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 The evolution of the secure proxy is a refl ection of the evolution of the web. The
proxy began as a gateway that bridged content that was processed and managed
by various information systems, and served that content to the open web dur-
ing the early days of Internet web construction. The term   web proxy server   was
given to this general intermediary to refl ect its main duty at the time, namely,
translating web requests from the Internet to representations that could be
understood and fulfi lled by different internal systems, and vice versa. 

 The web has evolved, expanded, and fl ourished from a content‐centric,
information‐sharing system into an elaborate ecosystem for commerce, an accul-
turation establishment for Millennials, and a foundation for modern‐day cloud
computing. The web browser has become the instrument that unlocks all of the
wealth the web offers. The fundamental web protocols and technology, such as
HTTP, SSL, HTML, XML, Java, and JavaScript, have been amalgamated into a
complex conduit, which faces relentless assaults from nefarious forces that try
to subvert it for profi t. However, private intellectual properties and confi dential
data hosted in private and protected networks are accessible through a browser
over secure connections across the Internet. The web has also been adopted as a
system of portals for managing critical infrastructures at municipal, state, and
national levels. Consequently, the user and the browser have become attack
vectors for breaching corporate as well as national security.

 The web proxy has evolved from a content gateway into an essential security
gateway that focuses on users, applications, and content. The security proxy
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differs from a generic web proxy in that the secure proxy can interpret and
intercept more application protocols than just HTTP. Secure proxies, especially
when deployed in enterprise environments, serve as both protectors and enablers
so that their user community can benefi t from the web while minimizing the
risk of being victimized by malware delivery networks.   

 Security Must Protect and Empower Users

 The rise of the Internet becoming the foundation of the new era in commerce,
culture, communication, education, entertainment, and technology was inva-
sive, with profound impact on our social behaviors. It is now ubiquitous and is
an indispensable element of both professional and personal life. At the time of 
the Internet boom, even long before the advent of mobile computing, the line
between work hours and personal time was indistinguishable. With the intro-
duction and rapid adoption of smart phones and tablet computing, there is no
longer a distinction between a personal and a work‐related computing device.
This situation is particularly true for employees who travel a great deal as part
of their job functions. For this mobile workforce, a regular laptop computer is
typically installed with both personal software and work‐related applications.
They work wherever and whenever they can while roaming through airports
and hotels. The expansion of both the Internet and affordable residential broad-
band networks has enabled many employees to work from home. Similar to
the mobile workforce, the home computer serves as both a personal entertain-
ment and productivity platform and a professional instrument that performs
corporate-related job functions. Both computing paradigms raise a dilemma: a
well‐formed physical perimeter that isolates and guards the enterprise network
with traditional IT governance is nonexistent. This lack of separation of personal,
private information from corporate intellectual property and data on the same
storage device can be a liability for both the employee and the employer.  

 The Birth of Shadow IT

 Business applications are migrating from locally hosted solutions within the
enterprise to a cloud‐hosted collaborative model. This transition means enterprise
users are accessing business‐critical applications through their web browser,
over the standard web protocols, using a diverse range of computing devices that
may not be owned or managed by the enterprise. Consequently, the traditional
security practice of the allow‐or‐deny‐all approach is inadequate in managing
today’s complex web‐oriented computing paradigm.

 In today’s enterprises, users demand the ability to choose from a vast number
of applications that they can utilize to maximize their productivity when per-
forming their duties, while at the same time leveraging those same applications
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for personal objectives. Because enterprise IT and network access policies tend to
be restrictive, many user‐chosen applications may not be authorized for use in
an enterprise network due to security risks, such as the type of information the
application gathers and transmits to entities that are external to the enterprise.
The servers that the application communicates with may also be easily compro-
mised by attacks. For example, many organizations prevent users from running
Dropbox for fi le sharing for fear that company‐related confi dential documents
may be leaked as a result of unintentional but careless actions. Another typical
restriction is that users are forbidden from running any application that partici-
pates in a peer‐to‐peer (P2P) network. This prohibition is likely the precipitant
of the Digital Millennium Copyright Act that was signed into law in the United
States in 1998. From an enterprise perspective, any copyright infringing mate-
rial that is stored and that transits the enterprise network presents serious legal
liabilities and ramifi cations. Application software may be produced by various
publishers that range from large commercial vendors to independent software
developers. An enterprise may exclude an application from its permissible list
based on the publisher and its reputation.

 One of the fundamental evolutions that have taken place in the enterprise IT
environment is the emergence and growth of shadow IT  . Employees’ desire to TT
circumvent IT restrictions led to the use of shadow IT. In the previous example,
if Dropbox were blocked by IT policies, then employees would fi nd alternative
mechanisms and tools to share fi les, thus resulting in shadow IT usage. Consider
the following example: sales engineers (SEs) travel constantly, and they need
to share fi les with other SEs, employees, and their customers. E‐mail systems
implement fi le size limits such that large fi les cannot be transferred over e‐mail.
Because Dropbox has been blocked, these SEs may experiment exhaustively
with Box.com, Wuala.com, Google Docs, Google Drive, TeamDrive, SugarSync,
OneDrive, CloudMe, or Amazon Cloud Drive until they fi nd a solution that is
capable of penetrating the IT security net.

 Internet of Things and Connected Consumer Appliances

 The   Internet of Things   (IoT) refers to uniquely identifi able embedded devices 
that are networked, which are reachable and manageable through the Internet
infrastructure. These embedded devices have proliferated and matured beyond
just smart sensors to more intelligent applications such as smart building and
home automation systems. Google’s $3.2 billion acquisition of Nest in January
2014, followed by Samsung’s acquisition of SmartThings in August 2014, offers a
glimpse into market developments that are shaping the future of the IoT. Much
of this IoT can now be accessed and controlled through applications on popular
mobile devices such as the Apple iPhone and iPad and Google’s Android‐based
gadgets. For example, a homeowner can use the ADT Pulse app on their iPad
to activate or deactivate their ADT home alarm system, check motion sensors,
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and watch live video feeds from various video cameras that have been installed
in their home. The Tesla Model S iPhone app allows a car owner to track their
car’s location or start and stop electrical charging of the vehicle.

 The IoT has met little resistance as it has gradually become engrained
into our daily lives, in what appears to be almost a seamless integration,
because convenience and ease‐of‐use have replaced security at center stage.
Securing the IoT is a complex problem. Two main aspects of defense include
protecting the IoT device and securing the access channel. The access chan-
nel includes the communication between the device and its peer (commonly
known as   machine‐to‐machine communications   [M2M]), and the communication 
between the device and its operator. Because it is embedded, the IoT device has
limited computing power and resources, which limits the device’s ability to
run sophisticated software such as a virus scanner. Such an embedded device
is typically powered by either a custom operating system (OS) or a special
variant of a known OS. An embedded OS generally lacks security software
that is commonly found in a desktop OS, for example, antivirus software. At
the time of this writing, the popular Apple iOS has been on the market for
over seven years, yet antivirus software for the iPhone and iPad is limited
in both variety and functionality; more importantly, such antivirus software
is rarely installed by iOS users. Considering the iPhone is by defi nition an
embedded device, the prospect of antivirus and anti‐malware software fi nd-
ing its way into the iPhone as a standard application seems impossible, at
least for the next few years.

 Running an embedded OS implies that software patches that fi x security
vulnerabilities may not be released at a regular interval, if such a practice exists
at all. Even when such a fi rmware patch mechanism exists, in most cases the
patch process relies on the user to be diligent in exercising security practices,
and such a demand on the general population is simply unrealistic. Therefore,
these factors indicate that IoT devices can become popular attack targets and
can be compromised with relative ease. Once such an IoT device is hacked, user
information may be retrieved and the device can in fact cause physical harm to
its owner; for example, a hacker shutting off a smoke detector during a house
fi re can cause physical injury or damage. These IoT devices can also be turned
into zombies and become part of a large botnet, which can be commandeered
into participating in a planned distributed denial‐of‐service (DDoS) attack
against another target. 

 Other types of consumer electronic appliances, such as the Sony PlayStation 4
(PS4) and Internet‐ready HDTVs, are network‐capable and face security threats
similar to those faced by IoT devices. An Internet‐ready HDTV may not allow
its owner to browse and surf the web; however, it permits its owner to log in
to Facebook and update their Facebook status through the built‐in application.
The Facebook account information could be stolen if the Internet‐ready HDTV
is hacked. The Sony PlayStation owner can purchase games at the PlayStation
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Store. The PlayStation Network user account information includes the account
holder’s birthday and contains a stored credit card number. The user credential
to log in to the PlayStation Network to play multi‐player online games can be
stolen by an attacker who has compromised the PS4, thus putting the account
holder’s privacy at great risk.    

 Conventional Security Solutions 

 The security posture   of an organization refers to the role security plays in the
organization’s business planning and its business operation. The security posture
encompasses the design and implementation of a well‐defi ned security plan.
The security plan is comprised of technical solutions including technology
in terms of software, hardware, and services that can be implemented at end
points and within the network. The security plan also includes non‐technical
aspects: employee education on the importance of security as an essential ele-
ment of business operations; a defi nition of policies on employee conduct and
behavior that conforms to corporate security governance; a defi nition of poli-
cies for achieving regulatory compliance; and a defi nition of procedures and
guidelines on responding to security incidents, both internally and externally.

 In essence, the security posture refers to how an organization views security:
as a business enabler or as a hindrance and an inconvenience to its operational
effi ciency. An organization’s security posture dictates its practices of security
and determines the effectiveness of its security implementation. In today’s
information age, the availability and timely accessibility of information are
important keys to an enterprise’s success. Enterprises strive to foster innovation
by harnessing the wealth of information capital available on the Internet, while
at the same time maintaining an energized and engaged workforce. 

 Security should afford users the freedom to explore and harvest the riches
of the Internet, and alleviate the fear of becoming victims of cyber threats.
Existing threats change and new ones emerge as the web evolves; therefore,
security postures cannot remain static for long and need regular assessment.
It is essential to have an in‐depth knowledge of available security solutions,
and an understanding of the strengths and the weaknesses of each solution in
order to perform assessments such as vulnerability testing, penetration testing,
and standards‐based auditing. Understanding security technologies is the key
to implementing the layered defense that is now mandatory in securing users
and enterprise networks.

 Traditional Firewalls: What Are Their Main Defi ciencies? 

 The fi rewall, the most commonly known and referenced security device,
was once the motif of security‐related conversations and continues to be an
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essential element of any network security design. The traditional fi rewall is
still the fi rst line of defense. However, the growing body of threats have long
surpassed the capabilities of the traditional fi rewall. The security landscape
is now cluttered with acronyms such as unifi ed threat management (UTM),
deep packet inspection (DPI), intrusion detection system (IDS), intrusion
prevention system (IPS), secure web gateway (SWG), web application fi rewall
(WAF), next‐generation fi rewall (NGFW), application intelligence and control
(AIC), and many more. These acronyms create the perception that perhaps
the security threats are largely under control, yet in reality, adroit, menacing
malware crafters fl ourish in the shadows, and security battles rage on with
growing ferocity and intensity. The various technologies that are behind the
acronyms add confusion and inundate the security implementers with over-
lapping solutions. These overlapping solutions obscure the defi ciencies in
the core technologies, and this lack of clarity results in the construction and
deployment of inadequate defenses.

 The defi ciencies of the traditional fi rewall lie in its inability to examine the
packet payload, especially when content is encrypted. The traditional fi rewall
examines layer‐2 (L2) to layer‐4 (L4) packet header information, such as source
and destination IP addresses, L4 protocol type, and L4 source and destination port
information, as depicted in Figure   1-1   . A fi rewall rule can be written to compare
any header fi eld or bits against any specifi c values and can defi ne instructions
for the fi rewall to apply one or more actions accordingly. For example, a fi rewall
rule can state, “If an incoming packet is a TCP connection initiation frame (i.e.,
the TCP header contains the SYN fl ag bit), then transmit a TCP RESET frame
back to the sender.” Basically, this fi rewall rule blocks all incoming TCP con-
nection requests. 

 Here is another example of a fi rewall policy: “If the source IP address is
10.9.44.108, the protocol is TCP, and the destination port is 6881, then discard
the packet.” TCP port 6881 is commonly used by the BitTorrent program for
P2P traffi c. Enterprise fi rewalls block this port to prevent employees from
downloading questionable content and consuming valuable network band-
width. This fi rewall policy can be problematic in actual deployment. First, the
popularity of BitTorrent has enabled its adoption by various organizations for
legitimate use, for example, by communities that distribute open source soft-
ware releases. In such cases, blocking TCP traffi c on port 6881 would preclude
users from permissible use of BitTorrent and, in some cases, would interrupt
the only distribution channel for a specifi c open source project. Therefore,
the content of a specifi c BitTorrent session, instead of simply the destina-
tion port, should determine whether such a session is permitted. However,
a traditional fi rewall does not have the ability to perform content analysis.
Second, BitTorrent uses port 6881 when the port is available; otherwise, port
6882 and subsequent ports are tried until an unused port is found. As such,
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port 6881 can be occupied by traffi c belonging to an admissible application.
The fi rewall cannot determine which application originated the traffi c to port
6881. Consequently, simply blocking port 6881 could disrupt a permissible
application from its normal operation. Figure   1-2    illustrates the port‐sharing
dilemma that confuses a fi rewall.

 Figure   1-1:   TCP/IP Headers for Firewall Processing
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 This example depicts a serious defi ciency in a fi rewall, where it cannot block
a malicious application that runs over a non‐default port. Consider another
example where a fi rewall permits outbound HTTP traffi c: traffi c destined to
TCP port 80 is permissible because otherwise users will not be able to access
any websites on the Internet. Malware writers have common knowledge of 
well‐known destination ports that are allowed by fi rewalls. They create their
malware to transmit on these ports to circumvent the fi rewall because they
know the fi rewall is incapable of distinguishing HTTP traffi c from non‐HTTP
traffi c just by examining the packet headers. This example exposes another
serious defi ciency in the fi rewall: it cannot block a malicious application that
transmits over allowed well‐known ports. We can make another observation
in Figure   1-2  , that malware can perform port hopping to discover “holes” in
the fi rewall. The malware can transmit in the dynamic port range, beginning
with a high‐value port, and increment the port number by 1 until it successfully
receives a response from its intended peer. 
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 Figure   1-2  :   Port Overloading
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 Every packet that passes through a fi rewall will match at least one fi rewall
rule. The fi rewall understands the connection concept, whether it is a TCP con-
nection or a UDP connection. A common fi rewall feature is that it keeps stateful
information on TCP connections and UDP sessions. This stateful information
cache, known as the   state table  , reduces the fi rewall workload and increasese
fi rewall scalability. For example, when the fi rst packet of a TCP connection
is seen by the fi rewall (in this case a TCP SYN packet), the fi rewall executes
its rules against this TCP SYN packet, which results in a fi rewall action. This
resulting action and the TCP connection information (connection 4‐tuple and
the TCP header) is then stored into the state table. Figure   1-3    shows an example
of a fi rewall state table.

 Figure   1-3:   Firewall State Table
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 Instead of running through all of the rules repeatedly on the subsequent
packets from that same TCP connection, the fi rewall can consult the state table
directly and obtain the action quickly. This is the reason why the fi rewall is also
known as the   stateful packet inspection   (or simply stateful inspection) fi rewall.
Examples of fi rewall actions include allowing traffi c to pass, denying traffi c
by silently dropping the packets, denying a TCP connection by generating a
TCP RESET protocol packet, and generating connection logs. Each entry in the
state table contains minimal information that represents a connection. Packets
belonging to connections that are permitted by the fi rewall transit the fi rewall
unmodifi ed. In practice the fi rewall updates its state table entries using only
information from the packet headers.   

 Firewall with DPI: A Better Solution? 

 A new breed of fi rewalls—let us call them the second‐generation fi rewall
(SGFW)—incorporated DPI technology to address the problem of identifying
what application generated the traffi c in question. With DPI, the packet payload
is scanned for specifi c known patterns, also known as   signatures  , which can
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potentially identify applications. We say potentially identify because of the
challenges of application identifi cation using static patterns, which is a topic
we cover in Chapter   7  . These SGFWs enable administrators to specify and
enforce policies that are based on application names and types, more than just
IP addresses and port numbers. In addition, by integrating user authentication
information that provides mapping between a user and a specifi c IP address,
some of these SGFWs extend the policy coverage to enforce policies that are
defi ned around individual users.

 When an SGFW performs DPI to scan a fl ow for an application signature,
as Chapter   7   covers, multiple packets may have passed through the fi rewall
before an identifi cation can be made. These leaked packets may have already
provided the black hats with useful information to further their attacks. Because
DPI relies on pattern matching, prevalent in the form of regular expression
matching, the operation is computationally intensive. The performance impact
of DPI on fi rewall throughput determines how much content is scanned on
a per‐packet basis and how much stateful data is kept for correlation when
conducting analytics. As such, fi rewalls with a DPI engine obtain scalability
through a hardware‐based regex processor that typically increases the cost of 
the overall solution. Firewalls in general had become commoditized in the late
1990s. The cost factor determined whether a fi rewall had a built‐in DPI engine
and what capabilities that DPI engine offered. 

 There are many issues that render DPI ineffective. First, DPI does not work
on an encrypted payload. An encrypted payload is indistinguishable from
random byte streams and thus cannot match any known patterns. Other data
obfuscation techniques, such as compression, encoding, and tunneling, can
achieve the same effectiveness in defeating DPI.

 Second, fi rewalls with DPI engines cannot modify the content even when
malicious content has been identifi ed: entire packets must be discarded that
will impact the overall sessions. Here is the reason why: as Figure   1-1   illustrates,
the fi rewall rules are formulated against the fi elds from the layer‐3 and layer‐4
headers, in this example, from the IP header and TCP header. Any alteration
made to the packet can cause a TCP checksum error, unless the TCP check-
sum is recomputed by the fi rewall. Because TCP checksum covers all of the
payload data, re‐computing the TCP checksum is an expensive operation. The
fi rewall may need to perform packet reassembly due to IP layer fragmentation,
thus incurring additional processing overhead. Revising the TCP checksum is
insuffi cient and will not work in cases where, for example, an Internet protocol
security authentication header (IPSec AH) is employed to verify end‐to‐end
message integrity; in other words, any modifi cation of the original message
by intermediate systems, in this case the fi rewall, would fail the AH integrity
check at the fi nal destination. 

 Although an SGFW can provide better visibility by recognizing certain unen-
crypted applications by means of DPI, its enforceable actions are still as limited as
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the traditional fi rewall. This coarse protection method can impede the usability
of other defensive systems against sophisticated attacks.

 IDS/IPS and Firewall

 A fi rewall is the fi rst line of defense, but it has limited visibility into the content
while it makes traffi c‐fi ltering decisions. Because a fi rewall is commonly deployed
at the ingress and egress points of a network, all traffi c paths will converge and
traverse through the fi rewall. Therefore, the performance and scalability of a
fi rewall affects the network as a whole. For this reason, although some fi rewalls
may incorporate a DPI engine, a fi rewall is designed to execute a limited set of 
actions against each packet, even when hardware acceleration is activated in
the fi rewall. When an attack circumvents the fi rewall, an IDS extends the secu-
rity coverage by inspecting the network and the end systems for evidence that
corroborates whether some network events and security alerts were instigated
by attacks or malicious infi ltrations. An IDS generates alarms and reports to
network management systems upon detecting abnormal or suspicious traffi c.

 An IDS examines packets for signatures that are associated with known
viruses, malware, and other malicious traffi c. In addition to pattern scanning
within the packets, an IDS analyzes overall traffi c patterns to detect anomalies
and known attacks. Some examples of known attacks are denial‐of‐service
(DoS), port scanners that search for vulnerable network services, buffer overfl ow
exploits, and self‐propagating worms. Examples of anomalies include malformed
protocol packets and traffi c patterns that deviate from the norm. An IDS is
divided into two main categories: a network‐based intrusion detection system
(NIDS) and a host‐based intrusion detection system (HIDS). NIDS and HIDS
differ in where the IDS is deployed, which consequently dictates the types of 
data collected and analyzed by that specifi c type of IDS. Figure   1-4    illustrates
an example deployment of IDS systems behind a fi rewall.

 As shown in Figure   1-4  , the NIDS is deployed inside the organization’s inter-
nal networks, behind the fi rewall. A NIDS monitors the activities of the entire
network and examines both intranet traffi c and Internet‐bound traffi c. On the
other hand, the fi rewall concentrates on traffi c that fl ows into and out of the
internal network to the Internet. 

 The traditional NIDS scans packets against a database of signatures of known
attacks. Similar to the open source IDS tool Snort, each signature in the data
is often implemented as a matching rule. This   signature‐based IDS   runs the 
packets through these matching rules or signatures to detect attacks. Another
approach is the   statistical‐based   or anomaly‐based NIDS, which is also known as the S
behavior‐based NIDS  . With a statistical‐based NIDS, a profi le of the network underS
protection is built over time, based on evolving historical data, which represents
the norm of the network. Some examples of data collected and compiled into a
profi le that represents the network operating under normal conditions include
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the following: the number of new applications that are discovered per day on the
network and the average traffi c volume generated by each type of application;
the average number of DNS queries transmitted from a specifi c IP address at a
given time interval; the average overall aggregate throughput of the network; and
the average number of HTTP transactions issued per minute from a specifi c IP
address. Any deviation observed by the NIDS may be interpreted as anomalies or
misuse that instigates responses as defi ned by corresponding security directives.
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 Figure   1-4:   IDS and Firewall
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 The key to the success of a signature‐based NIDS is the richness in the collec-
tion of the attack signatures. Identifying a unique and effective signature for a
new attack, especially a complex attack, takes time to develop and evolve. As new
attacks propagate across the networks and infrastructures, the signature‐based
NIDS is incapable of detecting these attacks while the new signatures are being
implemented. The success of the statistical‐based NIDS depends on the knowledge
or heuristics of the network characteristics that are considered as normal and
serve as the baseline. Establishing the boundaries of normal network behavior
is challenging as the network fosters a wide range of protocols and applications
and hosts a user base with a diverse spectrum of online behaviors that can trigger
sporadic traffi c patterns. A statistical‐based NIDS can be effective against new
attacks because new attacks can incite network behaviors that alarm the NIDS.

 A host‐based IDS (HIDS) is purposefully built, either for an operating system
or for a specifi c application, and operates in individual end systems. The HIDS
analyzes the operating system process identifi er (PID), system calls, service
listeners, I/O and fi le system operations, specifi c application runtime behavior,
and system and application logs to identify evidence of an attack.

 Firewalls are called active protection systems because a fi rewall is in the path
of all traffi c, known as inline deployment. This enables the fi rewall to examine
live traffi c, and when the fi rewall identifi es an attack, it is capable of blocking
that attack while it is in progress. In other words, upon detection, a fi rewall can
prevent malicious traffi c from reaching a targeted system. 

 Intrusion detection systems can be categorized as passive protection systems
because an IDS is typically connected to a SPAN (Switched Port Analyzer)
port on a network switch or to a network tap that duplicates packets for an
entire link. While an IDS can also examine every packet, however, the packets
under analysis have successfully passed through a fi rewall and cannot be
fi ltered by the IDS; those packets may also have already reached the intended
targets and enacted malicious activities. In other words, an IDS identifi es an
attack that may have already taken place, at which point the IDS begins to
remediate the damage by executing countermeasures, for example, sending
alerts and notifi cations to monitoring and management systems. The passive
traffi c‐processing nature of an IDS implies the performance of an IDS does not
have any impact on active live traffi c. As such, an IDS can perform much more
in‐depth analysis, and correlate more data sets, than a fi rewall. A fi rewall fulfi lls
a security role that prevents the fi rewall from being a replacement for an IDS.

 DPI is also an integral part of the IDS. Using the open source Snort software,
here is an example of a rule created by the Sourcefi re Vulnerability Research
Team. The rule scans for the signature of the Flashpack/Safe/CritX exploit kit
that attempts to download a malicious fi le as part of the attack:    

 alert tcp $EXTERNAL_NET $HTTP_PORTS -> $HOME_NET any (msg:"EXPLOIT-KIT
 Flashpack/Safe/CritX exploit kit jar file download";
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 flow:to_client,established; file_data; content:"filename="; http_header; 
 content:".jar"; within:4; distance:24;
  pcre:"/filename\=[a‐z0‐9]{24}\.jar/H";
 metadata:policy balanced-ips drop, policy security-ips drop, 
   service http; 
 reference:url, 
   www.malwaresigs.com/2013/06/06/flashpack-exploit-kit-safepack/;
 classtype:trojan-activity; sid:26892; rev:2;)    

 This example illustrates that as the IDS scans for attack signatures, it suf-
fers from the same inherent defi ciencies in the DPI engines as those found in
the fi rewall. Evasion techniques that are used against DPI engines are also
effective in defeating the signature‐based IDS engines. In this example, the
code in bold face is a Perl Compatible Regular Expression (PCRE). The ques-
tion is, what if the exploit kit uses HTTPS to download the payload, resulting
in the payload being protected by the SSL encryption so that this rule cannot
be applied at all?

 Unlike the passive network monitoring of an IDS, an IPS takes the active role
of performing mitigation actions in real‐time once attacks are detected. An IPS
possesses all of the capabilities of an IDS, but an IPS is deployed physically
inline in the network, which enables the IPS to drop attack packets, reset TCP
connections, or activate fi lters to block the source of the attack. An IPS can per-
form other functions such as confi guring dynamic policies in security devices,
such as a fi rewall, to interrupt the malevolent maneuvering and prevent further
damage to the network.   

 Unifi ed Threat Management and Next‐Generation Firewall

 The most signifi cant limitations of the traditional fi rewall are its inability to
perform payload inspection and to distinguish applications. The concept of 
Unifi ed Threat Management (UTM) gained visibility and momentum in 2004
to address the security gaps in fi rewalls, and to offer a solution for the lack
of unifi ed policy management across the various security control technology
products commonly deployed together in an enterprise network. The UTM
strategy is to combine multiple security features such as a fi rewall, NIDS, IPS,
gateway‐based antivirus, and content fi ltering into a single platform or appli-
ance to offer multiple layers of security protection with simplifi ed management
and ease of policy implementation. The security posture continued to increase
its focus on users and their applications, as the transformation in UTM took
place in parallel. 

 Then, Gartner Inc., an information technology research and advisory com-
pany, claimed to be the fi rst to defi ne the   Next‐Generation Firewall (NGFW). In its)
NGFW defi nition, the three key attributes of an NGFW are its ability to detect
application‐specifi c attacks, to enforce application‐specifi c security policies, and



 Chapter 1 ■ Fundamentals of Secure Proxies   15

c01.indd 15 16/03/2015 4:23 PMPM

to intercept and decrypt SSL traffi c. The NGFW includes all of the capabilities
of the traditional fi rewall and incorporates the full functionality of a signature‐
based IPS. Another key characteristic of the NGFW is its inline deployment as a
bump‐in‐the‐wire. In addition, the NGFW can collaborate with external services
to incorporate additional security‐relevant data and feeds to enhance its enforce-
ment capabilities.

 The NGFW definition has a large overlap with that of the UTM. The
articulated differences have limited technical merits, and the deviations
are largely a result of verbiage manipulation. The NGFW concept seems to
be a desired byproduct of combining the UTM with the unique features of 
the secure proxy. The conceptualization of the NGFW, with such a rich set
of security features, processing network traffic at multi‐gigabit wire speed,
and without any performance degradation, would be the ultimate goal
of security system design architects and developers. However, as we will
illustrate in this book, firewall and proxy are fundamentally incompatible
with respect to the policies each is designed to interpret and to enforce. The
process and method of application classification collides with the operation
of proxy interception. 

 Security Proxy: A Necessary Extension

of the End Point

 A fi rewall, even with UTM, performs primarily syntactical analysis of traffi c
that is largely signature driven and is capable of enforcing security with limited
actions. Without the ability to decrypt content for analysis when encountering
encrypted sessions, a fi rewall is confi ned to simply denying traffi c in environ-
ments with restrictive enforcement policies. In enterprise networks, a legitimate
but encrypted session could be blocked, causing discontinuity in both business
and productivity. A security solution that can decrypt SSL cipher text, then feed
the plain text into other security technologies, is a mandatory step to combat
advanced and fast‐evolving threats.

 The secure proxy was invented long before NGFW was conceptualized. The
demand for the secure proxy in enterprises in the fi nancial sector, defense
industry, and many others has fl ourished since 2002. Even the design for SSL
interception was in full swing at that time. In essence, the secure proxy is the
result of combining a secure web gateway with application proxies, operating
with a complex and expressive policy engine at its core.

 A security proxy  , sometimes referred to as a   yy secure proxy   or simply a proxy unlessy
stated otherwise, performs semantic analysis in the context of individual protocols,
most importantly layer‐5 to layer‐7 application protocols. At the time of this writing,
the majority of proxies have some capability to decrypt SSL traffi c. A proxy is a
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security enforcement companion to a fi rewall, an IDS and IPS, an enterprise‐grade
virus scanning appliance, analytics engines, and many other security solutions.
As illustrated in Figure   1-5   , a proxy is the data hub that feeds decrypted traffi c
to any attached companion system that performs one or more dedicated security
functions. Each companion system requires a different type of input. The proxy
is capable of extracting mail attachments, web URLs, and executable fi les from the
payload and feeding these inputs to its security attachments accordingly.     

 Figure   1-5:    Secure Proxy as a Data Hub
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 A proxy is predominantly deployed inside a fi rewall‐protected network. The
secure proxy performs proxy functions beyond just analyzing the web traffi c.
We defi ne web traffi c as that which is carried over the HTTP or HTTPS proto-
cols. The secure proxy can intercept more protocols than just HTTP. However,
the proxy concept is best illustrated in Figure   1-6    using HTTP as an example.
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 Figure   1-6:   Proxy Concept
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 As shown in Figure   1-6  , the fi rst and most important action a proxy exerts
on a connection is   interception  . Connection interception is achieved through 
connection   termination  . We will use the term   client   to refer to the initiator of the
connection request, and the term server   to refer to the original intended recipient 
of the connection request. In TCP, connection termination involves the proxy
completing the TCP three‐way handshake to establish the connection with the
HTTP client. The next step in the interception process is for the proxy to establish
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another TCP connection with the server. In this example, the original destina-
tion is Google. Once both connections have been established successfully, the
next act of the interception procedure is for the proxy to receive traffi c from one
connection and then inject that traffi c, either unmodifi ed or transformed, into
the other connection. In other words, the proxy splices the traffi c between these
two TCP connections. Unlike a fi rewall, a proxy can modify any packet and
manipulate any content exchanged in these connections. In the example shown
in Figure   1-6  , the proxy detects the presence of adult material in the returned
content and strips away that material as part of the confi gured policy. The sani-
tized content is then transmitted back to the HTTP client. This example illustrates
that a proxy performs intrusive maneuvering of communication exchanges that
are visible to the proxy. The payload obfuscation techniques used to defeat a
fi rewall are proven ineffective against the proxy. Because the proxy terminates
the connection, the proxy will reassemble packets and decode the content type
before subjecting the session to higher‐layer processing.

 A real‐life example of a proxy in action is free WiFi access at airports. When
you connect to a WiFi access point, your computer indicates it is connected
and has obtained an IP address. Yet, without opening a web browser you are
unsuccessful when you try to run any application that needs the Internet. This
is because you have not agreed to the terms and conditions of use. When you
open the browser for the very fi rst time, a legal agreement web page displays,
and you can proceed to use the Internet once you accept that agreement. This
legal agreement page displays as long as you have not accepted that agreement,
regardless of how many times you choose to close and reopen the web browser.
This is called a captive portal  , which impels a user to fulfi ll some action, such l
as responding to user authentication queries. A captive portal is also used by
hotels that offer Internet access, where a web page prompts the user to review
and agree to the charges on fi rst use. A web proxy (or HTTP proxy) is one of 
many techniques and an effective approach in implementing a captive portal.

 Transaction‐Based Processing

 A proxy also keeps state information on the connections it processes, but unlike
a fi rewall, a proxy participates in the connection activities, exchanging packets
as a communicating peer both to the originator of the connection and to the
originally intended destination. As such, there are some notable differences
when comparing the fi rewall state table against the proxy state table, as shown
in Figure   1-7   . Each entry in the fi rewall state table represents a single connection.
As Figure   1-7   illustrates, the proxy must maintain the state information that cor-
relates the two TCP connections with the two corresponding HTTP transactions
as belonging to a single user transaction that was initiated from that specifi c
HTTP client. When the fi rewall processes incoming packets, only the packet
headers are applied when updating connection state information. In the proxy
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case, entire packets are processed and may be stored as part of the transaction
state information. Remember, the proxy must receive traffi c from the client‐side
connection and then transmit that traffi c, either modifi ed or verbatim, to the
server‐side connection, and vice versa.      

 Figure   1-7:   Proxy State Table
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 Some application‐level protocols are carried over UDP. Because UDP is
connectionless, the proxy must have the ability to track when a UDP‐based
transaction begins and ends. Similar to the TCP case, the proxy needs to create
two UDP fl ows and update the state information according to the transaction.
For example, a DNS proxy creates the UDP fl ow entry in its state table when
it processes the DNS query message. The DNS proxy may modify the query
message before sending it onward to the identifi ed DNS server. The proxy
must maintain this DNS transaction until the proxy receives the corresponding
answer message, regardless of how the proxy may have processed the query
content. The DNS proxy may change the time‐to‐live (TTL) of a particular entry
in the DNS answer, or it may remove entries from the answer due to policy
restrictions. The DNS proxy removes the transaction from the state table once
it has transmitted the fi nal DNS response to the client. In this example, the
DNS proxy treats the DNS query and the subsequent response as the complete
DNS transaction.   

 The Proxy Architecture 

 The DNS proxy example illustrates that a proxy must have in‐depth knowl-
edge about a specifi c application protocol and also about its structure and
operational detail in order to perform proper interception. Depending on the
protocol in question, examples of this knowledge may include the following:
whether a centralized directory service is involved in locating a service or
peer; how the connection is established between the communicating peers;



c01c01.indd 20 16/03/2015 4:23 PM

20 Chapter 10 ■ Fundamentals of Secure Proxies 

the type of authentication mechanism employed; the encryption methods
that are available and the negotiation approach; the types of requests and the
associated payloads; the types of responses and the associated payloads; and
how the various content is encoded and transported. For every application
protocol that may exist in an enterprise network, if that application requires
management other than the simple allow‐or‐deny type of enforcement, then
there exists a specifi c proxy designed and built for that application protocol,
performing the necessary interception and processing requests and responses
according to defi ned security policies. 

 A   secure proxy   is an appliance that incorporates various application prox-
ies into a single platform, with the proxies collaborating with one another to
process application traffi c and enforce policies. Figure   1-8    shows the high‐level
architecture of a proxy. As shown in the fi gure, the proxy is comprised of three
main components:

■    The protocol detection and application classifi cation engine (PACE) 

■    Various protocol and application proxies

■    The policy engine

 When the proxy receives a transaction for the fi rst time, the PACE dispatches
traffi c to the proxy according to the default port designation. The PACE fi rst
terminates the connection and then transfers the established connection to a
specifi c proxy. The connection transfer is done through a dispatcher that has
the knowledge of the various well‐known ports and the designated proxies.
As shown in Figure   1-8  , the ports table maps a proxy to a well‐known port.
For example, the DNS proxy is assigned to handle port 54, and the SSH proxy
is assigned to port 22. Because malicious traffi c attempts to evade the fi rewall
by utilizing the well‐known ports, a specifi c proxy must accurately detect if a
given traffi c fl ow is in fact from the protocol that the proxy is built to handle.
For example, port 443 is used by HTTPS sessions. The fi rst set of data packets
exchanged on the established connection must be the SSL handshake traffi c.
Each proxy scans the payload for specifi c known signatures belonging to the
protocol or application in question. In the HTTPS example, when the SSL proxy
accepts the connection from the dispatcher, the SSL proxy expects to receive
the SSL ClientHello  record, which begins with the byte pattern: 0x16 0x03 
0x01 0x02 0x00 0x01 0x00 0x01 0xfc 0x03 0x03 . The SSL proxy redirects the 
transaction back to the PACE to perform further protocol detection if it cannot
interpret the payload as SSL traffi c.

 The keen reader will now oppugn some of the statements just made in the last
paragraph: if a proxy scans the payload for specifi c known signatures, then how
is the proxy different from a fi rewall or IDS system with a built‐in DPI engine?
How can the SSL proxy scan for a predefi ned byte stream in encrypted traffi c?
And how can a proxy scan encrypted content? 
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 The fi rst question, asked differently, is: if the PACE has the ability to classify the
traffi c against specifi c protocols and applications, is the PACE duplicating work
that is performed by the proxies? The answer is that there is no work duplica-
tion, and here is the reason why: The HTTP protocol is an ASCII protocol. The
PACE parses the payload for keywords such as “HTTP/”, “GET”, “Content‐type”,
“Content‐length”, “Accept:”, and “<HTML>”. Together these keywords provide
a high probability that the payload belongs to an HTTP request. Therefore, the
PACE forwards the transaction to the HTTP proxy. Once the HTTP proxy receives
the transaction and encounters the keyword “GET”, it interprets this keyword as
a method and parses the subsequent bytes to look for the parameter (such as a
fi lename) for this method.

 Figure   1-8:   Proxy Architecture
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 The PACE parses the payload and classifi es the traffi c according to the HTTP
protocol syntax  . The HTTP proxy understands the full semantics   of the
HTTP protocol and, as such, can enforce security policies that are written
specifi cally around the HTTP protocol. For example, a policy rule can be 

 Deny if (http.method == GET) and (Host == www.adserver.com) 

    Each proxy has its own nuances. In each proxy, security policies are designed
to operate on specifi c aspects of a protocol. Therefore, as this simple example
demonstrates, the proxy cannot apply any security policies unless it can, as a
fi rst step, accurately detect the application or the protocol in question. As we
will show in more detail, a proxy identifi es an application by specifi c payload
signatures and according to the sequence of events and exchanges that must
take place, combined with the runtime behavior of the application. 

 Application classifi cation and protocol detection may require multiple pack-
ets before reaching the conclusion on what the application or protocol is. Each
enterprise has a different level of stringent policies on how many packets can be
permitted to fl ow through the proxy unrestricted before the proxy interrupts the
fl ow and closes down the transaction. Therefore, the PACE and the specifi c proxy
must work collaboratively to quickly identify the traffi c. If the proxy cannot clas-
sify the protocol, the PACE can choose from two main options when proceeding:
the fi rst option is for the PACE to stop and end the transaction immediately; the
second option is for the PACE to re‐inject the packets received from the initia-
tor connection into the other connection unmodifi ed. In either case, the PACE
may log this transaction for the administrator. A proxy that chooses the second
approach is concerned more with preventing communication disruption than
with strict security enforcement where packet leaks are to be kept to a minimum.

 The policy engine executes in the context of all modules and components
and across all layers between layer 2 and layer 7. The policy engine is covered
in detail in Chapter   3  .

 The SSL messages transmitted at the early stages of the handshake exchange
are not encrypted. These messages contain suffi cient detail for an SSL proxy to
determine if it will perform interception on a specifi c transaction. Other proxies
rely on the SSL proxy to decrypt cipher text and offer these other proxies the
plain text for further analysis and processing.    

 SSL Proxy and Interception

 The remaining discussion in this chapter will focus on the HTTPS proxy because
it depends on the SSL proxy. The SSL proxy is challenging to design, implement,
and deploy not only because of privacy concerns but also because the SSL proxy
performs identity emulation, and it must enforce authentication and the trust
model, which are essential in secure communication. Figure   1-9    illustrates two
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main SSL interception scenarios. As shown in the fi gure, the proxy must mas-
querade as the server when communicating with the client. Similarly, the proxy
must assume the identity of the client when it connects to the server. In essence,
the proxy acts as the man‐in‐the‐middle (MITM), and if the proxy does a good job,
its presence remains undetected throughout its operational lifetime. The proxy
can succeed in interception only if both the client and the server trust the proxy.

 Figure   1-9:   SSL Interception
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 In the fi rst scenario, when the proxy receives the SSL ClientHello  message at
the beginning of the SSL handshake, the proxy forwards this ClientHello  mes-
sage to the server unmodifi ed. When the corresponding  ServerHello  message 
reaches the proxy, the proxy makes the interception decision by applying the
confi gured policies to the  ServerHello  message. At this point the proxy may
modify the  ServerHello  message before transmitting it back to the client. The 
proxy does not modify the ClientHello  message for a good reason. The fi nal SSL
message exchanged between the client and the server is the Finished  message. 
The  Finished  message contains the MD5 digest of all of the handshake messages
combined with the negotiated master secret. If the proxy decides not to intercept
this connection but it has modifi ed any of the handshake messages, such as the
initial  ClientHello  message, then the MD5 digest will fail verifi cation at both the
client and the server ends, resulting in the client and the server failing to complete
the handshake even after the proxy has decided not to intercept that transaction.

 There are several challenges the proxy must consider during its interception of 
SSL traffi c. The client may offer a cipher suite that is not supported by the proxy.
In this case, the proxy must modify the  ClientHello  message to substitute a cipher 
suite that the proxy supports. Other negotiation parameters such as the version,
whether it is TLS 1.1, TLS 1.2, or SSL 3.0, could cause similar incompatibility
issues, and these fi elds may be modifi ed by the proxy en route to the server. For
example, the proxy may replace and substitute a cipher suite it supports in the
ClientHello  message. This case is illustrated in the second scenario in Figure   1-9  . 
In this scenario the proxy fi rst saves a copy of the original ClientHello  message
before making the necessary modifi cations to its content and then transmits the
new ClientHello  message to the server. Then the proxy decides not to intercept
the traffi c after processing the ServerHello  message. Because the ClientHello
message was modifi ed, the proxy must close the server‐side TCP connection. Next,
the proxy reconnects to the server with a new TCP connection and then sends
the saved original ClientHello  message to the server as a new SSL handshake
negotiation. The client is unaware of any of these server‐side activities. When the
proxy forwards the ClientHello  message to the server unmodifi ed, however, the
ServerHello  message indicates the server has chosen a set of parameters that are
not supported by the proxy; in this case the proxy will handle the transaction in
the exact same way as it did in the previously described processing scenario. In
this second scenario, once the SSL handshake completes, the SSL proxy acts as
a packet forwarding system that splices the two connections into a TCP tunnel.
The packets that fl ow across this TCP tunnel are encrypted packets, and the
proxy performs only the packet forwarding action. 

 Interception Strategies

 The second SSL interception scenario alludes to an interesting question: can
SSL interception be accomplished without the TCP termination? There are
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two main SSL interception strategies: one leverages the full TCP connection
termination, while the other relies only on SSL encryption and decryption. The
two SSL interception scenarios presented in Figure   1-9   can be summarized as
the SSL interception strategy illustrated in Figure   1-10   . This SSL interception
strategy offers the most fl exible and intrusive policy‐driven processing of the
content: content insertion, deletion, and transformation are all possible with
this approach. 

 Another SSL interception strategy is depicted in Figure   1-11   . With this inter-
ception strategy, a single TCP connection is established between the client
and server; in other words, the proxy does not terminate the TCP connection.
The proxy has the ability to decrypt and encrypt the content within the SSL
session, but the proxy cannot modify the content and must keep the content
fully intact. Here is the reason why: SSL protects and transmits the data using
a record protocol. The SSL record protocol is similar to the IP fragmentation
and reassembly mechanism, where the data is divided into fragments and each
fragment is independently encrypted and transmitted. On the receiving end,
each encrypted payload is independently decrypted, verifi ed, and reassembled
back into the original data. Any modifi cation applied to any of the SSL records
would alter the original data and may render the data invalid. 

    Figure   1-10:   Type‐I SSL Interception 
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  Unlike the termination‐based interception, the main course of action the proxy
can enforce is to reset that single TCP connection, thus breaking the connectivity
between the two end points. As depicted in Figure   1-11  , the decision to break
the TCP connection can come from a variety of sources. Once the encrypted
payload has been transformed from cipher text into plain text, the SSL proxy
can redirect the plain text to a diverse set of security devices to perform vari-
ous in‐depth content‐centric analysis. For example, as shown in Figure   1-11  , the
content can be sent to a malware scanner fi rst, and if something suspicious is
discovered, the malware scanner returns an indication to the proxy. At that point,
the proxy places the suspicious content into a malware sandbox to detonate the
potential malware and investigate the outcome of the controlled execution. As
soon as the malicious nature of the content is confi rmed and the malware has
been identifi ed, the proxy begins retrospective analysis of the historical data to
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    Figure   1-11:   Type‐II SSL Interception
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discover the earliest exposure to that vulnerability and begins the construction
of countermeasures. In parallel, the proxy shuts down the TCP connection to
prevent further damage. 

 The proxy communicates with the other security devices by utilizing regular
TCP or UDP connections and transmitting the plain text over these standard
communication channels to maximize interoperability, thus eliminating the
need for these devices to make any software modifi cations. 

 Referring back to the proxy architecture illustrated in Figure   1-8  , the concept
of transaction handoff was discussed in the context of application recognition:
the SSL proxy transfers the transaction to another proxy through the PACE
when the transaction operates over a protocol on top of the SSL. Another purpose
for the transaction handoff is when one or more proxies must work collabora-
tively to manage and manipulate a transaction. The transaction handoff concept
is detailed in Figure   1-12   .      

 Figure   1-12:   Transaction Handoff
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 As shown in Figure   1-12  , the HTTPS proxy is conceptually comprised of two
proxies: the SSL proxy and the HTTP proxy. In practice, the HTTP proxy is fully
aware of the SSL processing detail when it handles the HTTPS request. Once
the SSL handshake is complete, the SSL proxy must transfer this transaction
to the HTTP proxy for HTTP‐based proxy operation. Another example is the
stunnel proxy  , which is comprised of the SSL proxy and the TCP tunnel proxy. yy
Therefore, the SSL proxy is typically implemented as a common proxy that
provides services at the SSL layer to other proxies. Based on HTTP‐specifi c
policies, the HTTP proxy may instruct the SSL proxy to initiate certain opera-
tions, for example, performing a   rehandshake  , disallowing session resumption,e
or perhaps requiring client certifi cate authentication in future transactions with
a specifi c client.
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 Certifi cates and Keys

 One of the SSL design goals is to facilitate server authentication. For example,
if you are making an online purchase at Amazon, your web browser must
ascertain whether it is indeed communicating with an Amazon server before
transmitting your credit card information to that server. An X.509 certifi cate
binds a public key to a specifi c entity. A trusted third party, the certifi cate 
authority   (CA), verifi es the identity of the entity that owns the certifi cate and 
ensures the entity possesses the corresponding private key. At the completion
of successful validation, the CA signs the certifi cate with its digital signature
as proof of the certifi cate’s authenticity. A CA‐signed certifi cate guarantees
the public key contained in the certifi cate belongs to the entity as claimed
in that certifi cate. The CA’s digital signature can be verifi ed using the CA’s
public key.

 The fact that an SSL proxy can perform traffi c decryption and re‐encryption
after transaction interception implies that the SSL proxy possesses the server’s
private key if server authentication is mandatory. In practice and in the major-
ity of cases, the SSL proxy will not have the server’s private key. Can you
imagine the SSL proxy having private keys from Google, Amazon, Facebook,
Netfl ix, or any other commercial websites? Figure   1-13    illustrates how the SSL
proxy achieves the keying mechanism necessary to perform decryption on
intercepted traffi c. 

      As shown in Figure   1-13  , when the proxy receives the server certifi cate in
Step 4, it modifi es the certifi cate before sending it to the client. The proxy
changes the certifi cate   issuer   to be the proxy itself. Because each certifi cate
has a pair of keys—one public and one private—associated with it, the proxy
replaces the original server’s public key with its own public key. After mak-
ing all of the necessary changes to the server certifi cate, the proxy signs the
modifi ed certifi cate using the private key of a preinstalled CA certifi cate and
then replaces the signature   fi eld with the new signature value. The proxy 
transmits this newly transformed certifi cate to the client. How does the cli-
ent respond when it receives this certifi cate from the proxy and begins server
authentication?

 The server certifi cate verifi cation will complete successfully and unevent-
fully if the proxy is a legitimate intermediate CA holding certifi cate signing
authority, and it is a part of a certifi cate chain that terminates at a client‐trusted
root CA. However, in most deployment situations the proxy will not have cer-
tifi cate signing authority. In this case, the client will neither trust nor accept
the certifi cate fabricated by the proxy without user intervention. The common
visual indication of a problematic certifi cate is a web browser pop‐up window,
similar to the one shown in Figure   1-14   . In this example a proxy is deployed
between the client and the Internet. When the user tries to access the Google
website, the proxy modifi es the Google certifi cate, subsequently triggering
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      In the enterprise environment, such a browser pop‐up window is a good
indication that a corporate proxy is present in the network, which enforces the
corporate use policy. Outside the corporate network, such an alert triggered by
a non‐verifi able certifi cate is strong evidence that a MITM attack may be taking
place somewhere in the infrastructure.

 SSL interception is confronted with another challenge when secure servers
require client authentication. Client authentication may be necessary in situ-
ations where the client is granted access to restricted or highly confi dential
resources and services, such as military systems, only after the client authenticates

Figure   1-13:   Server Certificate Modification
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the browser pop‐up window at the client end. As shown in Figure   1-14  , the
browser pop‐up window states the server certifi cate cannot be verifi ed as the
reason for user notifi cation. 
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 Installing an individual client certifi cate in the proxy so that the proxy can
offer the right client certifi cate upon request by the server is a possible solution
in enterprise networks. However, such a solution is neither scalable nor practi-
cal in any organization with a large number of users. One approach to solving
the scalability problem is using a technique called client certifi cate emulation. 
Figure   1-15    illustrates an example of such a practice. 

 Figure   1-14:   Browser Issued Warning about Proxy’s Certificate

successfully. The client certifi cate must be issued by an externally known and
trusted CA. Client authentication is controlled by the server. The server that
demands client authentication sends a certifi cate request to the client during
the SSL handshake process. 
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      The Common Access Card (CAC) serves as standard identifi cation for mili-
tary and DoD personnel. The CAC is a smart card that uniquely identifi es an
individual with that individual’s private key embedded in it. In the fi ctitious
scenario depicted in Figure   1-15  , the same trusted CA is installed in the proxy
and in the servers, and the proxy is given intermediate signing authority by
this trusted CA. Once the proxy authenticates an individual, the proxy gener-
ates a certifi cate (possibly with a limited lifetime) that identifi es this specifi c
individual and the associated key pair and signs this certifi cate. When the
server demands client authentication for that individual, the proxy offers the
generated certifi cate to the server. The server can verify this certifi cate because
the proxy has the signing authority issued by a CA that is also trusted by
the server. As shown in Figure   1-15  , instead of a single trusted CA, the proxy
could install three different trusted CAs, one for the Air Force server, one for
the Army server, and one for the Navy server. These CAs are trusted by each
server, respectively.

 Figure   1-15:   Client Certificate Emulation
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 In the non‐termination–based SSL interception strategy, as depicted in
Figure   1-11  , the proxy must examine the SSL handshake exchange and modify
the server certifi cate similar to the termination‐based interception. The proxy
transmits the modifi ed server certifi cate to the client and uses that modifi ed
certifi cate along with its own key pairs to negotiate a master secret with the
client. This master secret is used for traffi c encryption and decryption between
the client and the proxy. The proxy exchanges the master secret with the server
using the server’s original certifi cate. This master secret is used by the proxy to
re‐encrypt the decrypted client content and then transmit that newly encrypted
traffi c to the server. 

 With both interception strategies, if the server’s private keys are installed in
the proxy, then the proxy can avoid modifying the server certifi cate completely.
In that case, the proxy has full capability to decrypt any content transmitted to
the server using the server’s private key.

 Certifi cate Pinning and OCSP Stapling 

 Certifi cate pinning is a solution that attempts to solve a MITM attack when an
entity tries to communicate with a peer securely using SSL, but the attacker
assumes the identity of the peer by intercepting the certifi cate validation process
using a rogue but valid certifi cate that masquerades as the peer.

 How can a rogue but valid certifi cate be created in the fi rst place? Such an
attack was fi rst made possible due to the fact there were still CAs that used the
MD5 cryptographic hash function to generate certifi cate signatures. The MD5
hash function has known collision vulnerabilities that were discovered back
in 1993; in a nutshell, it means that two different inputs to the same MD5 hash
function can produce the same exact hash output. In 2005 researchers dem-
onstrated a practical method to craft a pair of X.509 certifi cates, each having a
different public key, to result in the same computed MD5 digest. The collision
vulnerability attack against MD5 demonstrates that similar attacks could be
made against other cryptographic hash functions, such as SHA‐1, that are in
use by CAs. Once an intermediate rogue CA certifi cate with certifi cate signing
authority can be constructed, such a rogue CA certifi cate could be used to sign
any fabricated certifi cate bearing the identity of any entity.

 In recent years, there have been known incidents where CAs have issued ques-
tionable intermediate or subordinate root certifi cates. For example, in early 2012
Trustwave revoked a subordinate root certifi cate it issued to an unnamed company,
which enabled that company to forge and issue unlimited certifi cates claiming the
identities of any server or organization. The subordinate root certifi cate and the
forged certifi cates it generated were all stored inside a hardware security module
(HSM), and that specifi c certifi cate was issued for that company’s internal use; how-
ever, such a certifi cate could have been misused, which warranted the revocation.
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 Another venue for attackers to gain access to rogue certifi cates is by breach-
ing a CA and then obtaining rogue certifi cates through that CA. In late 2011
DigiNotar, a Dutch CA, was hacked and its certifi cate issuing servers were
compromised by the hackers. Through DigiNotar, the hackers issued rogue
certifi cates as well as signing rogue certifi cates. The breach came to light only
after a third party made a public disclosure, and rogue certifi cates continued
in circulation after the discovery and after DigiNotar claimed to have revoked
all such rogue certifi cates.

 With certifi cate pinning, the peer’s certifi cate is included in the application
when the application is built. For example, Google pins its certifi cates in its
Chrome web browser, and when users download the Chrome browser, the Google
certifi cates are already embedded inside the executable fi le. A peer’s certifi cate
can be manually inserted into a trusted certifi cate list after that certifi cate has
been obtained through a secure and trusted channel. Certifi cate pinning elimi-
nates the need to validate a certifi cate at runtime, during the secure connection
establishment phase. Because the public key is the most important element of 
the certifi cate, pinning the public key instead of the certifi cate is another viable
solution. There are no known workable solutions for an intercepting proxy to
circumvent the certifi cate pinning mechanism other than holding the actual
pinned certifi cate at the proxy.

 A related identity validation concept is Online Certifi cate Status Protocol
(OCSP) stapling, formally known as the Certifi cate Status Request TLS feature
extension. OCSP stapling places the burden of identity verifi cation on the peer,
who must include an OCSP‐signed and time‐stamped response proving its
certifi cate is valid during the TLS or SSL handshake. OCSP stapling also chal-
lenges the proxy’s ability to perform transparent interception.   

 SSL Interception and Privacy 

 Privacy laws differ from country to country and region to region. Therefore, a
proxy must sometimes obtain explicit consent from a user before intercepting
any user traffi c. When the proxy has intermediate certifi cate signing authority
issued by a trusted root CA, any modifi ed server certifi cate will not trigger
a browser pop‐up warning message because this modifi ed certifi cate can be
verifi ed. In this case, how could the end user prevent proxy interception if the
user has the right to choose the action? 

 Due to privacy concerns, Blue Coat Systems took the approach of utilizing
the client authentication mechanism to determine if the client explicitly grants
permission to allow for proxy interception. The proxy is programmed to parse
two preformatted certifi cates, one that has the certifi cate common name “Yes
Sir”, and the other that has the common name “No Sir”. The client installs two
such certifi cates in its key ring, as shown in Figure   1-16   .
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 Policies confi gured in the proxy would instruct the proxy to request cli-
ent certifi cates for a pre‐determined set of destinations that show up in client
requests. Because the client has multiple certifi cates installed in its key ring, the
browser prompts the user to select the certifi cate to return to the server. This
process is shown in Figure   1-17   . 

 Figure   1-16:   Client Consent Certificate

 Figure   1-17:   Client Consent Pop-up
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      Now the user has direct control over whether the proxy should intercept that
particular session by selecting the right certifi cate. In other words, by choosing
the “No Sir” certifi cate to transmit to the proxy, when the proxy parses this cli-
ent certifi cate and sees the common name “No Sir”, the proxy takes that as the
cue and bypasses the session without SSL interception.

 Summary

 Firewalls are security devices that analyze traffi c according to syntactical rules.
The security policies enforced by a fi rewall are based on limited actions such
as Allow or Deny. Firewalls provide the fi rst level of traffi c fi ltering. Intrusion
detection systems perform traffi c analysis based on historical data and heuristics
and can scan for known threats. Both fi rewalls and intrusion detection systems
become inoperable with encrypted traffi c. This fundamental challenge is solved
by proxies. Proxies are complex to design and implement. A proxy operates
with deep knowledge of the semantics of an application or a protocol. The SSL
proxy is a testament to just how sophisticated a proxy must be in order to suc-
cessfully intercept and process various transactions. A signifi cant part of this
chapter was devoted to explaining the inner workings of the SSL proxy. The
next chapter focuses on the various types of proxy deployments and discusses
associated deployment challenges and solutions.   




