y + k ∗ 𝜑(n). Yet, g𝜑(n) = 1 mod n,
hence gx = gy mod n.

(⇒) As the sequence of powers of g is periodic of period 𝜑(n), then gx = gy

mod n =⇒ x = y mod 𝜑(n). ◽

However, this does not enable one to compute the discrete logarithm with reason-
able complexity. Given y, it is difficult to compute x such that gx = y. The only simple
method consists in enumerating exhaustively all possible x and it takes a time O(n).
No polynomial time algorithm in log2 n (size of the input) is known for this problem.

Thereby, if n = 10100, modular exponentiation requires less than 108 operations,
and it takes less than a second for a PC. On the contrary, exhaustive enumeration for
computing the discrete logarithm requires 10100 operations, which is unimaginable
in reasonable time according to what we have seen before !!!

In practice, one can apply principles similar to those used in factorization algo-
rithms in order to attempt to solve the discrete logarithm problem.

This kind of function – for which one way can be easily computed but not the other
one – is crucial in coding, especially for public key cryptography.
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1.3.3.4 One-WayFunctions In cryptosystems called public key cryptosystems, the
“encoding system” has to be known while the decoding has to remain unknown. In
this example of encoding with modular exponentiation and decoding with the dis-
crete logarithm, the point of having the encoding function E known and the decoding
function D unknown seems contradictory: if one knows E, one inevitably knows D
as D = E−1.

Actually, replacing “unknown” by “extremely difficult to compute on a computer”
(i.e., several years for instance), the functions E and D of a public key cryptosystem
must satisfy:

• D = E−1 in order to insure D(E(M)) = M;

• it is easy (i.e., it can be done quickly) to compute M̃ = E(M) fromM; and

• it is difficult (i.e., it takes a very long time) to recover M from M̃.

In other words, the problem is to find an encryption function E, which is fast to
compute but is long to invert. Such a function is called a one-way function (also known
as OWF). This notion is absolutely crucial in cryptography and all modern codes are
based on it. The principle is illustrated in Figure 1.8.

Adding a key to the functions will make decoding easier if one has the key and
will make it more difficult if one does not have the key.

Good OWFs are functions such that the research of x given f (x) is a mathematical
problem that is putatively difficult.

There are two interests in calculating in modular arithmetic. First of all, computa-
tions “modulo n” are quite fast: their cost isO(log2n) using the most naive algorithms.
Moreover, iterations of a function F – even a simple one – computed using arithmetic
modulo n tend to have some random behavior. We see in Section 1.3.7 that this kind
of computation is used in the major part of pseudo-random generators. Knowing F
and n large, it seems difficult to solve the equation: find x such that F(x) = a mod n,
hence to invert the function F.

1.3.4 Construction of Prime Fields and Finite Fields

We have mentioned that we try to give field structures to our codes when possible
in order to make operations easier. Now we have a first method of generating good
codes: prime fields. It is sufficient to choose a prime number p, and to equip the set

y = f(x)x

Easy

Difficult

Figure 1.8 Principle of a one-way function
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{0,… , p − 1} with the addition and the multiplication modulo p. However, “finding
a prime number” is not easy. It is a full-fledged field of research of which we will
give a survey in order to leave no algorithmic void in our coding methods.

1.3.4.1 Primality Tests and PrimeNumberGeneration Even if one does not know
a polynomial time algorithm for the factoring of an integer n (polynomial with respect
to the size log2 n of n), it is still possible to quickly generate a prime number p. In
coding, it is very useful to be able to generate prime numbers, both for building struc-
tured codes such as fields – which can easily be manipulated for error correction –
and for setting up secured cryptosystems. For this, one uses primality tests, namely
algorithms that determine whether a given number is prime or not. Taking a large odd
number n, and applying the test on it, if n is “composite” one can restart the algorithm
with n + 2 until one finds a prime number. The number of prime numbers less than
n is asymptotically n∕ ln(n). One deduces that – starting from n odd – on average
O(ln(n)) iterations are sufficient to find a prime number by adding 2 to n at each step.

The most used primality test was proposed by Miller and was made efficient in
practice by Rabin. The Miller–Rabin test is an algorithm that determines whether a
given number is probably prime or not. Therefore, the response given by the com-
putation is only a probabilistic one, and it might be erroneous. Nevertheless, if one
repeats the test a sufficient number of times and if the latter constantly gives the
same response, the error probability will become smaller and smaller and eventually
negligible.

Miller-Rabin test. Let n be odd and let s and t such that n − 1 = t2s with t odd. For
any integer a < n, one has

a(n−1) − 1 = at2
s − 1 = (at − 1)(at + 1)(a2t + 1)… (a(2s−1)t + 1).

If n is prime, according to Fermat’s theorem, an−1 − 1 = 0 mod n; therefore

• Either at − 1 = 0 mod n;

• Or at2
i + 1 = 0 mod n for some i, 0 ≤ i < s.

The Miller–Rabin composition test is based on this property.
One says that a has succeeded in the Miller–Rabin composition test for n if at −

1 ≠ 0 mod n and at2
i + 1 ≠ 0 mod n for all i = 0,… , s − 1.

If n is odd and composite, there are less than (n − 1)∕4 integers a, which fail in the
Miller–Rabin composition test. Therefore, by choosing a randomly in {1,… , n − 1},
the error probability is lower than 1

4
.

This test can be efficiently used in order to build a probable prime number with an
error probability lower than 4−k. One proceeds as follows:

1. Choose randomly an odd integer n.
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Algorithm 1.6 Miller–Rabin Primality Test
Input An odd integer n ≥ 5.
Output n is either composite or probably prime.
1: Let s and t be such that n − 1 = t2s

2: Let a be a randomly chosen integer between 2 and n − 1.
3: Let q ← at mod n
4: If q = 1 or q = n − 1 then
5: return “n is probably prime”
6: End If
7: For i from 1 to s − 1 do
8: q ← q ∗ q mod n
9: If q = n − 1 then
10: return “n is probably prime”
11: End If
12: End For
13: return “n is composite”.

2. Choose randomly k distinct numbers ai, 1 < ai < n. Apply the Miller–Rabin
composition test for each integer ai.

3. If no ai succeeds in the composition test, we deduce that n is prime; the error
probability is lower than 4−k;

4. Otherwise, repeat the loop using n + 2 instead of n.

The complexity bound of the Miller–Rabin test is similar to that of modular expo-
nentiation, namely O(log32 n); and O(k log32 n) if one wants an error probability of
around 4−k.

Thus, the average arithmetic cost of the generation of prime numbers is bounded
by O(k log4 n). Indeed, as there are about n

ln(n) prime numbers less than n, it would
take an average of ln(n) tries to find a prime number less than n.

In practice, using this test, it is easy to generate a 1000 digit prime number with
an error probability arbitrarily low.

Besides, it is possible to make the Miller–Rabin algorithm deterministic by testing
a sufficient number of integers a. For example, Burgess proved that testing all integers
a lower than n0.134 was enough to obtain a prime number with certainty. However, the
test would then become exponential in the size of n.

Finally, in 1990, a theorem proved that, assuming the generalized Riemann
hypothesis, one of the most famous conjectures in mathematics, it is enough to test
the 2 log2 n first integers. Thus, theoretical studies show that this test is efficient and
reliable.

Agrawal–Kayal–Saxena (AKS) primality test. In order to have an overall survey of
this topic, let us mention a new primality test – the AKS test – which was built by
Agrawal, Kayal, and Saxena. In 2002, they proved the existence of a polynomial time



46 FOUNDATIONS OF CODING

deterministic algorithm that determines whether a number is prime or not without
using the Riemann hypothesis. So far, despite this important theoretical result, in
practice, one prefers probabilistic algorithms because of their efficiency.

The idea is close to Mille-r-Rabin’s and uses the formalism of polynomials: if n is
prime, then for all a

(X − a)n = (Xn − a) mod n. (1.10)

The AKS algorithm checks this equality for some values of a, by developing explic-
itly (X − a)n. For this test to have a polynomial algorithmic complexity bound, one
needs to reduce the size of the polynomials (this is done by performing the test mod-
ulo (Xr − 1) with r satisfying some properties3) and to use a sufficient number of
witnesses a, but only of the order of logO(1)(n), that is, a polynomial of the size of n.

We only give a rough idea of the justification of the AKS test, all the more as we
have not introduced polynomials yet. This is what we are going to do now, because
they constitute a necessary formalism to construct finite fields and codes.

We know how to build large prime fields by just computing large prime numbers.
However, these are not the only existing finite fields. In order to build finite fields of
any size (even if this size is not a prime number) – and provided that there exist such
fields – we now have to introduce the ring of polynomials over any field.

1.3.4.2 Arithmetic of Polynomials Let V be a field. We call a sequence a mapping
of ℕ onto V . The image of i ∈ ℕ in a sequence a is denoted by ai. The support of a
sequence a is the number of nonzero elements in the image of a. A polynomial P on
V is a sequence with a finite support. The numbers ai are called the coefficients of P.
The degree of a polynomial P is the highest i, such that ai is nonzero and is denoted
by deg(P). The coefficient adeg(P) is then called the leading coefficient. A polynomial
ismonic if its leading coefficient is equal to the neutral element for the multiplication
in V .

The addition of two polynomials P and Q with coefficients ai and bi results in the
polynomial R = P + Q with coefficients ci = ai + bi for all i ∈ ℕ. The multiplication
of the two polynomials P and Q results in the polynomial R = P.Q, with coefficients
ci =

∑i
k=0 akbi−k for all i ∈ ℕ.

Let X be the polynomial such that X0 = 0, X1 = 1, and Xi = 0 for all i > 1. Any
polynomial P of degree d may be written as

P(X) =
d∑
i=0

aiX
i ,where d ∈ ℕ, (a0,… ad) ∈ Vd+1.

The utility of such a notation is among others to define a function P for any polyno-
mial P: to each element x of V , P(x) =

∑d
i=0 aix

i. Now to efficiently evaluate the latter
expression for an element x, one would use the Horner scheme of Algorithm 1.7.

3r must be coprime with n, the greatest prime factor q of r must satisfy q ≥ 4
√
r log n, and n must also

satisfy n
r−1
q ≠ 1 mod r.
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Algorithm 1.7 Horner Polynomial Evaluation

Input (a0,… ad) ∈ Vd+1, and x ∈ V .
Output

∑d
i=0 aix

i.
1: Let s = ad;
2: For i from d − 1 to 0 do
3: s = s ∗ x + ai;
4: End For
5: return s.

The set of all polynomials with these operations is a ring, denoted by V[X]. The
null element is the all-zero sequence and the neutral element is the polynomial with
coefficients e0 = 1 and ei = 0 for all i > 0. It is a principal and Euclidean ring, with
the degree as an Euclidean function. Indeed, one can define a Euclidean division: for
all nonnull polynomials A and B, there exist two unique polynomials Q and R with
deg(R) < deg(B) such that

A = B ⋅ Q + R.

The polynomial Q = A div B is the quotient in the Euclidean division of A by B; also
the remainder R is denoted A mod B.

The notion of Greatest Common Divisor (GCD) is then defined; the extended
Euclidean algorithm can be applied to two nonzero polynomials A and B and
provides a polynomial of maximum degree (it is unique if monic) that divides both
A and B. Besides, Bézout’s identity is valid. In other words, if A and B are two
polynomials in V[X] and D ∈ V[X] is their gcd, there exist two polynomials S and T
in V[X] such that deg(S) ≤ deg(B) and deg(T) ≤ deg(A) and

A.S + B.T = D.

If A and B are different from the polynomial 1 (the neutral element), the extended
Euclidean algorithm enables one to compute two polynomials S and T whose respec-
tive degrees are strictly lower than those of A div D and B div D.

Two polynomials A and B are said to be coprime if their GCD is equal to the poly-
nomial 1; in other words, A and B have no common factor of nonzero degree. One
says that the nonconstant polynomial P of V[X] is an irreducible polynomial over V
if P is coprime with all nonconstant polynomials of degree lower than deg(P).

As for the prime factor decomposition of any integer, any monic polynomial of
nonzero degree has a unique factorization in powers of monic irreducible factors over
V (up to a constant); one says that V[X] is a unique factorization domain. In other
words, it is possible to decompose any polynomial of nonzero degree A of V[X] in
the form

A = Pd1
1 …Pdk

k ,

where the di are nonzero integers and the polynomials Pi irreducible over V . If A is
monic, the Pi factors can be chosen monic: the decomposition is then unique, up to a
permutation of the indices.
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An element 𝛼 of V is a root of A ∈ V[X] if A(𝛼) = 0, where A(𝛼) is the value of
the function associated to the polynomial A evaluated in 𝛼.

If 𝛼 is a root of A, then (X − 𝛼) divides A. Let B be the polynomial such that
A = (X − 𝛼).B. One says that 𝛼 is a simple root of A if 𝛼 is not a root of B, that is,
B(𝛼) ≠ 0. Otherwise, if B(𝛼) = 0, one says that 𝛼 is a multiple root of A.

Example 1.5 In 𝔽2[X], the polynomial X3 − 1 can be factorized into X3 − 1 =
(X − 1) ⋅ (X2 + X + 1). One can easily check that X2 + X + 1 is irreducible (the
only irreducible polynomials in 𝔽2[X] of nonzero degree lower than 2 are X and
X − 1; and neither 0 nor 1 are roots of X2 + X + 1).

1.3.4.3 The Ring V[X]∕P and Finite Fields Let (V ,+,×) be a field and let P be
a polynomial of degree d ≥ 1. One denotes by V[X]∕P the set of polynomials of
degree strictly lower than d equipped with the addition and multiplication modulo P.
Namely, for all polynomials A,B in V[X], with deg(A) < d and deg(B) < d:

A +V[X]∕P B = (A +V[X] B) mod P

A ×V[X]∕P B = (A ×V[X] B) mod P.

This is a commutative monic ring of neutral elements 0 and 1 with regard to the
laws + and ×. This ring is called the quotient ring of V[X] modulo P.

If P is an irreducible polynomial, then V[X]∕P is a field. Indeed, if Q is a nonzero
polynomial of degree lower than degP, then Q and P are coprime and with Bézout’s
identity AQ + BP = 1, one obtains AQ = 1 mod P. In other words, Q is invertible in
the quotient ring V[X]∕P.

Example 1.6 (Over the Field V = 𝔽2) If P = (X + 1)(X2 + X + 1) (a nonirre-
ducible polynomial), the ring V[X]∕P is such that:

V[X]∕P =
{
0, 1,X, 1 + X,X2, 1 + X2,X + X2, 1 + X + X2} .

This ring is not a field because (1 + X)(1 + X + X2) = 0 proves that 1 + X is not
invertible. On the other hand, if one considers P = X2 + X + 1 (an irreducible poly-
nomial), the ring V[X]∕P is such that V[X]∕P = {0, 1,X, 1 + X}. This ring is a field
as X(X + 1) = 1.

Therefore, we now have finite fields that are more general than prime fields.
Indeed, our last example provided us with a field of four elements, which is not a
prime field.

Finite fields are calledGalois fields. They are denoted by 𝔽q, where q is the cardinal
number of the field. The next property enables us to handle all finite fields by this
construction principle and to explain the notation 𝔽q for “the” finite field of cardinal
number q.

Property 6 Two finite fields of same cardinal number are isomorphic.
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One can use an irreducible polynomial in order to build a finite field. As for prime
number generation, looking for irreducible polynomials is a fully fledged domain of
which we will give a survey.

1.3.4.4 Irreducible Polynomials In order to build finite fields, we need some irre-
ducible polynomials, as we needed prime numbers in order to build prime fields.

In the same way as we have seen primality tests for numbers in Section 1.3.4.1,
we begin by giving a test that enables to recognize irreducible polynomials.

The first test which is easy to perform is to make sure that the polynomial is
square-free, namely that it does not have for divisor the square of another polyno-
mial. This can be done over a finite field as for any other field by considering the
derivative P′ of P. For P(X) =

∑d
i=0 aiX

i, we note P′(X)
∑d

i=1 ai × iXi−1 its derivative
polynomial.

Property 7 A polynomial P is square free if and only if gcd(P,P′) = 1.

Proof. If P is divisible by a square, then P = g2h for some polynomials h and g. It fol-
lows that P′ = 2g′gh + g2h′ = g(2g′h + gh′) and thus g divides the GCD of P and P′.
Reciprocally, if g = gcd(P,P′), let us consider an irreducible factor 𝛾 of g of degree
at least 1. Then P′ = 𝛾f and P = 𝛾𝜆 with f and 𝜆 polynomials. By differentiating P,
one obtains 𝛾f = 𝛾 ′𝜆 + 𝛾𝜆′, or 𝛾(f − 𝜆′) = 𝛾 ′𝜆. The polynomial 𝛾 being irreducible
and 𝛾 ′ being of degree strictly lower than the degree of 𝛾 , 𝛾 , and 𝛾 ′ are coprime. By
Gauss’s lemma (see page 33), 𝛾 necessarily divides 𝜆 and 𝛾2 divides P. ◽

The principle of the irreducibility test is given by the following property.

Proposition 1 For p prime and d ≥ 1, in 𝔽p[X], the polynomial Xpd − X is the prod-
uct of all irreducible, monic polynomials whose degree divides d.

In order to prove this proposition, we will need the following lemma:

Lemma 3 r > 0 divides d > 0 if and only if pr − 1 divides pd − 1.

Proof. If r divides d, then pd = (pr)k = (1)k = 1 mod pr − 1. Reciprocally, one has
pd − 1 = 0 mod pr − 1. Let us suppose that d = qr + s, with s < r. Then, one has
pd − 1 = pqrps − 1 = ps − 1 mod pr − 1. Yet, 0 ≤ s < r, thus one obtains ps − 1 = 0
over the integers, which implies that s = 0. Thus, r divides d. ◽

Proof. [of Proposition 1] Let P be irreducible of degree r, such that r divides d. Then
V = 𝔽p[X]∕P is a field. In V , the order of any nonzero element divides the cardinal
number of the group of its invertible elements, namely pr − 1 (Section 1.3.2.1). One
applies this property to X ∈ V , so that Xpr−1 = 1. According to the lemma, pr − 1
divides pd − 1, hence Xpd−1 = 1 mod P, and thus P divides Xpd−1 − 1.

Reciprocally, let P be an irreducible divisor of Xpd − X of degree r. Then, one has
Xpd = X mod P. Now, set G(X) =

∑
aiX

i of maximum order pr − 1 in the group
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of invertible elements of the field 𝔽p[X]∕P (there always exists at least one such ele-

ment, see page 56). One then applies Equation (1.10) d times in order to obtainGpd =∑
ai(Xpd )i mod p. Now, Xpd = X mod P and thus Gpd = G mod P or Gpd−1 = 1

mod P. Hence, pd − 1 is necessarily a multiple of pr − 1, the order of G. The lemma
enables to conclude that r actually divides d.

One then just needs show that no square divides Xpd − X. Indeed, its derivative
polynomial is pdXpd−1 − 1 = −1 mod p and the polynomial −1 is coprime with any
other polynomial. ◽

Thus, the factors of Xpd − X are all the irreducible, monic polynomials whose
degree divides d. If a polynomial of degree d has no common factor with Xpi − X for
1 ≤ i ≤ d∕2, it is irreducible. From this property, we can build a test called Ben-Or’s
irreducibility test (Algorithm 1.8).

Algorithm 1.8 Ben-Or’s Irreducibility Test
Input A polynomial, P ∈ 𝔽p[X].
Output “P is reducible” or “P is irreducible”.
1: Let P′ be the derivative polynomial of P.
2: If gcd (P,P′) ≠ 1 then
3: return “P is reducible”.
4: End If
5: Let Q ← X
6: For i from 1 to deg(P)

2
do

7: Q ← Qp mod P
8: If gcd(Q − X,P) ≠ 1 then
9: return “P is reducible” (end of the algorithm).

10: End If
11: End For
12: return “P is irreducible”.

Therefore, we may generate random polynomials and, using this test, see if they
are irreducible. One denotes by mr(p) the number of irreducible, monic polynomials
of degree r in 𝔽p[X]. As Xpr − X is the product of all irreducible, monic polynomials
whose degree divides r, one obtains

1
r
(pr − p⌊ r

2
⌋+1) ≤ mr(p) ≤

1
r
pr. (1.11)

Indeed, pr is the degree of Xpr − X, thus pr =
∑

d|r dmd(p) ≥ rmr(p).
Hence mr(p) ≤ pr∕r. On the other hand, xmx(p) ≤ px implies that pr − rmr =∑

d|r,d≠r dmd(p) ≤
∑

d|r,d≠r pd ≤ ∑
d≤⌊r∕2⌋ pd. The latter is a geometric series whose

value is p⌊r∕2⌋+1−1
p−1 < p⌊r∕2⌋+1. Finally, 1

r
(pr − p⌊ r

2
⌋+1) ≤ mr(p).
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This statement shows that among all polynomials of degree r, about one over r is
irreducible. One wishes to build an irreducible polynomial. At first sight, it is possible
to choose a polynomial randomly, test its irreducibility, and restart the process until
one chances on an irreducible polynomial. On average, one needs r draws to find an
appropriate polynomial. However, in order to make computations with polynomials
easier, it is interesting to obtain sparse polynomials, namely polynomials with very
few nonzero coefficients. In this case, exhaustive research might turn out to be more
efficient in practice.

We propose the following hybrid Algorithm 1.9 that produces an irreducible
polynomial – preferably a sparse one. It is based on the idea of taking polynomials in
the form Xr + g(X) with g(X) chosen randomly of degree significantly lower than r.

Algorithm 1.9 Generation of a sparse irreducible polynomial
Input A finite field 𝔽p, an integer r > 0.
Output An irreducible polynomial in 𝔽p[X], of degree r.
1: For d from 2 to r − 1 do
2: For all a, b ∈ 𝔽q, a ≠ 0 do
3: If Xr + bXd + a is irreducible then
4: Return Xr + bXd + a
5: End If
6: End For
7: End For
8: Repeat
9: Select P, monic of degree r, chosen randomly in 𝔽q[X].
10: Until P is irreducible
11: return P.

1.3.4.5 Construction of Finite Fields Now, we have all the elements necessary to
build a finite field of size pn with p a prime number. The method of building finite
fields is contained in the proof of the following result:

Theorem 8 For all prime number p and all integers d > 0, there exists a field K of
pd elements. This field is unique up to isomorphism.

Proof. Let p be a prime number and let 𝔽p[X] be the field of polynomials with
coefficients in 𝔽p. For d = 1, 𝔽p is a field with p elements. For d = 2, Proposition 1
guarantees the existence of at least one irreducible polynomial as there are p irre-
ducible polynomials of degree strictly less than 2 and p2, the degree of Xp2 − X,
satisfies p2 > p. For larger d, Equation (1.11) shows that 1 ≤ md(p) and thus there
exists at least one irreducible polynomial P of degree d in 𝔽p[X]. Then, the quotient
ring V = 𝔽p[X]∕P is a field.

As P is of degree d and |𝔽p| = p, there are pd possible remainders. Thus |V| = pd.
According to Property 6 on page 48, any field of cardinal number pd is isomorphic

to V . ◽
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Remark 1 The isomorphism between V[X]∕P and Vdeg(P) equips Vdeg(P) with a field
structure.

Indeed, to any vector u = [u0,… , ud−1] in the vector space Vd, one can associate
in a bijective way the polynomial𝜓(u) =

∑d−1
i=0 uiX

i. Moreover, one has the following
property:

For all u, 𝑣 ∈ Vd, 𝜆 ∈ V , 𝜓(u + 𝜆 ⋅ 𝑣) = 𝜓(u) + 𝜆 ⋅ 𝜓(𝑣).

Hence, 𝜓 is an isomorphism between Vd and 𝜓(Vd) = V[X]∕P. This equips Vd

with a field structure in which multiplication is defined by

For all u, 𝑣 ∈ Vd, u ⋅ 𝑣 = 𝜓−1(𝜓(u) ⋅ 𝜓(𝑣)).

Hence, one can use a field structure with the vectors in Vdeg(P).

Exercise 1.23 Let K be a finite field of cardinal number q > 0. Using the map Ψ ∶
ℤ → K, defined by

For all n ∈ ℤ, Ψ(n) = 1K + 1K +…+ 1K
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

n times

= n.1K ,

prove that there exists a unique prime number p (called the characteristic of K), such
that for all x ∈ K, px = 0. Solution on page 288.

Exercise 1.24 Sequel of the previous exercise
Deduce from the previous exercise that the cardinal number of K is a power of p using
the fact that K is a vector space over its subfields. Hint: One may obtain a subfield
of K isomorphic to 𝔽p. Solution on page 289.

Exercise 1.25 (Construction of the Field 𝔽4)

1. Give a necessary and sufficient condition for a polynomial in 𝔽2[X] of degree
2 ≤ n ≤ 3 to be irreducible. From this condition, deduce all irreducible poly-
nomials of degrees 2 and 3.

2. Deduce all irreducible polynomials of degree 4.

3. Set 𝔽4 = {e0, e1, e2, e3} with e0 the neutral element for the addition and e1 the
neutral element for the multiplication. Using the first question, write the oper-
ation tables (+,×, inverse) in 𝔽4.

Solution on page 289.

1.3.5 Implementation of Finite Fields

1.3.5.1 Operations on Polynomials A typical construction of arithmetic in a finite
field 𝔽p is – for a given prime number p – to look for some irreducible polynomial P
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in 𝔽p[X] of degree d, then to write the elements of 𝔽q = 𝔽p[X]∕P as polynomials, or
as vectors, and finally to implement the arithmetic operations in 𝔽q.

Example 1.7 (Construction of the Field 𝔽16) There exists a field with 16 elements
as 16 = 24. In order to build the field 𝔽16, one first looks for some monic irreducible
polynomial P of degree 4 in 𝔽2[X]. Then one establishes the rules of calculation in
𝔽2[X]∕P.

• Finding P.
The irreducible polynomial P is written as P = X4 + aX3 + bX2 + cX + 1 with
a, b, and c in 𝔽2. In order to determineP, let us examine all possible values for the
triplet (a, b, c). One cannot have (a, b, c) ∈ {(0, 1, 1), (1, 0, 1), (1, 1, 0), (0, 0, 0)}
as for all these cases, 1 is a root ofP. Thus, the triplet (a, b, c) is to be searched for
in the set {(0, 0, 1), (0, 1, 0), (1, 0, 0), (1, 1, 1)}. The only irreducible polynomials
over 𝔽2 of degree at most 2 are X, 1 + X, and X2 + X + 1. To see whether P is
irreducible, it is sufficient to compute the GCD of P and (1 + X)(X2 + X + 1).
The calculation (with the Euclidean algorithm for example) of these GCDs!
(GCDs!) shows that the only values of (a, b, c) for which P is irreducible are
(0, 0, 1), (1, 0, 0), and (1, 1, 1). Thus, P = X4 + X3 + 1 is a possible choice for
P. Let us make this choice.

• Operations on polynomials.

Thus, the elements of the field are 0,X,X2,X3, 1 + X3, 1 + X + X3, 1 + X +
X2 + X3, 1 + X + X2,X + X2 + X3, 1 + X2, X + X3, 1 + X2 + X3, 1 + X,X +
X2,X2 + X3, 1. Therefore, the operations are performed modulo P. For
example, (X2)(X + X3) = 1 + X.

1.3.5.2 Use of Generators There exist other ways to implement finite fields in
which the multiplication will be performed much more quickly.

The idea is to use the property of finite fields according to which the multiplicative
group of invertible elements of a finite field is cyclic. Namely, there exists at least one
generator and the nonzero elements of the field are generated by this element. Hence,
if g is a generator of the multiplicative group of a finite field 𝔽q, all invertible elements
can be written as gi.

One can choose to represent each invertible element gi simply by using its index
i and represent zero by a special index. This construction – in which one represents
the elements using their logarithm – is called exponential representation or cyclic
representation, or Zech’s construction. Then, typical arithmetic operations are greatly
simplified using the following proposition:

Proposition 2 Let 𝔽q be a finite field and let g be a generator of 𝔽 ∗
q . Then

gq−1 = 1𝔽q . In addition, if the characteristic of 𝔽q is odd, then g
q−1
2 = −1𝔽q .

Otherwise, 1𝔽2n = −1𝔽2n .

Proof. Clearly, one has gq−1 = 1𝔽q . If the field is of characteristic 2, then, as in 𝔽2[X],

one has 1 = −1. Otherwise q−1
2

∈ ℤ thus g
q−1
2 ∈ 𝔽q. Yet, as we consider a field, the
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equation X2 = 1 has at most two roots, 1 and −1. g is a generator, thus the order of g
is q − 1 rather than q−1

2
. The only remaining possibility is g

q−1
2 = −1. ◽

This statement gives the following encoding for an element x ∈ 𝔽q, if 𝔽q is gener-
ated by g:

⎧⎪⎨⎪⎩
0 if x = 0

q − 1 if x = 1

i if x = gi, x ≠ 1.

In particular, in our encoding scheme, let us denote by q = q − 1 the codeword asso-
ciated with 1𝔽q . We will also denote by i−1 the index of −1𝔽q ; it is equal to

q−1
2

if the
characteristic of 𝔽q is odd and equal to q − 1 otherwise. This enables one to write in
a simple way all arithmetic operations.

• Multiplication and division of invertible elements are, respectively, imple-
mented as an addition and a subtraction of indexes modulo q − 1.

• Therefore, negation (taking the opposite) is simply the identity in characteristic
2 or an addition with q−1

2
modulo q − 1 if the characteristic is odd.

• Addition is the most complex operation. One must implement it using other
operations. For example, it is possible to do so the following way: if gi and
gj (with j > i) are two nonzero elements in a finite field, gi + gj = gi(1 + gj−i).
This requires to store the index of 1 + gk for all k. This is done by precom-
puting a table, t−plus1, of size q, containing the index of the successor of each
element in the field. Eventually, addition is implemented with one subtraction of
indexes (j − i), one access to a table (t−plus1[gj−i]) and one addition of indices
(i + t−plus1[gj−i]).

In Table 1.4, we study the calculation of these operations over the indices, assum-
ing the existence of a single “table of successors” of size q. Here, we focus on the

TABLE 1.4 Zech’s Construction on Invertible Elements in Odd Characteristic

Average Cost

Operation Elements Indexes +/− Tests Access

Multiplication gi ∗ gj i + j (−q) 1.5 1 0
Division gi∕gj i − j (+q) 1.5 1 0
Negation −gi i − i−1 (+q) 1.5 1 0
Addition gi + gj k = j − i (+q)

i + t−plus1[k] (−q) 3 2 1
Subtraction gi − gj k = j − i + i−1 (±q)

i + t−plus1[k] (−q) 3.75 2.75 1
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complexity of the calculation using the least amount of memory possible, considering
random elements. We indicate the cost of the computations taking the mean number
of additions and subtraction (+/−), the number of tests, and the number of times we
use the table.

Exercise 1.26 Check that the polynomial X is a generator of the field 𝔽16,
constructed with the irreducible polynomial P = X4 + X3 + 1. Then for the two
polynomials P1 = X + 1 and P2 = X2 + X, perform P1 + P2 and P1 × P2 using the
operations described in Table 1.4. Solution on page 289.

1.3.5.3 Primitive Roots In order to put this implementation into practice, we need
to find a way of producing generators of finite fields in the same way as we needed
a way of producing prime numbers in order to build prime fields or irreducible poly-
nomials to build nonprime fields.

Generators of prime fields. A generator of the group of invertible elements in
ℤ∕nℤ is called a primitive root of n. The least primitive root of m is denoted
by 𝜒(m).

If p is a prime number, then ℤ∕pℤ always has exactly 𝜑(p − 1) primitive roots.
Indeed, by Lagrange’s theorem (Proposition 5 page 5), the order of an element of a
group divides the number of elements in the group. This means that the order of any
nonzero element of ℤ∕pℤ divides p − 1. Now suppose that there exists one primitive
root g, that is, g generates the group of invertible elements of ℤ∕nℤ. Then for any
nonzero element x, there exists an index j such that x = gj. Then, the order of x is
p − 1, that is, x is also a generator primitive root, if and only if its index is coprime
with p − 1. Now, one has to compute at least one of these𝜑(p − 1) primitive roots. For
this, one uses the following test, which checks whether the order of an element taken
at random is p − 1 or not. The main difficulty is to factorize p − 1, at least partially,
and we see how to do this in Section 1.4.3.5.

Algorithm 1.10 Test Primitive Root
Input A prime number p > 0.
Input An integer a > 0.
Output Yes, if a is a primitive root of p; No, otherwise.
1: For all q prime and dividing p − 1, do {Factoring of p − 1}

2: If a
p−1
q = 1 mod p then

3: Return “No”.
4: End If
5: End For
6: return “Yes”.

Theorem 9 Algorithm Test Primitive Root is correct.
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Proof. One uses the result of Section 1.3.2.1: if a is an integer, of order k modulo p,
then ah = 1 mod p if and only if k|h.

One deduces that if the order of a is lower than p − 1, as it divides p − 1, then
necessarily one of the values p−1

q
will be a multiple of the order of a. Otherwise, the

only possible value for the order of a is p − 1. ◽

Therefore, a first method of finding a primitive root is to test all integers lower than
p one after the other, which are not equal to 1, nor to −1, nor any power of an integer;
in this way, one is able to find the least primitive root of p. Numerous theoretical
results exist, proving that it does not take a great number of attempts to find this first
primitive root. It is generally of the order of

𝜒(p) = O
(
r4(log(r) + 1)4 log2(p)

)
with r the number of distinct prime factors of p − 1. Another method is to draw ran-
dom integers lower than p and to test whether they are primitive roots or not. As
that there are 𝜑(p − 1) primitive roots, the probability of success is 𝜑(p−1)

p−1 ; thus, the

expected value for the number of draws before finding a primitive root is p−1
𝜑(p−1) . This

gives us a better chance than the brute-force method (trying all possibilities).

Generators of finite fields. Nowwe know how to find a generator for a prime field. Let
us consider the finite fields 𝔽pk . In order to build them, let us recall that, one has first
to build 𝔽p and then to find an irreducible polynomial over this field whose degree is
k. The question is how to find a generator polynomial of this field in order to encode
elements with their index rather than using polynomials. Encoding and arithmetic
operations are then the same as those of prime fields.

Once again, we use a probabilistic approach. First of all, let us consider an algo-
rithm testing whether a polynomial is a generator in 𝔽p[X]. This algorithm is similar
to the one we have seen for primitive roots in 𝔽p.

Algorithm 1.11 Test Generator Polynomial
Input A polynomial A ∈ 𝔽p[X].
Input An irreducible polynomial F of degree d in 𝔽p[X].
Output Yes, if A is a generator of the field 𝔽p[X]∕F; No, otherwise.
1: For all q, prime and dividing pd − 1 do {Factoring of pd − 1}

2: If A
pd−1
q = 1 mod F then {Recursive computation using square exponentia-

tion}
3: Return “No”.
4: End If
5: End For
6: return “Yes”.
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Therefore, once the field is built, an algorithm looking randomly for a generator
is easy to implement. Besides, one can start the search into the set of polynomials
of small degree (O(log(n))). However, in order to manipulate sparse polynomials, it
is useful to find an irreducible polynomial for which X is a primitive root. Such a
polynomial is called X-irreducible, or primitive and in general can be quickly found.
In practice, for finite fields of size between 4 and 232, it is possible to show that
more than one irreducible polynomial in 12 is X-irreducible! Therefore, an algorithm
looking randomly for an X-irreducible polynomial requires less than 12 attempts on
average. Thus, an algorithm for finding an irreducible polynomial having X as gener-
ator is a simple modification of Algorithm 1.9. If Algorithm 1.11 returns that X is not
a generator. one does not select the irreducible polynomial found in Algorithm 1.9.

Example 1.8 Let us return to the example of the field 𝔽16, which we built with the
irreducible polynomial P = X4 + X3 + 1.

Algorithm 1.11 performed on X returns that X is a generator. Therefore, one can
perform computations using the powers of X (Exercise 1.26).

Recall the identification of the elements in 𝔽16 and operation rules:
X1 = X mod P; X2 = X2 mod P; X3 = X3 mod P; X4 = 1 + X3 mod P;
X5 = 1 + X + X3 mod P; X6 = 1 + X + X2 + X3 mod P; X7 = 1 + X + X2

mod P; X8 = X + X2 + X3 mod P; X9 = 1 + X2 mod P; X10 = X + X3

mod P; X11 = 1 + X2 + X3 mod P; X12 = 1 + X mod P; X13 = X + X2

mod P; X14 = X2 + X3 mod P; and X15 = 1 mod P.

With 𝔽16 written in form 𝔽16 = {0, 1, X, X2, X3,X4, X5, X6, X7, X8, X9, X10, X11,
X12, X13, X14}, multiplication and inverse calculation in 𝔽16 are performed more eas-
ily. Addition is also much easier considering that Xk + Xt = Xt(1 + Xk−t) for all k and
t in {1,… , 14} such that k > t.

1.3.6 Curves Over Finite Fields

The exponentiation over finite fields is a good example of a one-way function, and
we now have almost all tools to construct and efficiently compute in those fields.
On one hand, the field structure provides many tools for the construction of codes.
On the other hand, this structure itself allows more possibilities for code breakers in
cryptography. It is possible to define this type of one-way function in a more general
structure, a group, so that cryptanalysis is even more difficult. An example of such a
group structure is the set of points of a curve defined over a finite field.

In a generic group, we denote by + the group law (which is the multiplication in
the group of invertible elements of a finite field 𝔽 ∗

q for example). Then, the multipli-
cation by an integer (i.e., that integer number of calls to the group law, which is the
exponentiation by an integer in 𝔽 ∗

q ) can be used as a one-way function. The discrete
logarithm problem, in this general formulation, is to find the number of times one
has to add a given generator of the group in order to obtain a given element of the
group. We denote this as [n]P = P + P + P + · · · + P for some scalar (integer) n and
an element P of a group (Table 1.5).
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TABLE 1.5 Discrete Logarithm and Exponentiation in Finite Fields and
Generic Groups

Group Exponentiation DLP

𝔽 ∗
q ae with a ∈ 𝔽 ∗

q and e ∈ ℕ Find x ∈ ℕ s.t. gx = b ∈ 𝔽 ∗
q

G a +…+ a, e ∈ ℕ times, that is, [e]a Find x ∈ ℕ s.t. [x]g = b ∈ G

1.3.6.1 Weierstrass Model Let p ≥ 5 be a prime number, q = pk, and let a, b ∈ 𝔽pk
such that the polynomial x3 + ax + b does not have multiple roots and consider the
equation

y2z = x3 + axz2 + bz3. (1.12)

If (x, y, z) ∈ 𝔽 3
q is a solution of (1.12), then any multiple c(x, y, z) is also a solution.

Two solutions are called equivalent if they are equal up to a constant multiplicative
factor. This defines an equivalence relation. The elliptic curve 𝔼(q; a, b) is the set of
equivalence classes of solutions of (1.12), which are called points of the curve. For
one equivalence class, noted (x ∶ y ∶ z), if z ≠ 0 ∈ 𝔽q, there exists a representative of
the class of the form (x′ ∶ y′ ∶ 1). Indeed, just set x′ = xz−1 and y′ = yz−1. On the
other hand, If z = 0 then x must also be zero, and there is exactly one equivalence
class of solutions with this form. It is denoted by  and its chosen representative is
usually (0 ∶ 1 ∶ 0). In summary the set of points is entirely defined by the cases z = 1
and z = 0; therefore, the definition of an elliptic curve can be simplified to

𝔼(q; a, b) = {(x, y) ∈ 𝔽 2
q , y

2 = x3 + ax + b} ∪ {}. (1.13)

In fact, the general form of the equation of an ellipse is y2 + a1xy + a3y = x3 +
a2x

2 + a4x + a6. Now if the characteristic of the field is neither 2 nor 3, then the
change of variable (x, y) →

(
x, y − a1x∕2 − a3∕2

)
yields an isomorphic curve y2 =

x3 + b2x
2 + b4x + b6 and then a second change of variable (x, y) →

(
x − b2∕3, y

)
enables to simplify the equation to (1.13). This can be generalized for fields of char-
acteristics 2 and 3:

1. If a1 ≠ 0 ∈ 𝔽2k , use (x, y) → (a21x + a3∕a1, y) to get y2 + b1xy = x3 + b2x
2 +

b4x + b6, followed by (x, y) → (x, a31y − b4∕a1), to obtain 𝔼(2k; a, b) =
{(x, y) ∈ 𝔽 2

2k
, y2 + xy = x3 + ax2 + b} ∪ {}.

2. Else, a1 = 0 ∈ 𝔽2k and (x, y) → (x + a2, y) gives 𝔼(2k; a, b, c) = {(x, y) ∈
𝔽 2
2k
, y2 + cy = x3 + ax + b} ∪ {}.

3. If a21 ≠ −a2 ∈ 𝔽3k , use (x, y) → (x, y + a1x − a3∕2) to get y2 = x3 + b2x
2 +

b4x + b6, followed by (x, y) → (x − b4∕(2b2), y) to obtain 𝔼(3k; a, b) =
{(x, y) ∈ 𝔽 2

3k
, y2 = x3 + ax2 + b} ∪ {}.

4. Else, a21 + a2 = 0 ∈ 𝔽3k and (x, y) → (x, y + a1x + a3) gives 𝔼(3k; a, b) =
{(x, y) ∈ 𝔽 2

3k
, y2 = x3 + ax + b} ∪ {}.
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Exercise 1.27 Verify that the given variable changes are correct.
Solution on page 289.

To make an exhaustive search for a discrete logarithm impossible in practice, the
group of points in an elliptic curve has to be large enough. The following theorem
states that the number of points is of the order of the size of the involved finite field.

Theorem 10 (Hasse) For any prime power q = pk, let Nq;a,b be the number of points
of 𝔼(q; a, b), then |Nq;a,b − (q + 1)| ≤ 2

√
q.

1.3.6.2 The Group of Points of an Elliptic Curve Now that we have defined the
points in an elliptic curve, we need to provide a group law. We first give the abstract
definition.

Theorem 11 Let 𝔽q be a field of characteristic greater than 5 and 𝔼(q; a, b) an
elliptic curve. Then (𝔼(q; a, b), ⊕) with the following rules for addition is an abelian
group:

•  is the neutral element for⊕.

• For P = (x, y), −P = (x,−y) is the opposite of P for⊕.

• For P = (x1, y1) and Q(x2, y2) then:
– if x1 ≠ x2, then 𝜆 =

y2−y1
x2−x1

and

P⊕ Q =
(
x3, y3

)
=

(
𝜆2 − x1 − x2, 𝜆(x1 − x3) − y1

)
– else, x1 = x2 and:
* if also y1 = y2, then Q = P, P⊕ Q = P⊕ P = [2]P,

𝜆 =
3x21 + a

2y1
and [2]P =

(
x3 = 𝜆2 − 2x1, y3 = 𝜆(x1 − x3) − y1

)
* else Q = −P and P⊕ −P = .

The rules of addition derives from the representation of elliptic curves over the real
field: if P and Q are two different points on the curve, then P⊕ Q is the symmetric
(with respect to the x-axis) of the third intersection of the curve with the line PQ. In
the same manner, [2]P is the symmetric (with respect to the x-axis) intersection of
the tangent in P with the curve, as shown on Figure 1.9. In both cases, 𝜆 is the slope
of the line and the y-intercept can naturally be recovered as, for example, y1 − 𝜆x1.

Exercise 1.28 Let 𝔽52 = 𝔽5[T]∕(T2 + 2), 𝔼(52; −1, 1), P = (1, 1) and Q =
(3 + T , 2 + T).

1. Check that P,Q ∈ 𝔼(52; −1, 1).
2. Check that 2 + T = (2 − T)−1 ∈ 𝔽52 .
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3. Compute P⊕ Q and check that it belongs to the curve.

4. Compute [2]P, the doubling of P, and check that it belongs to the curve.

5. Compute [2]Q, the doubling of Q, and check that it belongs to the curve.

Solution on page 290.

Once again, this law of addition can be generalized in characteristics 2 and 3 as given
in Table 1.6.

Moreover, note that using any of these addition laws, the algorithm for multipli-
cation by an integer remains almost exactly Algorithm 1.5, page 41, where multipli-
cations are replaced by ⊕ and squarings are replaced by doublings. In this setting,
exponentiation by squaring (or square-and-multiply) is often called double-and-add.

Exercise 1.29 Let 𝔼(7; −1, 1) and P = (1, 1), compute [6]P with only three opera-
tions. Solution on page 290.

Note that there exists many other coordinate systems, such as projective and
Jacobian, which differ in the number of multiplications, squarings, additions, or
inversions in the base field, for the same group law. The choice of system depends
on the respective speed of these operations and the target architecture. Note also that
for certain subset of curves, such as Edwards curves, the coordinate system can be
simplified, often leading to practical enhancements.

The US National Institute of Standards and Technology (NIST) recommends
some elliptic curves4, which contains a large number of points, with sizes ranging

TABLE 1.6 Group Laws in Characteristics 2 and 3 with P = (x1, y1) ≠ −P and
Q = (x2, y2) ≠ ±P

p Curve Addition Doubling

2 y2 + xy = x3 + ax2 + b 𝜆 =
y2 + y1
x2 + x1

𝜆 =
y1
x1

+ x1

(𝜆2 + 𝜆 + x1 + x2 + a, (𝜆2 + 𝜆 + a,
opposite: (x1, y1 + x1) 𝜆(x1 + x3) + y1 + x3) 𝜆(x1 + x3) + y1 + x3)

y2 + cy = x3 + ax + b 𝜆 =
y2 + y1
x2 + x1

𝜆 =
x21 + a

c
(𝜆2 + x1 + x2, (𝜆2,

opposite: (x1, y1 + c) 𝜆(x1 + x3) + y1 + c) 𝜆(x1 + x3) + y1 + c)

3 y2 = x3 + ax2 + b 𝜆 =
y2 − y1
x2 − x1

𝜆 = a
x1
y1

(𝜆2 − x1 − x2 − a, (𝜆2 + x1 − a,
opposite: (x1,−y1) 𝜆(x1 − x3) − y1) 𝜆(x1 − x3) − y1)
y2 = x3 + ax + b 𝜆 =

y2 − y1
x2 − x1

𝜆 = − a
y1

(𝜆2 − x1 − x2, (𝜆2 + x1,
opposite: (x1,−y1) 𝜆(x1 − x3) − y1) 𝜆(x1 − x3) − y1)

4http://csrc.nist.gov/publications/fips/fips186-3/fips−186-3.pdf
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from 2160 to 2570. Many other databases exist, let us mention Bernstein and Lange’s
Explicit-Formula database5 and the Acrypta database6, which contains some
Edwards curves.

1.3.7 Pseudo-Random Number Generators (PRNG)

Generation of random numbers is widely used in all the methods we have just seen
and will be often used in the sequel. In particular, generating numbers randomly is a
condition for the perfection of Vernam’s OTP scheme (see page 15). Now, it is time
to look more deeply at this problem which needs some development.

The definition of randomness is crucial in coding. Indeed, any message presenting
some kind of organization (organization is supposed to be the opposite of random-
ness) is an angle of attack for compression and code breaking. Therefore, one should
rely on a solid theory concerning randomness in order to build secure and efficient
codes.

Producing a truly random event is unsolvable by computers – which by definition
only respond to determined and predictable processes. In order to obtain values pro-
duced by “true” randomness (even if this notion is not completely absolute and refers
to what one can observe and predict), one has to call upon assumed unpredictable
physical phenomena, such as thermal noise or the description of the Brownian motion
of electrons in a resistor.

However, this production of numbers may be called randomness only because we
are not able – given our current knowledge in these areas – to explain their mecha-
nisms and because only probabilistic theories enable us to grasp them. With comput-
ers, we wish to proceed in the same way in order to generate random numbers. We
apply some procedures that make the result unpredictable in practice. This is what
we call pseudo-random generation.

Production of random numbers is a very complicated task that has attracted
the attention of both machine designers (“hardware” components, such as thermal
noise) and software designers (“software” products, see examples in the next
section) for some time. One must pay attention to this main issue because there
exist some efficient methods (we will study some of them) that enable one to detect
nonrandom features in a sequence, which is supposed to be random, to recover
the method that produced it, and then to break a randomly generated key. If the
machine that generates the winning lotto combination were not based on some
good random generation process, one would be able to predict the next winning
combination.

One often generates a sequence of pseudo-random numbers by computing each
number from the previous one (which obviously makes the process completely deter-
ministic and eliminates all randomness), in such a significantly complicated way that
– examining the sequence without knowing the method – one could believe that it
was truly generated randomly.

5http://hyperelliptic.org/EFD/index.html
6http://galg.acrypta.com/telechargements/ARCANA−ECDB.tgz
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A generator must satisfy certain properties to be called a pseudo-random genera-
tor. All generated numbers have to be independent from each other. Moreover, they
must have a great entropy, and hopefully no rule can be recovered from the sequence
of generated numbers. There are several ways to determine whether a generator is
acceptable. First of all, one has to make it pass some statistical tests in order to check
that the distribution it produces does not significantly differ from the one expected
from a theoretical model of randomness. Besides, one can also use algorithmic com-
plexity principles: that is show that in reasonable time no algorithm will be able to
predict the mechanisms of the generator.

For example, one can build a generator based on the model of Fibonacci’s
sequence, by producing the numbers xn = xn−1 + xn−2 mod m, m being the max-
imum integer that can be produced. The main advantages of this method are the
following: it is very easy to implement, very fast in execution, and "modulo"
operation enables one to obtain some hard-to-predict behavior for the generator.
However, this generator – like most typical and simple generators – has drawbacks,
and it is possible to recover its behavior based on statistical analysis.

The requirements for a pseudo-random generator are very similar to the proper-
ties one expects from a ciphertext. Indeed, it must be impossible, when receiving a
message or a number, to find out the way it was produced without knowing the key.
That is why some methods for random number generation look like cryptographic
methods or use them.

1.3.7.1 Congruential Generators One says that a generator is a Linear Congruen-
tial Generator (LCG) if it satisfies the following principle: if xi, i ∈ ℕ is the sequence
of generated random numbers, one calculates xi from its predecessor: xi = axi−1 + b
mod m, withm a large number, and a, b ∈ ℤ∕mℤ. The generator is called multiplica-
tive if b = 0. Such a sequence is always periodic; thus, one will have to choose a, b,m
such that the period is significantly high. For example, for m = 10, x0 = a = b = 7,
the period is 4. Hence, this generator is not satisfactory at all.

The maximum period is obviously m. There exists a result providing a description
of all generators of period m with b = 0:

Theorem 12 The Linear Congruential Generator defined by a, b = 0,m, x0 is of
period m if and only if x0 is coprime with m and a is a primitive root of m.

One usually chooses m as the greatest prime number which can be given by a
machine (we have seen how to generate such a number on page 44). Obviously, a large
period is not a sufficient criterion for the production of random generators (consider
the choice a = 1, b = 1). Exercise 1.42, on page 85, is an approach to methods of
attacking LCGs.

1.3.7.2 Linear Feedback Shift Register (LFSR) One can generalize Linear Con-
gruential Generators using not only the previous value to build the next element in
the sequence but also several previous values, namely xn is computed from linear
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combinations of xn−1,… , xn−k. In other words:

xn = (a1xn−1 +…+ akxn−k) mod m.

These generators are particularly interesting if m is a prime number because their
maximum period is then mk − 1, and this maximum is reached, see Theorem 13.
Hence, it is possible, even with a small modulo, to have very large periods.

For example, in order to generate random sequences of bits, one choosesm = 2. In
this case, the operations can be performed very quickly on a machine with “eXclusive
ORs” (xor) for the addition modulo 2 and with shifts on the bits xi to generate the next
bits. There even exist specialized chips performing the necessary operations. Then,
one talks about Linear Feedback Shift Register (LFSR). Figure 1.10 summarizes their
mechanisms.

For some computations, it is interesting to write an LFSR in a polynomial form: set
Π(X) = Xk − a1X

k−1 −…− ak.
Hence, LFSRΠ(x0,… , xk−1) refers to the infinite sequence of bits xi linearly gen-

erated by the polynomial Π, having the first k initial values set to x0,… , xk−1.

Exercise 1.30 Write the first eight values generated by the following shift register:

LFSRX4+X3+X2+1(0, 1, 1, 0)
Solution on page 290.

Finally, we have the equivalent of Theorem 12 for LCG with the primitive root
replaced by a primitive polynomial.

Theorem 13 For some polynomial Π of degree k, the LFSRΠ modulo a prime num-
ber p is of maximum period pk − 1 if and only if Π is a primitive polynomial in 𝔽p[X].

aka1 a2

xn−k−1, . . . , x0xn

xn−1 xn−2 xn−k

Figure 1.10 Functional diagram of an LFSR
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These generators are quite fast. Besides, they have also a very large period. How-
ever, wewill see in Section 1.4.3.2 that the Berlekamp–Massey algorithm enables one
to predict the following bits without knowing the generator polynomial, provided that
2k successive values have been intercepted.

These generators are used in practice to generate quickly some bits with good
statistical properties but they have to be combined with other generators to be
cryptographically secure.

Example 1.9 (Securing the Bluetooth Protocol) Bluetooth is a short-range wire-
less technology whose aim is to simplify the connections between electronic equip-
ment. It was designed to replace the wires between computers and their devices such
as printers, scanners, mice, cell-phones, pocket-PCs, or even numerical cameras.

In order to make this protocol safe, one uses some kind of Vernam encryption
scheme (Section 1.2.1) but with a pseudo-random generator based on LFSR: the
encryption algorithm uses four LFSRs of respective length 25, 31, 33, and 39 for an
overall 25 + 31 + 33 + 39 = 128 bits. The 128 bits of the initial value represent the
secret key of Bluetooth encryption. Figure 1.11 shows the functional diagram of this
encryption scheme.

We notice that the four polynomials that are used are as follows:

• X39 + X36 + X28 + X4 + 1;

• X33 + X28 + X24 + X4 + 1;

• X31 + X24 + X16 + X12 + 1;

• X25 + X20 + X12 + X8 + 1.

These four polynomials are primitive polynomials in 𝔽2[X] for an overall period
of lcm(239 − 1, 233 − 1, 231 − 1, 225 − 1) = 7 ⋅ 23 ⋅ 31 ⋅ 79 ⋅ 89 ⋅ 601 ⋅ 1801 ⋅ 8191 ⋅
121369 ⋅ 599479 ⋅ 2147483647 ≈ 2125.

The 4 bits {a; b; c; d} produced by these four successive LFSRs are then combined
using a nonlinear discrete function f which produces the next bit zt on the output,
from its initial state ({cl−1; ch−1; cl0; ch0} = IV ∈ {0, 1}4) and the successive values

z

X39 + X36 + X28 + X4 + 1

X33 + X28 + X24 + X4 + 1

f

X25 + X20 + X12 + X8 + 1

X31 + X24 + X16 + X12 + 1

d

c

b

a

Figure 1.11 Bluetooth encryption
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of the LFSR, according to the following algorithm:

1. zt = at ⊕ bt ⊕ ct ⊕ dt ⊕ clt (operations over 𝔽2);
2. st+1 = ⌊ at+bt+ct+dt+2cht+clt

2
⌋ ∈ [0, 3] (operations over ℤ);

3. slt+1 and sht+1) are the 2 bits encoding st+1 ∈ [0, 3];
4. clt+1 = slt+1 ⊕ clt ⊕ clt−1 ⊕ cht−1 (operations over 𝔽2); and
5. cht+1 = sht+1 ⊕ cht ⊕ clt−1 (operations over 𝔽2).

1.3.7.3 Cryptographically Secure Generators One can use the principle of
a one-way function, namely a function easy to compute but difficult to invert
(computation in unreasonable time), to determine the quality of a generator.

The formal definition of a good quality generator is as follows. Given a generator
and a finite sequence of bits it has generated, if it is possible, without knowing the
method, to predict with good probability and in reasonable time the next bit of the
sequence, then the generator cannot be considered as a random generator. Here, a
good probability means significantly greater than a random guess, that is, 1

2
for a

sequence of bits.
If one is able to prove that there exists no efficient algorithm performing this pre-

diction, then the generator is called cryptographic or cryptographically secure.
For example, the Blum–Micali generator proceeds in the following way:

• Generate a large prime number p.

• Let 𝛼 be a primitive root of p (a generator of the group of invertible elements
in 𝔽p).

• Let f be the modular exponentiation function f (x) = 𝛼x mod p.

• Let B be the function with values in {0, 1} defined by:

– B(x) = 1 if 0 ≤ log𝛼x ≤ (p − 1)∕2;
– B(x) = 0 if log𝛼x > (p − 1)∕2.

The pseudo-random sequence of bits b1 … bk is then computed from the sequence
x0, x1,… , xk, with x0 any nonzero element in 𝔽p and xi ← f (xi−1) for i > 0. One sets
bi = B(xi).

The function B is easy to compute: we have seen in the previous subsections how
to generate a prime number, how to find a primitive root, and how to carry out modular
exponentiation. Finally, when computingB, one has the value of log𝛼x using f (x) = 𝛼x
mod p that has just been calculated. However, without the sequence x0, x1,… , xk, one
can prove that finding B(xi) is as difficult as computing the discrete logarithm. As we
do not know any efficient algorithm solving the discrete logarithm problem, it is a
difficult problem. Therefore, the generator is cryptographically secure.

1.3.7.4 Several Statistical Tests The previous methods are based on the
well-known algorithmic difficulty of some problems, which makes it impossible to
predict the behavior of generators. In order to measure the quality of a generator,
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one can also examine the sequences generated, and test whether they diverge from
what we expect from a truly random generator. This is a difficult task as the criteria
are numerous and are not necessarily trivial.

Statistics provide us with an adequate tool for these tests. For example, the 𝜒2 test
enables one to measure the deviance with respect to an expected uniform discrete
law.

For all characters 𝑣i in the alphabet V , one has the expected probability pi and the
number ei of occurrences in the generated sequence of size n. The expected frequen-
cies are never exactly equal to the empiric frequencies. Therefore, one has to set the
threshold of divergence from which the generator is no longer considered as random.

One has to keep in mind that, when considering a random generator, all sequences
are possible a priori, even those whose distribution is completely different from the
expected one because the generator is actually random. These sequences are only
very unlikely to appear. If one observes such sequences in the output of a generator,
then the generator is probably not so good (even if these sequences can theoretically
appear in the output of a good generator). Here is how the 𝜒2 test works.

One measures the gap between the expected distribution and the observed distri-
bution using the parameter:

K =
n∑
i=1

(ei − npi)2

npi
.

Now, it remains to determine the acceptable values for the parameter K. They are
given by the tables of the 𝜒2, of which we give an extract in Table 1.7.

In this table, the first column gives the number of “degrees of liberty.” One sets
this number to the value |V| − 1. Namely, for an alphabet of size 21, the line number
20. The first line gives the probability of having the value K lower than the value of
the table. For example, the probability of having K greater than 24.72 for an alphabet
of size 12 is 0.01.

Exercise 1.31 (𝜒2 test) A pseudo-random generator which is supposed to generate
numbers between 0 and 10 according to a uniform law gives the sequence: 0 0 5 2 3
6 4 2 0 2 3 8 9 5 1 2 2 3 4 1 2.

TABLE 1.7 𝝌
2 Table (Extract)

Degrees of liberty p = 0.75 p = 0.95 p = 0.99

9 11.39 16.92 21.67
10 12.55 18.31 23.21
11 13.70 19.68 24.72
12 14.85 21.03 26.22
15 18.25 25.00 30.58
20 23.83 31.41 37.57
30 34.80 43.77 50.89
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Perform the 𝜒2 test on this sequence. What do you think of this generator? What do
you think of the test? Solution on page 290.

Obviously, such a test – although it can be useful and sufficient to reject a gener-
ator – is not sufficient to accept a generator. For example, it will not be able to reject
the sequence 123456123456123456, whereas a not-so-drilled eye will notice the reg-
ularity in it (although one should distrust the impression of regularity one can have
looking at a sequence, as it can be biased by false intuitions on what is actually true
randomness).

One can, for example, strengthen this test by applying it to the extensions of the
source induced by the message (Section 1.2.3.4). There exist numerous statistical
tests reinforcing the trust one could have concerning a generator. It is important to
notice that each test enables one to reject a generator, but only the set of all tests will
enable one to accept it (besides, without mathematical rigor). There is no guarantee
that – after succeeding in x tests – the generator will not reveal itself to be weak under
the (x + 1)th test.

1.4 DECODING, DECRYPTION, ATTACKS

To conclude this introductory chapter, we develop encoding methods adopting the
point of view of the inverse operation, decoding. We have already seen that, for many
reasons, decoding – which consists in inverting the encoding functions – is not a
trivial task:

• as in the fax code we detailed at the beginning of this chapter, if the ciphertext is
a sequence of bits, recovering the source message without ambiguity by parsing
the sequence into blocks requires a particular form of the code;

• an exact decoding is sometimes not even completely attainable, if the encoding
method does not include all the initial information, when performing a com-
pression for example; we have seen that the fax image loses in quality; there
exist many encoding methods “with loss,” which makes encoding and decoding
asymmetrics;

• we have seen that the principle of one-way functions makes the computation of
the encoding function and the decoding function completely different; it may
happen that there is an efficient algorithm for one of them but not for the other.

We are going to develop all these aspects, using the word decoding as a general
term allowing one to recover the source from a codeword, the word decryption for
cryptographic decoding, and thewords breaking or attack for an unauthorized decryp-
tion, namely when the recipient is the only one possessing the information.

1.4.1 Decoding without Ambiguity

The first virtue of a code is its ability to be decoded. This is obvious, but not neces-
sarily a trivial issue.
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Let us suppose that the code is a bijective function, which transforms the message
written by the sender into a message transmitted through the channel. For a source
message a1...an, a string over any source alphabet, and for a code alphabet V , let us
denote by f the encoding function. Then, one has the codeword c1...cn = f (a1)...f (an),
with ci ∈ V+ for all i. The code, seen as the set of all codewords, is then the image of
the encoding function f . However, f being bijective is not enough for the message to
be decoded without ambiguity by the recipient.

As an example, let us consider the encoding of the 26 alphabet letters S = {A,…,
Z} using integers C = {0,… , 25} written in base 10:

f (A) = 0, f (B) = 1,… , f (J) = 9, f (K) = 10, f (L) = 11,… , f (Z) = 25.

Then, the codeword 1209 may correspond to several messages: for example, BUJ,
MAJ, or BCAJ.

Thus, in order to avoid such a problem, one has to add some constraints on the code
for any message to be decoded without ambiguity. That is to say, when receiving a
codeword, the recipient has to be able to recover a uniquemessage from it. A code C
over an alphabet V is called nonambiguous (one sometimes says uniquely decodable)
if, for all x = x1 … xn ∈ V+, there exists at most one sequence c = c1 … cm ∈ C+ such
that

c1 … cm = x1 … xn.

The following property is just a simple reformulation:

Property 8 A code C over an alphabet V is nonambiguous if and only if for all
sequences c = c1 … cn and d = d1 … dm in C+:

c = d =⇒ (n = m and ci = di for all i = 1,… , n).

Example 1.10 (Over the Alphabet V = {0, 1})

• the code C = {0, 01, 001} is not uniquely decodable.

• the code C = {01, 10} is uniquely decodable.

• the code C = {0, 10, 110} is uniquely decodable.

The decoding constraint implies that all codewords should have aminimum length.
Kraft’s theorem gives a necessary and sufficient condition on the length of codewords
to insure the existence of a uniquely decodable code.

Theorem 14 (Kraft) There exists a uniquely decodable code over some alphabet
V with n codewords of length l1,… , ln if and only if

n∑
i=1

1|V|li ≤ 1.
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Proof. (⇒) LetC be a uniquely decodable code, of arity q (the vocabulary of the code
contains q characters). Let m be the length of the longest word in C. For 1 ≤ k ≤ m,
let rk be the number of words of length k. One develops the following expression, for
any integer u, with u ≥ 1: (

n∑
i=1

1
qli

)u

=

(
m∑
k=1

rk
qk

)u

.

Once developed, each term of this sum is of the form
ri1…riu
qi1+…+iu . Then, by regrouping

for each value s = i1 +…+ iu, one obtains the terms
∑

i1+…+iu=s

ri1…riu
qs
. Set N(s) =∑

i1+…+iu=s ri1 … riu . The initial expression can be written as follows:(
n∑
i=1

1
qli

)u

=
mu∑
s=u

N(s)
qs
.

Notice that N(s) is the number of combinations of words in C whose overall length
is equal to s. As C is uniquely decodable, two combinations of words in C cannot be
equal to the same word over the alphabet of C. As C is of arity q, and N(s) is lower
than the overall number of messages of length s on this alphabet, one has N(s) ≤ qs.
This implies that (

n∑
i=1

1
qli

)u

≤ mu − u + 1 ≤ mu.

Thus,
∑n

i=1
1
qli

≤ (mu)1∕u, and
∑n

i=1
1
qli

≤ 1 when u tends toward infinity. (⇐) The
reciprocal proposition is a consequence ofMcMillan’s theorem, which is studied later
on in this chapter.

◽

1.4.1.1 Prefix Property One says that a code C over an alphabet V has the prefix
property (one sometimes says that it is instantaneous, or irreducible) if and only if
for all pairs of distinct codewords (c1, c2), c2 is not a prefix of c1.

Example 1.11 a = 101000, b = 01, c = 1010: b is not a prefix of a. However, c is
a prefix of a.

If the prefix property applies, one is able to decode the words of such a code as
soon as one has received the whole word (instantaneousness), which is not always the
case with uniquely decodable codes: for instance, if V = 0, 01, 11, and one receives
message m = 001111111111…. Then one will have to wait for the next occurrence
of a 0 to be able to decode the second word (0 or 01?).
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Property 9 Any code having the prefix property is uniquely decodable.

Proof. Let C be a code over V that is not uniquely decodable and has the prefix prop-
erty. Then there exists a string a ∈ Vn such that a = c1 … cl = d1 … dk, with ci and
di codewords of C and ci ≠ di for at least one index i. Let us choose the minimum
index i such that ci ≠ di (for all j < i, cj = dj). Then length(ci) ≠ length(di), other-
wise, given the choice of i, one would have ci = di, which contradicts the definition
of i. If length(ci) < length(di), then ci is a prefix of di. Otherwise, di is a prefix of ci.
Thus, C does not have the prefix property. ◽

The reciprocal proposition is false: indeed, the code C = {0, 01} is uniquely
decodable but it does not have the prefix property. The following property is obvious,
but it insures the decoding ability for some widely used kinds of codes.

Property 10 If all the words of some code are of the same length, then it has the
prefix property.

Exercise 1.32 Let S be the source of alphabet {a, b, c, d} with probabilities:

S a b c d
P(S) 0.5 0.25 0.125 0.125

One encodes S using the following codes:
a b c d
0 10 110 111

1. Encode adbccab. Decode 1001101010.

2. Is it an instantaneous code?

3. Compute the entropy of the source.
Solution on page 291.

Exercise 1.33 Wewish to build a binary compression code over a source = (S,)
(supposed to be infinite) where S = (0, 1) is the source alphabet and  = (P(0) =
p,P(1) = 1 − p) is the probability law of  .

One proposes the following code: one enumerates the number of occurrences of
“0” before the appearance of “1.” The two encoding rules are as follows:

• A string of four consecutive “0”s (without “1”) is encoded with 0.

• If less than four “0s” appear before a symbol “1,” one encodes the string with
the codeword “1e1e2,” e1e2 being the binary representation of the number of
“0s” before the symbol “1.”

For instance, the appearance of four consecutive zeros “0000” is encoded with “0,”
whereas the string “001” is encoded with “110” because two “0”s appear before
the symbol “1” (and “10” is the binary representation of 2).

1. Write explicitly the five codewords of this compression code. Does this code
have the prefix property?
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2. Knowing that the probability of appearance of two successive symbols s1 and s2
is – when supposing that the source is without memory – p(s1) ∗ p(s2), compute
the probability of occurrence in  of a string composed of k “0”s followed by
a “1.”

3. For each codeword, compute the number of bits of code required per bit of the
source. Deduce the compression rate of this code, namely the mean length per
bit of the source.

Solution on page 291.

1.4.1.2 Huffman Trees A Huffman tree is an object that enables one to easily
represent all codes having the prefix property, and this representation makes their
manipulation a lot easier. Here, we give the definitions in the binary case. However,
these can be extended to codes of any arity.

One calls a Huffman tree a binary tree such that any subtree has either 0 or 2 sons
(the tree is locally complete). One assigns the symbol “1” to the edge connecting the
local root to the left subtree and “0” to the edge connecting the local root to the right
subtree.

To each leaf of a Huffman tree, one can associate a word in {0, 1}+: it is a string
composed of the symbols marking the edges of the path from the root to the leaf.

The maximum length of the words in a Huffman tree is called the depth of the tree.
One calls a Huffman code the set of words corresponding to the paths in a Huffman
tree; the depth of this tree is also called depth of the code C.

Example 1.12 (Code corresponding to the tree of Figure 1.12)

{111, 110, 10, 0111, 0110, 010, 001, 0001, 0000}.

1.4.1.3 Representation of Instantaneous Codes The introduction of Huffman
trees is justified by the two following properties, which enable one to manipulate
instantaneous codes with such trees.

1

1

1

1

1

1

1

1

0

0

0 0 0

0

00

111 110

10

0111 0110

010 001

0001 0000

Figure 1.12 Example of a Huffman tree
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Property 11 A Huffman code has the prefix property.

Proof. If a codeword c1 is a prefix of c2, then the path representing c1 in the Huffman
tree is included in the path representing c2. As c1 and c2 are, by definition, associated
with the leaves of the tree, c1 = c2. Thus, there do not exist two different codewords
such that one of them is a prefix of the other. Hence, the Huffman code has the prefix
property. ◽

Property 12 Any code having the prefix property is included in a Huffman code.

Proof. Let us consider a complete Huffman tree (all leaves are at the same distance
from the root) of depth l (the length of the longest word in C). Each codeword ci in
C is associated to a path from the root to a node. Then, one can prune the subtree
having this node as a root (all the words that could be represented in the nodes of this
subtree would have ci as a prefix). All other codewords in C remain in the nodes of
the resulting tree. It is possible to perform the same operation for all the other words.
One eventually obtain a Huffman tree containing all codewords in C. ◽

1.4.1.4 McMillan’s Theorem We have seen that Huffman trees enable one to
represent all instantaneous codes. However, they do not enable one to represent all
uniquely decodable codes. McMillan’s theorem insures that one can avoid the use of
uniquely decodable codes (nonambiguous) not having the prefix property. Indeed,
there always exists another code that has the prefix property with the same lengths
of codewords. Therefore, nothing can be gained by using ambiguous codes.

Theorem 15 (McMillan) Over an alphabet V, there exists a code having the prefix
property whose codewords {c1,… , cn} are of length l1,… , ln if and only if

n∑
i=1

1|V|li ≤ 1 .

Exercise 1.34 Using the representation of instantaneous codes with Huffman trees,
give a proof of McMillan’s theorem. Solution on page 291.

Corollary 1 If there exists a uniquely decodable code whose words are of length
l1,… , ln, then there exists an instantaneous code whose words are of the same length.

This is a consequence of Kraft’s and McMillan’s theorems. All decodable codes
not having the prefix property do not produce codes with shorter words than instan-
taneous codes; therefore, one can limit oneself to the latter codes for information
compression (their properties make them easier to use).

1.4.2 Noninjective Codes

All codes do not insure a nonambiguous decoding and are not even bijective. It might
happen, for several reasons, that encoding functions only process a digest (or a fin-
gerprint) of a message, or only the information which is considered to be sufficient
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for the needs of transmission. For instance, fingerprints are used for error detection:
when receiving a message and its fingerprint, the recipient is able to check that the
overall message has not been modified during the transmission by recomputing the
fingerprint from the message he has received and comparing it to the fingerprint that
was transmitted.

Lossy compression is used, for example, in processing images or sounds. The
information is encoded in a way that will enable one to retrievemaybe only a variation
of the original data. The differences should be slight enough so that they are not
perceptible (for human ear or eye) or so that the new data is still useful.

1.4.2.1 Fingerprint Integrity Check The most simple principle of error detection
is an example of fingerprint computation. We have seen an example of this kind of
encoding with the fax code, even if the code we added to each line did not depend on
the content of the line. Besides, this only had a limited detection capacity.

The first principle of fingerprints for error detection is the addition of a simple
parity bit to the cipherblocks. For a wordm = s1 … sk, the parity bit is equal to b(m) =
(
∑k

i=1 si) mod 2. Obviously, this equality is false when an odd number of bits change
their value in the set “message+fingerprint.” Hence, the addition of a parity bit enables
one to detect errors on a odd number of bits.Wewill see this mechanism inmore detail
in Chapter 4, in particular in Figure 4.2 on page 212.

1.4.2.2 Hash Functions The hash function follows the same principle, but it
encodes a more evolved fingerprint, as it is meant to identify the message. This is
the definition of a summary of the message, which will enable one not to recover it,
but to identify it using a correspondence table. This works as a human fingerprint,
which does not enable one to reconstitute the other characteristics of an individual
but which enables one to identify him.

Hash functions are particularly useful in cryptography. They notably enable one
to decrease the amount of information to be encrypted. If the image of x by the hash
function is called the fingerprint of x, one can – for example – encrypt only the
fingerprint. Moreover, they enable one to set up electronic signature and message
authentication protocols (see Section 3.5.3) and also to check the integrity of a docu-
ment, in the same way as the parity bit (which is a particular hash function). Formally,
a hash function H ∶ {0, 1}∗ −→ {0, 1}n is an application that transforms a string of
any size into a string of fixed size n, as illustrated in Figure 1.13.

One talks about a collision between x and x′ when{
x ≠ x′

H(x) = H(x′).

Considering that the input of a hash function can be of any size (in particular > n),
collisions are inevitable. If y is such that y = H(x), then x is called the preimage of y
(one recalls that y is the fingerprint of x).

One of the basic constraints in setting up a hash function is efficiency: a finger-
print must be easy to compute. Besides, hash functions have a natural compression
property.
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Figure 1.13 Principle of a hash function

Other properties can be expected:

• Preimage resistant: given y, one cannot find – in reasonable time – some x such
that y = H(x).

• Second preimage resistant: given x, one cannot find – in reasonable time –
x′ ≠ x such that H(x) = H(x′);

• Collision resistant: one can not find in reasonable time – x and x′ such that
H(x) = H(x′);

A one-way hash function is a hash function satisfying the properties of preimage
resistance and second preimage resistance.

Exercise 1.35 (Security of Hash Functions) Prove, using the contrapositive
proposition, that collision resistance implies second preimage resistance, which
implies preimage resistance. Solution on page 292.

Exercise 1.36 (A Bad Hash Functionxs) Let f ∶ 𝔽m
2 → 𝔽m

2 be any function. One
proposes an iterative hash function g ∶ 𝔽 2m

2 → 𝔽m
2 , such that, for some x of size 2m

bits, divided into two blocks xh and xl, one has g(x) = g(xh||xl) = f (xh ⊕ xl) where
xh||xl is the concatenation of xh and xl. Prove that g is not second preimage resistant.

Solution on page 292.

Hash functions can be used for

• Manipulation Detection Code (MDC) that enable one to check the integrity of a
message (in the manner of parity bits);

• MAC that manage both the integrity and the authentication of the source of data.

We will see several examples of such applications in Chapter 3.
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Figure 1.14 Compression function of a hash function

Construction of aMerkle–Damgård hash function. One of the most famous construc-
tions of hash functions relies on a compression function

h ∶ {0, 1}b × {0, 1}n −→ {0, 1}n.

Such a function is illustrated in Figure 1.14.
MessageM is split into blocks of b bitsM1,… ,Mk (one will possibly have to add

some padding bits for the size of M to be divisible by b).
One iterates the compression function h according to the scheme presented in

Figure 1.15.
IV (Initial Value) is a string (of size n) fixed by the algorithm or the implemen-

tation. A theorem – which was proved independently by Ralph Merkle and Ivan
Damgård – enables one to describe the theoretical properties of such a construction:

Theorem 16 (Merkle–Damgård) If h is collision resistant, then so is H
(Figure 1.15).

It is this result that actually makes Merkle–Damgård construction the most used
construction in fingerprint computation.

Exercise 1.37 Prove Merkle–Damgård’s theorem using the contrapositive propo-
sition. Solution on page 292.

M1 M2

IV
(of size n)

Mk

H(M)
(of size n)

h h h h

|M|

Figure 1.15 Merkle–Damgård construction
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Exercise 1.38 (Construction by Composition) Let f ∶ 𝔽 2m
2 → 𝔽m

2 be a hash func-
tion and let h ∶ 𝔽 4m

2 → 𝔽m
2 another hash function such that, if x1, x2 ∈ 𝔽 2m

2 , then
h(x1||x2) = f (f (x1)||f (x2)), || standing for the concatenation operation.

1. Prove that if f is collision resistant, then so is h.

2. What is the drawback of this construction ?
Solution on page 293.

Hence, one only needs to make explicit the construction of compression func-
tions h, which are collision resistant. For instance, the Davies–Meyer construction
(Figure 1.16) defines hi = EMi

(hi−1)⊕ hi−1, where EMi
is a symmetric block encryp-

tion function.
But an attack on preimage resistance was set up by Drew Dean in 1999, who

exploited the existence of fixed points in this construction. Therefore, compression
functions using this construction are less robust.

The Miyaguchi–Preneel construction (Figure 1.17) is an improvement on the pre-
vious construction and is particularly robust from a cryptographic point of view.

Function g adapts the construction to the size of the key of the encryption function
E. Hence, one has hi = Eg(hi−1)(Mi)⊕ hi−1 ⊕Mi.

Galois hashing. Another popular hash function is GHASH, for Galois hashing, which
uses multiplication in the field with 2128 elements and Horner scheme. The idea is to
choose an element h of 𝔽2128 where the field is usually build as polynomials modulo
2 and modulo the primitive polynomial X128 + X7 + X2 + X + 1. Then, a message m
is cut into d + 1 blocks mi of 128 bits and each block is considered as a coefficient of
the reverse polynomial

∑
md−iY

i. The hash value is obtained as the evaluation of this
polynomial in h via Algorithm 1.7, where each block mi = b0 … b127 is considered

EK (x)
hi

n
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itshi−1

n
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s

b bits
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K

Figure 1.16 Davies–Meyer construction
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EK (x)
hi

n
 b

its

G

hi−1

n
 b

it
s

b bits

Mi

E
x

K

h

Figure 1.17 Miyaguchi–Preneel construction

as the element mi(X) =
∑127

j=0 bjX
j ∈ 𝔽2128 = 𝔽2[X]∕

(
X128 + X7 + X2 + X + 1

)
:

GHASHh ∶ (m0,… ,md) →
d∑
i=0

md−ih
i ∈ 𝔽2128 .

Exercise 1.39 (Security of GHASH)

1. Suppose that there exist i and j with i < j such that for the chosen element of
the GHASHh multiplication, we have h

i ≡ hj ∈ 𝔽2128 . Deduce a way to build a
collision in the hash function.

2. We know that 2128 − 1 = 3 ⋅ 5 ⋅ 17 ⋅ 257 ⋅ 641 ⋅ 65537 ⋅ 274177 ⋅ 6700417 ⋅
c14, with c14 = 67280421310721. How many possible distinct orders are there
for elements of 𝔽2128?

3. For a given h, with a given order o, what size of message would be required to
obtain a collision using the first question?

4. If you were to choose an element h for the hashing, which elements would be
best?

5. For a randomly chosen non zero element h, what is the probability that c14 does
not divide its order?

6. If this is not the case what size of message would be required to obtain a colli-
sion using the first question?

Solution on page 293.

1.4.2.3 Lossy Transformations Other transformation processes end with a mes-
sage encoded with loss and make full decoding impossible. For example, a fax is just
a bad copy of the original image, but one sees that it fulfills its duty of transmitting the
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information contained in the document. One can also encode an image (respectively
a sound) without keeping all the information, provided that the loss is not noticeable
to the naked-eye (respectively to the ear).

Numerical information is, in essence, discrete information. We have seen that con-
tinuous or analogical data, like sounds and images, can be easily digitized. As for
sounds, one can encode at each instant a frequency and an amplitude. For images,
one decomposes them into pixels and encodes a color for each pixel.

Yet, this natural digitization might not be the best model for many codes. In
images, for example, the colors of two contiguous pixels are often not independent,
and it will be more judicious to encode a set of pixels as a function rather than a
single pixel as a value. Therefore, one encodes blocks of pixels with a periodic (or
almost periodic) function.

Hence, encoding happens to be performed on functions rather than on discrete
or numerical entities, and this is the principle of the following section. Therefore,
encoding will be a particular function, which will be applied to functions, and that
we will call rather a transform, or a transformation.

1.4.2.4 Fourier Transform and Discrete Fourier Transform (DFT) Let us sup-
pose that a message, or part of a message, can be formulated as a periodic and inte-
grable function h (more precisely h should be in 1(ℝ)), varying with respect to time
t, and of period 2𝜋. This happens with sounds. As we assume that h is periodic, the
same message can be formulated as an amplitude H, varying with respect to a fre-
quency f . The Fourier transform is an encoding process that enables one to switch
from one representation another. Like any encoding process, it is associated to its
inverse, decoding, and is formulated with the following formulas (Figure 1.18).

For a sound, even if the natural and immediate encoding is rather h(t), one often
uses H(f ) that encodes exactly the same information – as encoding is reversible –
and is a lot cheaper, because it makes good use of the periodicity of h. Therefore, the
Fourier transform is very efficient for compression.

The DFT follows the same principle but with discrete functions. This will obvi-
ously be very useful as – by essence – our numerical messages have to be encoded
with discrete information. Now let us suppose that our functions h(t) and H(f ) are
discrete functions, that is to say some vectors h0,… , hn−1 and H0,… ,Hn−1 with dis-

crete variables. One formulates the transformation by denoting 𝜔 = e−
2i𝜋
n an nth root

of unity. 𝜔 satisfies the equalities:
∑n−1

k=0 𝜔
k =

∑n−1
k=0

(
e−

2i𝜋
n

)k
= e−

2in𝜋
n −1

e−
2i𝜋
n −1

= 0.

Encoding: H(f) = h(t)e−2iπftdt

Decoding: h(t) = H(f)e2iπftdf

+∞

−∞
+∞

−∞

Figure 1.18 Fourier transform
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Encoding: Hk = 
1

n−1

j=0

hjωkj

n
Decoding: hj = 

1
n−1

k=0

Hkω−kj

n

Figure 1.19 Discrete Fourier Transform (DFT)

In other words following Figure 1.19, if h(X) =
∑n−1

j=0 hjX
j, then

DFT(h) = [H0,… ,Hn−1] =
1√
n
[h(𝜔0),… , h(𝜔n−1).] (1.14)

Decoding is correct as

hj =
1√
n

n−1∑
k=0

1√
n

n−1∑
i=0

hi𝜔
ki𝜔−kj = 1

n

n−1∑
i=0

hi

n−1∑
k=0

(𝜔i−j)k = 1
n

n−1∑
i=0

hi ×

{
0 if i ≠ j

n otherwise.

The Discrete Cosine Transform (DCT) is a direct consequence of the DFT for some
discrete function h. But instead of being time-varying (which is a good model for
a sound), it is space varying (which enables one to encode an image); hence, h is a
two-variable discrete function h(x, y). For instance, it is the color of a pixel whose
coordinates are x and y. In the same way, it is possible to represent differently the
same information with a two-variable discrete function H(i, j) standing for a spec-
tral analysis of the image. The DCT and its inverse are shown in Figure 1.20, where
c(u) = 1 whenever u ≠ 0 and c(0) = 1√

2
.

DCT is also a good compression principle for images, as for any periodic (or almost
periodic, i.e., periodic up to a small error) message.

These transformations are reversible. Moreover, not only do they prove them-
selves to be good compression processes but their interest also lies in the easiness
of choosing and keeping only important information. Indeed, during such encoding,
it is possible to keep only some coefficients of the DFT or the DCT – to reduce the size
of information one has to encode – while not necessarily changing the audio/visual
result. We will handle these principles in more detail in Chapter 2.

Encoding: H (i, j) = 
2

n
c(i)c(j)

n−1 n−1

x=0 y=0

h(x, y) cos 
(2x + 1)iπ

2n
 cos 

(2y + 1)jπ
2n

Decoding: h (x, y) = 
2

n
c(i)c(j) H(i, j) cos 

n−1 n−1

i=0 j=0

(2x + 1)iπ
2n

 cos 
(2y + 1)jπ

2n

Figure 1.20 Discrete Cosine Transform (DCT)
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1.4.2.5 DFT Algorithm One can write the DFT transformation as a matrix H = Ωh
with Ωk,j =

1√
n
𝜔kj. Thus, the inverse transformation can be written as (Ω−1)k,j =

1√
n
𝜔−kj.

Remark 2 In some fields,
√
n simply does not exist. It is therefore sometimes useful

to define the transform with another constant factor:Ω = [𝜆𝜔kj] andΩ−1 = [ 𝜆
n
𝜔−kj].

For the sake of simplicity, in the following, we will avoid
√
n and use 𝜆 = 1 so that

Ω = [𝜔kj] and Ω−1 = [ 1
n
𝜔−kj].

An immediate algorithm for the calculation of this transform uses a matrix vector
product and thus has a complexity of O(n2).

A “divide and conquer” algorithm decreases this complexity, which is extremely
important for encoding. The “divide and conquer” principle is to split the problem
into equivalent subproblems of lower size. Here, one divides the expression of the
transform into two parts. Assuming that n is even, and setting m = n

2
, one has

Hk = DFTk;𝜔(h) =
m−1∑
j=0

hj𝜔
kj +

n−1∑
j=m

hj𝜔
kj

=
m−1∑
j=0

hj𝜔
kj +

n−m+1∑
j=0

hj+m𝜔
k(j+m)

=
m−1∑
j=0

hj𝜔
kj +

m−1∑
j=0

hj+m𝜔
kj𝜔km

=
m−1∑
j=0

(hj + 𝜔kmhj+m)𝜔kj

However, as 𝜔 is an nth root of unity, 𝜔km = (𝜔m)k = (𝜔n∕2)k = (−1)k is equal to
1 or −1 according to the parity of k.

If k is even, then one defines the vector

h̃p = (h0 + hm,… , hm−1 + hn−1)

and the even coefficients ofH (the transform of h) are the coefficients of the transform
H̃p of h̃p, which is half the size of h:

H2t = DFT2t;𝜔(h) =
m−1∑
j=0

(hj + hj+m)𝜔2tj

= DFTt;𝜔2 (h̃(p)).
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Now, if k is odd, one defines the vector

h̃(i) = (h0 − hm, (h1 − hm+1)𝜔,… , (hm−1 − hn−1)𝜔m−1)

and the odd coefficients ofH (the transform of h) are the coefficients of the transform
H̃i of h̃i, which is half the size of h:

H2t+1 = DFT2t+1;𝜔(h) =
m−1∑
j=0

(hj − hj+m)𝜔(2t+1)j

=
m−1∑
j=0

(hj − hj+m)𝜔j
(
𝜔2

)j
= DFTt;𝜔2 (h̃(i)).

One obtains Algorithm 1.12.

Algorithm 1.12 Discrete Fast Fourier Transform
Input Vector h whose size is a power of 2
Output Vector H: the transform of h
1: If the size of h is equal to 1 then
2: return h
3: else
4: Compute h̃(p) = (h0 + hm,… , hm−1 + hn−1);
5: Compute h̃(i) = (h0 − hm, (h1 − hm+1)𝜔,… , (hm−1 − hn−1)𝜔m−1);
6: Compute recursively H̃(p) = DFT𝜔2 (h̃(p)) of size n∕2;
7: Compute recursively H̃(i) = DFT𝜔2 (h̃(i)) of size n∕2;
8: The even coefficients of H are the coefficients of H̃(p) and the odd coefficients

of H are the coefficients of H̃(i).
9: End If

The complexity of this algorithm is C(n) = 2C(n∕2) + 3n∕2, in consequence
C(n) = 3

2
n log2 n. It is almost a linear complexity, thus an important improvement

with respect to the initial algorithm. Moreover, the algorithm for the inverse Fourier
transform is then straightforward, as

DFT−1
𝜔 = 1

n
DFT𝜔−1.

1.4.2.6 DFT and nth Roots of Unity in a Finite Field One considers the polyno-
mial Xn − 1 in a field 𝔽q with n < q. An nth root of unity in 𝔽q is a simple root, if there
exists such root, of the polynomial Xn − 1. The order of a root of unity 𝛾 is the least
integer o such that 𝛾o = 1. As 𝛾 is a root of Xn − 1, one has obviously o ≤ n. Besides,
o divides n. Indeed, if one sets n = ob + r, then one has 𝛾r = 1. Thus r = 0.
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A nth primitive root of unity is an nth root of unity of order n.
This notion is crucial for the application of the DFT: in order to compute the DFT

in the field ℂ, we used a particular nth root – e−
2i𝜋
n – which is primitive in ℂ.

Now, nth primitive roots are available for any n in ℂ, whereas one is not even sure
of their existence in a given finite field. Indeed, in 𝔽q, a (q − 1)th primitive root of
unity is what we simply called a primitive root in Section 1.3.5.3. In the same way as
we did for these roots, the following theorem enables one to determine the fields in
which it is possible to make fast calculations on vectors of a given size n:

Theorem 17 Let q be a power of some prime number and let n be coprime with q.
The finite field 𝔽q contains an nth primitive root of unity if and only if n divides q − 1.

Proof. If a is an nth primitive root, then an = 1 and n is the order of a. As a is also an
element of the field with q elements, its order necessarily divides q − 1. Reciprocally,
one uses a generator g of the field (a (q − 1)th primitive root) whose existence is
ensured by the algorithm in Section 1.3.5.3. Hence, if q − 1 = kn then gk is an nth
primitive root of unity. ◽

One says that a field supports the DFT at order n if there exist nth primitive roots
of unity in this field. All fields supporting DFT for n equal to a power of 2 are obvi-
ously very interesting for applying the fast divide and conquer algorithm above. For
instance, as wewill see in Algorithm 1.13, the field with 786433 elements enables one
to multiply polynomials of degree up to 218 with the fast algorithm as 786433 − 1 =
218 ⋅ 3.

Therefore, one has to compute such an nth root of unity. It is possible to use a gen-
erator, but onewould rather use a variant of the algorithm presented in Section 1.3.5.3:
draw randomly an nth root (a root of the polynomial Xn − 1 in 𝔽q) and test whether its
order is actually n. The following corollary gives us the probability of success: 𝜑(n)
chances over n.

Corollary 2 If a finite field has at least one nth primitive root of unity, then it has
exactly 𝜑(n) primitive roots.

Proof. Let q − 1 = kn. Let g be a generator of the field. Thus, gk is an nth primitive
root, as well as all gtk for t between 1 and n − 1 coprime with n. All these gtk are
distinct; otherwise g would not be a generator; and these are the only ones as gtk with
t not coprime to n is of order strictly lower than n. The nth primitive roots are neces-
sarily written as gtk: if gu is an nth primitive root, then gun = 1. As g is a generator,
one has un = t(q − 1) = tkn. This proves that u is in the form tk. ◽

Exercise 1.40 Find a 6th primitive root of unity modulo 31.
Solution on page 293.

However, if the field 𝔽q does not contain an nth primitive root of unity, one may
extend the field. In the same way as ℂ with respect to ℝ, one can consider a field
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containing 𝔽q in which the polynomial Xn − 1 can be completely factorized into poly-
nomials of degree 1. This field is an extension of the field 𝔽q and it is called a splitting
field of Xn − 1.

Exercise 1.41 Find a 4th primitive root of unity in a field of characteristic 31.
Solution on page 293.

1.4.2.7 Fast Product of Polynomials Using DFT As for the discrete Fourier trans-
form (DFT), the product of two polynomials – which is often used in coding theory
(see all constructions based on polynomials in this chapter) – has a naive algorithm
of complexity bound O(n2).

The DFT and the calculation algorithm we have just seen enables one to perform
this computation in time O(n log(n)).

Given two polynomials P = a0 + a1X + · · · + amX
m and Q = b0 + b1X + · · · +

bnX
n, one denotes by A = DFT(P) and B = DFT(Q) the respective discrete Fourier

transform of vectors a = a0 … am0… 0 and b = b0 … bn0… 0, where the coeffi-
cients of the polynomials are extended with zeros up to the degree n + m (degree of
the product). Then, from the definition of the transform, one can immediately write
the coefficients as Ak =

∑n+m
i=0 ai𝜔

ki = P(𝜔k) and Bk = Q(𝜔k). By simply multiplying
these two scalars and using the arithmetic of polynomials, one obtains the value
of the product PQ evaluated at 𝜔k: Ck = AkBk = P(𝜔k)Q(𝜔k) = (PQ)(𝜔k); in other
words C = DFT(PQ).

This property enables one to build Algorithm 1.13 that computes the product of
two polynomials in time O(n log(n)).

Algorithm 1.13 Fast product of two polynomials
Input Two polynomials P = a0 + a1X + · · · + amX

m and Q = b0 + b1X + · · · +
bnX

n.
Output The product polynomial PQ.
1: Extend the polynomials with zeros up to the degreem + n (degree of the product).
2: Compute the discrete Fourier transforms DFT(P) and DFT(Q) of the vectors of

coefficients of P and Q, with Algorithm 1.12.
3: Using termwise multiplication, Compute vector DFT(P).DFT(Q).
4: Compute the inverse transform in order to obtain PQ = DFT−1

(DFT(P).DFT(Q)).

The complexity is truly O(n log n), as termwise multiplication is linear and the
Fourier transform – as well as its inverse - has a complexity O(n log n).

1.4.3 Cryptanalysis

We have studied some skewness properties between encoding and decoding. One of
them, probably the most important one in cryptography, is that which differentiates
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decryption (by the recipient) from breaking (by a third party). We dedicate a small
part of this book to attack techniques based on the weaknesses of codes, which are
developed too quickly.

Cryptographic codes use pseudo-random generators for secret key generation,
hash functions for authentication, and one-way functions for public key techniques.
We will present separately known attacks for each of these steps. Knowing these
attack techniques is essential to generate codes that can resist them.

1.4.3.1 Attacks on Linear Congruential Generator Linear congruential gener-
ators have been looked at in Section 1.3.7 A random number xi is generated as a
function of the previously generated number xi−1, using the formula xi = axi−1 + b
mod m.

Exercise 1.42 (Attack on LCGs)

• If m is prime, what is the maximum period of an LCG? In particular, Fishman and
Moore studied generators modulo 231 − 1 = 2147483647 in 1986. They deter-
mined that if a = 950706376 then the period is maximum and the generator has
good statistical properties. What can you say about 950706376?

• For m = pe with p an odd prime, what is the maximum period of an LCG?
One can prove that if 𝜆(m) is the maximum period, then 𝜆(2e) = 2e−2 for e > 2
and that 𝜆(m) = lcm(𝜆(pe11 )… 𝜆(pekk )) if m = pe11 … pekk with p1,… , pk distinct
primes.

• Assuming that m is known, how can one recover a and b?

• Now, suppose that m is unknown. How can one find the generator if b = 0?Hint:
one may study xn+1 − xn. What happens if b ≠ 0?

• What is the next integer in this list: 577,114,910,666,107?

Solution on page 294.

1.4.3.2 Berlekamp–Massey Algorithm for the Synthesis of LFSRs The
Berlekamp–Massey algorithm enables one to detect, for an infinite sequence
(Si), i ∈ ℕ, of elements in a field 𝔽 , whether – beyond some rank – its elements are
linear combinations of the previous elements. This is what we have called linear
recurrent sequences.

This algorithm is very useful in coding theory, notably in order to perform the
cryptanalysis of random generators and cryptographic keys and even to correct
the errors of cyclic codes (Section 4.4.6.1). In particular, it enables one to recover
the generator polynomial of an LFSR (Section 1.3.7.2) only knowing the first terms
of the sequence generated by this LFSR.

The question is, for the sequence (Si)i∈ℕ, how to find coefficients Π0 …Πd ∈ 𝔽 ,
if they exist, such that

Π0St = St−1Π1 + St−2Π2 + ... + St−dΠd for all t ≥ d.
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If one uses these constants in order to define the polynomial Π(X) = ΠdX
d +

Πd−1X
d−1 + Πd−2X

d−2 + ... + Π0, this polynomial is called an annihilator of the
sequence.

The set of annihilators is an ideal in the ring 𝔽 [X] of polynomials over 𝔽 . As 𝔽 [X]
is a principal ideal ring, there exists a unitary annihilator polynomial of minimum
degree, called the minimal polynomial of the sequence.

How does one find this polynomial only from the coefficients of the sequence?
If one knows the degree d of this polynomial, one has to write d linear equations
corresponding to the property of linear recurrence for 2d coefficients. Then one has
to solve the following linear system:

⎡⎢⎢⎢⎢⎣
S0 S1 … Sd−1
S1 S2 … Sd
⋮ ⋱ ⋱ ⋮

Sd−1 Sd … S2d−1

⎤⎥⎥⎥⎥⎦
.

⎡⎢⎢⎢⎢⎣
Πd

Πd−1
⋮
Π1

⎤⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎣
Sd
Sd+1
⋮
S2d

⎤⎥⎥⎥⎥⎦
. (1.15)

The only thing that remains to do is to determine the degree of the minimal poly-
nomial. At first sight, one may try iteratively all possible degrees (starting from a
constant polynomial of degree 0) and match each polynomial produced with the
sequence in order to see whether it is an annihilator or not. If the sequence is truly
infinite, this might never stop.

Otherwise, if the sequence is finite, one notices, when considering the system,
that the maximum degree of the minimal polynomial is half the number of elements
in the sequence. This algorithm implies that one should solve successively several
linear systems. In practice, it is possible to take advantage of the symmetric struc-
ture of the system in order to solve it on-the-fly, while adding the elements of the
sequence progressively. This gives the following Berlekamp–Massey algorithm that
has a complexity bound of only O(d2).

The main idea of this algorithm is to explicitly compute the coefficients of the
polynomial. Thus, the update of Π is performed in two steps. The trick of the test
2L > k is to enable one to perform each of these two steps alternately. Let us explain
the algorithm by looking at the three first terms of the sequence. The degree of the
minimal polynomial increases by one (at most) every time one adds two elements of
the sequence. The 𝛿 are called discrepancies.

The first discrepancy is the first term of the sequence, 𝛿0 = S0 and Π(X), becomes
1 − S0X. Discrepancies correspond to the values taken by the polynomial in the sequel
of the sequence. If the discrepancy is null, then the polynomial one considers is an
annihilator of an additional part of the sequence. Hence, the second discrepancy is
1 − S0X applied to the sequence S0, S1, namely 𝛿1 = S1 − S20. Therefore, the update of

Π is Π − 𝛿1
𝛿0
X𝜓 = (1 − S0X) −

S1−S20
S0

X, namely Π = 1 − S1
S0
X, which is an annihilator

of the sequence S0, S1. Then, the third discrepancy is equal to 𝛿2 = S2 −
S2
1
S0

and the

two polynomials Π and 𝜓 are, respectively, equal to 1 − S1
S0
X − 𝛿2

S0
X2 and 1 − S1

S0
X.

Hence, Π annihilates S0, S1, S2 and 𝜓 annihilates S0, S1.
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Algorithm 1.14 Berlekamp–Massey Algorithm
Input S0, …, Sn a sequence of elements in a field K.
Output The minimal polynomial of the sequence.
1: b ← 1; e ← 1; L ← 0; Π ← 1 ∈ 𝔽 [X]; 𝜓 ← 1 ∈ 𝔽 [X]
2: For k from 0 to n do
3: 𝛿 ← Sk +

∑L
i=1 ΠiSk−i

4: If (𝛿 = 0) then
5: e ← e + 1
6: elsif 2L > k then
7: Π ← Π − 𝛿

b
Xe𝜓

8: e ← e + 1
9: else
10: temp ← Π − 𝛿

b
Xe𝜓

11: 𝜓 ← Π
12: Π ← temp
13: L ← k + 1 − L; b ← 𝛿; e ← 1
14: End If
15: If e > EarlyTermination then
16: Stop the algorithm
17: End If
18: End For
19: return Π(X)

Hence, as multiplication by X of these annihilator polynomials comes to shifting
by one position their application in the initial sequence, one obtains 𝛿3 = Π[S1, S2, S3]
and 𝛿2 = 𝜓[S1, S2] = (X𝜓)[S1, S2, S3]. Then, it is possible to combine these two poly-
nomials in order to also annihilate the sequence S1, S2, S3, by Π − 𝛿3

𝛿2
X𝜓 , which is

exactly what the algorithm does. In the sequel, if all next discrepancies are null, this
means that the polynomial we have obtained is an annihilator of the sequel of the
sequence. One can still continue until one is sure of having the minimal polyno-
mial of the n + 1 terms of the sequence or one can stop the algorithm earlier without
checking the last discrepancies (using the control variable EarlyTermination).

As for complexity, the loop ends after 2d + EarlyTermination and at most n + 1
iterations. In each iteration, computing the discrepancy operations and updating the
polynomial require both 2 k

2
operations, for an overall number of operation of (2d +

EarlyTermination)(2d + EarlyTermination + 1).
It is even possible to use a fast algorithm to reduce this complexity, at least asymp-

totically. The idea is to see the sequence as a polynomial too. Then, the minimal poly-
nomial of the sequence is such that the product of Π(X) and (S0 + S1X + S2X

2 +…)
has only a finite number of nonzero terms, the terms of degree at most d. It is possible
to rewrite this statement in the following way:

Π(X) ⋅ (S0 + S1X + ... + S2n−1X
2n−1) − Q(X) ⋅ X2n = R(X). (1.16)
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Hence, one notices that computing Π, Q, and R can be performed by the
Euclidean algorithm interrupted in the middle of the computation, as the degree
of R is lower than n. Thus, the complexity bound of the computation is the
same as for Euclidean algorithm, namely O(dlog2(d)). However, in practice, the
Berlekamp–Massey algorithm remains more efficient for values of d up to dozens of
thousands.

1.4.3.3 The Birthday Paradox The Birthday Paradox is a probability result, and
it is called a paradox because it seems to go against the first intuition one could have.
It is used in several attack methods in cryptanalysis. It also shows that one should
distrust intuitions when talking about probabilities.

There are 365 days in a year and still, in a group of more than 23 people, there
is more than one chance in two of having at least two of them with the same birth
date !

Indeed, let us take a population of k people. Knowing that the number of days
in a year is n, the number of combinations of k distinct birth dates is Ak

n =
n!

(n−k)! .

Therefore, the probability of having all people with distinct birth dates is
Akn
nk
. Thus,

the probability of having at least two people with the same birthday is

1 −
Ak
n

nk
.

Hence, when considering 365 days, this probability is around one chance in 10 in
a group of 9 people, more than one chance in 2 in a group of 23 people, and 99.4%
in a group of 60 people. More generally, one has the following theorem:

Theorem 18 In a set of ⌈1.18√n⌉ elements chosen randomly among n possibilities,
the probability of collision is higher than 50%.

Proof. We have seen that the number of collisions, in a space of size n = 2m with k

draws, is 1 − Akn
nk
. One has to give an estimation of this probability: 1 − Akn

nk
= 1 − (1 −

1
n
)(1 − 2

n
)… (1 − k−1

n
). Yet, 1 − x < e−x, for x positive, thus

1 −
Ak
n

nk
> 1 −

k−1∏
i=1

e−
i
n = 1 − e−

k(k−1)
2n .

Then, for this probability to be greater than 𝛼, it is sufficient to have k(k − 1) =
−2n ln(1 − 𝛼), namely, as k is positive, k = 1

2
+

√
n
√

1
4n

− 2 ln(1 − 𝛼). Hence, for
𝛼 = 0.5, k ≈ 1.18

√
n (again one has, for n = 365, k ≈ 22.5). ◽

This kind of collision probability – that one’s intuition would tend to weaken –
enables one to build attacks against systems for which intuition would give a limited
chance of success.
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1.4.3.4 Yuval’s Attack on Hash Functions Resistance to collision of hash func-
tions can be measured: one has to determine the probability of finding collisions,
which is close to the probability of collision in birth dates (birth dates play the role
of fingerprints for individuals).

That is why Yuval’s attack on hash functions is also called a birthday attack. It is a
question of transmitting some corrupted message M̃ instead of a legitimate message
M, in such way that the corruption is unnoticeable for a hash function h. Then, one
looks forM′ and M̃′, such that h(M′) = h(M̃′). After that, one can, for example, fraud-
ulently change M into M̃, or send M and pretend to have sent M̃, which is precisely
what h should prevent!

Algorithm 1.15 Yuval’s birthday attack
Input h ∶ {0, 1}∗ −→ {0, 1}m a hash function.

M legitimate, M̃ fraudulent.
Output M′ ≈ M (i.e. M′ close to M) and M̃′ ≈ M̃ such that h(M′) = h(M̃′).
1: Generate t = 2

m
2 =

√
2m slight modifications of M, denoted byM′.

2: For all t, compute h(M′).
3: Generate several M̃′, slight modifications of M̃, until finding a collision, with

someM′ (i.e. h(M̃′) = h(M′)).

As a consequence of Theorem 18, the expected number of draws of M̃′ in Yuval’s
attack is O(t) = O(

√
2m).

If one uses Yuval’s attack to send M′ and then to repudiate it later arguing that
M̃′ was actually sent, one has more than one chance in two of succeeding in

√
2m

attempts. This shows that brute force can be efficient if a hash function is not collision
resistant.

But is this attack really feasible? A simple calculation is enough to be convinced:
for a numerical fingerprint on 128 bits, one should perform around O(264) attempts,
which is feasible on general public machines of today: a computer running at 3 GHz
performs 3 ∗ 109 ∗ 24 ∗ 3600 ≈ 248 operations per day, thus it would take a little
more than two months on the 1000 PCs of a company to find a collision.

But if one uses hash functions on 160 bits, the cost is multiplied by a factor 216 =
65536, which is unreachable so far.

1.4.3.5 Factoring Composite Numbers It is quite easy to distinguish a composite
number from a prime number. But knowing the numbers composing it seems to be
a much more difficult problem. It is the factorization problem. Although it can be
formulated in a quite simple way, so far there does not exist an efficient solution to it
(for instance, the famous Sieve of Eratosthenes is useless for numbers of more than
10 digits).

The difficulty of this problem and the efficiency of attack methods are very impor-
tant, as a lot of one-way functions rely on the difficulty of factorization or on the
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difficulty of equivalent problems, such as the discrete logarithm problem. Thus, look-
ing for good factorization algorithms is almost a cryptanalysis method.

Many different algorithms do exist. The goal of this section is not to enumerate
them all but rather to give an idea of the most efficient ones for numbers of different
sizes.

Pollard’s Rho algorithm (Numbers of few digits). The first class of target numbers is
composed of “everyday composite numbers,” namely numbers of less than 20 digits.
Pollard’s algorithm is very efficient for such numbers.

The algorithm only requires a few lines of code (around forty) and is very easy
to implement. Let m be the composite number one wishes to factorize. First of all,
one has to compute a sequence of the form uk+1 = f (uk) mod m of large period (the
longer the uk are distinct the better).

Then, the idea is to notice that, if p is a factor of m, the distinct uk modulo m
are less often distinct modulo p (Table 1.8). In this case, if ui = uj mod p then the
GCD of m and ui − uj is equal to kp and it is a nontrivial factor of m. If the ui are
actually pairwise distinct, the computation ends in at most p steps. A first version
of the algorithm consists in producing some ui and, when adding a new element,
computing the GCD with all previous uk’s. This version has two major drawbacks:
first of all, one has to store around p elements; also, it takes j2 GCD computations
if i and j > i are the smallest indexes such that ui = uj mod p. The second trick
of Pollard is to use Floyd’s cycle detection. It consists in storing only the uk such
that k is a power of 2. Indeed, as the uk are generated by a function, if ui = uj, then
for all h ≥ 0, ui+h = uj+h and a cycle is created modulo p, even if it is not directly
noticeable.

When only storing powers of 2, the cycle will only be detected for u2a = u2a+j−i
with 2a−1 < i ≤ 2a, as illustrated in Figure 1.21.

Yet, 2a + j − i < 2i + j − i = i + j < 2j. Hence, one performs at most twice the
number of requested operations. One single GCD is computed at each step and one
single additional element is stored throughout the algorithm. This gives the very fast
algorithm presented in Algorithm 1.16.

If one takes f (u) = u2 + 1, so that the ui is actually pairwise distinct modulom, for
example, it will take at worst 2p iterations if p is the smallest factor of m, and even
less in general:

Theorem 19 Pollard’s Rho algorithm has more than one chance in two of succeed-
ing in O(

√
p) steps.

Proof. Once again, the proof is similar to that of the birthday paradox. If k distinct val-
ues ui are drawn randomly, then there are Ak

p combinations without collisions between

TABLE 1.8 Distribution of the Multiples of p Modulo m

0 1 2 … p p+1 p+2 … kp kp+1 kp+2 … m-1
ui ul uk uh uj
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X0

X1

X2

Xj = Xi

X4 = X10

X5

X7

X8

X6

Figure 1.21 Floyd’s cycle detection, in the form of a rho

Algorithm 1.16 Pollard’s Factoring
Input An integer m, composite.
Output p, non trivial factor of m.
1: p ← 1;
2: Generate y randomly;
3: k ← 0;
4: While (p = 1) do
5: If k is a power of 2 then
6: x ← y;
7: End If
8: y ← f (y) mod m;
9: p ← gcd(y − x,m);
10: Increase k;
11: End While
12: return p.

the ui for an overall p
k. For the probability of finding a nontrivial factor to be greater

than 1∕2, one must have – according to Theorem 18 - k > 0.5 + 1.18
√
p. ◽

In practice, this algorithm factorizes numbers of 1 up to around 25 digits within
seconds (with factors of 12 or 13 digits, this gives approximately 10 million opera-
tions!) but very quickly, it becomes useless when considering factors of more than 15
digits.

Elliptic curves (Numbers with a few dozen of digits). To go further, one can use a
method based on elliptic curves, designed by Pollard and Lenstra.
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This method uses elliptic curves of the form y2 = x3 + ax + b, defined in
Section 1.3.6. The idea is to consider the set of solutions of the latter equation
modulo the number m to be factorized and to try to add them as if this set was a
group. As the addition of points (see Theorem 11) requires to invert coordinates
modulo m, if the inversion of say y1 fails then it means that y1 is not invertible. In
other words y1 contains a proper factor of m, which can be revealed by computing
gcd(y1,m). To simplify, suppose m = pq is the product of only two distinct primes.
Then, the curve equation defines two proper elliptic curves, one modulo p and
one modulo q. In consequence for any point P, Lagrange’s theorem (Theorem 1,
page 31), ensures that [k]P = , say modulo q, only if k divides Nq, the number of
points of the curve modulo q. If the curve is chosen randomly, then Nq and Np are
close to p and q, and not necessarily primes. Hence, some of their prime factors will
differ with high probability. Therefore, if we compute [e]P, for a small e, it is likely
that e will divide one of Np or Nq, but less likely that it divides both numbers at the
same time. When this is the case, it means that [e]P is not on the curve modulo m
and therefore that its computation will crash. The overall procedure is thus to try
many small prime factors e. A way to perform this efficiently is to compute [B!]P
with a not too large B. The algorithm is detailed as Algorithm 1.17.

Algorithm 1.17 Lenstra’s elliptic curve factoring
Input An integer m, composite.
Input A small bound B on the prime factors to be used.
Output p, non trivial factor of m, or Failure.
1: Pick a random point P = (x, y) with random non-zero coordinates;
2: Pick a random non zero a mod m and compute b ≡ y2 − x3 − ax mod m;
3: For i=2 to B do
4: P ← [i]P; {Via recursive double-and-add in the pseudo-group of the 𝔼(m; a, b)

curve}
5: If Inversion of Py fails then
6: return gcd(Py,m);
7: End If
8: If P =  then
9: return Failure;

10: End If
11: End For
12: return Failure;

The computational procedure remains simple (around 150 lines of code) and we
can give a few ideas concerning the properties of this algorithm: it is conjectured
that, in order to factorize an integer m of smallest factor p, this algorithm requires an
average number of operations of the order of

O
(
(lnm)2e

√
2 ln p ln(ln p)

)
.
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In practice, this algorithm factorizes numbers of 25 to 40 digits (with two factors
of similar sizes) within seconds. Besides, if one is lucky and chooses some partic-
ular elliptic curve, the latter might enable one to factorize very quickly: the project
ECMNET (Elliptic Curve Method on the Net) provides an implementation of this
algorithm, available on the Internet. This project has allowed the factorization of
numbers with factors up to 73 digits.

The main issue is that good elliptic curves vary for each number one wishes to
factorize and so far there does not exist a method of finding the appropriate curve for
a given number. Notwithstanding, the rapidity of computation when one has found
a “good” elliptic curve is at the origin of the factorization program on the Internet:
indeed, many Internet users can retrieve the ECM program and launch it in order to
try several elliptic curves. Hence, numerous elliptic curves can be studied at the same
time and possibly speed up the search of prime factors.

Number Field Sieve (World champion). Finally, the current champion of RSA key
factorization (product of two large prime numbers, see Section 3.4.2) is the Number
Field Sieve algorithm, which seems to require – in order to factorize some number
m, product of two factors of similar sizes – an average number of operations of the
order of

O
(
e

3√(7.11112) ln(m) ln(ln(m))2
)
.

A number field is an extension of the field of rational numbers (one considers the
infinite field ℚ[X]∕P).

The number field sieve is a generalization of the quadratic sieve when considering
the field of all integers modulom. For the sake of simplicity, we only present the main
idea of the latter.

The aim is to find couples of numbers whose squares are congruent modulo
m ∶ x2 = y2 mod m. Then x2 − y2 = (x − y)(x + y) is a multiple of m. Now, let
d = gcd(x − y,m), if one is lucky, x ≠ ±y mod m so that 1 < d < m and thus d is a
nontrivial factor of m.

Example 1.13 Let us try to factorize 7429. We compute randomly some squares:
872 = 7429 + 140 and 882 = 7429 + 315. Yet, 140 and 315 are small with respect to
7429 and thus easier to factorize, for example using Pollard’s method. One obtains
140 = 22 ⋅ 5 ⋅ 7 and 315 = 32 ⋅ 5 ⋅ 7. Therefore, one can write (227)2 = (87 ⋅ 88)2 =
(2 ⋅ 3 ⋅ 5 ⋅ 7)2 = (210)2 mod 7429. We have found a relation of the form x2 = y2

mod 7429, which gives us a factor of 7429: (227 − 210) = 17, and 7429 = 17 ⋅ 437.

The whole difficulty of the algorithm is to find such integers x and y. For this,
one has to compute several squares and store those whose remainders modulo m are
small enough to be factorized using another method. Then, one has to find a linear
combination of these squares that would give another square: in a matrix, let us store
the exponents in the columns and the squares in the lines (Table 1.9).
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TABLE 1.9 Quadratic Sieve for 7429

Exponent of 2 Exponent of 3 of 5 of 7 of…

832 2 3 1 0 …
872 2 0 1 1 …
882 0 2 1 1 …
⋮

According to this table, (87 ∗ 88)2 is a square if and only if the line of 872 added
to the line of 882 only gives even exponents. In other words, if M is the matrix of
exponents (rows and columns of Table 1.9), one has to find some binary vector x
such that xM is even or to find a solution modulo 2 to the associated linear system: x
such that xM = 0 mod 2.

Although the basic idea is quite simple, the calculation is a little more delicate
than for the previous algorithms. Still, this algorithm holds the current records. In
particular, it enabled one to factorize a 200 digit (665 bits) RSA key in 2005. The
computing time for this last factorization was gigantic: more than a year and a half
of computation on more than 80 machines !

1.4.3.6 Strong Prime Numbers RSA cryptography (see Chapter 3) is based on the
use of two prime numbers p and q and on the difficulty of factorizing their product
m. In order to resist various factorization methods (some of them are presented in
the form of exercises in Chapter 3, on page 173), the prime numbers one uses must
satisfy several properties:

• In order to resist factorization based on elliptic curves, p and qmust have similar
sizes and must be large enough. For instance, in order to work with numbers on
1024 bits, they should both have a size of around 512 bits.

• p − q must be large enough: otherwise, it is sufficient to try as a value for p or
q all integers close to

√
m (Fermat’s square root attack).

• In order to resist Pollard’s algorithms p − 1 and p + 1 (which take advantage of
the factorization of p − 1 and p + 1 when possible), p and q have to be strong
prime numbers, that is, each of them must satisfy the conditions:

– p − 1 has a large factor, denoted by r.

– p + 1 has a large factor.

– r − 1 has a large factor.

Gordon’s Algorithm 1.18 enables one to generate strong prime numbers:

Exercise 1.43 Prove that the output of Gordon’s algorithm is a strong prime
number. Solution on page 294.
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Algorithm 1.18 Gordon’s algorithm
Input A number of bits b.
Output A strong prime number on at least 2b + 1 bits.
1: Generate two prime numbers s and t on b bits.
2: Look for r prime in the form 2kt + 1.
3: Compute l ← 2(sr−2 mod r)s − 1.
4: return p, the smallest prime number of the form l + 2hrs.

1.4.3.7 Solving the Discrete Logarithm Problem Alongside modular exponenti-
ation, the other major class of one-way functions relies on the discrete logarithm
problem.

Let G be a group of size n admitting a generator (i.e., G is cyclic). For instance,
one could consider the group of invertible elements modulo some prime number p,
ℤ∕pℤ∗.

Given a primitive root g and an element b in G, the problem is to find the discrete
logarithm of b in base g, namely to find x such that b = gx.

The naive algorithm for solving this problem is to try all possible x until one finds
the right one. The worst and the average complexity bounds are O(n), thus an expo-
nential complexity with respect to log(n), the size of n.

So far, the best known algorithms for solving this problem have a complexity
boundO(

√
n) in the general case. Most of the time, these algorithms are based on fac-

torization algorithms: we will see that variants of Pollard’s Rho – O(
√
n) – and index

calculus – O(n1∕3) – algorithms can be applied to groups. However, complexities are
raised to the square with respect to factorization. Indeed, if one considers numbers
modulo some composite number – a product of two prime numbers – n = pq, factor-
ization algorithms have a complexity bound that depends on the smallest prime factor,
roughly: O(p1∕3) = O(n1∕6). That is why the discrete logarithm method enables one
to consider numbers half the size as those used for factorization-based methods with
the same level of security. These sizes are even further reduced if one considers more
generic groups, such as the group of points of an elliptic curve, for which the best
discrete logarithm methods do not apply.

Baby step, Giant step. This method was developed by Shanks, and it is divided into
two phases: the baby step, tests from gx to gx+1 for all x in some interval, and the giant
step, jumps from gx⌊√n⌋ to g(x+1)⌊√n⌋.

The idea is to decompose x into two pieces x = i⌊√n⌋ + j, with i and j between 1
and ⌈√n⌉. Hence, one can write b = gx = (g⌊√n⌋)igj, or b(g−⌊√n⌋)i = gj. Thus, one
has to compute all possible gj (baby step), and all possible b(g−⌊√n⌋)i in order to
checks if one of these values has been computed in the baby step (giant step).

Although computing all these values only takes 2
√
n multiplications, looking for

the correspondences with a naive method implies that one has to try
√
n
√
n = n pos-

sibilities in the worst case.
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The trick that decreases this complexity is to sort the gj in increasing order (com-
plexity O(

√
n log(

√
n))) in order to be able to perform comparisons with a dichoto-

mous research with only
√
n log2(

√
n) tests!

Therefore, the time complexity is improved; unfortunately, the space complexity
is such that this algorithm is not practical: one has to store all

√
n integers. Even for a

reasonable number of operations (around n = 2128 nowadays), the required memory
space is then of the order of several billion gigabytes.

Pollard’s Rho returns. Pollard’s Rho algorithm enables one to modify the baby step,
giant step method and to introduce Floyd’s cycle detection. Hence, one can preserve
the time complexity bound O(

√
n log(n)), while reducing significantly the memory

complexity bound down to onlyO(log(n)) bytes. In comparison with the factorization
algorithm, one has to modify the generator function of the sequence in the following
way:

Build three subsets S1, S2, and S3 ofG of similar sizes forming a partition ofG (for
example, in 𝔽 ∗

p , with p ≥ 3 one can always take S1 = {u = 1 mod 3}, S2 = {u = 2
mod 3}, and S3 = {u = 0 mod 3}).

Then, one defines the generator function f such that

uk+1 = f (uk) =
⎧⎪⎨⎪⎩

buk if uk ∈ S1
u2k if uk ∈ S2
guk if uk ∈ S3

.

Hence, each element of the sequence can be written in the form uk = gikbjk for
some ik and some jk. Yet, in the same way as the Rho algorithm for factorization, the
uk are more or less equally spread modulo p. Therefore, a collision uk = ul occurs on
the average after

√
p draws, even if jk ≠ jl and ik ≠ il. The function f insures, as for

factorization, that this collision will be constantly reproduced after k steps; thus, it is
possible to find y such that uy = u2y thanks to Floyd’s algorithm with only a memory
complexity bound of several integers of size O(log(n)).

Then, one has uk = gikbjk = gilbjl = ul and – at the same time – jk ≠ jl. In this case,
one obtains bjk−jl = gil−ik , whichmeans that, in the space of indexes, one directly finds
x (one recalls that b = gx):

x = (il − ik) ⋅ (jk − jl)−1 mod n.

Be careful: we are solving logarithms in ℤ∕pℤ∗ but the latter equation lies in
ℤ∕nℤwhere n = p − 1; thus although jk − jl is nonzero, it is not necessarily invertible
modulo n. If this is not the case, then restart the algorithm.

Coppersmith’s Index Calculus. The same way as we have just modified Pollard’s
algorithm and adapted it to the computation of discrete logarithms, it is possible
to modify sieve algorithms. Then, the obtained method works for the discrete loga-
rithm over the group of invertible of a finite field, but not for any group. In particular,
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cryptology over curves are still resisting this kind of attack. Let us show anyway how
this attack works over finite fields with an example.

Example 1.14 How to find x, such that 17 = 11x mod 1009? One recalls that
1009 is prime and that 11 is a primitive root of ℤ∕1009ℤ: Z∕1009ℤ∗ = {11i, for
i = 1…𝜑(1009) = 1008}. The idea is to draw randomly some values of i such
that 𝑣i = 11i mod 1009 can be easily factorized (i.e., it only has small prime
factors, or smooth). In practice, one is given a basis of prime factors, for example
B = {2, 3, 5, 7, 11}.

Then, for each prime number pj ∈ B, one divides 𝑣i with the greatest possible
power of pj. At the end of the process, if one obtains the value 1, then 𝑣i can be
factorized in the basis B.

After several random draws, we keep the values 104, 308, 553, and 708:

11104 = 363 = 3 ⋅ 112 mod 1009

11308 = 240 = 24 ⋅ 3 ⋅ 5 mod 1009

11553 = 660 = 22 ⋅ 3 ⋅ 5 ⋅ 11 mod 1009

11708 = 1000 = 23 ⋅ 53 mod 1009

When considering the logarithms, Theorem 7 guaranties that one obtains a linear sys-
tem in the space of exponents whose unknown values are the discrete logarithms of
2, 3, and 5, now modulo 1008:

104 = log11(3) + 2 mod 1008

308 = 4 log11(2) + log11(3) + log11(5) mod 1008

553 = 2 log11(2) + log11(3) + log11(5) + 1 mod 1008

708 = 3 log11(2) + 3 log11(5) mod 1008.

This gives log11(3) = 102 mod 1008 (or in other words 11102 = 3 mod 1008), then
log11(2) = (308 − 553 + 1)∕2 = 886 mod 1008 and

log11(5) = 308 − 4 ⋅ 886 − 102 = 694 mod 1008.

One has to find a number in the form 17 ⋅ 11y whose remainder can be factorized
in the basis B = {2, 3, 5, 7, 11}. Still with the same method, one finds – for example –
after several random attempts: 17 ⋅ 11218 = 2 ⋅ 3 ⋅ 5 ⋅ 11 mod 1009. Thus, x = 886 +
102 + 694 + 1 − 218 = 457 mod 1008 satisfies 17 = 11457 mod 1009.

Such index calculus algorithms are more efficient in some particular fields. The
record is held by a French team which managed – in November 2005 – to compute a
discrete logarithm in the field 𝔽2613 in only 17 days on the 64 processors of the Bull
supercalculator Teranova.
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Now we have at our disposal enough tools to start specializing. We are able to
build the objects we will use throughout this book, and we have described the com-
mon algorithms that are the foundations of coding. Each of the following chapters
will refer to the work in this chapter, depending on needs of the specific objectives:
compression, encryption, or correction.




