
�

� �

�

CHAPTER 1

COMBINATORIAL
HAPLOTYPING PROBLEMS

Giuseppe Lancia

Dipartimento di Matematica e Informatica, University of Udine, Udine,Italy,

1.1 INTRODUCTION

A few years back, the process of collection of a vast amount of genomic data
culminated with the completion of the Human Genome Project [22]. The outcome of
the project has brought the confirmation that the genetic makeup of humans (as well
as other species) is remarkably well conserved. Generally speaking, the differences
at DNA level between any two individuals amount to less than 5% of their genomic
sequences. As a consequence, the differences at the phenotype level (i.e., in the way
the organisms look) must be caused by small regions of differences in the genomes.
The smallest possible region consists of a single nucleotide and is called the Single
Nucleotide Polymorphism (SNP, pronounced “snip”). SNPs are the predominant form
of human genetic variation and their importance can hardly be overestimated; they
are used, for example, in medical, drug-design, diagnostic, and forensic applications.

Broadly speaking, a polymorphism is a trait common to everybody that can take
different values, ranging in a limited set of possibilities, called alleles (for simple
examples, think of blood group or eye color). In particular, a SNP is a nucleotide
site, placed in the middle of a DNA region that is otherwise identical in everybody,

Pattern Recognition in Computational Molecular Biology: Techniques and Approaches,
First Edition. Edited by Mourad Elloumi, Costas S. Iliopoulos, Jason T. L. Wang, and Albert Y. Zomaya.
© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.

3

CO
PYRIG

HTED
 M

ATERIA
L

�

� �

�

4 COMBINATORIAL HAPLOTYPING PROBLEMS

Individual 1, paternal: taggtccCtatttCccaggcgcCgtatacttcgacgggTctata
Individual 1, maternal: taggtccGtatttAccaggcgcGgtatacttcgacgggTctata

Individual 2, paternal: taggtccCtatttAccaggcgcGgtatacttcgacgggTctata
Individual 2, maternal: taggtccGtatttCccaggcgcGgtatacttcgacgggCctata

Individual 3, paternal: taggtccCtatttAccaggcgcGgtatacttcgacgggTctata
Individual 3, maternal: taggtccGtatttAccaggcgcCgtatacttcgacgggCctata

Figure 1.1 A chromosome in three individuals. There are four SNPs.

at which we observe a statistically significant variability. A SNP is almost always a
polymorphism with only two alleles (out of the four possible). For a nucleotide site
to be considered a SNP, it must be the case that the less frequent allele is found in the
population with some nonnegligible frequency.

For many living species (e.g., mammals), there exist two sexes and each individual
has two parents, one of each sex. The genome of these species is organized in pairs
of chromosomes and a single copy of each chromosome pair is inherited from each
of the two parents. Organisms in which the genome is organized in pairs of homol-
ogous chromosomes are called diploid organisms. For a diploid organism, at each
SNP, an individual can either be homozygous (i.e., possess the same allele on both
chromosomes) or heterozygous (i.e., possess two different alleles). The values of a
set of SNPs on a particular chromosome copy define a haplotype.

In Figure 1.1, we illustrate a simplistic example, showing a specific chromosome
in three individuals. For each individual, the pair of her chromosome copies is
reported. There are four SNPs. The alleles for SNP 1, in this example, are C
and G, while for SNP 4 they are T and C. Individual 1 is heterozygous for SNPs
1, 2, and 3, and homozygous for SNP 4. Her haplotypes are CCCT and GAGT. The
haplotypes of individual 3 are CAGT and GACC.

Haplotyping an individual consists in determining her two haplotypes for a given
chromosome. With the larger availability in SNP genomic data, recent years have
seen the birth of many new computational problems related to haplotyping. These
problems are motivated by the fact that it can be difficult and/or very expensive to
determine the haplotypes experimentally, so ad hoc algorithms have been used to
correct data errors or to infer missing data.

In the remainder of this chapter, wewill address the haplotyping problem for both a
single individual and a set of individuals (a population). In the former case, described
in Section 1.2, the input is haplotype data inconsistent with the existence of exactly
two parents for an individual. This inconsistency is due to experimental errors and/or
missing data. In the latter case, described in Section 1.3, the input data specify for
each SNP and each individual in a population whether her parents have contributed
the same or different alleles, but do not specify which parent contributed which allele.

�

� �

�

1.2 SINGLE INDIVIDUAL HAPLOTYPING 5

1.2 SINGLE INDIVIDUAL HAPLOTYPING

The process of passing from the sequence of nucleotides in a DNA molecule to a
string over the DNA alphabet is called sequencing. A sequencer is a machine that
is fed some DNA and whose output is a string of As, Ts, Cs, and Gs. To each let-
ter, the sequencer attaches a value (confidence level) that essentially represents the
probability that the letter has been correctly read.

The main problem with sequencing is that, owing to technological limitations, it
is not possible to sequence a long DNA molecule at once. What we can do, how-
ever, is to sequence short DNA fragments (also called reads), of length of about 1000
nucleotides each, which provide small “windows” to look at the target molecule. To
sequence a long DNA molecule, the molecule must first be replicated (amplified) by
creating many copies of it. These copies are then broken, at random, into several
smaller fragments, which are fed to a sequencer that will sequence those of the right
size. The amplification phase is necessary so that the reads can have nonempty over-
lap. From the overlap of two reads, one may infer (through a process called assembly)
a longer fragment, and so on, until the original DNA sequence has been reconstructed.
This is, in essence, the principle of shotgun sequencing, a method used by Celera
Genomics in the late 1990s to allow the completion of the sequencing of the human
genome faster compared with other experimental techniques of the time [62]. In shot-
gun sequencing, the fragments were read and then assembled back into the original
sequence by using sophisticated algorithms and powerful computers.

In Figure 1.2, we illustrate an example in which the two chromosome copies (a)
and (b) have been amplified, and then some fragments (denoted by rectangular boxes)
have been sequenced. The goal would then be to retrieve (a) and (b), given the set
of sequenced fragments. The major difficulty obstructing this goal is that, during
the amplification phase, both the paternal and the maternal chromosome copies are
amplified together so that the random reads can belong to either the paternal or the
maternal original copy. Of course, it is unknown which fragments are paternal and
which are maternal, and one of the problems in reconstructing the haplotypes consists
in segregating the paternal fragments from the maternal ones. In some cases, there
may be pairs of reads, called mate pairs, for which it is known that they are either
both paternal or both maternal. Mate pairs are due to a particular technique that allows
to sequence the ends of a fragment several thousand nucleotides long. Again, one can
only read about 1000 nucleotides at each end of the target, but the result is stronger
than reading two individual fragments as now it is known that the two reads come
from the same chromosome copy. Furthermore, the experiment returns a fairly precise
estimate of the distance, expressed in bases, between the two reads of a mate pair.

Even with the best possible technology, sequencing errors are unavoidable. The
main errors consist in bases that have been miscalled or skipped altogether. Further-
more, contaminants can be present, that is, DNA coming from organisms other than
the one that had to be sequenced. Owing to the experimental errors, the reconstruction

�

� �

�

6 COMBINATORIAL HAPLOTYPING PROBLEMS

A
m

pl
ifi

ed
 c

op
ie

s
an

d
fr

ag
m

en
ts

A

m
pl

ifi
ed

 c
op

ie
s

an
d

fr
ag

m
en

ts

Maternal copy
assembly

Paternal copy
assembly

(a)

(b)

Figure 1.2 Sequence reads and assembly of the two chromosome copies.

of the haplotypes, given the reads coming from sequencing, is not always straightfor-
ward and may require correction of the input data. In a general way, the haplotyping
problem for an individual can then be informally stated as follows:

Given inconsistent haplotype data coming from sequencing of an individual’s chro-
mosome, find and correct the errors in the data so as to retrieve a consistent pair of
haplotypes.

Depending on what type of errors one is after, there can be many versions of this
problem (for surveys on individual haplotyping problems, see, e.g., Schwartz [59] or
Zhang et al. [70]). Historically, the formalization of the first haplotyping problems
for an individual was given by Lancia et al. [47]. In their work, the Minimum Frag-
ment Removal (MFR) andMinimum SNP Removal (MSR) problems were introduced,
which we briefly discuss here.

Given the fact that at each SNP only two alleles are possible, we can encode them
by using a binary alphabet. Hence, in the sequel, the two values that a SNP can take
are denoted by 0 and 1. A haplotype is then simply a string over the alphabet {0,1}.

The basic framework for a single individual haplotyping problem is as follows.
There is a set = {1,… , n} of SNPs and a set = {1,… ,m} of fragments (i.e.,
reads coming from sequencing). Each SNP is covered by some of the fragments and
can take the values 0 or 1. Since there is a natural ordering of the SNPs, given by their
physical location on the chromosome, the data can be represented by anm × nmatrix
M over the alphabet {0,1, - }, called the SNP matrix. Each column corresponds to
a SNP and each row corresponds to a fragment. If fragment i covers a SNP j, then
M[i, j] is the value of the allele for SNP j appearing in fragment i. The symbol “-”
is used to represent a SNP not covered by a fragment (see Figure 1.3a and b for an
example of a SNP matrix).

�

� �

�

1.2 SINGLE INDIVIDUAL HAPLOTYPING 7

A gapless fragment is one covering a set of consecutive SNPs (i.e., the 0s and
1s appear consecutively in that row). We say that a fragment has k gaps if it covers
k + 1 blocks of consecutive SNPs (e.g., the fragment 00--101---01 has two
gaps). Gaps are mainly due to two reasons: (i) thresholding of low-quality reads
(when the sequencer cannot call a SNP 0 or 1 with enough confidence, the SNP is
marked with a “-”); (ii) mate-pairing in shotgun sequencing (in this case k = 1, and
the situation is equivalent to having two gapless fragments coming from the same
chromosome copy).

Two fragments i and j are said to be in conflict if there exists a SNP k such that
neither M[i, k] = − nor M[j, k] = − and it is M[i, k] ≠ M[j, k]. The conflict of two
fragments implies that either the fragments do not come from the same chromosome
copy or there are errors in the data. Given a SNPmatrixM, the fragment conflict graph
is the graphG (M) = (,E)with an edge for each pair of fragments in conflict (see
Figure 1.3c). Two SNPs i and j are said to be in conflict if there exist two fragments
u and 𝑣 such that the 2 × 2 submatrix defined by rows u and 𝑣 and columns i and j
contains three 0s and one 1, or three 1s and one 0. Given a SNP matrix M, the SNP
conflict graph is the graph G (M) = (,E), with an edge for each pair of SNPs in
conflict (see Figure 1.3d).

IfG (M) is a bipartite graph, can be segregated into two setsH1 andH2 of pair-
wise compatible fragments. From each set, one can infer one haplotype by fragment
overlap. Let h1 and h2 be the haplotypes thus obtained. Since h1 and h2 correspond to
the assembly of the fragments, the single individual haplotyping problems are some-
times also referred to as fragment assembly haplotyping problems.

1 2 3 4 5 6

1 0 1 - 0 0 1

2 1 0 - - 1 -

3 - 0 1 0 1 0

4 - 0 1 - 1 0

5 1 - 0 1 0 -

SNPs

F
ra

gm
en

ts

(a)

The reads The SNP matrix M

(b)

1

5

2 4 3

1

6 5

2

4

3

GF (M)

(c)

GS (M)

(d)

Figure 1.3 SNP matrix and conflict graphs.

�

� �

�

8 COMBINATORIAL HAPLOTYPING PROBLEMS

We call a SNP matrix M feasible if G (M) is bipartite and infeasible otherwise.
Note that a SNP matrix for error-free data must be feasible. Hence, the optimization
problems to be defined aim at correcting an infeasible SNP matrix so that it becomes
feasible.

The following are the first optimization problems defined with the above goal [47].
They arose at Celera Genomics in the context of sequencing the human genome.

• MFR: Given a SNP matrix, remove the minimum number of fragments (rows)
so that the resulting matrix is feasible.

• MSR: Given a SNP matrix, remove the minimum number of SNPs (columns)
so that the resulting matrix is feasible.

The first problem is mainly suited for a situation in which, more than sequencing
errors, one is worried about the presence of contaminants. The second problem is
more suited in the presence of sequencing errors only, when all the fragments are to
be retained. These problems were shown to be NP-hard in general [47] so that exact
algorithms for their solution are expected to be exponential branch-and-bound proce-
dures. Lippert et al. [53] described a combinatorial branch-and-bound algorithm for
MFR. They also described an Integer Linear Programming (ILP) formulation of the
problem, based on the correspondence betweenMFR and themaximum node-induced
bipartite subgraph problem.

While the general case for MFR andMSR is NP-hard, these problems were shown
to be polynomial for gapless data [47]. Let us callM a gapless matrix if each row of
M is a gapless fragment. The main connection between MFR and MSR is given by
the following theorem.

Theorem 1.1 [47] Let M be a gapless SNP matrix. Then, G (M) is a bipartite graph
if and only if G (M) is a stable set.

Later theoretical improvements extended these results to fragments with gaps
of bounded length, giving O(22lm2n + 23ln3) dynamic programming algorithms for
MFR and O(mn2l+2) for MSR for instances with gaps of total length l Rizzi et al.
[57], Bafna et al. [58]. These algorithms are hardly practical, however, in instances
for which the gaps can be rather large. To overcome this problem, Xie and Wang
[67] (see also Xie et al. [68]) proposed an algorithm for MFR based on two new
parameters: k, the maximum number of SNPs covered by any fragment and c, the
maximum number of fragments covering any SNP site (also called coverage). Their
solution has complexity O(nc3c + m log m + mk). Since k ≤ n and c is generally at
most 10, this method should be more suitable for mate-paired data, where l can be
quite large.

1.2.1 The Minimum Error Correction Model

Owing to the nature of the sequencing process, most data errors are due to miscall-
ing or missing a base in a read. As a consequence, a particular version of the single

�

� �

�

1.2 SINGLE INDIVIDUAL HAPLOTYPING 9

individual haplotyping problem was proposed in Reference [53] and has received
great attention because of its practical relevance. This version is called Minimum
Error Correction (MEC) problem (the problem is also known as Minimum Letter
Flip (MLF), see Reference [32]):

MEC:Given a SNPmatrix, change the minimum number of entries (0 into1, or1 into0)
so that the resulting matrix is feasible.

Particularly interesting is a weighted version of MEC in which each entry is asso-
ciated with a nonnegative weight proportional to the confidence level with which the
base corresponding to the entry has been called. The solution seeks to flip a set of
entries with minimum total weight so as to make the matrix feasible.

TheMEC problem was shown to be NP-hard, both for general [53] and for gapless
matrices [20]. Many approaches were proposed in the literature for the solution of
MEC. For a comparative survey of the various procedures, the reader is referred to
Geraci [29] and to Geraci and Pellegrini [30].

One of the first heuristics for MEC was FastHare by Panconesi and Suozo [56].
FastHare starts by first sorting the fragments according to their leftmost ends and
then it reconstructs the two final haplotypes by correcting the sorted fragments in a
greedy manner. Being simple, this heuristic is very fast but nevertheless it provides
quite accurate solutions in general, especially when the error rate in the data is not too
high. For high error-rate data, Genovese et al. proposed SpeedHap [28], an effective
heuristic procedure organized in phases. For each phase, they perform three tasks:
(i) detect likely positions of errors, (ii) allocate fragments to the two partially built
final haplotypes, and (iii) decide the final alleles in the two haplotypes via a majority
rule on ambiguous SNPs.
FAHR (Fast and Accurate Haplotype Reconstruction by Wu and Liang [6]) is a

somewhat similar greedy heuristic procedure, which builds the final haplotypes by
partitioning the fragments at each SNP in a greedy manner. Yet another heuristic for
MEC is HMEC, proposed by Bayzid et al. [7]. HMEC is a steepest–descent local search
procedure in which each iteration takes timeO(m3n). Because of its time complexity,
HMEC may provide results slowly for instances with a large number of fragments.

Zhao et al. [72] considered the weighted version of MLF (called WMLF),
for which they proposed the use of a dynamic clustering heuristic. Furthermore,
they introduced an extended version of the problem to deal with the presence of
contaminants. In this version, denoted as Complete Weighted Minimum Letter Flip
(CWMLF), one is allowed not only to flip entries of the SNP matrix but also to
remove some of the matrix rows. In addition, for CWMLF, they proposed the use
of a dynamic clustering algorithm. Wu et al. [66] proposed a heuristic procedure for
WMLF, with a performance similar to that of the best previous methods.

Among the various types of approaches to the solution of MEC, there is the use
of evolutionary algorithms such as Genetic Algorithms (GA) and Particle Swarm
Optimization (PSO). Wang et al. [63] proposed both a branch-and-bound and a GA
for MEC. Being exponential, the branch-and-bound is only applicable to instances
of very small size, but the GA can be used for large instances (e.g., more than

�

� �

�

10 COMBINATORIAL HAPLOTYPING PROBLEMS

50 fragments over more than 50 SNPs). A PSO heuristic for MEC was proposed by
Kargar et al. [46]. PSO turns out to be fast and suitable for instances with a low error
rate in the data.

One of the most successful heuristics for MEC is HapCUT, proposed by Bansal
and Bafna [3]. The algorithm makes use of a suitable graph obtained from the frag-
ments, where each SNP corresponds to a node in the graph and two nodes are joined
by an edge if there exists a fragment that covers both SNPs. The procedure then
tries to minimize the MEC cost of the reconstructed haplotypes by iteratively finding
max-cuts in the associated graph.

He et al. [41] proposed a dynamic programming algorithm for MEC with time
complexity O(2L m n), where L is the maximum length of a fragment. The algorithm
can be used for values of L up to about 15, but beyond that, it becomes impractical. For
large values of L, the authors suggest to model the problem as a MaxSAT problem,
to be solved by a MaxSAT solver. The quality of the solutions obtained through this
approach is shown to be quite high, but the solving process is still slow.

Another dynamic programming algorithm, this time parameterized by the maxi-
mum coverage c of each SNP site, was proposed by Deng et al. [23]. The complexity
of the dynamic program is O(nc2c), which can be quite high when c is large. For
large values of c, the authors propose a heuristic procedure based on the dynamic
programming algorithm. Experiments showed that the heuristic returns very accurate
solutions on average.

Chen et al. [18] proposed an exact algorithm forMEC based on an ILP formulation
of the problem. The solving process is considerably speeded up by a preprocessing
phase, inwhich the input SNPmatrix is decomposed into smaller, independent, blocks
that are then individually solved by the ILP solver.

1.2.2 Probabilistic Approaches and Alternative Models

Some of the solutions to the assembly haplotyping problems have employed a proba-
bilistic approach, either because of the type of algorithm used or because of the type
of model and problem definition.

An example of probabilistic algorithm is HASH (Haplotype Assembly for Single
Human), an MCMC (Markov Chain Monte Carlo) algorithm proposed by Bansal
et al. [4] for assembling haplotype fragments under the MEC objective function. In
HASH, the transitions of the Markov chain are generated using min-cut computations
on graphs derived from the reads. The method was applied to infer the haplotypes
from real data consisting of whole-genome shotgun sequence fragments of a human
individual. The results showed the haplotypes inferred by using HASH to be sig-
nificantly more accurate than the haplotypes estimated by using the best heuristics
available at the time.

Another type of Markov chain approach was proposed by Wang et al. [64]. In
this approach, the assignment of fragments to haplotypes is regarded as a Markov
process in which successive allele pairs are generated on the basis of the value of a
small number of preceding SNP sites in the sequence. In order to find the most prob-
able haplotypes for the set of fragments, the authors propose a Viterbi-like dynamic
programming procedure.

�

� �

�

1.2 SINGLE INDIVIDUAL HAPLOTYPING 11

Chen et al. [19] described a probabilistic model for MEC in which they considered
three error parameters, called 𝛼1, 𝛼2, and 𝛽. The parameter 𝛼1 is the error rate with
which entries of the SNP matrix have been miscalled (i.e., a 0 in place of 1 or a 1
in place of a 0). The value 𝛼2 is the error rate with which a “-” in the SNP matrix
appears where, in fact, a SNP is covered by a fragment and therefore an allele 0 or
1 should be present. Finally, 𝛽 is a measure of the expected dissimilarity between
the haplotypes to be reconstructed. The authors gave a linear-time (in the size of M)
probabilistic algorithm that reconstructs the correct haplotypes with high probability
when the parameters are known. Even for the case when some of the parameters are
unknown, they provided a probabilistic algorithm that outputs the correct haplotypes
with probability depending on 𝛼1, 𝛼2, and 𝛽.

Li et al. [52] proposed a probabilistic model for the haplotype inference problem.
In their model, they studied the conditional probability P(h1, h2|M) of h1 and h2 being
the correct haplotypes given thatM was the SNPmatrix measured. They then pursued
the objective of determining the most likely pair of correct haplotypes, that is, a pair
{h∗1, h

∗
2}maximizing the above conditional probability. In order to solve this problem,

they used Gibbs sampling and an Expectation Maximization (EM) algorithm.
Among the works proposed for the solution of the MEC model, there are some

papers that introduced variants to the original framework in order to deal with some
specific data problems. For instance, Zhang et al. [71] proposed a model calledMini-
mum Conflict Individual Haplotyping (MCIH), suitable for data sets with particularly
high error rate. The problem was shown to be NP-hard and a dynamic programming
procedure for its solution was described.

Duitama et al. [25] proposed a model called Maximum Fragments Cut (MCF)
whose objective is to identify a set of fragments (i.e., rows of the SNP matrix) maxi-
mizing a score proportional to their conflict with respect to the remaining rows. This
set of fragments can be interpreted as the shore of a cut in a suitable graph, so that
the problem can be reduced to a max-cut problem. The authors utilized a local opti-
mization heuristic, called ReFHap, for the problem solution.

Xie et al. [69] introduced amodel calledBalancedOptimal Partition (BOP), which
generalizes both MEC and MCF. The model is, in a way, a weighted combination
of MEC and MCF, and by setting some model parameters to proper values, BOP
degenerates into pure MEC or pure MCF. To solve the model, the authors proposed
a dynamic programming algorithm called H-BOP.

Aguiar and Istrail [1] proposed HapCompass, an algorithm for haplotype assem-
bly of densely sequenced human genome data. HapCompass operates on a graph
where each SNP is a node and the edges are associated with the fragments. The edges
are weighted, and the weight of an edge indicates what the best phasing of the alleles
for the edge endpoints is, given the fragments in the data set that cover the correspond-
ing SNPs. In this model, the reconstruction of the underlying haplotypes corresponds
to a minimum-weight edge-removal problem until a special type of subgraph, called
happy graph by the authors, is obtained. HapCompass is a heuristic with a local
reoptimization step. Computational results showed the effectiveness of the procedure
and the good quality of its solution also with respect to the MEC objective.

�

� �

�

12 COMBINATORIAL HAPLOTYPING PROBLEMS

1.3 POPULATION HAPLOTYPING

Haplotype data are particularly sought after in the study of complex diseases (those
affected by more than one gene) because they convey precious information about
which set of gene alleles are inherited together. These types of polymorphism screen-
ings are usually conducted on a population, that is, on sets of related individuals.

We have discussed at length the problem of haplotyping a single individual, which
consists in determining her two haplotypes for a given chromosome. In a similar way,
haplotyping a population consists in haplotyping each individual of the given pop-
ulation. Of course, one way to do this would be to solve a set of single individual
haplotyping problems, one for each element of the population, but there might be
better ways to proceed. In particular, with the larger availability in SNP data, recent
years have seen the birth of a set of new computational problems related to popula-
tion haplotyping. Most of these problems are motivated by the fact that while it is
economically inconvenient to determine the haplotypes by sequencing and assem-
bling, there is a cheap experiment that can determine a less informative and often
ambiguous type of data, that is, the genotypes, from which the haplotypes can then
be retrieved computationally.

A genotype of an individual contains the information about the two (possibly iden-
tical) alleles at each SNP, but without specifying their paternal or maternal origin.
There may bemany possible pairs of haplotypes that are consistent with a given geno-
type. For example, assume we only know that an individual is heterozygous for the
alleles {C,T} at SNP 1 and for the alleles {A,G} at SNP 2. Then, either one of these
alternatives may be true:

(i) One parent has contributed the allelesC andA and the other the allelesT andG.

(ii) One parent has contributed the allelesC andG and the other the allelesT andA.

Both possibilities are plausible. Associating the alleles with the parents is called
phasing the alleles. For k heterozygous SNPs, there are 2k possible phasings, which
makes choosing the correct one a difficult problem.Once the alleles have been phased,
the two haplotypes are inferred as phasing and haplotyping are in fact the same prob-
lem. The two haplotypes that are obtained by phasing the alleles are said to resolve,
or explain, the genotype.

The most general population haplotyping problem can be stated as follows:

Given a set G of genotypes, corresponding to an existing, unknown, set H of haplotypes,
retrieve H.

In other words, the goal is to compute a set H of haplotypes that contains, for
each genotype g ∈ G, the two haplotypes h1 and h2 obtained by the correct phasing
of g. As could be expected, on the basis of only the knowledge of Git, is not easy to
describe constraints that define precisely which of the exponentially many phasings
of a genotype is the correct one. Biologists have therefore described several sensi-
ble criteria for “good” phasings. For instance, under a widely accepted parsimony

�

� �

�

1.3 POPULATION HAPLOTYPING 13

principle (inspired by the Occam’s razor principle), a good solution may be one that
minimizes the number of distinct haplotypes inferred.

Once it has been mathematically modeled, haplotyping gives rise to several nice
and challenging combinatorial problems (for surveys on population haplotyping
problems, see, e.g., References [11, 38, 39]). These problems have been extensively
studied in the last few years. Some of them have been proven NP-hard and solved
by exponential-time algorithms, while for others polynomial-time algorithms have
been designed.

In this chapter, we address some of the most interesting combinatorial haplotyping
models proposed in the literature. Each model and objective function has specific bio-
logical motivations, which are discussed in the following sections. While our focus
will be on the combinatorial approach to haplotyping problems, it should be remarked
that there is also a very important statistical approach to population haplotyping prob-
lems, which does not fall within the scope of this survey. The statistical approach has
led to widely used software tools for haplotyping, such as the program PHASE [60].

Given a set of n SNPs, fix arbitrarily a binary encoding of the two alleles for each
SNP (i.e., call one of the two alleles 0 and the other 1). Once the encoding has been
fixed, each haplotype becomes a binary vector of length n.

A haplotype h is denoted by h[i], the value of its ith component, with i = 1, … , n.
Given two haplotypes h′ and h′′, we define a special sum whose result is a vector
g ∶= h′ ⊕ h′′. The vector g has length n, and its components take values in {0, 1, 2},
according to the following rule:

g[i] ∶=
⎧⎪⎨⎪⎩

0 if h′[i] = h′′[i] = 0
1 if h′[i] = h′′[i] = 1
2 if h′[i] ≠ h′′[i]

We call a vector g with entries in {0, 1, 2} a genotype. Each position i such that
g[i] = 2 is called an ambiguous position (or ambiguous site). We denote by A(g) ⊆
{1, … , n} the set of ambiguous positions of g. Biologically, genotype entries of value
0 or 1 correspond to homozygous SNP sites, while entries of value 2 correspond to
heterozygous sites. In Figure 1.4, we illustrate a case of three individuals, showing
their haplotypes and genotypes.

A resolution of a genotype g is given by a pair of haplotypes {h′, h′′} such that
g = h′ ⊕ h′′. The haplotypes h′ and h′′ are said to resolve g. A genotype is ambiguous
if it has more than one possible resolution, that is, if it has at least two ambiguous
positions. A haplotype h is said to be compatible with a genotype g if h can be used
in a resolution of g. It can immediately be seen that h is compatible with g if and only
if g[i] = h[i] at each position where g[i] ≠ 2. Two genotypes g and g′ are compatible
if there exists at least one haplotype compatible with both of them, otherwise, they
are incompatible. It can immediately be seen that g and g′ are compatible if and only
if g[i] = g′[i] at each position i where they are both nonambiguous.

As previously discussed, the experiment yielding each genotype is such that, at
each SNP, it is known whether an individual is homozygous for allele 0 (in which
case, we may set g[i] = 0), homozygous for allele 1 (in which case, we may set

�

� �

�

14 COMBINATORIAL HAPLOTYPING PROBLEMS

Haplotype1,paternal: 0 1 0 1
2 2 2 1 Genotype1

Haplotype1,maternal: 1 0 1 1

Haplotype2,paternal: 0 0 1 1
2 2 1 2 Genotype2

Haplotype2,maternal: 1 1 1 0

Haplotype3,paternal: 0 0 1 1
2 0 2 2 Genotype3

Haplotype3,maternal: 1 0 0 0

Figure 1.4 Haplotypes and corresponding genotypes.

g[i] = 1), or heterozygous (in which case, we may set g[i] = 2). Therefore, for the
haplotyping problems described in this section, the input data consist in a set G of
m genotypes g1,… , gm, corresponding to m individuals in a population. The output
is a set H of haplotypes such that, for each g ∈ G, there is at least one pair of hap-
lotypes {h′, h′′} ⊆ H with g = h′ ⊕ h′′. Such a set H of haplotypes is said to explain
G. In addition to explaining G, the set H is also required to satisfy some particular
constraints. These constraints are different for different specific types of haplotyping
problems. For each problem described in this survey, the particular constraints are
given in the corresponding section.

1.3.1 Clark’s Rule

The geneticist Clark proposed in Reference [21] a rule (today known as Clark’s rule)
to derive new haplotypes by inference from known ones as follows:

Clark’s Inference Rule: Given a genotype g and a compatible haplotype h, obtain
a new haplotype q by setting q[j] ∶= 1 − h[j] at all positions j ∈ A(g) and
q[j] ∶= h[j] at the remaining positions.

Note that q and h resolve g. In order to resolve all genotypes ofG, Clark suggested
the use of successive applications of his inference rule. The procedure requires a
“bootstrap” set of haplotypes used to derive new haplotypes at the very beginning.
These starting haplotypes are obtained by resolving, in the unique possible way, the
unambiguous genotypes in G (of which it is assumed there is always at least one).

The following is the procedure that Clark proposed for haplotyping a population.
He supported the validity of the approach by arguments from theoretical population
genetics:

Clark’s Algorithm: Let G′ ⊂ G be the set of nonambiguous genotypes and let H
be the set of haplotypes obtained from G′. Reset G ∶= G − G′. Then, repeat
the following. If they exist, take a g ∈ G and a compatible h ∈ H and apply
the inference rule, obtaining q. Set G ∶= G − {g}, H ∶= H ∪ {q}, and iterate.
When no such g and h exist, the algorithm succeeds ifG = ∅ and fails otherwise.

�

� �

�

1.3 POPULATION HAPLOTYPING 15

Note that the procedure is nondeterministic as it does not specify how to choose
g and h whenever there are more candidates to the application of the rule. For
example, suppose G = {2000, 2200,1122}. The algorithm starts by setting
H = {0000,1000} and G = {2 200,1122}. The inference rule can be used to
resolve 2 200 from 0000, obtaining 1100, which can, in turn, be used to resolve
1122, obtaining 1111. However, one could have started by using 1000 to resolve
2 200 obtaining 0100. At that point, there would be no way to resolve 1122.
The nondeterminism in the choice of the genotype g and haplotype h to which the
inference rule is applied can be settled by fixing a deterministic rule based on the
initial sorting of the data. In Reference [21], a large number of random sorting are
used to run the algorithm and the best solution overall is reported. Tests on real
and simulated data sets showed that although most of the time the algorithm could
resolve all genotypes, often the algorithm failed.

The problem of finding an ordering of application of Clark’s inference rule that
leaves the fewest number of unresolved genotypes in the end was first defined and
studied by Gusfield [33], who proved it is NP-hard and APX-hard (i.e., there is a
value 𝛿 > 1 for which it is NP-hard even to give a 𝛿-approximation algorithm). As
for practical algorithms, Gusfield [34, 35] proposed an integer programming approach
for a graph-theoretic reformulation of the problem. The problem is first transformed,
by an exponential-time reduction, into a problem on a digraph (N,E) defined as fol-
lows. Let N =

⋃
g∈GN(g), where N(g) ∶= {(h, g) ∶ h is compatible with g}.

LetN′ =
⋃

g∈G′N(g) be the subset of haplotypes determined from the setG′ of unam-
biguous genotypes. For each 𝑣 = (h, g′) and𝑤 = (q, g) inN, there is an arc (𝑣,𝑤) ∈ E
if g is ambiguous, g′ ≠ g, and g = h⊕ q (i.e., q can be inferred from g via h). Then,
any directed tree rooted at a node 𝑣 ∈ N′ specifies a feasible history of successive
applications of the inference rule starting at node 𝑣 ∈ N′. The problem can then be
stated as follows: find the largest number of nodes that can be reached by a set of
node-disjoint-directed trees, where each tree is rooted at a node in N′ and for every
ambiguous genotype g, at most one node in N(g) is reached.

The above graph problemwas shown to be NP-hard [34]. For its solution, Gusfield
proposed an ILP formulation and noticed that the solution of the LP relaxation was
very often integer for the real-life instances tested. The model was applied to real data
as well as random instances, with up to 80 genotypes, of which 60 were ambiguous,
over 15 SNPs.

1.3.2 Pure Parsimony

Clark’s algorithm tries to reuse existing haplotypes as much as possible and it intro-
duces new haplotypes only when strictly needed. As a result, the procedure usually
tends to produce solutions of small size. Note that the maximum size for a set H
resolving G is 2|G|, while the smallest possible size is Ω(

√|G|).
Pure Parsimony Haplotyping (PPH) has the explicit objective of minimizing the

size of H. This objective has several biological motivations. For one, the number of
distinct haplotypes observed in nature is vastly smaller than the number of possible
haplotypes. Furthermore, as we all descend from a small number of ancestors, their

�

� �

�

16 COMBINATORIAL HAPLOTYPING PROBLEMS

haplotypes should be the same we possess today (if it were not for some recombi-
nation events and mutations). Finally, pure parsimony follows a general principle
according to which, of many possible explanations of an observed phenomenon, one
should always favor the simplest.

The PPH problem is NP-hard, as first shown by Hubbel [43]. Lancia et al. [48]
showed that, in fact, the problem is APX-hard. This result holds also if each genotype
is restricted to possess at most three ambiguous sites. Note that although the problem
is APX-hard, there exist constant-ratio approximation algorithms under the restriction
that each genotype has at most k ambiguous sites for each constant k [48].

Several algorithmic approaches, many of them employing mathematical program-
ming techniques, have been used in PPH (for a survey of models and approaches for
PPH, see Reference [17]). In particular, we recall the following works.

1.3.2.1 Integer Programming Formulations of Exponential Size. Let us
denote by H(G) the set of all haplotypes compatible with at least one genotype of G
and let 𝜒(G) ∶= |H(G)|. The first ILP formulation for PPH, called TIP, was provided
by Gusfield [37]. TIP has 𝜒(G) variables and O(m2n) constraints. There is a binary
variable xh associated with every h ∈ H(G) (xh = 1 means that h is included in the
solution, whereas xh = 0means that h is not included). After fixing a total ordering on
H(G), denote by the set of those ordered pairs (h1 and h2) with h1 and h2 ∈ H(G),
h1 < h2. For every g ∈ G, let g ∶= {(h1, h2) ∈ |h1 ⊕ h2 = g}. For every g ∈ G
and (h1, h2) ∈ g, there is a binary variable yh1,h2 used to select an ordered pair (h1, h2)
to resolve the genotype g. The following is then a valid ILP formulation of the PPH
problem [37, 48]:

min
∑

h∈H(G)
xh (1.1)

subject to ∑
(h1,h2)∈g

yh1,h2 ≥ 1 ∀g ∈ G (1.2)

yh1,h2 ≤ xh1 ∀(h1, h2) ∈
⋃
g∈G

g (1.3)

yh1,h2 ≤ xh2 ∀(h1, h2) ∈
⋃
g∈G

g (1.4)

xh ∈ {0, 1}, yh1,h2 ∈ {0, 1} ∀h, h1, h2 ∈ H(G) (1.5)

Constraints (1.2) impose that each genotype is resolved by at least one pair of
haplotypes. Constraints (1.3) and (1.4) make sure that (h1, h2) can be used to resolve
a genotype only if both h1 and h2 are included in the solution.

Gusfield managed to employ some preprocessing rules to get rid of variables that
can be proved to be nonessential in the formulation. The resulting model is called
RTIP (Reduced TIP). Although practically useful, the preprocessing still leaves an
exponential model whose size grows quite quickly with respect to the instance size.
The experimental results of Reference [37] showed that RTIP can be used to tackle

�

� �

�

1.3 POPULATION HAPLOTYPING 17

problems with up to 50 genotypes over 30 SNPs, but there must be relatively small
levels of heterozygosity in the input genotypes.

Lancia and Rizzi [50] showed that when each genotype has at most two ambigu-
ous sites, the above ILP is totally unimodular. As a consequence, the ILP solution is
always naturally integer and hence the problem can be solved in polynomial time.

Lancia and Serafini [51] proposed a new exponential ILP model for PPH. The
model exploits an interpretation of PPH as a particular type of Set Covering (SC)
based on the following observation: if H is a set of haplotypes resolving G, then
for each genotype g, ambiguous position i ∈ A(g), and value a ∈ {0, 1}, there is a
haplotype h ∈ H ∩ H(g) such that h[i] = a.

This condition is a covering condition because it represents the covering con-
straint for a set cover problem in which the universe is the set of all triples (g, i, a),
for g ∈ G, i ∈ A(g), and a ∈ {0, 1}, and each haplotype h represents a subset of
the universe, namely, h ↔ {(g, i, a) | h ∈ H ∩ H(g), hi = a}. The condition is only
necessary, but not sufficient, for H to be a feasible solution of PPH. Consider, for
example, the following “diagonal” instance G = {1222, 2122, 2212, 2221}. The set
{0111, 1011, 1101, 1110} satisfies the covering condition but does not resolve G.

The SC associated with PPH seeks to minimize the number of haplotypes needed
to satisfy all covering conditions for the given set of genotypes G. As we have seen,
this SC is in fact a relaxation of PPH. The formulation of the SC model has an
exponential number of variables and constraints, and can be solved, as described in
Reference [51], by branch-and-cut-and-price, that is, via the generation of variables
and constraints at run-time. It is possible that the optimal solution of SC resolves G,
in which case it is an optimal PPH solution as well. If not, one can try to obtain a
good feasible PPH solution from the optimal cover by adding only a small number
of haplotypes. This idea is exploited by an effective heuristic presented in Reference
[51]. The computational results show that the SC approach can be orders of magni-
tude faster than RTIP and can be applied to instances with n = m = 50 and 𝜒(G) up to
109. These are among the largest-size instances for which provably optimal solutions
have been obtained in the literature.

1.3.2.2 Integer Programming Formulations of Polynomial Size
and Hybrid Formulations. Many authors Brown and Harrower [13], Bertolazzi
et al. [8], Lancia et al. [48], Halldorsson et al. [40] have independently proposed
polynomial-size integer programming formulations. More or less, all these formu-
lations employ variables to represent the bits of the haplotypes in the solution (so
there are, at most, O(mn) such variables). The basic idea is that for each genotype
gi ∈ G one must determine two haplotypes hi1 and hi2 such that hi1 ⊕ hi2 = gi. This
implies that, for each position j such that gi[j] = 2, one needs to decide a variable
xij ∈ {0, 1}, and then set hi1[j] = xij and hi2[j] = 1 − xij. The polynomial formula-
tions for PPH consist in expressing the PPH objective function and constraints in
terms of the x variables and possibly a (polynomial-size) set of additional variables.

The LP relaxation of these formulations is generally quite weak. The use of some
valid cuts [8, 13] improves the quality of the bound, but the integrality gap between
the integer optimum and the LP relaxation remains large. Brown and Harrower [14]

�

� �

�

18 COMBINATORIAL HAPLOTYPING PROBLEMS

also proposed a hybrid model in which variables for a fixed subset of haplotypes
are explicitly present, while the rest of the haplotypes are implicitly represented by
polynomially many variables and constraints. These polynomial/hybrid formulations
were successfully used for the solution of problems of similar size as those solvable by
using TIP. Furthermore, some tests were conducted on larger problems (30 genotypes
over up to 75 SNPs), on which the exponential formulation could not be applied
successfully owing to the IP size.

The last polynomial model for PPH was proposed by Catanzaro et al. [16] and
is based on the class representatives with smallest index (a technique adopted by
Campelo et al. for the vertex color problem [15]). The authors observed that a fea-
sible solution to PPH can be represented by means of a bipartite graph whose two
shores correspond to haplotypes and genotypes. Each vertex g ∈ G has degree 2 and
there are two vertices, say h′ and h′′ adjacent to g such that g = h′ ⊕ h′′. The bipar-
tite graph representation of a solution suggests that, in a feasible solution to PPH, the
haplotypes induce a family of subsets of genotypes satisfying the following three
properties: (i) each subset of genotypes shares one haplotype, (ii) each genotype
belongs to exactly two subsets, and (iii) every pair of subsets intersects in at most
one genotype. Catanzaro et al. [16] exploited the bipartite graph representation of a
solution to PPH to provide a polynomial-size ILP model that turns out to be quite
effective and to outperform other polynomial models for the PPH problem.

1.3.2.3 Quadratic, Semidefinite Programming Approaches. A quadratic
formulation solved by semidefinite programming was proposed by Kalpakis and
Namjoshi [45]. Similarly to the RTIP model, the formulation has a variable for each
possible haplotype and hence it cannot be used to tackle instances for which 𝜒(G) is
too large. According to the computational results, the size of the problems solved is
comparable to that of RTIP and of the best polynomial ILP models. On the basis of
a similar formulation, an (exponential-time) approximation algorithm was presented
in Reference [42].

1.3.2.4 Combinatorial branch-and-bound Approaches. Wang and Xu
[65] proposed a simple combinatorial branch-and-bound approach. The solution
is built by enumerating all possible resolutions for each of the genotypes in turn.
The lower bound is the number of haplotypes used so far. Since the search space
is exponential and the bound is weak, the method is not able to solve instances of
size comparable to the other approaches. Even the solution for 20 genotypes over 20
SNPs can sometimes take an extremely long time to be found.

1.3.2.5 Boolean Optimization. One of the approaches applied to PPH is
Pseudo Boolean Optimization (PBO). PBO is a technique by which a problem can
be modeled via integer linear constraints over a set of boolean variables. The goal
is to find an assignment of the variables that satisfies all constraints and minimizes
a given objective function. The model is solved by a SAT solver (much in the same
way as an ILP model is solved by an ILP solver), which employs solution-searching
techniques specific for boolean models.

�

� �

�

1.3 POPULATION HAPLOTYPING 19

The PBO models for PPH are mostly based on the following feasibility ques-
tion: given a tentative cardinality k, does there exist a set H of k haplotypes that
resolves G? The feasibility question is expressed in terms of boolean variables simi-
lar to the binary variables of the polynomial ILP models. Starting at a lower bound,
k is increased until the feasibility question has a positive answer. At that point, H
represents the optimal solution.

The first PBO algorithm for PPH was presented by Lynce andMarques-Silva [54].
Later works aimed at breaking the symmetries in the original PBO model, and com-
puting tight lower and upper bounds to be used for pruning the search space Graca
et al. [31], Marques-Silva et al. [55]. The SAT approaches showed to be competitive
with the best mathematical programming approaches for PPH.

1.3.2.6 Heuristics. In general, all the exact models mentioned so far run into
troubles when trying to solve “large” instances (where the most critical parameter
is the number of ambiguous positions per genotype). The exponential models
imply the creation of too many variables and/or constraints for obtaining a solution
within a reasonable time. The polynomial and combinatorial models, on the other
hand, employ quite weak lower bounds so that closing the gap and terminating the
branch-and-bound search is again impossible within a reasonable time. In order to
solve large instances of PPH, one needs then to resort to the use of effective heuristics
that can find near-optimal solutions to instances with hundreds of genotypes over
hundreds of SNPs with high levels of heterozygosity.

One such heuristic procedure is CollHaps, proposed by Tininini et al. [61].
CollHaps is based on the representation of the solution as a matrixM′ of 2m rows
(the solving haplotypes, also called symbolic haplotypes because they may contain
variables), in which some entries are fixed, while others have to be determined. The
entries to be determined correspond to heterozygous positions in the input genotypes.
To each such entry, CollHaps associates a 0–1 variable, which is then set to a fixed
value in the course of the procedure. At each step, CollHaps tries to maintain as
few distinct symbolic haplotypes as possible, which is done by trying to make iden-
tical some rows of M′ via a greedy setting of the variables. The idea is to eventually
end up with as few distinct actual haplotypes as possible. Experimental results have
shown that CollHaps is a very effective and accurate heuristic for PPH, and ranks
among the best available procedures for this problem.

In another heuristic approach for PPH, Di Gaspero and Roli [27] proposed the use
of stochastic local search, which they considered to yield a reasonable compromise
between the quality of the solutions and running time of the procedure. In their work,
Di Gaspero and Roli utilized a family of local search strategies, such as Best Improve-
ment (BI), Stochastic First Improvement (SFI), Simulated Annealing (SA), and Tabu
Search (TS).

1.3.3 Perfect Phylogeny

One limitation of the PPH model is that it does not take into account the fact that
haplotypes may evolve over time. Haplotypes evolve by mutation and recombination,

�

� �

�

20 COMBINATORIAL HAPLOTYPING PROBLEMS

and an individual can possess two haplotypes such that neither one is possessed
by one of her parents. The haplotype regions in which no recombination and/or
mutations have ever happened in a population over time are called blocks. For recon-
structing haplotype blocks, starting from genotype data of a block in a population,
the parsimony model is the most appropriate [37]. However, when genotypes span
several blocks, different models of haplotyping have been considered. One of these
is haplotyping for perfect phylogeny.

The perfect phylogeny model is used under the hypothesis that no recombination
events happened, but there were only mutations. It is assumed that at the beginning
there existed only one ancestral haplotype, and new haplotypes were derived over
time from existing haplotypes as follows. If at some point there existed a haplotype h
in the population and then a mutation of h[i] happened, which was then passed on to
the new generation, a new haplotype h′ started to exist, with h′[j] = h[j] for j ≠ i, and
h′[i] = 1 − h[i]. We say that h is the “father” of h′ in the tree of haplotype evolution.
In the infinite-sites coalescent model [44], once a site has mutated it cannot mutate
back to its original state. Hence, the evolution of the haplotypes can be described by a
rooted arborescence, in which the haplotypes are the vertices and each arc is directed
from father to child.

A perfect phylogeny is such an arborescence. Given a set H of haplotypes and a
haplotype h∗ from which all other haplotypes have evolved, a perfect phylogeny for
H is a rooted binary tree T such that the following holds:

1. The root of T corresponds to h∗.

2. The leaves of T are in one-to-one correspondence with H.

3. Each position i ∈ 1, … , n labels at most one edge in T .

4. For each leaf h ∈ H and edge e along the path from h∗ to h, if e is labeled
with position i, then h[i] ≠ h∗[i].

Without loss of generality, it can be assumed that h∗ = 00 … 0. It can be shown
that a perfect phylogeny for H exists if and only if there are no four haplotypes
h1, … , h4 ∈ H and two positions i, j such that

{ha[i] ha[j] , 1 ≤ a ≤ 4} = {00,01,10,11}.

The haplotyping for perfect phylogeny problem can then be stated as follows: given
a set G of genotypes, find a set H of haplotypes such that H resolves G and there is a
perfect phylogeny for H.

Haplotyping for perfect phylogeny was introduced by Gusfield [36], who first
showed that the problem is polynomial and conjectured the existence of a linear-time
algorithm for its solution. To prove that it is polynomial, Gusfield reduced the problem
to a well-known graph theory problem, that is, the graph realization, with complex-
ityO(nm 𝛼(n,m)), where 𝛼 is the slow-growing inverse Ackerman function. Although
the complexity is nearly linear-time, implementing the algorithm for graph realiza-
tion is very difficult. Much simpler to implement while still very effective algorithms

�

� �

�

1.3 POPULATION HAPLOTYPING 21

were designed by Bafna et al. [2] and Eskin et al. [26]. These algorithms are based
on combinatorial insights in the problem structure and on the analysis of the 2-bit
patterns implied by the heterozygous sites. The complexity for both algorithms is
O(n2 m). Eventually, Ding et al. [24] were able to obtain an algorithm for perfect
phylogeny haplotyping of complexity O(nm), that is, a linear-time algorithm. The
main idea of the algorithm is to find the maximal subgraphs that are common to all
feasible solutions. These subgraphs are represented via an original and effective data
structure called a shadow tree, which is built and updated in linear time.

Almost at the same time as Ding et al. obtained their result, another linear-time
algorithm for perfect phylogeny haplotyping was proposed by Bonizzoni [9], who
showed that the problem solution can be obtained via the recognition of special posets
of width 2.

The perfect phylogeny model does not take into account events such as back muta-
tions. Bonizzoni et al. [10] considered a variant of the perfect phylogeny model called
Persistent Perfect Phylogeny (P-PP). In the P-PP model, each SNP site can mutate to
a new value and then back to its original value only once. Furthermore, they consid-
ered the case of incomplete data, that is, a SNP matrix in which some entries may
be missing. They developed an exact algorithm for solving the P-PP problem that is
exponential in the number of SNPs and polynomial in the number of individuals.

1.3.4 Disease Association

As discussed in the introduction, haplotypes are very useful for diagnostic and genetic
studies as they are related to the presence/absence of genetic diseases.

In a very simplistic way, we can define a genetic disease as the malfunctioning of
a specific gene. A gene does not function properly when its encoding sequence has
been mutated with respect to one of its correct versions. Since each gene is present in
two copies, it may be the case that either one of the two copies is malfunctioning. A
genetic disease is said to be recessive if a person shows the symptoms of the disease
only when both gene copies are malfunctioning (examples of recessive diseases are
cystic fibrosis and sickle cell anemia). Note that, for a recessive disease, one can be a
healthy carrier, that is, one copy is malfunctioning but the other is working properly.
A genetic disease is called dominant if a person shows the symptoms of the disease
when at least one gene copy is malfunctioning (examples of dominant diseases are
Huntington’s disease and Marfan’s syndrome).

Let us consider the genotypes of a population consisting of healthy and diseased
individuals. The haplotypes correspond to the gene sequences. Let us call “good” a
haplotype corresponding to a sequence encoding a working gene, and “bad” a hap-
lotype for which the encoded gene is malfunctioning. For a dominant disease, one
individual is diseased if just one of her haplotypes is bad, while if the disease is reces-
sive, both haplotypes must be bad for the individual to be diseased. In the context of
haplotyping with respect to a disease, there should exist a coloring of the haplotypes
into good and bad that is consistent with the genotypes of healthy and diseased indi-
viduals. Assume, for example, that the disease under study is recessive. Then we have

�

� �

�

22 COMBINATORIAL HAPLOTYPING PROBLEMS

the following problem, called Haplotyping for Disease Association (HDA): we are
given a set GD of diseased genotypes (i.e., belonging to diseased individuals) and a
setGH of healthy genotypes (i.e., belonging to healthy individuals). We want to find a
set H of haplotypes, partitioned into HG (good haplotypes) and HB (bad haplotypes)
such that

(i) H resolves GH ∪ GD.

(ii) ∀g ∈ GH , there is a resolution g = h′ ⊕ h′′ in H, such that |{h′, h′′} ∩
HG| ≥ 1.

(iii) ∀g ∈ GD, there is a resolution g = h′ ⊕ h′′ in H, such that |{h′, h′′} ∩
HB| = 2.

Note that by reversing the role of good versus bad and healthy versus diseased, the
same formulation can be adopted to study a dominant disease.

The problem of HDA was introduced by Greenberg et al. [32] and was studied
by Lancia et al. [49]. The problem is NP-hard, as shown in Reference [49]. How-
ever, real-life data are much simpler to solve than the artificial instances built in
the NP-hardness reduction from satisfiability. In fact, in the same paper, it has been
proved that, provided that the quite weak constraint of having at least two heterozy-
gous sites per genotype holds, HDA is polynomially solvable.

1.3.5 Other Models

We have seen that if an individual is homozygous at a given SNP site, her genotype
does not only specify that the individual is homozygous but it also specifies the allele
at that particular site. This type of information carries a cost and there also exists a
different type of genotype, called XOR-genotype, which is cheaper to obtain than a
“normal” genotype. The XOR-genotype still distinguishes heterozygous sites from
homozygous sites, but it does not identify the homozygous alleles. If we denote
by the letter E the fact that an individual is heterozygous at a certain SNP site, and
by the letter O the fact that she is homozygous, an X-OR genotype is then a vector
over the alphabet {E,O}.

When the input data consist of XOR-genotypes rather than normal genotypes, sim-
ilar population haplotyping problems as those described above can be defined. In
particular, Bonizzoni et al. [12] considered the problem of PPH for XOR-genotype
data. They gave exact polynomial-time solutions to some restricted cases of the prob-
lem, and both a fixed-parameter algorithm and a heuristic for the general case. These
results are based on an insight into the combinatorial properties of a graph represen-
tation of the solutions.

The perfect phylogeny haplotyping problem for XOR-genotypes was considered
by Barzuza et al. [5]. They showed how to resolve XOR-genotypes under the perfect
phylogeny model and studied the degrees of freedom in such resolutions. In par-
ticular, they showed that when the input XOR-genotypes admit only one possible
resolution, the full genotype of at most three individuals would have sufficed in order
to determine all haplotypes of the phylogeny.

�

� �

�

REFERENCES 23

REFERENCES

1. Aguiar D, Istrail S. Hapcompass: a fast cycle basis algorithm for accurate haplotype assem-
bly of sequence data. J Comput Biol 2012;19(6):577–590.

2. Bafna V, Gusfield D, Lancia G, Yooseph S. Haplotyping as perfect phylogeny: a direct
approach. J Comput Biol 2003;10:323–340.

3. Bansal V, Bafna V. HapCUT: an efficient and accurate algorithm for the haplotype assem-
bly problem. Bioinformatics 2008;24:i153–i159.

4. Bansal V, Halpern A, Axelrod N, Bafna V. An MCMC algorithm for haplotype assembly
from whole-genome sequence data. Genome Res 2008;18(8):1336–1346.

5. Barzuza T, Beckmann JS, Shamir R, Pe’er I. Computational problems in perfect phylogeny
haplotyping: XOR-genotypes and tag SNPs. In: 15th Annual Symposium on Combi-
natorial Pattern Matching (CPM). Volume 3109, Lecture Notes in Computer Science.
Springer-Verlag; 2004. p 14–31.

6. Wu J, Liang B. A fast and accurate algorithm for diploid individual haplotype reconstruc-
tion. J Bioinform Comput Biol 2013;11(4).

7. Bayzid Sa, Alam M, Mueen A, Rahman S. Hmec: a heuristic algorithm for individ-
ual haplotyping with minimum error correction. ISRN Bioinformatics 2013;(Article
ID.291741):1–10.

8. Bertolazzi P, Godi A, LabbèM, Tininini L. Solving haplotyping inference parsimony prob-
lem using a new basic polynomial formulation. Comput Math Appl 2008;55(5):900–911.

9. Bonizzoni P. A linear-time algorithm for the perfect phylogeny haplotype problem.
Algorithmica 2007;48(3):267–285.

10. Bonizzoni P, Braghin C, Dondi R, Trucco G. The binary perfect phylogeny with persistent
characters. Theor Comput Sci 2012;454:51–63.

11. Bonizzoni P, Della Vedova G, Dondi R, Li J. The haplotyping problem: an overview of
computational models and solutions. J Comput Sci Technol 2004;19(1):1–23.

12. Bonizzoni P, Della Vedova G, Dondi R, Pirola Y, Rizzi R. Pure parsimony XOR
haplotyping. IEEE/ACM Trans Comput Biol Bioinform 2010;7:598–610.

13. Brown DG, Harrower IM. A new integer programming formulation for the pure parsi-
mony problem in haplotype analysis. In: Proceedings of Annual Workshop on Algorithms
in Bioinformatics (WABI), Lecture Notes in Computer Science. Springer-Verlag; 2004.
p 254–265.

14. Brown DG, Harrower IM. A new formulation for haplotype inference by pure parsi-
mony. Technical Report CS-2005-03. Waterloo: University of Waterloo, Department of
Computer Science; 2005.

15. Campelo M, Campos V, Correa R. On the asymmetric representatives formulation for the
vertex coloring problem. Discrete Appl Math 2008;156(7):1097–1111.

16. Catanzaro D, Godi A, Labbè M. A class representative model for pure parsimony haplo-
typing. INFORMS J Comput 2010;22:195–209.

17. Catanzaro D, Labbè M. The pure parsimony haplotyping problem: overview and compu-
tational advances. Int Trans Oper Res 2009;16:561–584.

18. Chen Z, Deng F, Wang L. Exact algorithms for haplotype assembly from whole-genome
sequence data. Bioinformatics 2013;29(16):1938–1945.

�

� �

�

24 COMBINATORIAL HAPLOTYPING PROBLEMS

19. Chen Z, Fu B, Schweller R, Yang B, Zhao Z, Zhu B. Linear time probabilistic algorithms
for the singular haplotype reconstruction problem from SNP fragments. J Comput Biol
2008;15(5):535–546.

20. Cilibrasi R, Iersel LV, Kelk S, Tromp J. On the complexity of several haplotyping prob-
lems. In: Proceedings of Annual Workshop on Algorithms in Bioinformatics (WABI).
Volume 3692, Lecture Notes in Computer Science. Springer-Verlag; 2005. p 128–139.

21. Clark A. Inference of haplotypes from PCR amplified samples of diploid populations. Mol
Biol Evol 1990;7:111–122.

22. Collins FS, Morgan M, Patrinos A. The human genome project: lessons from large-scale
biology. Science 2003;300(5617):286–290.

23. Deng F, Cui W, Wang L. A highy accurate heuristic algorithm for the haplotype assembly
problem. BMC Genomics 2013;14:1–10.

24. Ding Z, Filkov V, Gusfield D. A linear-time algorithm for the perfect phylogeny haplotyp-
ing problem. In: Proceedings of the Annual International Conference on Computational
Molecular Biology (RECOMB). New York: ACM Press; 2005.

25. Duitama J, Huebsch T, McEwen G, Suk EK, Hoehe M. Refhap: a reliable and fast
algorithm for single individual haplotyping. Proceedings of the 1st ACM International
conference on Bioinformatics and Computational Biology, DMTCS’03. NewYork: ACM;
2010. p 160–169.

26. Eskin E, Halperin E, Karp R. Efficient reconstruction of haplotype structure via perfect
phylogeny. J Bioinform Comput Biol 2003;1(1):1–20.

27. Di Gaspero L, Roli A. Stochastic local search for large-scale instances of the haplotype
inference problem by pure parsimony. J Algorithms 2008;63:55–69.

28. Genovese L, Geraci F, Pellegrini M. Speedhap: an accurate heuristic for the single individ-
ual SNP haplotyping problem with many gaps, high reading error rate and low coverage.
IEEE/ACM Trans Comput Biol Bioinform 2008;5(4):492–502.

29. Geraci F. A comparison of several algorithms for the single individual SNP haplotyping
reconstruction problem. Bioinformatics 2010;26(18):2217–2225.

30. Geraci F, Pellegrini M. Rehap: an integrated system for the haplotype assembly problem
from shotgun sequencing data. In: Fred ALN, Filipe J, Gamboa H, editors. BIOIN-
FORMATICS 2010 - Proceedings of the 1st International Conference on Bioinformatics.
INSTICC Press: 2010. p 15–25.

31. Graca A, Marques-Silva J, Lynce I, Oliviera AL. Efficient haplotype inference with
pseudo-boolean optimization. In: 2nd International Conference on Algebraic Biol-
ogy (AB). Volume 4545, Lecture Notes in Computer Science. Springer-Verlag; 2007.
p 125–139.

32. Greenberg H, Hart W, Lancia G. Opportunities for combinatorial optimization in compu-
tational biology. INFORMS J Comput 2004;16(3):1–22.

33. Gusfield D. Inference of haplotypes from PCR-amplified samples of diploid populations:
complexity and algorithms. Technical Report cse–99–6. Davis (CA): University of Cali-
fornia at Davis, Department of Computer Science; 1999.

34. Gusfield D. A practical algorithm for optimal inference of haplotypes from diploid pop-
ulations. In: Altman R, Bailey TL, Bourne P, Gribskov M, Lengauer T, Shindyalov IN,

�

� �

�

REFERENCES 25

Ten Eyck LF, Weissig H, editors. Proceedings of the Annual International Conference on
Intelligent Systems for Molecular Biology (ISMB). Menlo Park (CA): AAAI Press; 2000.
p 183–189.

35. Gusfield D. Inference of haplotypes from samples of diploid populations: complexity and
algorithms. J Comput Biol 2001;8(3):305–324.

36. Gusfield D. Haplotyping as perfect phylogeny: conceptual framework and efficient solu-
tions. In: Myers G, Hannenhalli S, Istrail S, Pevzner P, Waterman M, editors. Proceedings
of the Annual International Conference on ComputationalMolecular Biology (RECOMB).
New York: ACM Press; 2002. p 166–175.

37. Gusfield D. Haplotype inference by pure parsimony. In: Proceedings of the Annual
Symposium on Combinatorial Pattern Matching (CPM). Volume 2676, Lecture Notes in
Computer Science. Springer-Verlag; 2003. p 144–155.

38. Gusfield D, Orzack SH. Haplotype inference. In: Aluru S, editor. Handbook of Compu-
tational Molecular Biology. Boca Raton (FL): Champman and Hall/CRC-press; 2005.
p 1–28.

39. Halldórsson B, Bafna V, Edwards N, Lippert R, Yooseph S, Istrail S. Combinatorial
problems arising in SNP and haplotype analysis. In: Proceedings of the 4th International
Conference on Discrete Mathematics and Theoretical Computer Science, DMTCS’03.
Berlin Heidelberg: Springer-Verlag; 2003. p 26–47.

40. Halldorsson BV, Bafna V, Edwards N, Lippert R, Yooseph S, Istrail S. A survey of
computational methods for determining haplotypes. In: Computational Methods for SNP
and Haplotype Inference: DIMACS/RECOMB Satellite Workshop. Volume 2983, Lecture
Notes in Computer Science. Springer-Verlag; 2004. p 26–47.

41. He D, Choi A, Pipatsrisawat K, Darwiche A, Eskin E. Optimal algorithms for haplotype
assembly from whole-genome sequence data. Bioinformatics 2010;26(12):i83–i190.

42. Huang YT, Chao KM, Chen T. An approximation algorithm for haplotype inference by
maximum parsimony. ACM Symposium on Applied Computing (SAC); 2005. p 146–150.

43. Hubbel E. Unpublished manuscript; 2002.

44. Hudson R. Gene genealogies and the coalescent process. Oxf Surv Evol Biol 1990;7:1–44.

45. Kalpakis K, Namjoshi P. Haplotype phasing using semidefinite programming. 5th
IEEE Symposium on Bioinformatics and Bioengineering (BIBE). Minneapolis; 2005.
p 145–152.

46. Kargar M, Poormohammadi H, Pirhaji L, Sadeghi M, Pezeshk H, Eslahchi C. Enhanced
evolutionary and heuristic algorithms for haplotype reconstruction problem using mini-
mum error correctionmodel.MATCHCommun.Math. Comput. Chem. 2009;62:261–274.

47. Lancia G, Bafna V, Istrail S, Lippert R, Schwartz R. SNPs problems, complexity and
algorithms. In: Proceedings of the Annual European Symposium on Algorithms (ESA).
Volume 2161, Lecture Notes in Computer Science. Springer-Verlag; 2001. p 182–193.

48. Lancia G, Pinotti C, Rizzi R. Haplotyping populations by pure parsimony: complexity,
exact and approximation algorithms. INFORMS J Comput 2004;16(4):17–29.

49. Lancia G, Ravi R, Rizzi R. Haplotyping for disease association: a combinatorial approach.
IEEE/ACM Trans Comput Biol Bioinform 2008;5(2):245–251.

50. Lancia G, Rizzi R. A polynomial solution to a special case of the parsimony haplotyping
problem. Oper Res Lett 2006;34(3):289–295.

�

� �

�

26 COMBINATORIAL HAPLOTYPING PROBLEMS

51. Lancia G, Serafini P. A set covering approach with column generation for parsimony
haplotyping. INFORMS J Comput 2009;21(1):151–166.

52. Li L, Kim J, Waterman M. Haplotype reconstruction from SNP alignment. J Comput Biol
2004;11:507–518.

53. Lippert R, Schwartz R, Lancia G, Istrail S. Algorithmic strategies for the SNPs haplotype
assembly problem. Brief Bioinform 2002;3(1):23–31.

54. Lynce I, Marques-Silva J. SAT in bioinformatics: making the case with haplotype infer-
ence. In: Computational Methods for SNP and Haplotype Inference: DIMACS/RECOMB
Satellite Workshop. Volume 4121, Lecture Notes in Computer Science. Springer-Verlag;
2006. p 136–141.

55. Marques-Silva J, Lynce I, Oliviera AL. Efficient and Tight Upper Bounds for Haplotype
Inference by Pure Parsimony Using Delayed Haplotype Selection. Volume 4874, Lecture
Notes in Artificial Intelligence. Springer-Verlag; 2007. p 621–632.

56. Panconesi A, Sozio M. Fast hare: a fast heuristic for single individual SNP haplotype
reconstruction. In: Proceedings of Annual Workshop on Algorithms in Bioinformatics
(WABI), Volume 3240, Algorithms in Bioinformatics. Springer-Verlag; 2004. p 266–277.

57. Rizzi R, Bafna V, Istrail S, Lancia G. Practical algorithms and fixed-parameter tractabil-
ity for the single individual SNP haplotyping problem. In: Guigo R, Gusfield D, editors.
Proceedings of Annual Workshop on Algorithms in Bioinformatics (WABI). Volume 2452,
Lecture Notes in Computer Science. Springer-Verlag; 2002. p 29–43.

58. Rizzi R, Bafna V, Istrail S, Lancia G. Polynomial and APX-hard cases of the individual
haplotyping problem. Theor Comput Sci 2005;335:109–125.

59. Schwartz R. Theory and algorithms for the haplotype assembly problem. Commun Inf
Syst 2010;10(1):23–38.

60. Stephens M, Smith N, Donnelly P. A new statistical method for haplotype reconstruction
from population data. Am J Hum Genet 2001;68:978–989.

61. Tininini L, Bertolazzi P, Godi A, Lancia G. Collhaps: a heuristic approach to haplotype
inference by parsimony. IEEE/ACM Trans Comput Biol Bioinform 2010;7(3):511–523.

62. Venter JC et al. The sequence of the human genome. Science 2001;291:1304–1351.

63. Wang R, Wu L, Li Z, Zhang X. Haplotype reconstruction from SNP fragments by mini-
mum error correction. Bioinformatics 2005;21(10):2456–2462.

64. Wang R, Wu L, Zhang X, Chen L. A markov chain model for haplotype assembly from
SNP fragments. Genome Inform 2006;17(2):162–171.

65. Wang L, Xu Y. Haplotype inference by maximum parsimony. Bioinformatics 2003;
19(14):1773–1780.

66. Wu J, Wang J, Chen J. A heuristic algorithm for haplotype reconstruction from aligned
weighted SNP fragments. Int J Bioinform Res Appl 2013;9(1):13–24.

67. Xie M, Wang J. An improved (and practical) parametrized algorithm for the individual
haplotyping problem MFR with mate pairs. Algorithmica 2008;52:250–266.

68. Xie M, Wang J, Chen J. A model of higher accuracy for the individual haplotyping
problem based on weighted SNP fragments and genotype with errors. Bioinformatics
2008;24(13):i105–i113.

69. Xie M, Wang J, Jiang T. A fast and accurate algorithm for single individual haplotyping.
BMC Syst Biol 2012;6 Suppl 2:1–10.

�

� �

�

REFERENCES 27

70. Zhang XS, Wang RS, Wu LY, Chen L. Models and algorithms for haplotyping problem.
Curr Bioinform 2006;1:105–114.

71. Zhang X, Wang R, Wu A, Zhang W. Minimum conflict individual haplotyping from SNP
fragments and related genotype. Evol Bioinform Online 2006;2:271–280.

72. Zhao Y, Wu L, Zhang J, Wang R, Zhang X. Haplotype assembly from aligned weighted
SNP fragments. Comput Biol Chem 2005;29(4):281–287.

		2015-11-21T06:03:34-0500
	Certified PDF 2 Signature

