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DEFINITION  OF  A  THIN  PLATE 
 

As a prelude and to place the engineering theory to be 

developed later in proper perspective, a simple test 

problem is analyzed in this chapter using the rigorous 

approach of the theory of elasticity, i.e. by considering the 

plate as a three-dimensional solid.  The assumptions that 

lead to thin plate theory are brought out as natural 

inferences from the results of this three-dimensional 

analysis.  A brief outline of the field variables and 

governing equations of  elasticity is also included. 

1.1  THE  ELASTICITY  APPROACH   

The main difference between the elasticity approach and conventional 
engineering analysis based on the mechanics-of-materials approach is 
the inclusion of a suitable hypothesis regarding the geometry of 
deformation in the latter.  For instance, the engineering theory of beams 
is based on Euler-Bernoulli hypothesis regarding the preservation of 
plane cross-sections during deformation;  the corresponding  analysis 
using the theory of elasticity does not require this hypothesis. 

The theory of elasticity is based on the use of the concepts of 
equilibrium, continuum and a material constitutive relationship to 
analyze a structure, i.e. to obtain the displacements, strains and stresses 
at any point within it when the loads and support conditions are 
specified.  The theory can be stated in a mathematical form in terms of 
the field equations, viz. the equations of equilibrium, the strain-
displacement relations and the stress-strain law;  these equations are 
given here with reference  to  Cartesian    x-y-z  axes  for  a linearly 
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elastic isotropic body undergoing small deformations in the absence of  
body forces.  The equations are in terms of the field variables, viz. the 
three displacements u, v and w along x, y and z directions, respectively, 
the nine components of the strain tensor, and the nine components of the 
stress tensor.  Normal stresses and strains are usually denoted by �ii  and 
�ii , respectively, while shear stresses and strains are denoted by  �ij and 
�ij , with i, j=x, y, z.  The first subscript in all these quantities denotes the 
direction of the normal to the plane under consideration, and the second 
subscript denotes the direction of the stress or strain.  If the outward 
normal to a surface is in a positive (negative) coordinate direction, the 
corresponding stresses are taken as positive when acting in the positive 
(negative) coordinate directions.  This is the sign convention commonly 
adopted and is as shown in Fig.1.1; a corresponding sign convention 
holds good for strains. 
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Fig. 1.1  Positive stress components 

 

It should be noted that only six stress (and six strain) components are 
independent since �ij=�ji (and �ij=�ji) by the principle of complementary 
shear.  In this book, the normal stresses and strains are denoted using 
single subscripts, i.e. �i and �i  instead of �ii  and �ii . 
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The field equations are: 

     Equilibrium Equations: 
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     Strain-Displacement Relations: 

 xx u,��    yzyz wv ,, ���  

 yy v,��   xzxz wu ,, ���  

 zz w,��  xyxy vu ,, ���                                             (1.2) 
 

     Stress-Strain Law: 

 eG ii ��� �� 2 ,      ijij G�� �      with  i, j=x, y, z     (1.3) 

These field equations are supplemented by the boundary conditions, i.e. 
the mathematical description of the supports and the applied loads. 

In the above equations, G and � are Lamè’s constants, e is the 
volumetric strain given by �x + �y + �z , and  a subscript comma is used 
to denote differentiation.  In terms of the Young’s modulus E and 
Poisson’s ratio 	, Lamè’s constants are given by 
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The solution of the elasticity problem can be carried out by using the 
displacement approach, wherein the displacements u, v and w are first 
solved for and then the strains and stresses are evaluated using 
Eqns.(1.2) & (1.3), or the stress approach, wherein the stresses are first 
obtained and the strains and displacements subsequently, or a mixed 
approach.   
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The field equations given above are sufficient for the displacement 
approach, while, in addition, certain conditions are required in the other 
approaches to ensure the continuum nature of the structure after 
deformation; these compatibility conditions will be introduced later in 
the book as and when a need for them arises. 

1.2  A  TEST  PROBLEM 

One of the problems amenable to exact analysis using the elasticity 
approach is considered here.  An infinitely long prismatic body of 
rectangular cross-section as shown in Fig.1.2 is supported at the two 
longitudinal edges such that 

 0�� xw �    at  x=0 and a,  for all  y and z      (1.5) 
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Fig.1.2  The test problem 

 

This boundary condition, which we shall encounter later on also, 
corresponds to supporting the end planes (x=0 and x=a) by shear 
diaphragms attached to them – a shear diaphragm being defined as one 
that completely restrains displacements in its own plane, but fully 
permits the out-of-plane displacement.  Obviously, this condition 
corresponds to a simple support in the limiting case of a thin plate. 

The body is subjected to sinusoidal transverse loading applied on the top 
surface (Fig.1.2).  If this load is assumed to be independent of y, then the 
body undergoes cylindrical bending such that the displacements, strains 
and stresses do not vary along  y and  the problem reduces to one of the 
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cross-sectional plane.  It is further assumed that the ends of the infinitely 
long strip are restrained in the axial direction so that v=0 everywhere, 
reducing the problem to one of plane strain.   

Corresponding to the lateral surfaces, the boundary conditions are   

 0sin & �
� xzoz a
x

q ���   at z = -h/2, for all x and y 

 0�� xzz ��    at  z = h/2, for all x and y       (1.6) 

The other equations to be satisfied are the field equations (1.1)-(1.3) 
simplified for the case of cylindrical bending as given below. 
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Following the displacement approach, the governing equations are 
obtained by the use of Eqns.(1.2a) & (1.3a) in Eqn.(1.1a) to yield 
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A solution for these equations can be chosen as  
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For this displacement field, �x will be of the form 
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x
�� sin(..)          (1.9) 

It can be seen that the edge conditions (Eqn.(1.5)) are thus satisfied 
exactly. Substitution of Eqn.(1.8) into Eqn.(1.7) reduces the problem to 
the solution of the following coupled ordinary differential equations 
with constant coefficients: 
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The solution of the above equations is straightforward and can be 
obtained as 
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where A, B, C and D are undetermined constants. 

Rewriting the lateral surface conditions (Eqn.(1.6)) in terms of U, W, U', 
W', etc., one obtains four equations which are sufficient to evaluate the 
constants A to D.  This procedure yields 
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Use of Eqns.(1.8), (1.11) and (1.12) yields the values of u and w at any 
point of the domain.  The strains and stresses are then obtained from 
Eqns.(1.2a) and (1.3a), respectively.  Thus the solution of the problem is 
complete.

1.3  THE  CASE  OF  A  THIN  PLATE 

It is convenient to group the stresses and strains occurring in the 
structure into those corresponding to bending (�x , �x),  transverse shear 
(�xz , �xz), and thickness stretch/contraction (�z , �z).  The study of these 
quantities for various span-to-thickness ratios would enable one to arrive 
at the assumptions that form the basis of the theory of plates.  Such a 
study has to be carried out by looking at the contributions of these 
stresses and strains to the strain energy of deformation of the structure.  
This is because any approximation to the three-dimensional problem can 
be considered acceptable only if it leads to a reasonably good estimate of 
the strain energy, and the contributions of the different stress and strain 
components to this energy provide a correct estimate of their relative 
importance. 

The strain energy Ue  for the present test problem can be written as 

   Ue xzxzxx ����� �� (
2
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        = Ub + Us + Ut                                           (1.13)  
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where Ub is the strain energy corresponding to bending, Us to transverse 
shear, and Ut to thickness stretch/contraction. 

By substituting for the stresses and strains, and integrating over the 
domain, one obtains 
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where � � [ sinh2�h
 ( ) ]�h 2 2 . 
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A comparison of the relative magnitudes of these energies can be carried 
out as follows.  Noting that �h (=�h/a) is a small parameter for thin 
plates, the ratios (Us /Ub) and (Ut /Ub) are written in the form of a 
power series in �h as 
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For the limiting case of �h � 0 ,  it is clear that both (Us /Ub) and     
(Ut /Ub)  tend to zero.  Thus, when the thickness is very small,  the 
analysis can be simplified by approximating the stresses and strains such 
that Us and Ut are zero, and such a structure can then be termed a ‘thin 
plate’.  

The energies Us and Ut are made zero by assuming that �z , �xz and �z 
are all zero.  (Strictly speaking, it is not necessary that both �z and �z be 
zero to make Ut zero; further, the transverse shear stress �xz , though 
directly proportional to  �xz , cannot be neglected as its presence is 
required to satisfy the z-direction equilibrium for any element cut out of 
the transversely loaded plate.  These will be discussed at length in 
Chapter 3). This assumption, that the transverse shear strain, the 
transverse normal strain and the corresponding normal stress are all 
negligible,  forms the basis for the development of the classical  plate 
theory as detailed out in the next chapter. 
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SUMMARY 

After a brief outline of the theory of elasticity, the problem 

of a simply supported rectangular strip under sinusoidally 

distributed transverse load has been solved rigorously.  

The strain energies corresponding to bending, transverse 

shear and transverse normal stretch/contraction have been 

compared.  It has been shown for the case of a thin plate 

that the bending strain energy is predominant, and, in 

comparison with it, the other two energies tend to be 

negligibly small.  On this basis, the neglect of the 

transverse shear strain, the transverse normal strain and 

the transverse normal stress, has been identified as the 

main hypothesis for the development of the classical plate 

theory. 

 

CONCEPTUAL QUESTION 

Refer to a book on Theory of Elasticity, and find out 
about the following: 

  (a) the principle of complementary shear; 

  (b) how � and G can be expressed in terms of  E and 
	 ; 

  (c) the two-dimensional case known as plane stress; 

  (d) the strain energy of deformation for a general 
state of stress. 


