
c01.indd 1 31/12/2014 1:03 PM

 WHAT YOU WILL LEARN IN THIS CHAPTER:

➤ Problems of the old EJB programming model that triggered the
birth of POJO movement

➤ Advantages of the POJO programming model

➤ What a container is and what services it provides to its deployed
applications

➤ Lightweight containers and what makes a container lightweight

➤ What Inversion of Control (IoC) means and its importance for
applications

➤ Relationship between IoC and dependency injection

➤ Dependency injection methods, setter and constructor injection

➤ Advantages and disadvantages of those different dependency
injection methods

 The Plain Old Java Object (POJO) movement started around the beginning of the 2000s and t
quickly became mainstream in the enterprise Java world. This quick popularity is certainly
closely related with the open source movement during that time. Lots of projects appeared,
and most of them helped the POJO programming model become mature over time. This chap-
ter fi rst closely examines how things were before the POJO programming model existed in the
enterprise Java community and discusses the problems of the old Enterprise JavaBeans (EJB)
programming model. It’s important that you understand the characteristics of the POJO pro-
gramming model and what it provides to developers.

CO
PYRIG

HTED
 M

ATERIA
L

2 ❘ CHAPTER 1 POJO PROGRAMMING MODEL, LIGHTWEIGHT CONTAINERS, AND INVERSION OF CONTROL

c01.indd 2 31/12/2014 1:03 PM c

 The second half of the chapter focuses on containers and the inversion of control patterns that are
at the heart of the lightweight containers we use today. You learn what a container is, what services
it offers, and what makes a container lightweight. You also learn how the inversion of control pat-
tern arises and its close relationship with dependency injection terms. The chapter concludes with an
examination of two different dependency injection methods and their pros and cons.

POJO PROGRAMMING MODEL

 POJO means Plain Old Java Objects. The name was fi rst coined by Martin Fowler, Rebecca
Parsons, and Josh MacKenzie to give regular Java objects an exciting‐sounding name. It represents a
programming trend that aims to simplify the coding, testing, and deployment phases of Java appli-
cations—especially enterprise Java applications.

 You’ll have a better understanding of what problems the POJO programming model solves if you
fi rst understand what problems the old EJB programming model had.

Problems of the Old EJB Programming Model
 The Enterprise JavaBeans (EJB) technology was fi rst announced around 1997. It offered a distrib-
uted business component model combined with a runtime platform that provided all the necessary
middleware services those EJB components needed for their execution. It was a main specifi cation
under the J2EE specifi cation umbrella at the time.

 Many people were really excited by the promise of the EJB technology and J2EE platform. EJBs
were offering a component model that would let developers focus only on the business side of the
system while ignoring the middleware requirements, such as wiring of components, transaction
management, persistence operations, security, resource pooling, threading, distribution, remoting,
and so on. Developers were told that services for middleware requirements could be easily added
into the system whenever there was any need of them. Everything seemed good and very promising
on paper, but things didn’t go well in practice.

 The EJB 2.x specifi cation required that the component interface and business logic implementa-
tion class extend interfaces from the EJB framework package. These requirements created a tight
coupling between the developer‐written code and the interface classes from the EJB framework
package. It also required the implementation of several unnecessary callback methods, such as
ejbCreate, ejbPassivate, and ejbActivate, which are not directly related to the main design
goal of EJB.

 To develop an EJB component, developers had to write at least three different classes—one for
home, one for remote interfaces, and one for business objects, as shown here:

public interface PetClinicService extends EJBObject {
 public void saveOwner(Owner owner) throws RemoteException;
}

public interface PetClinicServiceHome extends EJBHome {
 public PetClinicService create() throws RemoteException, CreateException;

M

POJO Programming Model ❘ 3

c01.indd 3 31/12/2014 1:03 PM

 }

 public class PetClinicServiceBean implements SessionBean {
 private SessionContext sessionContext;
 public void ejbCreate() {
 }
 public void ejbRemove() {
 }
 public void ejbActivate() {
 }
 public void ejbPassivate() {
 }
 public void setSessionContext(SessionContext sessionContext) {
 this.sessionContext = sessionContext;
 }
 public void saveOwner() throws java.rmi.RemoteException {
 //implementation of saving owner instance...
 }
 }

 The preceding code snippet shows the minimum amount of code that needs to be written in order to
create an EJB component with only one method using the EJB2 application programming interface
(API). Although the remote interface defi ned the public API of the business object class to the outside
world, a non‐mandatory requirement in the specifi cation asked that the business object class imple-
mentation not depend on the remote interface directly. When developers obeyed this warning, how-
ever, they were opening up a possibility that business object class implementation and its public API
remote interface would become unsynchronized whenever the method declarations were modifi ed in
one of those classes. The solution was to introduce a fourth interface, which was implemented by the
business object class and extended by the remote interface to keep the remote interface and the busi-
ness object class implementation synchronized while not violating this non‐mandatory requirement.

 There were actually two interfaces that defi ned the public API of the business object class: the
remote and local interfaces. Local interfaces were introduced to the EJB specifi cation when people
realized that remote interfaces were causing unnecessary performance overheads in systems in
which there were no physically separated layers, and there was no direct access to the EJB layer from
another client in the architecture, except through servlets. However, when developers needed to
make EJB components remotely available they had to create a remote interface for them. Although
there was no direct dependency between the business object class and its remote interface, all public
methods of the business object implementation class had to throw RemoteException, causing the
business object implementation class to depend on EJB and remoting technologies.

 Testability was one of the biggest problems of the old EJB programming model. It was almost impos-
sible to test session and entity beans outside the EJB container; for example, inside an integrated
development environment (IDE) using JUnit. This is because dependencies of those session beans were
satisfi ed through local or remote interfaces, and it was very hard—but not impossible—to test session
beans in a standalone environment. When it came time to run or test entity beans outside the con-
tainer, things were more diffi cult because the entity bean classes had to be abstract and their concrete
implementations were provided by the EJB container at deployment time. Because of such diffi cul-
ties, people tried to access the EJBs deployed in the container and test them using in‐container test

4 ❘ CHAPTER 1 POJO PROGRAMMING MODEL, LIGHTWEIGHT CONTAINERS, AND INVERSION OF CONTROL

c01.indd 4 31/12/2014 1:03 PM c

frameworks, such as Cactus. Nevertheless, such solutions were far from the simplicity and speed of
running tests within a standalone environment by right‐clicking and selecting Run As JUnit Test.

 The deployment process was another time‐consuming and error‐prone phase of the EJB program-
ming model. Developers used deployment descriptor fi les in XML format to deploy developed EJB
components, but confi guring their middleware requirements, such as transaction semantics, security
requirements, and so on, caused those fi les to become several hundred lines long. Developers usually
were trying to maintain the fi les by hand, and it was quite easy to make simple typos in package or
class names, and those errors wouldn’t be noticed until deployment time.

 The following code snippet contains two EJB defi nitions, one depending on the other, and it includes
a container‐managed transaction confi guration as well. Imagine how things can go wrong when you
have dozens of other EJB defi nitions, each having its own dependencies, transaction management,
security confi gurations, and so on:

<ejb-jar>
 <display-name>PetClinicEJB2</display-name>
 <enterprise-beans>
 <session>
 <ejb-name>PetClinicService</ejb-name>
 <home>com.example.PetClinicServiceHome</home>
 <remote>com.example.PetClinicService</remote>
 <ejb-class>com.example.PetClinicServiceImpl</ejb-class>
 <session-type>Stateless</session-type>
 <transaction-type>Container</transaction-type>
 <resource-ref>
 <res-ref-name>jdbc/ds</res-ref-name>
 <res-type>javax.sql.DataSource</res-type>
 <res-auth>Container</res-auth>
 </resource-ref>
 </session>
 <message-driven>
 <ejb-name>MessageSubscriber</ejb-name>
 <ejb-class>com.example.MessageSubscriber</ejb-class>
 <transaction-type>Container</transaction-type>
 <message-destination-type>javax.jms.Topic</message-destination-type>
 <ejb-ref>
 <ejb-ref-name>ejb/PetClinicService</ejb-ref-name>
 <ejb-ref-type>Session</ejb-ref-type>
 <home>com.example.PetClinicServiceHome</home>
 <remote>com.example.PetClinicService</remote>
 <ejb-link>PetClinicService</ejb-link>
 </ejb-ref>
 </message-driven>
 </enterprise-beans>

 <assembly-descriptor>
 <container-transaction>
 <method>
 <ejb-name>PetClinicService</ejb-name>
 <method-name>saveOwner</method-name>
 </method>
 <trans-attribute>Required</trans-attribute>

M

POJO Programming Model ❘ 5

c01.indd 5 31/12/2014 1:03 PM

 </container-transaction>
 </assembly-descriptor>
 </ejb-jar>

 One very common task while coding EJBs was to access the Java Naming and Directory Interface
(JNDI) context in the J2EE environment and perform object lookups so that necessary dependencies
to other EJBs and DataSource instances could be satisfi ed. However, this was causing the EJB com-
ponent to become tightly coupled with the container, and unit testing was hard to perform because
of this environmental dependency. The following code snippets show how an EJB home object and
javax.sql.DataSource are looked up from a JNDI repository:

 try {
 InitialContext context = new InitialContext();
 PetClinicServiceHome petClinicServiceHome = (PetClinicServiceHome)
 context.lookup("java:/comp/env/ejb/PetClinicService");
 PetClinicService petClinicService = petClinicServiceHome.create();
 //you can now access business methods of the component...
 } catch (NamingException e) {
 throw new RuntimeException(e);
 }

 try {
 InitialContext context = new InitialContext();
 DataSource ds = (DataSource)context. lookup("java:/comp/env/jdbc/ds");
 //you can now obtain JDBC Connections via DataSource object...
 } catch (NamingException e) {
 throw new RuntimeException(e);
 }

 Actually, JNDI lookup can be considered an early form of dependency injection, but, due to its pull‐
based nature, it was diffi cult to isolate components during unit testing because of the dependency to
the JNDI context.

 Another problem of the old EJB programming model was that it diverted developers toward the
procedural programming style. Application behavior in this style of programming is mainly handled
within some methods, while data from and to those methods is carried with dumb domain model
objects. Unfortunately, data and behavior are separated from each other and are not in a cohesive
form in such a case. This is defi nitely a divergence from the object‐oriented programming perspec-
tive in which one of the important characteristics is encapsulation of data together with the related
behavior. After all, you are using an object‐oriented programming language called Java, and you
want to take advantage of all its abilities, don’t you?

 The main reason for such a paradigm shift, while using an object‐oriented language, was the EJB
programming model. People usually were developing session‐ and message‐driven beans that were
stateless, monolithic, and heavyweight components in which all the business logic was implemented
with data access operations inside them. Entity EJBs were expected to represent the domain model,
but they had some subtle defi ciencies that prevented them from being used at all. For example,
inheritance support was too limited, and recursive calls within entity beans were not supported; it
was not possible to transfer the entity bean instances as session and message‐driven bean method
inputs and return values, and so on.

6 ❘ CHAPTER 1 POJO PROGRAMMING MODEL, LIGHTWEIGHT CONTAINERS, AND INVERSION OF CONTROL

c01.indd 6 31/12/2014 1:03 PM c

 People might think that procedural style is not a big problem for scenarios in which business logic is
simple. However, things don’t stay simple in real‐life enterprise application projects. As new require-
ments come along, things become more complex and written code
grows to be more and more of a maintenance headache. The pro-
cedural style of programming that was promoted by the old EJB
programming model caused the creation and use of dumb domain
objects, which were acting purely as data transfer objects between
the application layers and the network. Martin Fowler coined the
term anemic domain model for such problematic domain objects.l
Anemic blood is missing vital ingredients; similarly, an anemic
domain model is also limited to only data transfer and persistence‐
related operations, and it contains hardly any behavioral code.
Unfortunately, the old EJB programming model was not able to
enforce operating on a fi ne‐grained and rich object model behind a
coarse‐grained component model.

 Enterprise applications usually have layered architectures. They
are mainly composed of the web, service, and data access layers.
Figure 1-1 shows those logical layers and the relationships between
each.

 Each layer should only know and interact with the layer just
beneath it. That way, upper layers aren’t affected by changes made
within other layers upon which they don’t directly depend. It also
becomes possible to easily replace layers because only one layer
depends on another, and only that dependent layer will have to be
changed if there is a need.

 It is a desirable and correct approach to divide the system into sev-
eral logical layers. However, this doesn’t mean that there should
always be a one‐to‐one correspondence between physical layers.
Unfortunately, having an EJB container caused those web and ser-
vice layers to work using remote method invocation (RMI), which
is practically equivalent to having separate physical layers. Hence,
servlet and JavaServer Pages (JSP) components in the web layer have
complex and performance‐degrading interactions with the EJB com-
ponents in the service layers. Apart from ineffi cient network interac-
tion, developers also experienced class‐ and resource‐loading issues. The reason for these issues were
that the EJB container used a different ClassLoader instance than the web container.

 Figure 1-2 shows a typical physical layering of a J2EE application. The application server has
separate web and EJB containers. Therefore, although they are located in the same server
instance, web components have to interact with EJB components as if they are in different phys-
ical servers using RMI. It is observed in many enterprise Java applications that RMI calls from
the web to the service layers create an unnecessary performance cost over time when the web
and EJB layers are located in the same physical machine, and the EJB layer is only accessed from
the web layers. As a result, local interfaces were introduced to get rid of RMI between those
layers.

 FIGURE 1-1

Presentation/UI Layer

Controller Layer

Business Layer

Data Access Layer

DB

M

POJO Programming Model ❘ 7

c01.indd 7 31/12/2014 1:03 PM

 FIGURE 1-2

J2EE Application Server

Client

DB

EJB

JSP

Servlet

EJBEJB
Container

Web
Container

Web Browser/
Applet

Application
Client

Legacy
System

it to be true among J2EE environments as well. However, there were lots of missing and open issues
in EJB and J2EE specifi cations, so many enterprise projects had to develop solutions specifi c to their
application servers. Every application server had its own legacy set of features, and you had to per-
form server‐specifi c confi gurations, or code against a server‐specifi c API to make your application
run in the target environment. Actually, the slogan had turned into “write once and debug every-
where,” and this was a common joke among J2EE developers.

 Most of the aforementioned problems were addressed in the EJB 3 and EJB 3.1 specifi cations.
The most important point during those improvements is that the POJO programming model
was taken as a reference by those newer EJB specifi cations. Session and message‐driven beans
are still available but much simpler now, and entity beans are transformed into POJO‐based
domain objects with the Java Persistence API (JPA). It is now much easier to implement, test,
and deploy them. The EJB programming model has become more and like the POJO program-
ming model over time.

 Certainly, the biggest contribution to improve the EJB component model and J2EE environment has
come from POJO‐based, lightweight frameworks, such as Hibernate and Spring. We can safely say
that the EJB programming model mostly was inspired by those frameworks, especially Spring.

 Benefi ts of the POJO Programming Model
 The most important advantage of the POJO programming model is that coding application classes is
very fast and simple. This is because classes don’t need to depend on any particular API, implement
any special interface, or extend from a particular framework class. You do not have to create any
special callback methods until you really need them.

 Because the POJO‐based classes don’t depend on any particular API or framework code, they can
easily be transferred over the network and used between layers. Therefore, you don’t need to create
separate data transfer object classes in order to carry data over the network.

 You don’t need to deploy your classes into any container or wait for long deployment cycles so that you
can run and test them. You can easily test your classes within your favorite IDE using JUnit. You don’t
need to employ in‐container testing frameworks like Cactus to perform integration unit tests.

8 ❘ CHAPTER 1 POJO PROGRAMMING MODEL, LIGHTWEIGHT CONTAINERS, AND INVERSION OF CONTROL

c01.indd 8 31/12/2014 1:03 PM c

 The POJO programming model lets you code with an object‐oriented perspective instead of a pro-
cedural style. It becomes possible to refl ect the problem domain exactly to the solution domain.
Business logic can be handled over a more fi ne‐grained model, which is also richer in terms of
behavioral aspects.

LIGHTWEIGHT CONTAINERS AND INVERSION OF CONTROL
(IOC)

 Despite all the diffi culties and disadvantages of the old EJB programming model, there were still
some attractive points in the platform that caused many people to develop enterprise Java applica-
tions and deploy them into J2EE application servers. It was very important that several middleware
services crucial for applications to work were readily provided by the J2EE environment, and devel-
opers were able to utilize them in their applications. For example, the following actions are indepen-
dent from business logic, and it’s important that they are provided by a J2EE platform:

➤ Handling database connections outside the application codebase

➤ Enabling pooling capabilities, if necessary

➤ Performing transaction management with declarative means

➤ Working with a ready‐to‐use transaction management infrastructure

➤ Creating and wiring of components in the application

➤ Applying security constraints on the system

➤ Dealing with thread and scheduling issues

Lightweight Containers
 Some people were developing their applications without using EJBs while still leveraging many of
those middleware features mentioned earlier. On the other hand, they usually perceived that they
had to deploy their application to a full‐featured J2EE application server only so that they could
leverage those middleware services. This was quite a wrong opinion at the time. It is technically pos-
sible to develop an enterprise application without using a container at all. In that case, however, you
need to handle the creating and wiring of components and implement required middleware services
yourself. These tasks will defi nitely distract you from dealing solely with business requirements of
the system, and delay the completion time of it.

 Therefore, in practice it is much better to have an environment by which all those components will
be created and wired and those required middleware services will be provided. Such an environ-
ment is called a container . The Java EE platform provides several such containers, each specializedrr
with services required by a particular layer in the application. For example, the Servlet container
creates and manages components of the web layer of an application, such as Servlets, JSPs, Filters,
and so on. The EJB container, on the other hand, focuses on the business layer of the application
and manages the EJB components of it. Similar to the Java EE platform, the Spring Container is
also a container in which components of an application are created, wired with each other, and the
middleware services are provided in a lightweight manner.

M

Lightweight Containers and Inversion of Control (IoC) ❘ 9

c01.indd 9 31/12/2014 1:03 PM

 When we talk about containers, it is expected that any container should be capable of providing
several basic services to components managed in its environment. According to the seminal book
Expert One‐on‐One J2EE Development Without EJB by Rod Johnson and Jürgen Höller (Wrox,
2004), those expected services can be listed as follows:

➤ Life-cycle management

➤ Dependency resolution

➤ Component lookup

➤ Application confi guration

 In addition to those features, it will be very useful if the container is able to provide following
 middleware services:

➤ Transaction management

➤ Security

➤ Thread management

➤ Object and resource pooling

➤ Remote access for components

➤ Management of components through a JMX‐like API

➤ Extendibility and customizability of container

 A lightweight container includes all of these features, but doesn’t require application code to depend
on its own API. That is, it doesn’t have invasive character, its startup time is very fast, it doesn’t
need to be deployed into a full‐featured Java EE application server to be able to provide those ser-
vices, and deploying components into it is a trivial process. The Spring Application Framework is
one of the most prominent lightweight containers in the enterprise world.

 Inversion of Control (IoC)
 One of the most important benefi ts containers that provide with components they manage is plug-
gable architecture. Components implement some interfaces, and they also access services provided
by other components they need through similar interfaces. They never know concrete implementa-
tion classes of their services. Therefore, it becomes very easy to replace any component in the system
with a different implementation. The job of a container is to create those components and their
dependent services and wire them together.

 Dependent components are never instantiated using a new operator within component classes. They
are injected into the component by the container instance at run time. Hence, control of dependen-
cies is moved out of components to the container. This pattern, therefore, is called Inversion of
Control , or IoC for short. IoC is an important concept in frameworks generally, and is best under-l
stood through the Hollywood principle of “Don’t call us; we’ll call you.”

 IoC is one of the fundamental features that is expected to be provided by any container. It has basi-
cally two forms: dependency lookup and dependency injection.

10 ❘ CHAPTER 1 POJO PROGRAMMING MODEL, LIGHTWEIGHT CONTAINERS, AND INVERSION OF CONTROL

c01.indd 10 31/12/2014 1:03 PM c

 In dependency lookup , the container provides callback methods to the components it manages, and
the components interact with the container and acquire their dependencies explicitly within those
callback methods. In such a scenario, there is usually a lookup context that is used to access depen-
dent components and other resources managed by the container.

 In dependency injection , components are provided with suitable constructors or setter methods so
that the container can inject dependent components. There is hardly ever an explicit lookup per-
formed within components. Most of the time dependencies are injected during creation of compo-
nents through those methods.

 The method used during the early years of J2EE corresponds to dependency lookup. The lookup
context mentioned earlier was also called the JNDI context in this environment. EJB components
and other resources such as JDBC DataSource and JMS ConnectionFactory were accessed
through that JNDI context. Figure 1-3 depicts explicit interaction of various parts with the JNDI
repository in the J2EE platform via JNDI API.

 FIGURE 1-3

J2EE
Application

Client

JNDI
API

JNDI
API

JNDI
API

JNDI
Repository

J2EE Application Server

EJB
Module

Web
Module

 With the advent of the Spring Application Framework and other lightweight IoC frameworks, the depen-
dency injection method has become popular. In this scenario, how components are instantiated and what
dependent components they need are defi ned using a container’s own confi guration mechanism. It is the
job of the container to process this confi guration information to instantiate necessary components and
wire up their dependencies at run time. During the evolution process of J2EE toward Java EE, explicit
dependency lookup using JNDI has been transformed into the implicit dependency injection method.
Today, when IoC is mentioned, it is usually understood as dependency injection among developers.

DEPENDENCY INJECTION

 The fundamental principle of dependency injection is that application objects should not be respon-
sible for looking up the resources or collaborators on which they depend. Instead, an IoC container
should handle object creation and dependency injection, resulting in the externalization of resource
lookup from application code to the container.

M

Dependency Injection ❘ 11

c01.indd 11 31/12/2014 1:03 PM

 Dependency injection has several benefi ts to the overall system. First of all, lookup logic is com-
pletely removed from application code, and dependencies can be injected into the target compo-
nent in a pluggable manner. Components don’t know the location or class of their dependencies.
Therefore, unit testing of such components becomes very easy because there is no environmental
dependency like the JNDI context, and dependent components can easily be mocked and wired up
to the component in the test case. Confi guration of the application for different environments also
becomes very easy and achievable without code modifi cation because no concrete class dependencies
exist within components. There is no dependence on the container API. Code can be moved from
one container to another, and it should still work without any modifi cation in the codebase. There is
no requirement to implement any special interfaces at all. Written classes are just plain Java objects,
and it is not necessary to deploy those components to make them run.

 Two dependency injection methods can be used. One is constructor injection, and the other is setter
injection. A good container should be able to support both at the same time, and should allow mix-
ing them.

 Setter Injection
 The setter methods are invoked immediately after the object is instantiated by the container. The
injection occurs during the component creation or initialization phase, which is performed much
earlier in the process than handling business method calls. Thus, there are no threading issues
related with calling those setter methods. Setter methods are part of the JavaBean specifi cation, so
that they allow the outside world to change collaborators and property values of components. Those
JavaBean properties are also used to externalize simple properties such as int or boolean values.
This simplifi es the code and makes it reusable in a variety of environments.

 The most important advantage of setter injection is that it allows re‐confi gurability of the com-
ponent after its creation. The component’s dependencies can be changed at run time. Many exist-
ing classes can already be used with standard JavaBean‐style programming. In other words, they
offer getter and setter methods to access their properties. For example, Jakarta Commons DBCP
DataSource provides a commonly used DataSource implementation, and it can be managed via its
JavaBean properties within the container. It’s possible to use the standard JavaBeans property‐ editor
mechanism for type conversions whenever necessary. For example, a String value given in con-
fi guration can easily be converted into a necessary typed value, or a location can be resolved into a
resource instance, and so on. If there is a corresponding getter for each setter, it becomes possible to
obtain the current state of the component and save it to restore for a later time. If the component has
default values for some or all of its properties, it can be confi gured more easily using setter injection.
You can still optionally provide some dependencies of it as well.

 The biggest disadvantage of setter injection is that not all necessary dependencies may be injected
before use, which leaves the component in a partially confi gured state. In some cases, the order
of invocation of setter methods might be important, and this is not expressed in the component’s
contract. Containers provide mechanisms to detect and prevent such inconsistencies in component
states during their creation phase.

 Constructor Injection
 With constructor injection, beans express their dependencies via constructor arguments. In this
method, dependencies are injected during component creation. The same thread safety applies for

12 ❘ CHAPTER 1 POJO PROGRAMMING MODEL, LIGHTWEIGHT CONTAINERS, AND INVERSION OF CONTROL

c01.indd 12 31/12/2014 1:03 PM c

constructor injection as well. You can also inject simple properties such as int or boolean values as
constructor arguments.

 The biggest advantage of constructor injection is that each managed component in the container is
guaranteed to be in a consistent state and ready to use after it is created. Another good point is that
the amount of code written with constructor injection will be slightly less compared to the code
written when setter injection is used.

 The biggest disadvantage of constructor injection is that it won’t be possible to reconfi gure com-
ponents after their creation unless they provide a setter for those properties given as constructor
arguments. Having several overloaded constructors for different confi guration options might be
confusing or even unavailable most of the time. Concrete inheritance can also be problematic unless
you are careful about overriding all of the constructors in the superclass.

Setter or Constructor Injection
 Both methods have advantages as well as disadvantages, and it is not possible to use only one
method for any application. You might have classes especially written by third parties that don’t
have constructors that accept suitable arguments for your confi guration case. Therefore, you might
fi rst create a component with an available constructor that accepts arguments close to your needs,
and then inject other dependencies with setter methods. If the components need to be reconfi gurable
at run time, having setters for their specifi c properties will be mandatory in that case. IoC contain-
ers are expected to allow developers to mix the two types of dependency injection methods for the
same component within the application confi guration.

SUMMARY

 In this chapter, you fi rst learned the problems of the old‐school EJB programming model that caused
many enterprise Java projects to fail completely—or at least fail to satisfy their promises to some
degree. The main problems of the old EJB programming model was that developers had to write
several interfaces to create a business component, tight coupling between EJB and J2EE technologies
was necessary, you couldn’t run components outside the J2EE platform, there was diffi culty in unit
testing outside the container, long and complex develop‐package‐deploy‐test cycles were required,
and the characteristics and limitations of J2EE technologies required promotion of the procedural
style of programming. Then you found out how those problems led to the creation of the POJO
programming model, how the POJO programming model solves the problems of the EJB program-
ming model, and how the POJO programming model helped J2EE to evolve into the new Java EE
environment.

 This chapter discussed why so many people insisted on using J2EE technologies and tried to deploy
their enterprise applications despite all those obstacles in the J2EE environment. After identifying the
attractive points of the J2EE platform, we defi ned what a container is, listed fundamental features a
container should offer to its applications, and identifi ed what makes a container lightweight by look-
ing at its characteristics.

 The last part of the chapter focused on what IoC is, and what any container should offer as its core
services. We discussed how IoC helps make applications more modular and pluggable. The chapter

M

Summary ❘ 13

c01.indd 13 31/12/2014 1:03 PM

wrapped up with an explanation of dependency injection, which is a form of IoC, and its two differ-
ent types: setter injection and constructor injection.

EXERCISES

 You can fi nd possible solutions to the following exercises in Appendix A.

1. Investigate the in‐container test frameworks available today. What are their biggest advan-
tages and disadvantages compared to testing outside the container?

2. What IoC method is used by the new EJB programming model today?

3. Which dependency injection method can handle “circular dependencies” and which cannot?

14 ❘ CHAPTER 1 POJO PROGRAMMING MODEL, LIGHTWEIGHT CONTAINERS, AND INVERSION OF CONTROL

c01.indd 14 31/12/2014 1:03 PM c

▸ WHAT YOU LEARNED IN THIS CHAPTER

TOPIC KEY POINTS

POJO Plain Old Java Objects, a term devised to infer Java classes that don’t
depend on any environment‐specifi c classes or interfaces, and don’t
need any special environment to run in.

EJB Enterprise JavaBeans, the distributed business component model of
the J2EE platform.

J2EE, Java EE Java 2 Enterprise Edition, an umbrella specifi cation that brings sev-
eral different technologies together and forms the enterprise Java
environment. Java Enterprise Edition (Java EE) is its newer name after
Java release 5.

Container, EJB Container,
Web Container

An environment in which components are created and wired together
in addition to utilizing middleware services offered by the container.

Middleware services Requirements that appear in every application, independent of busi-
ness requirements such as transaction, persistence, security, remot-
ing, threading, connection and resource pooling, caching, validation,
and clustering.

Home interface Special interface that needs to be implemented in the old EJB pro-
gramming model so that clients can obtain a handle of an EJB com-
ponent remotely.

Remote interface An interface that needs to be provided in the EJB programming
model so that clients can invoke business functions of an EJB compo-
nent remotely.

Local interface Similar to the remote interface but derived for effi cient interaction
between the web layer and the EJB layer, which sit together in the
same application server and JVM.

Callback methods Methods that are implemented in the business implementation class
of the EJB component and invoked by the container to let the com-
ponent interact with the environment.

JNDI context Context available in every Java EE environment in which objects are
managed with their names and attributes and are accessible using JNDI.

Inversion of Control (IoC) Pattern that represents control of managing dependencies in a com-
ponent whose dependency management is taken out of it and given
to the environment—in other words, the container.

Dependency lookup A form of IoC that is based on callback methods, invoked by a container
at specifi c phases, and lets a component look up its dependencies using
a lookup context, like the JNDI context in the J2EE environment.

M

Summary ❘ 15

c01.indd 15 31/12/2014 1:03 PM

TOPIC KEY POINTS

Dependency injection A second and more popular form of IoC in which components defi ne
their dependencies and the container wires them during component
creation time.

Setter injection Dependency injection method that uses JavaBean specifi cation setter
methods.

Constructor injection Dependency injection method that uses constructors.

