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1
Analytical Dynamics of Discrete
Systems

The variational approach to mechanics is based on the concepts of energy and work and there-
fore provides a better understanding of mechanical phenomena. In some sense one can say that
variational principles consider the system in a global sense, disregarding the specifities of the
forces associated to kinematic constraints imposed on the system. It provides at the same time
a very powerful tool for two main reasons:

– It considerably simplifies the analytical formulation of the motion equations for a complex
mechanical system.

– It gives rise to approximate numerical methods for the solution of both discrete and contin-
uous systems in the most natural manner, as will be later explained in Chapters 5 and 6.

The objective of this chapter is to recall to the reader, how the fundamental Newton’s
equations for dynamics can be effectively applied to general systems on which kinematic con-
straints are imposed. First we recall the concept of virtual displacements and the principle of
virtual work for a single mass point (Section 1.1), then for a system of particles (Section 1.2),
explaining how it leads to a global dynamic description of a system where unknown reaction
forces associated to kinematic constraints do not appear. The intimately related concepts of
kinematic constraints and generalized coordinates (or degrees of freedom) are also discussed
in those sections. Note that in this book we will not discuss the dynamics of rigid bodies.
Although a rigid body can be seen as a collection of constrained point masses and therefore a
special case of the systems treated here, analyzing the dynamics of a rigid body and building
models of multiple rigid components is a topic in itself that will not be handled here since the
main scope of the book is vibrational behaviour of flexible systems.1

In Section 1.3 the dynamics of systems is described in an even more abstract way, using
the energy concepts to show that the virtual work principle can be written as a variational
principle, namely Hamilton’s principle. It is then shown that the equations of motion can be

1 For a thorough discussion of analytical dynamics for systems of rigid bodies, the reader is referred to (Lur’é 1968,
Meirovitch 1970, Meirovitch 1980, Whittaker 1965, Goldstein 1986, Géradin and Cardona 2001).
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derived from the energy description of the system: the Lagrange equations. Those equations
are outlined for the general case of nonconservative systems in Section 1.4.2

Section 1.5 deals with the generalization of the Lagrange equations to systems undergoing
impulsive loading (i.e. shocks, impact). Finally, Section 1.6 provides an introduction to the
dynamics of constrained systems. It is shown that the method of Lagrange multipliers provides
an efficient way to extend Lagrange’s equations to systems described by coordinates for which
constraints need to be explicitly accounted for.

Definitions

The list below complements the general definitions given in the book introduction, but remains
local to Chapter 1.

Fs gyroscopic forces.
N number of particles.
Ps s-th generalized impulse.
R number of constraints.
Uik(qs, t) i-th displacement component of k-th particle in terms of generalized

coordinates.
d dislocation potential.
Xi, Xik i-th component of force on (k-th) particle.
m, mk mass of (k-th) particle.
ui, uik i-th displacement component of (k-th) particle.
xik reference configuration of k-th particle.
𝜆r Lagrange multiplier.
𝜉ik i-th instantaneous configuration of k-th particle.

1.1 Principle of virtual work for a particle

1.1.1 Nonconstrained particle

Let us consider a particle of mass m, submitted to a force field X of components Xi. The
dynamic equilibrium of the particle can be expressed in d’Alembert’s form:

müi − Xi = 0 i = 1, 2, 3 (1.1)

where ui represents the displacement of the particle.
Let us next imagine that the particle follows during the time interval [t1, t2] a motion trajec-

tory ui
∗ distinct from the real one ui. This allows us to define the virtual displacement of the

2 The point of view adopted in this chapter is far from being the only possible one. It would also be possible to
apply Kane’s method (Kane and Levinson 1980) which implements the concept of generalized speeds (quasi-velocity
coordinates) as a way to represent motion, similar to what the concept of generalized coordinates does for the con-
figuration. Kane’s implementation focuses on the motion aspects of dynamic systems rather than only on the system
configuration. It therefore provides a suitable framework for treating nonholonomic constraints of differential type
(see Section 1.2.2).



Michel Géradin c01.tex V3 - 11/07/2014 5:29 P.M. Page 15

Analytical Dynamics of Discrete Systems 15

x3

x2

x1

1

2
ui (t)

δui
ui

* (t)

Figure 1.1 Virtual displacement of a particle.

particle by the relationship (Figure 1.1):

𝛿ui = ui
∗ − ui (1.2)

By its very definition, the virtual displacement 𝛿ui is arbitrary for t1 < t < t2. However, let
us suppose that the varied trajectory and the real one both pass through the same points at the
ends of the time interval. The end conditions then take the form:

𝛿ui(t1) = 𝛿ui(t2) = 0 (1.3)

An immediate consequence of definition (1.2) is that the variation operator 𝛿 commutes with
the time-derivative operator d∕dt since

d
dt
(𝛿ui) =

d
dt
(ui∗ − ui) = u̇∗i − u̇i = 𝛿u̇i (1.4)

Let us next multiply the dynamic equilibrium equations (1.1) by the associated virtual dis-
placement and sum over the components. The virtual work expression results:

3∑
i=1

(müi − Xi)𝛿ui = 0 (1.5)

which shows that

The virtual work produced by the forces acting on the particle during a virtual
displacement 𝛿ui is equal to zero.

1.1.2 Constrained particle

Equation (1.5) represents the scalar product between the forces acting on the particle and the
virtual displacement

−→
𝛿u. It thus represents the projection of the equilibrium along the direction−→

𝛿u. If (1.5) is satisfied for all variations 𝛿ui, then the trajectory ui(t) satisfies the dynamic
equilibrium in all directions.

If no kinematical constraint is imposed onto the particle, namely if no restriction is imposed
on its displacement, the trajectory of the material point is determined by the equilibrium in all
directions. But when kinematic constraints are specified for the particle, there exist reaction
forces in addition to the applied forces. These reaction forces are inherent to the constraining
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a. A particle on a plane curve b. The spherical pendulum
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Figure 1.2 Kinematically admissible virtual displacements.

mechanism and ensure that the imposed kinematical constraints are satisfied. Those reaction
forces are not known in advance since they depend on the motion itself.

Figure 1.2 describes a particle constrained to move along a curve and a spherical pendulum
where a particle is constrained to have a constant distance with respect to a fixed point. On one
hand, the presence of reaction forces acting in the direction of the constraint generally renders
the equilibrium description more complex since those unknown forces must be determined
along the entire trajectory such that kinematical constraints are satisfied. On the other hand,
solving the equilibrium equations in the direction constrained by the kinematical conditions is
not useful since, in that direction, the trajectory is prescribed by the constraint and thus known.

In the system described in Figure 1.2.a only the motion along the direction tangent to the
curve needs to be determined. In doing so, the reaction forces, which act in the direction normal
to the curve, do not participate to the motion and thus need not be determined: the position
of the particle in the direction normal to the curve is obviously imposed by the constraint and
does not require solving the equilibrium equation in that direction. In the same way, if the
equilibrium of the particle of the spherical pendulum is expressed in the plane tangent to the
sphere (Figure 1.2.b), only the forces actually applied participate in the determination of the
trajectory.

Let us therefore decide that, in the presence of kinematical constraints, we consider only
virtual displacements 𝛿ui compatible with the constraints or, in other words, kinematically
admissible. Equation (1.5) then describes the projection of the dynamic equilibrium in the
space compatible with the constraints, namely in directions orthogonal to unknown reaction
forces. The form (1.5) thus involves only effectively applied forces and stipulates that

The virtual work produced by the effective forces acting on the particle during a
virtual displacement 𝛿ui compatible with the constraints is equal to zero.

This is the virtual work principle for a constrained particle. Conversely, Equation (1.5) indi-
cates that

If the trajectory ui of the particle is such that the effectively applied forces produce
no virtual work for any virtual displacement compatible with the constraints, the
equilibrium is then satisfied.
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The usefulness of the virtual work principle comes from the fact that it allows us to express
the dynamic equilibrium in a simple manner along the directions compatible with the con-
straints. This will be explained next in more detail for a system of several particles.

1.2 Extension to a system of particles

1.2.1 Virtual work principle for N particles

Every particle k of a system of N particles with mass mk satisfies the dynamic equilibrium:

mküik − Xik = 0
i = 1, 2, 3

k = 1, … ,N
(1.6)

where Xik are the force components representing the known external forces and where Rik are
the unknown reactions resulting from the kinematic constraints imposed on the system.

For every particle k, one considers virtual displacements 𝛿uik such as:

𝛿uik = uik
∗ − uik i = 1, 2, 3 (1.7)

𝛿uik(t1) = 𝛿uik(t2) = 0 k = 1, … ,N (1.8)

The virtual work principle is obtained by projecting the dynamic equilibrium equations on the
virtual displacements and by summing up over the particles:

N∑
k=1

3∑
i=1

(mküik − Xik − Rik)𝛿uik = 0 (1.9)

As for the case of one particle, we decide to consider only virtual displacement compatible
with the constraints. Hence, the virtual displacements must satisfy constraints imposed on one
particle as well as constraints imposed between particles. The situation where two points are
rigidly linked to one another is an important example of such constraints. In that case, the
reaction forces linking the particles are equal and opposite (Figure 1.3):

−→
R 1 +

−→
R 2 = 0

and the virtual work associated to a virtual displacement (−→𝛿u1,
−→
𝛿u2) is:

𝛿𝜏 =
3∑
i=1

(Ri1𝛿ui1 + Ri2𝛿ui2) =
−→
R 1 ⋅

−→
𝛿u1 +

−→
R 2 ⋅

−→
𝛿u2 = −→

R 1 ⋅ (
−→
𝛿u1 −

−→
𝛿u2) = 0

δu2

→
R2

→
R1

→

δu1
→

Figure 1.3 Virtual work of constraints between particles.
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since the compatible virtual displacements must be equal in the direction of the rigid link.
Projecting the equations onto the kinematically admissible displacements thus consists in sum-
ming up the equilibrium equations in the constrained direction such that the unknown linking
forces vanish.

Since the reaction forces do vanish when projecting the equations of motion onto kinemati-
cally admissible displacement directions, the virtual work principle (1.9) is written as

N∑
k=1

3∑
i=1

(mküik − Xik)𝛿uik = 0 (1.10)

So as for a single particle (Section 1.1.2), it can be stated that

The virtual work of the forces effectively applied onto a system of particles is zero
with respect to any kinematically compatible virtual displacement if and only if
the system is in dynamic equilibrium.

Again, the principle of virtual work corresponds to the projection of the equilibrium equations
in the directions compatible with the kinematical constraints. The resulting equations are then
easier to solve since the constraining forces are no longer unknowns for the problem.

1.2.2 The kinematic constraints

Without kinematic constraints, the state of the system would be completely defined by the 3N
displacement components uik since, starting from a reference configuration xik, they represent
the instantaneous configuration:

𝜉ik(t) = xik + uik(xjk, t)
i, j = 1, 2, 3

k = 1, … ,N
(1.11)

The system is then said to possess 3N degrees of freedom.
In most mechanical systems, however, the particles are submitted to kinematic constraints,

which restrain their motion and define dependency relationships between particles.

Holonomic constraints

The holonomic constraints are defined by implicit relationships of type:

f (𝜉ik, t) = 0 (1.12)

If there is no explicit dependence with respect to time, the constraints are said to be sclero-
nomic. They are rheonomic otherwise.

A holonomic constraint reduces by one the number of degrees of freedom of the
system.
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Example 1.1

Let us consider the case of two mass particles connected by a rigid link of length �. Their
instantaneous positions 𝜉i1 and 𝜉i2 verify the relationship:

f (𝜉ik, t) =
3∑
i=1

(𝜉i2 − 𝜉i1)2 − �2 = 0

The variation of the constraint with respect to virtual displacements can be expressed by:

𝛿f =
3∑
i=1

((𝜉i1 − 𝜉i2)𝛿ui1 − (𝜉i1 − 𝜉i2)𝛿ui2) = 0

indicating that virtual displacements must satisfy (see also Figure 1.3):

(−→𝜉 1 −
−→
𝜉 2) ⋅

−→
𝛿u1 = (−→𝜉 1 −

−→
𝜉 2) ⋅

−→
𝛿u2

Hence virtual displacements must be equal in the direction of the link, and a system of two
particles that are rigidly linked has 6 − 1 = 5 degrees of freedom.

Nonholonomic constraints

A constraint is said nonholonomic if it cannot be put in the form (1.12). In particular,
non-holonomic constraints often take the form of differential relationships:

f (𝜉̇ik, 𝜉ik, t) = 0 (1.1)

Such relationships are generally not integrable, and therefore they do not allow reduction of
the number of degrees of freedom of the system.

Example 1.2

Let us consider the case of the centre of a rigid wheel with radius r constrained to roll without
sliding on a plane (Figure1.4).
It is also assumed that the rotation axis remains parallel to the plane. The second material

point considered in the description is a reference point located on the circumference of the

1
2

z

yr

x

θ 𝜙

Figure 1.4 Nonholonomic constraint.
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wheel. The rolling-without-sliding condition can be expressed by the constraints:

ẋ1 + r𝜙̇ cos 𝜃 = 0 (E1.2.a)

ẏ1 − r𝜙̇ sin 𝜃 = 0 (E1.2.b)

where the angles 𝜙 and 𝜃 are such as:

x2 − x1 = r sin𝜙 cos 𝜃 (E1.2.c)

y2 − y1 = −r sin𝜙 sin 𝜃 (E1.2.d)

The four relationships above yield two implicit nonholonomic constraints between xi and yi.
Finally, the wheel kinematics imposes the constraint:

z2 − z1 = −r cos𝜙 (E1.2.e)

z1 = r. (E1.2.f)

The system is thus described in terms of the eight variables:

x1, y1, z1, x2, y2, z2, 𝜙, 𝜃

and is submitted to:

– the two nonholonomic constraints (E1.2.a) and (E1.2.b)
– the four holonomic constraints (E1.2.c), (E1.2.d), (E1.2.e) and (E1.2.f).

The wheel degrees of freedom are restrained only by the holonomic constraints and therefore
four independent variables are left: two translations in the rolling plane and two rotations.
The non-holonomic constraints act as behaviour constraints: they do not restrict the possible
configurations of the system but simply the way to reach them.
If we introduce the additional holonomic constraint that the orientation 𝜃 is fixed to a con-

stant 𝜃fixed, namely 𝜃 = 𝜃fixed one observes that the nonholonomic constraints (E1.2.a) and
(E1.2.b) now become integrable and one can write:

x1 + r𝜙 cos 𝜃fixed = x1(𝜙 = 0)

y1 − r𝜙 sin 𝜃fixed = y1(𝜙 = 0)

In this case all constraints are holonomic and the system has only one degree of freedom: it
can for instance be seen that 𝜙 describes the configuration in a unique way.

1.2.3 Concept of generalized displacements

If R holonomic kinematic constraints exist between the 3N displacement components of the
system, the number of degrees of freedom is then reduced to 3N − R. It is then necessary to
define n = 3N − R configuration parameters, or generalized coordinates, denoted (q1, … , qn)
in terms of which the displacements of the system particles are expressed in the form:

uik(xjk, t) = Uik(q1, … , qn, t) (1.14)
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When only holonomic constraints are applied to the system, the generalized coordinates qs
remain independent and may be varied in an arbitrary manner without violating the kinematic
constraints. The virtual displacements 𝛿uik compatible with the holonomic constraints may be
expressed in the form:

𝛿uik =
n∑

s=1

𝜕Uik

𝜕qs
𝛿qs (1.15)

The virtual work equation becomes:

n∑
s=1

[
N∑
k=1

3∑
i=1

(mküik − Xik)
𝜕Uik

𝜕qs

]
𝛿qs = 0 (1.16)

The coefficients 𝜕Uik

𝜕qs
define the displacement directions of mass k when the generalized coor-

dinate qs is varied. The variations 𝛿qs are totally independent by definition, meaning that they
can be chosen arbitrarily without violating any kinematic constraint. The identity (1.16) being
satisfied for any virtual displacement, it follows that each associated term in the virtual work
(1.16) principle must be zero. These terms correspond to the equilibrium projected onto the
direction of the generalized coordinate qs and written as:

N∑
k=1

3∑
i=1

(
mk

d2Uik(q1, … , qn, t)
dt2

− Xik

)
𝜕Uik

𝜕qs
= 0 s = 1, · · · n (1.17)

The second term in this equation corresponds to the generalized force conjugate to the degree
of freedom qs:

Qs =
N∑
k=1

3∑
i=1

Xik
𝜕Uik

𝜕qs
(1.18)

The first term in (1.17) has the meaning of a generalized inertia force; its structure is obtained
in the next section in terms of generalized coordinates.

Example 1.3

Figure 1.5 depicts a simple two-dimensional pendulum. The system has 2 − 1 = 1 degree
of freedom and we choose 𝜃 as generalized coordinate so that Equation (1.14) for the

θ

�

𝑚g

𝑚

Figure 1.5 The simple pendulum.
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pendulum is:
u1 = � cos 𝜃 − �

u2 = � sin 𝜃

and the compatible virtual displacements are:

𝛿u1 = (−� sin 𝜃) 𝛿𝜃

𝛿u2 = (� cos 𝜃) 𝛿𝜃

which defines the direction orthogonal to the rigid link. The virtual work equation is then
written as:

(mü1 − mg)(−� sin 𝜃) + (mü2)(� cos 𝜃) = 0 (E1.3.a)

The accelerations can be expressed as:

ü1 = −�𝜃̈ sin 𝜃 − �𝜃̇2 cos 𝜃

ü2 = �𝜃̈ cos 𝜃 − �𝜃̇2 sin 𝜃

and replacing in (E1.3.a), one finds the equation of motion:

m�2𝜃̈ + mg� sin 𝜃 = 0 (E1.3.b)

Example 1.4

Let us consider the double pendulum of Figure 1.6. The system is made of two mass particles.
The motion is restricted to 2-D motion, so that its kinematics is described by the four instan-
taneous position components 𝜉ik. The two holonomic constraints applied to the system express
the length invariance of the members:

𝜉2
11 + 𝜉2

21 = �2
1

(𝜉12 − 𝜉11)2 + (𝜉22 − 𝜉21)2 = �2
2

The system kinematics may thus be described in terms of 4 − 2 = 2 generalized coordinates.
As a straightforward choice one may adopt the two rotation angles of the pendulum 𝜃1 and 𝜃2

1

𝑚1

θ1 2
𝑚2

θ2
x1

x2

Figure 1.6 The double pendulum.
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(the second angle being measured relatively to the first):

𝜉11 = �1 cos 𝜃1 (E1.4.a)

𝜉21 = �1 sin 𝜃1 (E1.4.b)

𝜉12 = 𝜉11 + �2 cos(𝜃1 + 𝜃2) = �1 cos 𝜃1 + �2 cos(𝜃1 + 𝜃2) (E1.4.c)

𝜉22 = 𝜉21 + �2 sin(𝜃1 + 𝜃2) = �1 sin 𝜃1 + �2 sin(𝜃1 + 𝜃2) (E1.4.d)

The equations of motion can then be written using the virtual work principle. This will not be
done here (see Section 1.7.1).

1.3 Hamilton’s principle for conservative systems and Lagrange
equations

Hamilton’s principle (Hamilton 1834) is no more than a time-integrated form of the virtual
work principle obtained by transforming the expression:

∫
t2

t1

[
N∑
k=1

3∑
i=1

(−mküik + Xik)𝛿uik

]
dt = 0 (1.19)

where 𝛿uik are arbitrary but compatible virtual displacements which verify the end condi-
tions (1.8).

First, let us assume that the applied forcesXik can be derived from a potential . By definition
the potential is such that:

Xik = − 𝜕
𝜕uik

(1.20)

So the virtual work of the forces can be expressed in the form:

N∑
k=1

3∑
i=1

Xik𝛿uik = −
N∑
k=1

3∑
i=1

𝜕
𝜕uik

n∑
s=1

𝜕Uik

𝜕qs
𝛿qs

= −
n∑

s=1

𝜕
𝜕qs

𝛿qs =
n∑

s=1

Qs𝛿qs = −𝛿
It is thus seen that the generalized forces are derived from the potential  by the relationship:

Qs =
N∑
k=1

3∑
i=1

Xik
𝜕Uik

𝜕qs
= − 𝜕

𝜕qs
(1.21)

Next the term associated with inertia forces is transformed by noting that:

d
dt
(mku̇ik𝛿uik) = mküik𝛿uik + mku̇ik𝛿u̇ik

= mküik𝛿uik + 𝛿

(1
2
mku̇iku̇ik

)
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Owing to the definition of the kinetic energy  of the system:

 = 1
2

N∑
k=1

3∑
i=1

mku̇iku̇ik (1.22)

(1.19) may be rewritten in the form:[
−

N∑
k=1

3∑
i=1

mku̇ik𝛿uik

]t2

t1

+ 𝛿 ∫
t2

t1

( − )dt = 0 (1.23)

in which the time boundary term can be eliminated by taking account of the end condi-
tions (1.8).

The functional (1.23) can be expressed in terms of the generalized coordinates qs by notic-
ing that:

u̇ik =
𝜕Uik

𝜕t
+

n∑
s=1

𝜕Uik

𝜕qs
q̇s (1.24)

and therefore, that  and  respectively take the forms:

 =  (q, q̇, t)  = (q, t) (1.25)

By making use of Equations (1.8) and (1.15), the boundary conditions may also be written:

𝛿qs(t1) = 𝛿qs(t2) = 0 (1.26)

Hamilton’s principle for a conservative system may thus be stated in the following form:

The real trajectory of the system is such that the integral

∫
t2

t1

( − ) dt
remains stationary with respect to any compatible virtual displacement, arbitrary
between both instants t1 and t2 but vanishing at the ends of the interval.

𝛿 ∫
t2

t1

( − )dt = 0

𝛿q(t1) = 𝛿q(t2) = 0 (1.27)

Starting from expression (1.27) of Hamilton’s principle, the system equations of motion are
easily obtained in terms of generalized coordinates: owing to (1.25) one may write:

𝛿 =
n∑

s=1

(
𝜕
𝜕qs

𝛿qs +
𝜕
𝜕q̇s

𝛿q̇s

)
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giving the more explicit form of (1.27):

∫
t2

t1

n∑
s=1

[(
𝜕
𝜕qs

+ Qs

)
𝛿qs +

𝜕
𝜕q̇s

𝛿q̇s

]
dt = 0

in which the second term can be integrated by parts:

∫
t2

t1

𝜕
𝜕q̇s

𝛿q̇s dt =
[
𝜕
𝜕q̇s

𝛿qs

]t2
t1

− ∫
t2

t1

d
dt

(
𝜕
𝜕q̇s

)
𝛿qs dt

Taking into account the boundary conditions, the following expression equivalent to Hamil-
ton’s principle results:

∫
t2

t1

n∑
s=1

[
− d
dt

(
𝜕
𝜕q̇s

)
+ 𝜕

𝜕qs
+ Qs

]
𝛿qs dt = 0 (1.28)

The variation 𝛿qs being arbitrary on the whole time interval, the motion equations result in the
form obtained by Lagrange (Lagrange 1788):

− d
dt

(
𝜕
𝜕q̇s

)
+ 𝜕

𝜕qs
+ Qs = 0 s = 1, … , n (1.29)

The Lagrange equations (1.29) are a set of n equations for the n unknown degrees of freedom
qs and are equivalent to the equations obtained from the virtual work principle (1.17). The
advantage of the Lagrange form is however that, once the kinetic energy  has been expressed
in terms of the degrees of freedom qs, the inertia terms are directly obtained in terms of qs and
their derivatives, whereas the virtual work Equations (1.17) contain üik that still needs to be
expressed in terms qs (see for instance the last step in Example 1.3).

The first two terms in (1.29) represent the generalized inertia forces associated with the
generalized coordinates qs. Their structure will be detailed in the next paragraph after taking
account of the kinematic constraints.

Although here the discussion was made assuming that the effective applied forces derive
from a potential, the Lagrange equations (1.29) are also valid if the applied forces do not derive
from a potential. For forces deriving from a potential the generalized forces Qs can be com-
puted by (1.21), otherwise one has to use the fundamental definition (1.18). Their classification
will be given in a later section.

Example 1.5

Consider the simple two-dimensional pendulum described in Figure 1.7.a. As found before
(see Example 1.3) we can choose the angle 𝜃 as degree of freedom so that:

u1 = � cos 𝜃 − �

u2 = � sin 𝜃
and

u̇1 = (−� sin 𝜃) 𝜃̇
u̇2 = (� cos 𝜃) 𝜃̇
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The kinetic and potential energy of the system are then written for 𝜃:

 = 1
2
m(u̇2

1 + u̇2
2) =

1
2
m�2𝜃̇2

 = −mgu1 = mg�(1 − cos 𝜃)

Observe that, by definition, the potential energy is such that −𝜕V∕𝜕u1 yields the applied force
in direction of u1. One computes:

d
dt

𝜕
𝜕𝜃̇

= d
dt
(m�2𝜃̇) = m�2𝜃̈

𝜕
𝜕𝜃

= 0

Q = −𝜕
𝜕𝜃

= −mg� sin 𝜃

The Lagrange equation thus yields the expected pendulum equation:

m�2𝜃̈ + mg� sin 𝜃 = 0

Example 1.6

Consider now the pendulum in Figure 1.7.b, where a constant acceleration is given to
the attachment point so that u2,att =

a

2
t2, where a is a given constant. With this rheo-

nomic/holonomic constraint the system has one degree of freedom and we again choose 𝜃 to
describe the system so that:

u1 = � cos 𝜃 − �

u2 = � sin 𝜃 + a
2
t2

and
u̇1 = (−� sin 𝜃) 𝜃̇
u̇2 = (� cos 𝜃) 𝜃̇ + at

and the energies are computed as:

 = 1
2
m(u̇2

1 + u̇2
2) =

1
2
m�2𝜃̇2 + 1

2
m(at)2 + mat(� cos 𝜃) 𝜃̇

 = −mgu1 = mg�(1 − cos 𝜃)

a. b.

𝑚

𝑚g

θ

𝑚

𝑚g

θ

u2,att

x1

x2

Figure 1.7 The simple pendulum with scleronomic (a) and with rheonomic constraint (b).
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The terms in the Lagrange equations are obtained as:

d
dt

𝜕
𝜕𝜃̇

= d
dt
(m�2𝜃̇ + at� cos 𝜃) = m�2𝜃̈ + ma� cos 𝜃 − mat�𝜃̇ sin 𝜃

𝜕
𝜕𝜃

= −mat(� sin 𝜃) 𝜃̇

Q = −𝜕
𝜕𝜃

= −mg� sin 𝜃

The Lagrange equation yields:

m�2𝜃̈ + ma� cos 𝜃 + mg� sin 𝜃 = 0

Note that this equation can also be written as:

m�2𝜃̈ + m�
√
g2 + a2 sin(𝜃 + 𝛼) = 0 where 𝛼 = arctan

a
g

indicating that the problem can be considered as a pendulum in a combined acceleration field
of the gravity and the imposed acceleration on the support. It also shows that motion of the
support at constant velocity does not affect the system behaviour.

1.3.1 Structure of kinetic energy and classification of inertia forces

Let us substitute in the general kinetic energy expression (1.22) the velocities expressed in
terms of generalized coordinates (1.24). The kinetic energy is then split naturally in three
contributions:

 (q, q̇, t) = 0 + 1 + 2 (1.30)

where 0, 1 and 2 are respectively homogeneous forms of degree 0, 1 or 2 in the generalized
velocities q̇s.

– The first term:

0 = 1
2

N∑
k=1

3∑
i=1

mk

(
𝜕Uik

𝜕t

)2

= 0(q, t) (1.31)

is obviously the transport kinetic energy of the system since it corresponds to the situation
where the degrees of freedom q1, … , qn are frozen.

– The second term:

1 =
n∑

s=1

N∑
k=1

3∑
i=1

𝜕Uik

𝜕t
mk

𝜕Uik

𝜕qs
q̇s (1.32)

is the mutual kinetic energy.
– The third term:

2 = 1
2

n∑
s=1

n∑
r=1

N∑
k=1

3∑
i=1

mk
𝜕Uik

𝜕qs

𝜕Uik

𝜕qr
q̇sq̇r (1.33)

is the relative kinetic energy since it corresponds to what is left when the explicit dependence
of velocities u̇ik with respect to time is suppressed.
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Let us note that frequent use will be made of the following expressions for 1 and 2:

1 =
n∑

s=1

q̇s
𝜕1

𝜕q̇s
2 = 1

2

n∑
s=1

q̇s
𝜕2

𝜕q̇s
(1.34)

which result immediately from Euler’s theorem on homogeneous functions.

Euler’s theorem on homogeneous functions

If f (x1, … , xn) is homogeneous of degree m in the variables (x1, … , xn) the fol-
lowing equality is satisfied:

n∑
i=1

xi
𝜕f

𝜕xi
= mf (1.35)

The proof holds by observing that if f is homogeneous of degree m, it may be
written in the form:

f (x1, … , xn) = xm1 g

(
1,

x2

x1
, … ,

xn
x1

)
Noting yi = xi∕x1, one obtains:

x1
𝜕f

𝜕x1
= mxm1 g − xm+1

1

n∑
i=2

xi
x2

1

𝜕g

𝜕yi

xi
𝜕f

𝜕xi
= xix

m−1
1

𝜕g

𝜕yi
i ≠ 1

The proof of Euler’s theorem holds by summing up all the above relations.

Let us make use of the decomposition (1.30) to interpret the term describing the generalized
inertia forces in Lagrange’s equations (1.29):

− d
dt

(
𝜕
𝜕q̇s

)
+ 𝜕

𝜕qs
= − d

dt

(
𝜕1

𝜕q̇s
+

𝜕2

𝜕q̇s

)
+

(
𝜕0 + 1 + 2

)
𝜕qs

= − 𝜕

𝜕t

(
𝜕1

𝜕q̇s

)
−

n∑
r=1

[
𝜕21

𝜕q̇s𝜕qr
q̇r

]
− d

dt

(
𝜕2

𝜕q̇s

)
(1.36)

+
𝜕(0 + 1 + 2)

𝜕qs

– The transport inertia forces are those obtained by setting q̇s = 0. One obtains:

− 𝜕

𝜕t

(
𝜕1

𝜕q̇s

)
+

𝜕0

𝜕qs
(1.37)

– The relative inertia forces are those obtained by assuming that the constraints do not depend
explicitly on time (𝜕Uik∕𝜕t = 0). The remaining terms are the 2 terms:

− d
dt

(
𝜕2

𝜕q̇s

)
+

𝜕2

𝜕qs
(1.38)
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– The complementary inertia forces contain the missing terms:

Fs = −
n∑

r=1

𝜕21

𝜕q̇s𝜕qr
q̇r +

𝜕1

𝜕qs

Making use of (1.34) they can be put in the equivalent form:

Fs =
n∑

r=1

q̇r

[
𝜕21

𝜕qs𝜕q̇r
−

𝜕21

𝜕qr𝜕q̇s

]
=

n∑
r=1

q̇rgrs (1.39)

where the coefficients:

grs =
𝜕21

𝜕qs𝜕q̇r
−

𝜕21

𝜕qr𝜕q̇s
= −gsr (1.40)

do not depend on the velocities q̇s, but only on the generalized displacements and time.
The complementary inertia forces have the nature of Coriolis or gyroscopic forces. As a
consequence of the skew symmetry of the coefficients (1.40), the associated instantaneous
power is equal to zero:

n∑
s=1

Fsq̇s = 0 (1.41)

1.3.2 Energy conservation in a system with scleronomic constraints

When the kinematic constraints are independent of time, the kinetic energy (1.30) reduces
to the sole term 2 and therefore becomes a homogeneous quadratic form of the generalized
velocities. Owing to (1.34) one may write:

2 =
n∑

s=1

q̇s
𝜕
𝜕q̇s

or, after differentiation:

2
d
dt

=
n∑

s=1

q̈s
𝜕
𝜕q̇s

+
n∑

s=1

q̇s
d
dt

(
𝜕
𝜕q̇s

)
(1.42)

On the other hand, since  =  (q, q̇), one may also write

d
dt

=
n∑

s=1

q̈s
𝜕
𝜕q̇s

+
n∑

s=1

q̇s
𝜕
𝜕qs

(1.43)

Therefore, by subtracting (1.43) from (1.42) and making use of Lagrange equations (1.29),

d
dt

=
n∑

s=1

q̇s

[
d
dt

(
𝜕
𝜕q̇s

)
− 𝜕

𝜕qs

]
=

n∑
s=1

q̇sQs (1.44)

Since in the conservative case the forces Qs depend also on a potential,

n∑
s=1

q̇sQs =
n∑

s=1

q̇s

(
− 𝜕
𝜕qs

)
= −d

dt
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one obtains
d
dt
( + ) = 0 (1.45)

The corresponding energy integral:
 +  =  (1.46)

plays a fundamental role in the theory governing the linear oscillations of a stable system about
its equilibrium position.

Example 1.7

The vibrational behaviour of a pendulum (Figure 1.5) can easily be described in terms of total
energy conservation.
The kinetic and potential energies corresponding to an angular displacement 𝜃 are:

 = 1
2
m�2𝜃̇2  = mg�(1 − cos 𝜃) (E1.7.a)

The total energy conservation law yields:

 =  +  (E1.7.b)

where  is the energy input into the system.
Figure 1.8.a shows the potential energy of the system as a function of the angular dis-

placement. The horizontal lines represent various initial energy levels i and we call 3 the
maximum possible potential energy, namely  = 2mg�.
If the total energy level of the system is lower than 3, the system can reach a state where

3 =  and where the kinetic energy is null. In that configuration the system has zero velocity
and has reached its maximum angular displacement 𝜃max, solution of:

 = mg�(1 − cos 𝜃max) (E1.7.c)

The kinetic energy is obtained by subtracting from  the potential energy:

 =  − 
and in the case  < 3 we can use (E1.7.c) together with (E1.7.a) to obtain:

𝜃̇ = ±
√

2g
�
(cos 𝜃 − cos 𝜃max) (E1.7.d)

In a phase-space representation (𝜃, 𝜃̇) this relation yields closed trajectories as represented
by the dotted curves in Figure 1.8.b.
If the total energy level is  > 3, the system can reach its maximum potential position with

a non-zero velocity since  −  =  > 0 for the entire motion. The velocity is then found from
the energy conservation as:

 =  − 
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

Figure 1.8 The nonlinear pendulum: (a) potential energy, (b) phase space diagram 𝜃̇ = f (𝜃).

and in the case  < 3 we can use (E1.7.c) together with (E1.7.a) to obtain:

𝜃̇ = ±

√
2g
�

(
cos 𝜃 − 1 + 

mg�

)
(E1.7.e)

This leads to nonclosed trajectories in the phase-space as indicated by the dash-dotted line in
Figure 1.8.b.
To summarize, three regions can be distinguished:

– For  < 3, the motion is oscillatory and the corresponding trajectories in the phase space

are closed regular curves (of the ellipse type if cos 𝜃 ≃ 1 − 𝜃2

2
).

– For  = 3, the positions 𝜃 = ±(2n + 1)𝜋, (n = 0, 1, … ) are bifurcation points of the solu-
tion.

– For  > 3, the motion is no longer oscillatory but the pendulum undergoes complete rota-
tion with variable rotation speed.

In the case  < 3, making use of Equation (E1.7.d), the oscillation period can be computed
if we notice that from the definition of velocity:

𝜃̇ = d𝜃
dt

the time required to undergo a displacement d𝜃 is:

dt = d𝜃

𝜃̇
= ±

√
�

2g(cos 𝜃 − cos 𝜃max)
d𝜃
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Due to symmetry of the phase-plane trajectory, the period – which is the time corresponding
to the path of one closed trajectory – is given by:

T = 4

√
�

2g ∫
𝜃max

0

d𝜃√
cos 𝜃 − cos 𝜃max

(E1.7.f)

This last integral can be transformed into a known elliptic integral via the following change
of variable:

sin
𝜃

2
= sin

𝜃max

2
sin𝜙

where [0, 𝜃max] → [0, 𝜋
2
]. We find successively:

d𝜃 =
2 sin 𝜃max

2
cos𝜙√

1 − sin2 𝜃max

2
sin2𝜙

d𝜙

and √
cos 𝜃 − cos 𝜃max =

√
2 sin

𝜃max

2
cos𝜙

From the results above, the expression of the period becomes:

T = 4

√
�

g ∫
𝜋∕2

0

d𝜙√
1 − sin2 𝜃max

2
sin2𝜙

(E1.7.g)

Expanding the integral (Abramowitz and Stegun 1970) into:

∫
𝜋∕2

0

d𝜙√
1 − k2sin2𝜙

= 𝜋

2

[
1 + k2

4
+ …

]
allows us to write the period as a function of the angular displacement amplitude:

T = 2𝜋

√
�

g

[
1 +

𝜃2
max

16
+ …

]
(E1.7.h)

This shows that the period is a quadratic increasing function of the amplitude.

1.3.3 Classification of generalized forces

A distinction can be made between internal and external forces to the system. In both cases
they are said to be conservative if the associated virtual work is recoverable.

Internal forces

Among the internal forces, the distinction can be made between the linking forces, those asso-
ciated with elastic deformation and those resulting from a dissipation mechanism.
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xi2xi1

Xi2Xi1

O

Figure 1.9 Linking forces.

Linking forces
The linking forces appear in a rigid connection between two particles. As already discussed in
Section 1.2.1 they are such as the system of forces is in equilibrium (Figure 1.9):

Xi1 + Xi2 = 0 (1.47)

The virtual work associated with the virtual displacement (𝛿ui1, 𝛿ui2) is:

𝛿𝜏 =
3∑
i=1

(Xi1𝛿ui1 + Xi2𝛿ui2)

=
3∑
i=1

[Xi1(𝛿ui1 − 𝛿ui2)]

= 0

since the nonzero relative virtual displacements are not compatible with the constraints. Hence
it can be deduced that the linking forces do not contribute to the generalized forces acting on
the global system. Their absence from the evaluation of the generalized forces is one of the
attractive aspects of Lagrangian mechanics.

Elastic forces
An elastic body can be defined as a body for which any produced work is stored in a recoverable
form, thus giving rise to a variation of internal energy:

𝛿int =
3∑
i=1

N∑
k=1

𝜕int

𝜕uik
𝛿uik = −𝛿𝜏

where 𝜏 is the virtual work of internal forces. It can be expressed in terms of generalized
displacements:

int = int(q, t)

𝛿𝜏 =
n∑

s=1

Qs𝛿qs = −𝛿int
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with the generalized forces of elastic origin

Qs = −
𝜕int

𝜕qs
(1.48)

Dissipation forces
A dissipation (or dissipative) force may be characterized by the fact that it remains parallel
and in opposite direction to the velocity vector and is a function of its modulus. Therefore, a
dissipation force acting on a mass particle k may be expressed in the form:

Xk = −Ck fk(𝑣k)
𝒗k

𝑣k

or, in terms of components:

Xik = −Ck fk(𝑣k)
𝑣ik

𝑣k
(1.49)

where

– Ck is a constant
– fk(𝑣k) is the function expressing velocity dependence
– 𝑣k is the absolute velocity of particle k:

𝑣k = |𝒗k| =
√√√√ 3∑

i=1

𝑣2
ik =

√√√√ 3∑
i=1

u̇2
ik

The virtual work of the dissipation forces acting on the system is:

n∑
s=1

Qs𝛿qs =
3∑
i=1

N∑
k=1

Xik𝛿uik

=
3∑
i=1

N∑
k=1

n∑
s=1

Xik
𝜕uik
𝜕qs

𝛿qs

yielding:

Qs = −
3∑
i=1

N∑
k=1

Ckfk(𝑣k)
𝑣ik

𝑣k

𝜕uik
𝜕qs

(1.50)

By noticing that:

𝑣ik =
duik
dt

=
𝜕uik
𝜕t

+
n∑

r=1

𝜕uik
𝜕qr

q̇r

𝜕𝑣ik

𝜕q̇s
=

𝜕uik
𝜕qs

(1.51)

one may write:

Qs = −
3∑
i=1

N∑
k=1

Ckfk(𝑣k)
𝑣ik

𝑣k

𝜕𝑣ik

𝜕q̇s
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= −
N∑
k=1

Ck
fk(𝑣k)
𝑣k

𝜕

𝜕q̇s

[
1
2

3∑
i=1

𝑣2
ik

]

= −
N∑
k=1

Ckfk(𝑣k)
𝜕𝑣k

𝜕q̇s
(1.52)

Let us next introduce the dissipation function  as:

 =
N∑
k=1

∫
𝑣k

0
Ckfk(𝛾)d𝛾 (1.53)

and thus:
Qs = −𝜕

𝜕q̇s
(1.54)

The dissipated power takes the form:

P =
n∑

s=1

Qsq̇s = −
n∑

s=1

q̇s
𝜕
𝜕q̇s

By assuming that the dissipation function  is homogeneous of order m in the generalized
velocities, one gets from (1.53) the energy dissipation equation

d
dt
( + ) = −m (1.55)

The orderm of the dissipation function and thus the orderm − 1 of the generalized dissipation
forces Qs describes the physical dissipation mode:

m = 1 ↔ dry friction
m = 2 ↔ viscous damping
m = 3 ↔ aerodynamic drag

Let us finally note that the dissipation forces, although classified here as internal forces, may
have external origins too.

External forces

Conservative forces
When the external forces are conservative, their virtual work remains zero during a cycle:

𝛿𝜏 = ∮ Qs𝛿qs = 0

and a potential of external forces ext(q, t) can be introduced such as:

Qs = −
𝜕ext

𝜕qs
(1.56)



Michel Géradin c01.tex V3 - 11/07/2014 5:29 P.M. Page 36

36 Mechanical Vibrations: Theory and Application to Structural Dynamics

Nonconservative forces
When the external forces are of the nonconservative type, the evaluation of the corresponding
generalized forces is achieved by making use of a virtual work equation:

𝛿𝜏 =
n∑

s=1

Qs𝛿qs =
3∑
i=1

N∑
k=1

Xik𝛿uik

=
3∑
i=1

N∑
k=1

n∑
s=1

Xik
𝜕uik
𝜕qs

𝛿qs

and thus:

Qs =
3∑
i=1

N∑
k=1

Xik
𝜕uik
𝜕qs

(1.57)

Taking into account the nonconservative external forces, the power balance of a system can be
written in the more general form:

d
dt
( + ) = −m +

n∑
s=1

Qsq̇s (1.58)

1.4 Lagrange equations in the general case

In the general case of a nonconservative system with rheonomic constraints, the Lagrange
equations of motion may be explicitly expressed in the form:

− d
dt

(
𝜕
𝜕q̇s

)
+ 𝜕

𝜕qs
− 𝜕

𝜕qs
− 𝜕

𝜕q̇s
+ Qs(t) = 0 s = 1, … , n (1.59)

or, by explicitly introducing the relative inertia forces:

d
dt

(
𝜕2

𝜕q̇s

)
−

𝜕2

𝜕qs
= Qs (t) −

𝜕∗

𝜕qs
− 𝜕

𝜕q̇s
+ Fs −

𝜕

𝜕t

(
𝜕1

𝜕q̇s

)
s = 1, … , n (1.60)

where

Qs(t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . nonconservative external generalized forces
 = ext + int . . . . . . . . . . . . . . . . . . . . . . . . total potential
∗ =  − 0 . . . . . . . . . . . . . . . . . . . . . . . . . . potential modified by the transport kinetic energy
Fs =

∑n
r=1 q̇rGrs . . . . . . . . . . . . . . . . . . . . . . generalized gyroscopic forces

 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . dissipation function

Example 1.8

Let us derive the equations of motion for the system of Figure 1.10 made of a wheel of rotating
inertia I inside which a mass m is attached through a system of springs and a viscous damper.
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k2

k1

c1

x

y

Ω

Figure 1.10 Rotating system.

Assuming a coordinate system (x, y) rotating at a constant rotation speed 𝛺 and attached to
the wheel, mass m has the following absolute velocity components:

𝒗 =
[
ẋ −𝛺y, ẏ +𝛺x

]
Hence the kinetic energy is given by:

 = 1
2
m
[
(ẋ −𝛺y)2 + (ẏ +𝛺x)2

]
+ 1

2
I𝛺2

Assuming that displacements x and y remain small, the potential energy of the springs is
equal to

 = 1
2
k1x

2 + 1
2
k2y

2

while the dissipation function of the damper takes the form:

 = 1
2
c1ẋ

2

By applying the Lagrange equations (1.59), the equations of motion are obtained in the form:

mẍ − 2m𝛺ẏ − m𝛺2x + c1ẋ + k1x = 0

mÿ + 2m𝛺ẋ − m𝛺2y + k2y = 0

They can also be put in the matrix form:

Mq̈ + (C + G)q̇ + (K −𝛺2M)q = 0 (E1.8.a)

where the vector of generalized displacements qT =
[
x y

]
and the mass, damping, stiffness

and gyroscopic coupling matrices are defined below:

M =
[
m 0
0 m

]
C =

[
c1 0
0 0

]
K∗ =

[
k1 0
0 k2

]
G =

[
0 −2m𝛺

2m𝛺 0

]
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The meaning of the different terms is more apparent when using the Lagrange equations in the
form (1.60):

0 = 1
2
m𝛺2(x2 + y2) = 1

2

[
x y

] [m𝛺2 0
0 m𝛺2

] [
x
y

]
= 𝛺2

2
qTMq (E1.8.b)

1 = m𝛺(xẏ − ẋy) =
[
ẋ ẏ

] [ 0 −m𝛺
m𝛺 0

] [
x
y

]
= 1

2
q̇TGq (E1.8.c)

2 = 1
2
m(ẋ2 + ẏ2) = 1

2

[
ẋ ẏ

] [m 0
0 m

] [
ẋ
ẏ

]
= 1

2
q̇TMq̇ (E1.8.d)

 = 1
2
(k1x

2 + k2y
2) = 1

2

[
x y

] [k1 0
0 k2

] [
x
y

]
= 1

2
qTKq (E1.8.e)

 = 1
2
c1ẋ

2 = 1
2

[
ẋ ẏ

] [c1 0
0 0

] [
ẋ
ẏ

]
= 1

2
q̇TCq̇ (E1.8.f)

By subtracting (E1.8.b) from (E1.8.e), the modified potential takes the form:

∗ =  − 0 = 1
2
qT (K −𝛺2M)q = 1

2
qTK∗q

The mass and damping matrices of the system are clearly positive definite. The effective
stiffness matrixK∗, however, loses its positive definite character when𝛺2 > min(k1∕m, k2∕m).
The stability behaviour of the system is thus controlled by its rotating speed, as will be shown
in Section 2.11.

Remark 1.1 Although the physical meaning of centrifugal forces−𝛺2Mq in Equation (E1.8.a)
is usually easily understood, this is not the case of gyroscopic forces Gq̇ (also called Coriolis
forces) which are more difficult to explain. The gyroscopic forces are in fact fictitious forces
in the sense that they appear in the equation of motion of the system when they are expressed
with respect to a moving frame as it is the case here.
In order to have a physical insight, let us assume that in the inertia wheel system, the mass m

remains on the rotating axis x and moves with a varying velocity ẋ as described in Figure 1.11.
We will graphically show that such a motion in fact corresponds to absolute accelerations
given to mass m which will prove the presence of centrifugal and gyroscopic forces.
Figure 1.11.a shows the configuration and absolute velocities of the system at a given time

and at a small time interval 𝛥t later. Let the time interval the axis has rotated be an amount
𝛥𝜙 = 𝛺𝛥t. The velocity along the x axis has changed because of the relative acceleration ẍ
along x and the velocity along y has changed because its position on the x axis has changed by
𝛥x = ẋ𝛥t. Also, observe that in that time interval the direction of the axes x and y has changed.
If we now analyze the variation of the absolute velocity (Figure 1.11.b), we observe that:

• the velocity change along x results in the absolute acceleration components:

i. 𝛥ẋ
𝛥t

= ẍ along x due to the relative velocity variation,

ii. ẋ𝛥𝜙
𝛥t

= ẋ𝛺 along y due to the change of direction of the x axis,
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Figure 1.11 Physical interpretation of gyroscopic forces.

• the velocity change along y results in the absolute acceleration components:

i. −(x𝛺)𝛥𝜙
𝛥t

= −x𝛺2 along x due to the change of direction of the y axis,

ii. 𝛥x𝛺
𝛥t

= ẋ𝛺 along y due to the change of position of the mass along x in the time interval.

Clearly, (i.) is the relative acceleration generating the relative inertia forces, (ii. + iii.) are the
Coriolis accelerations generating the gyroscopic forces and (i𝑣.) is the centripetal acceleration
generating the centrifugal forces.

1.5 Lagrange equations for impulsive loading

1.5.1 Impulsive loading of a mass particle

Let us consider a particle undergoing a displacement ui. Hamilton’s principle takes the form:

𝛿I = ∫
t2

t1

3∑
i=1

[
𝛿

(1
2
mu̇iu̇i

)
+ Xi𝛿ui

]
dt = 0 (1.61)

with 𝛿ui(t1) = 𝛿ui(t2) = 0

and it is assumed that u̇i and 𝛿u̇i are piecewise continuous.
In representing the momentum of the particle, the possible discontinuity of the velocity field

u̇i for certain t values does not allow performing the time derivative of the momentum mu̇i.
Therefore, let us integrate by parts the second term of principle (1.61), in order to let the force
integral over the time interval appear:

𝛿I =

[
3∑
i=1

𝛿ui ∫
t

t1

Xi(t′)dt′
]t2

t1

+ ∫
t2

t1

3∑
i=1

[
mu̇i − ∫

t

t1

Xi(t′)dt′
]
𝛿u̇i dt

= ∫
t2

t1

3∑
i=1

Mi𝛿u̇i dt = 0 (1.62)
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For the sake of conciseness let us define:

Mi = mu̇i − ∫
t

t1

Xi(t′)dt′ (1.63)

and in order to obtain the variational derivatives of this modified form of Hamilton’s principle
let us demonstrate first du Bois-Reymond’s theorem (Courant and Hilbert 1953):

∫
t2

t1

3∑
i=1

Mi𝛿u̇i dt = 0

for piecewise continuous 𝛿u̇i and 𝛿ui(t1) = 𝛿ui(t2) = 0

⇐⇒

Mi = Ci

where Ci are constants

(1.64)

The proof goes as follows:

Sufficient condition: if Mi = Ci, then

∫
t2

t1

3∑
i=1

Mi𝛿u̇i dt =
3∑
i=1

Ci ∫
t2

t1

𝛿u̇i dt

=

[
3∑
i=1

Ci𝛿ui

]t2

t1

= 0

Necessary condition: since

∫
t2

t1

3∑
i=1

Mi𝛿u̇i dt = 0

for any virtual velocity 𝛿u̇i piecewise continuous verifying 𝛿ui(t1) = 𝛿ui(t2) = 0,
let us take:

𝛿ui = ∫
t

t1

(Mi − Ci) dt′ = ∫
t

t1

Mi(t′) dt′ − Ci(t − t1)

with

Ci =
1

t2 − t1 ∫
t2

t1

Mi(t′) dt′

The corresponding virtual velocity is:

𝛿u̇i = Mi − Ci
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and one may write:

∫
t2

t1

3∑
i=1

Mi𝛿u̇i dt = ∫
t2

t1

3∑
i=1

Mi𝛿u̇i dt − ∫
t2

t1

3∑
i=1

Ci𝛿u̇i dt

= ∫
t2

t1

3∑
i=1

(Mi − Ci)𝛿u̇i dt

= ∫
t2

t1

3∑
i=1

(Mi − Ci)2dt

= 0

Therefore Mi = Ci which concludes the proof.

By making use of du Bois-Reymond’s theorem, Hamilton’s principle in the form (1.62) pro-
vides the equations of motion:

mu̇i(t) − ∫
t

t1

Xi(t′) dt′ = Ci i = 1, 2, 3 (1.65)

where Ci = mu̇i(t1) are the components of the momentum at time t1, hence:

m(u̇i(t) − u̇i(t1)) = ∫
t

t1

Xi(t′) dt′ i = 1, 2, 3 (1.66)

This last form expresses that the variation of the momentum of the particle over the time inter-
val [t1, t] is equal to the impulse of the external forces impressed on the particle during the
same time interval.

In many shock and impact problems, the application time of the loading compared to the time
scale at which phenomena are observed is so small that it is valid to consider that the external
force is of impulse type, i.e. applied during an infinitesimal time interval but impressing on
the system a finite impulse:

Pi = ∫
t+

t−

Xi(t) dt (1.67)

In the impulsive case, Equation (1.66) becomes:

mu̇i(t+) − mu̇i(t−) = Pi i = 1, 2, 3 (1.68)

showing that a velocity discontinuity such as represented by Figure 1.12 results from an impul-
sive loading equal to Pi∕m.

Equations (1.68) are the only applicable ones in the impulsive case since the instantaneous
force Xi becomes infinite during the shock. Alternatively this result is classically derived from
the time-integration of Newton’s equation, taking the limit for an infinite force on a zero time
interval. In the next section we show that the same mathematical reasoning as presented here
for a particle can be followed in order to find the impulse equations in terms of generalized
coordinates.
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u· i

t

Figure 1.12 Velocity discontinuity.

1.5.2 Impulsive loading for a system of particles

For a system of N mass particles described by n generalized coordinates qs, Hamilton’s prin-
ciple takes the form:

𝛿I = ∫
t2

t1

n∑
s=1

[
𝜕
𝜕q̇s

𝛿q̇s +
(
𝜕( − 

𝜕qs
+ Qs −

𝜕
𝜕q̇s

)
𝛿qs

]
dt = 0 (1.69)

with
𝛿qs(t1) = 𝛿qs(t2) = 0 (1.70)

Let us integrate the second term by parts in order to let the time integral of the forces appear:

𝛿I =

[
n∑

s=1

𝛿qs ∫
t

t1

(
𝜕( − )

𝜕qs
+ Qs −

𝜕
𝜕q̇s

)
dt′

]t2

t1

+∫
t2

t1

n∑
s=1

[
𝜕
𝜕q̇s

− ∫
t

t1

(
𝜕( − )

𝜕qs
+ Qs −

𝜕
𝜕q̇s

)
dt′

]
𝛿q̇s dt

Hence, by setting:

Ms =
𝜕
𝜕q̇s

− ∫
t

t1

(
𝜕( − )

𝜕qs
+ Qs −

𝜕
𝜕q̇s

)
dt′ (1.71)

one obtains:

𝛿I = ∫
t2

t1

n∑
s=1

Ms𝛿q̇s dt = 0

As previously, du Bois-Reymond’s theorem (Courant and Hilbert 1953) can be stated in
the form:

∫
t2

t1

n∑
s=1

Ms𝛿q̇sdt = 0

with 𝛿qs(t1) = 𝛿qs(t2) = 0 and 𝛿q̇s piecewise continuous

⇐⇒

Ms = Cs

with Cs constants

(1.72)
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The demonstration is similar to the case of one mass particle. Hence, the generalization of
Equations (1.65) to (1.68) is written:

𝜕
𝜕q̇s

− ∫
t

t1

(
𝜕( − )

𝜕qs
+ Qs −

𝜕
𝜕q̇s

)
dt′ = Cs s = 1, … , n (1.73)

𝜕
𝜕q̇s

−
[
𝜕
𝜕q̇s

]
t1

= ∫
t

t1

(
𝜕( − )

𝜕qs
+ Qs −

𝜕
𝜕q̇s

)
dt′ s = 1, … , n (1.74)

In the case of impulsive loading, one may write:

Ps = ∫
t+

t−

Qsdt
′ (1.75)

and [
𝜕
𝜕q̇s

]
t+

−
[
𝜕
𝜕q̇s

]
t−

= Ps s = 1, … , n (1.76)

since 𝜕( −)
𝜕qs

− 𝜕
𝜕q̇s

remains finite between t− and t+.

This result is the generalization of (1.68) to a system of particles. Let us finally note that
the equality relationships (1.74) to (1.76) between the change of momentum and the impulse
impressed on the system could also be deduced from a time integration of the Lagrange
equations (1.29), taking the limit for an infinite force on a zero time interval.

Example 1.9

Let us consider the system of Figure 1.13 made of two masses m1 and m2 lying on a horizontal
plane. m2 is initially at rest, while m1 moves with constant velocity 𝑣1 = V and hits mass m2
at time t = t−. We are interested in 𝑣+1 and 𝑣+2 , the velocities after the shock (at time t = t+).

m1 m2

V

Figure 1.13 Collision of two masses.

A first relation is obtained by expressing conservation of the total energy of the system, which
in this case reduces to the kinetic energy:

 = 1
2
m1(𝑣−1 )

2 + 1
2
m2(𝑣−2 )

2 = 1
2
m1V

2 = 1
2
m1(𝑣+1 )

2 + 1
2
m2(𝑣+2 )

2 (E1.9.a)

The second relation results from the computation of the jump in velocities through the shock.
The latter are obtained from the Lagrange equations (1.76) which read in this case:[

𝜕
𝜕𝑣i

]
t+

−
[
𝜕
𝜕𝑣i

]
t−

= Pi i = 1, 2
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and yield:

m1𝑣
+
1 − m1𝑣

−
1 = P1

m2𝑣
+
2 − m2𝑣

−
2 = P2

P1 and P2 being the internal impulses generated by the shock, they are in equilibrium:

P1 + P2 = 0

and therefore we get the equation of momentum conservation:

m1𝑣
+
1 + m2𝑣

+
2 = m1V (E1.9.b)

This leads to:
𝑣+2 =

m1

m2
(V − 𝑣+1 ) (E1.9.c)

and substituting into Equation (E1.9.a) yields after simplification:

V2(m1 − m2) + (𝑣+1 )
2(m1 + m2) − 2m1V𝑣

+
1 = 0

Solving for 𝑣+1 and substituting into (E1.9.c) provides the only feasible solution:

𝑣+1 =
m1 − m2

m1 + m2
V 𝑣+2 =

2m1

m1 + m2
V (E1.9.d)

It can be observed from (E1.9.d) that after the shock:

– if m1 > m2, both masses move in the same direction as initial velocity V.
– if m1 = m2, there is exchange of velocities between masses (𝑣+1 = 0, 𝑣+2 = V).
– If m2 > m1, the masses move in opposite directions.

1.6 Dynamics of constrained systems

In the way they have been formulated in Section 1.3 Lagrange equations involve only the forces
effectively applied onto the systems thanks to the choice of kinematically admissible coordi-
nates qs. They thus express the equilibrium in a subspace orthogonal to the constraints so that
reaction forces do not appear in the equations of motion. In some cases it is nevertheless use-
ful or easier to make the reaction forces appear explicitly in the expression of the equilibrium
and to choose generalized coordinates that do not satisfy some of the kinematic constraints.
The only constraints considered here are the holonomic ones. A discussion on the treatment of
nonholonomic constraints can be found for instance in (Géradin and Cardona 2001, Lanczos
1949).

Let us suppose that a subset of m kinematic constraints (1.12) is not explicitly satisfied by the
choice of the generalized coordinates qs. Substitution of (1.11) and (1.14) into the holonomic
constraints (1.12) allows expressing the constraints for the generalized coordinates:

fr(xik + Uik(qs, t)) = fr(qs, t) = 0 r = 1, … m (1.77)
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Their variation:

𝛿fr =
n∑

s=1

𝜕fr
𝜕qs

𝛿qs = 0 r = 1, … m (1.78)

indicates that the constraints are still verified if the 𝛿qs define a motion orthogonal to the
direction determined by 𝜕fr

𝜕qs
in the space of the generalized coordinates. Thus, the derivatives

determine the directions of the reaction forces and can be expressed by:

Rrs = 𝜆r
𝜕fr
𝜕qs

(1.79)

where 𝜆r denotes the intensity of the reaction associated to constraint fr. It is called a Lagrange
multiplier.

Using (1.78) and (1.79), the virtual work of the reaction forces is:

m∑
r=1

n∑
s=1

Rrs𝛿qs =
m∑
r=1

𝜆r

n∑
s=1

𝜕fr
𝜕qs

𝛿qs =
m∑
r=1

𝜆r 𝛿fr (1.80)

The latter can be added to the virtual work expression (1.28) obtained from Hamilton’s prin-
ciple:

∫
t2

t1

n∑
s=1

[
− d
dt

(
𝜕
𝜕q̇s

)
+ 𝜕

𝜕qs
+ Qs +

m∑
r=1

𝜆r
𝜕fr
𝜕qs

]
𝛿qs dt = 0 (1.81)

It provides the Lagrange equations of motion in terms of generalized coordinates qs which do
not satisfy the constraints:

d
dt

(
𝜕
𝜕q̇s

)
− 𝜕

𝜕qs
= Qs +

m∑
r=1

𝜆r
𝜕fr
𝜕qs

where the Lagrange multipliers 𝜆r (i.e. the reaction force intensities) are determined to satisfy
the conditions (1.77). The Lagrange equations together with the complementary conditions
form a system of n + m equations with n + m unknowns:

⎧⎪⎨⎪⎩
d
dt

(
𝜕
𝜕q̇s

)
− 𝜕

𝜕qs
− Qs −

m∑
r=1

𝜆r
𝜕fr
𝜕qs

= 0 s = 1, … n

fr(qs, t) = 0 r = 1, … m

(1.82)

These Lagrange equations can also be deduced from Hamilton’s principle if one introduces
an additional potential representing the work produced by the constraining forces, i.e. the
dislocation potential d:

d = −
m∑
r=1

𝜆rfr(qs, t) (1.83)

This potential is then added to the potential of the system and it can be verified that Hamilton’s
principle (1.27) yields the equilibrium and compatibility equations (1.82) when stating the
stationarity with respect to qs and 𝜆r respectively.
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Example 1.10

Let us reconsider the simple pendulum described in Figure 1.5, but now let us try to write the
constrained equations of motion using the Cartesian displacements as unknowns. The con-
straint on the system can be written as:

f =
√

(� + u1)2 + u2
2 − � = 0 (E1.10.a)

Taking the derivatives of the constrain with respect to u1 and u2, one finds the direction of the
reaction forces, namely

−→
R = 𝜆

⎡⎢⎢⎢⎣
𝜕f

𝜕u1

𝜕f

𝜕u2

⎤⎥⎥⎥⎦ = 𝜆

⎡⎢⎢⎢⎢⎢⎣

(� + u1)√
(� + u1)2 + u2

2

u2√
(� + u1)2 + u2

2

⎤⎥⎥⎥⎥⎥⎦
= 𝜆

⎡⎢⎢⎢⎣
(� + u1)

�
u2

�

⎤⎥⎥⎥⎦
The constrained equations can thus be written as:

⎧⎪⎪⎨⎪⎪⎩

mü1 − mg − 𝜆
(� + u1)

�
= 0

mü2 − 𝜆
u2

�
= 0√

(� + u1)2 + u2
2 − � = 0

If we choose the degree of freedom 𝜃 such that:

u1 = � cos 𝜃 − �

u2 = � sin 𝜃

the constraint (E1.10.a) is always satisfied. Using these relations the reaction forces can be
expressed as:

−→
R = 𝜆

⎡⎢⎢⎢⎣
(� + u1)

�
u2

�

⎤⎥⎥⎥⎦ = 𝜆

⎡⎢⎢⎢⎣
� cos 𝜃

�
� sin 𝜃

�

⎤⎥⎥⎥⎦ = 𝜆

[
cos 𝜃

sin 𝜃

]
and as discussed in Example 1.3, projecting this force in the direction compatible with the
constraint leads to the unconstrained equation of motion for the pendulum.

1.7 Exercises

1.7.1 Solved exercises

Problem 1.1 Prove that a system of N particles that are rigidly linked to one another (thus
forming a rigid body in space) can be described by 6 degrees of freedom when N > 2.
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Figure 1.14 Solved exercises.

Solution

Every individual particle has 3 degrees of freedom if it is not rigidly linked. Since the particles
form a rigid body, the distance between any pair of particles is constant. If the system is made
of 2 particles (N = 2), one constraint can be defined. If a particle is then added to the system
of 2 particles, 2 additional constraints must be defined in order to ensure that the third particle
has a constant distance with respect to the 2 previous ones. For any additional particle in
the system, 3 additional nonredundant constraints must be defined in order to ensure that the
particle is rigidly connected to the system. Hence, for a system of N particles rigidly linked,
1 + 2 + 3(N − 3) nonredundant holonomic constraints can be defined so that the system has
3N − (1 + 2 + 3(N − 3)) = 6 degrees of freedom.

Problem 1.2 In the system described in Figure 1.14.a a mass moves on a parabolic curve
described by the equation:

y(x) = x2

�
− 4�

where � is a given length. A linear spring with stiffness k is attached to the mass and fixed
to the point (0, 0). The spring has a zero natural length. The gravity acts in the direction −y.
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Choose x as the degree of freedom of the system. Write the potential and kinetic energies of
the system and derive the Lagrange equations.

Solution

Calling u the deformation of the spring we find:

 = 1
2
ku2 + mgy = 1

2
k(x2 + y(x)2) + mgy(x) (P1.2.a)

 = 1
2
m(ẋ2 + ẏ2) = 1

2
m

(
ẋ2 + 4

x2

�2
ẋ2

)
= 1

2
mẋ2

(
1 + 4

x2

�2

)
(P1.2.b)

The terms of the Lagrange equation (1.59) then write:

d
dt

(
𝜕
𝜕ẋ

)
= d

dt

(
mẋ

(
1 + 4

x2

�2

))
= mẍ

(
1 + 4

x2

�2

)
+ 8mx

�2
ẋ2 (P1.2.c)

𝜕
𝜕x

= 4mxẋ2

�2
(P1.2.d)

𝜕
𝜕x

= k

(
x + y

𝜕y

𝜕x

)
+ mg

𝜕y

𝜕x
= kx

(
2
x2

�2
− 7

)
+ 2mg

x
�

(P1.2.e)

and there are no nonconservative forces in this system. The equation of motion is thus:

m

(
1 + 4

x2

�2

)
ẍ + 4mx

�2
ẋ2 + kx

(
2
x2

�2
− 7

)
+ 2mg

x
�
= 0 (P1.2.f)

Problem 1.3 Let us consider the double pendulum undergoing 2-D motion in a gravity field
g as already introduced in Example 1.4. Using as generalized coordinates the relative angular
displacements as shown on Figure 1.14.b, you are asked:

– To express the position coordinates 𝜉ik of both masses in terms of the generalized coor-
dinates 𝜃1 and 𝜃2 as displayed on Figure 1.14.b.

– To express the Cartesian velocities of both masses.
– To express the potential and kinetic energies of the system.
– To develop the system equations of motion in Lagrange form.

Solution

The positions of the masses were given in the Example 1.4, Equations (E1.4.a–E1.4.d) and
the absolute velocities are computed as we compute the velocities:

u̇11 = −�1𝜃̇1 sin 𝜃1

u̇21 = �1𝜃̇1 cos 𝜃1

u̇12 = −�1𝜃̇1 sin 𝜃1 − �2(𝜃̇1 + 𝜃̇2) sin(𝜃1 + 𝜃2)

u̇22 = �1𝜃̇1 cos 𝜃1 + �2(𝜃̇1 + 𝜃̇2) cos(𝜃1 + 𝜃2)
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The kinetic energy is then expressed as:

 = 1
2
(m1(u̇2

11 + u̇2
21) + m2(u̇2

12 + u̇2
22))

= 1
2
(m1�

2
1𝜃̇

2
1 + m2(�2

1𝜃̇
2
1 + �2

2(𝜃̇1 + 𝜃̇2)2 + 2�1�2𝜃̇1(𝜃̇1 + 𝜃̇2) cos 𝜃2)) (P1.3.a)

The potential energy of the system due to gravity forces is:

 = −m1gu11 − m2gu12

which, in terms of the generalized coordinates is:

 = m1g�1(1 − cos 𝜃1) + m2g(�1(1 − cos 𝜃1) + �2(1 − cos(𝜃1 + 𝜃2))) (P1.3.b)

Let us then compute the different terms of the Lagrange equations (1.59), noting that no
non-conservative forces are present:
For s= 1, namely qs = 𝜃1,

d
dt

𝜕
𝜕𝜃̇1

= d
dt
(m1�

2
1𝜃̇1 + m2(�2

1𝜃̇1 + �2
2(𝜃̇1 + 𝜃̇2) + �1�2(2𝜃̇1 + 𝜃̇2) cos 𝜃2))

=m1�
2
1𝜃̈1 + m2(�2

1𝜃̈1 + �2
2(𝜃̈1 + 𝜃̈2) + �1�2(2𝜃̈1 + 𝜃̈2) cos 𝜃2 − �1�2(2𝜃̇1 + 𝜃̇2)𝜃̇2 sin 𝜃2)

𝜕
𝜕𝜃1

= 0

𝜕
𝜕𝜃1

=m1g�1 sin 𝜃1 + m2g(�1 sin 𝜃1 + �2 sin(𝜃1 + 𝜃2))

For s= 2, namely qs = 𝜃2,

d
dt

𝜕
𝜕𝜃̇2

= d
dt
(m2(�2

2(𝜃̇1 + 𝜃̇2) + �1�2𝜃̇1 cos 𝜃2))

=m2(�2
2(𝜃̈1 + 𝜃̈2) + �1�2𝜃̈1 cos 𝜃2 − �1�2𝜃̇1𝜃̇2 sin 𝜃2)

𝜕
𝜕𝜃2

= −m2�1�2𝜃̇1(𝜃̇1 + 𝜃̇2) sin 𝜃2

𝜕
𝜕𝜃2

=m2g�2 sin(𝜃1 + 𝜃2)

Substituting these results in the Lagrange equations:

d
dt

𝜕
𝜕𝜃̇1

− 𝜕
𝜕𝜃1

+ 𝜕
𝜕𝜃1

= 0 (P1.3.c)

d
dt

𝜕
𝜕𝜃̇2

− 𝜕
𝜕𝜃2

+ 𝜕
𝜕𝜃2

= 0 (P1.3.d)

then yields the equations of motion.
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Problem 1.4 Let us consider the guided double pendulum of Figure 1.14.c where a mass m1
is prescribed to move without friction on a bar making an angle 𝛼 with respect to the vertical
direction. The spring of stiffness k is attached to a fixed point and its undeformed length is d0.
Gravity g is acting along y. Using the degrees of freedom s and 𝜃, write the energies of the
system and find its equations of motion.

Solution

The positions of mass m1 and m2 are given by:

x1 = s sin 𝛼 x2 = x1 + � sin 𝜃

y1 = s cos 𝛼 y2 = y1 + � cos 𝜃

and the absolute velocities are then:

u̇x1 = ṡ sin 𝛼 u̇x2 = u̇x1 + �𝜃̇ cos 𝜃

u̇y1 = ṡ cos 𝛼 u̇y2 = u̇y1 − �𝜃̇ sin 𝜃

The kinetic and potential energies are then computed, yielding:

 = 1
2
m1ṡ

2 + 1
2
m2(ṡ2 + �2𝜃̇2 + 2�ṡ𝜃̇ sin(𝛼 − 𝜃)) (P1.4.a)

 = −m1gs cos 𝛼 − m2g(s cos 𝛼 + � cos 𝜃) + 1
2
k(d − d0)2 (P1.4.b)

where

d2 = (e + s cos 𝛼)2 + (s sin 𝛼)2

= e2 + s2 + 2se cos 𝛼 (P1.4.c)

The terms in the Lagrange equations (1.59) (all forces being conservative) are obtained as
follows:

d
dt

𝜕
𝜕ṡ

= (m1 + m2)s̈ + m2�𝜃̈ sin(𝛼 − 𝜃)

−m2�𝜃̇
2 cos(𝛼 − 𝜃)

d
dt

𝜕
𝜕𝜃̇

= m2�
2𝜃̈ + m2� sin(𝛼 − 𝜃)s̈

−m2�ṡ cos(𝛼 − 𝜃)𝜃̇
𝜕
𝜕s

= 0
𝜕
𝜕𝜃

= −m2�ṡ𝜃̇ cos(𝛼 − 𝜃)

𝜕
𝜕s

= −m1g cos 𝛼 − m2g cos 𝛼 + k(d − d0)
𝜕d
𝜕s

𝜕
𝜕𝜃

= m2g� sin 𝜃

(P1.4.d)

Finally the Lagrange equations are written:⎧⎪⎪⎨⎪⎪⎩

(
m1 + m2

)
s̈ + m2�𝜃̈ sin(𝛼 − 𝜃) − m2�𝜃̇

2 cos(𝛼 − 𝜃)

−(m1 + m2)g cos 𝛼 + k(d − d0)
s+e cos 𝛼

d
= 0

m2�
2𝜃̈ + m2� sin(𝛼 − 𝜃)s̈ + m2g� sin 𝜃 = 0

(P1.4.e)
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Problem 1.5 Consider the rotating system of Figure 1.14.d. A wheel is rotating with constant
angular velocity 𝛺 imposed to the system. Two masses m1 and m2 slide without friction into
the orthogonal grooves. The mass points are linked through a rigid bar of length e. The inertia
of the rigid bar is neglected.

– Find the equations of motion in terms of the displacements d1 and d2 of the masses along
the grooves.

– If m1 = m2 = m and if no force is applied to the system, show that
1. the reaction force in the rigid link is also constant and the bar is always under traction;
2. the velocity 𝜃̇, namely the angular velocity of the bar relative to the wheel remains

constant.

Solution

Let us define the angular position of the disk:

𝜙(t) = 𝛺t

with respect to an inertial frame centred on the rotation axis of the system. In that system, the
masses have the instantaneous coordinates:

x1 = d1 cos𝜙 x2 = −d2 sin𝜙

y1 = d1 sin𝜙 y2 = d2 cos𝜙
(P1.5.a)

and absolute velocities:

ẋ1 = ḋ1 cos𝜙 − d1𝛺 sin𝜙 ẋ2 = −ḋ2 sin𝜙 − d2𝛺 cos𝜙

ẏ1 = ḋ1 sin𝜙 + d1𝛺 cos𝜙 ẏ2 = ḋ2 cos𝜙 − d2𝛺 sin𝜙
(P1.5.b)

The local displacements d1 and d2 are constrained by the fixed length e requiring that:√
d2

1 + d2
2 = e (P1.5.c)

This condition could be satisfied by choosing a single generalized coordinate. If one would
choose for instance 𝜃, the angle of the rod relative to the wheel, one would write:

d1 = e cos 𝜃 d2 = e sin 𝜃 (P1.5.d)

and substitute these equations in (P1.5.b). However in this exercise we consider the two degrees
of freedom d1 and d2, and impose the condition (P1.5.c) explicitly on the system using a
Lagrange multiplier (Section 1.6).
Let us compute the kinetic energy:

 = 1
2
m1(ẋ2

1 + ẏ2
1) +

1
2
m2(ẋ2

2 + ẏ2
2) (P1.5.e)

or, after substitution of (P1.5.b),

 = 1
2
m1(ḋ2

1 + d2
1𝛺

2) + 1
2
m2(ḋ2

2 + d2
2𝛺

2) (P1.5.f)
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In the absence of external force, the dynamics of the system is governed by the Lagrangian
obtained from the addition to (P1.5.f) of the inextensibility constraint (P1.5.c) with a
Lagrangian multiplier 𝜆:

(d1, d2, 𝜙, 𝜆) =
1
2
m1(ḋ2

1 + d2
1𝛺

2) + 1
2
m2(ḋ2

2 + d2
2𝛺

2) + 𝜆(
√

d2
1 + d2

2 − e) (P1.5.g)

Taking the variations with respect to 𝛿d1, 𝛿d2, and 𝛿𝜆 one obtains the equations of the system
(the constrained Lagrange equations (1.82)):

− m1d̈1 +
(
m1𝛺

2 + 𝜆

e

)
d1 = 0 (P1.5.h)

− m2d̈2 +
(
m2𝛺

2 + 𝜆

e

)
d2 = 0 (P1.5.i)√

d2
1 + d2

2 − e = 0 (P1.5.j)

the last equation being obviously equivalent to the constraint (P1.5.c).
In case the masses are equal, namely m1 = m2 = m, an elegant way to compute the Lagrange
multipliers is obtained by multiplying Equations (P1.5.j) and (P1.5.j) by d1 and d2 respectively
and summing up

−m(d1d̈1 + d2d̈2) +
(
m𝛺2 + 𝜆

e

)
(d2

1 + d2
2) = 0

Accounting for the constraint (P1.5.j) one finds:

𝜆 = me(d1d̈1 + d2d̈2 −𝛺2) (P1.5.k)

Writing the constraint (P1.5.j):
d2

1 + d2
2 = e2

and taking the time derivative twice we get:

ḋ1d1 + ḋ2d2 = 0 and d̈1d1 + d̈2d2 = −(ḋ2
1 + ḋ2

2) = −e2𝜃̇2 (P1.5.l)

where the last equality was obtained using the time derivatives of (P1.5.d). Thus, from Equation
(P1.5.k), the multiplier is obtained as:

𝜆 = −me(𝛺2 + 𝜃̇2) (P1.5.m)

It is always negative, thus according to (P1.5.h–P1.5.i) always in the direction opposite to the
centrifugal force, showing that the connecting bar is always in traction.
Let us now find the Lagrange equation corresponding to the minimum coordinate 𝜃 and first
write the expression (P1.5.f) of the kinetic energy using (P1.5.d),

 = 1
2
me2(𝜃̇2 +𝛺2) (P1.5.n)

and writing the Lagrange equation in this case yields:

me2𝜃̈ = 0 (P1.5.o)

showing that when masses are equal the angular velocity is constant, and therefore also the
constraining force 𝜆 according to (P1.5.m).
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Figure 1.15 Selected exercises.

1.7.2 Selected exercises

Problem 1.6 For the mass on a linear spring depicted in Figure 1.15.a write the potential and
kinetic energies using the angle 𝜃 and the length � of the spring as generalized coordinates.
Gravity is acting along direction y. The spring has a natural length equal to �0 and the system
is assumed to move in the plane (x, y). Find the equations of motions using the Lagrange
equations.
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Problem 1.7 Let us consider a bar hinged on a vertical rotating shaft as described in
Figure 1.15.b. The bar behaves like a pendulum in the gravity field g. The rotation speed 𝛺 is
constant and given. The bar has a uniform mass per unit length of m and a length �. You are
asked to

1. Using the angle 𝜃 as degree of freedom, determine the absolute velocity of a point on
the bar as a function of the rotation speed 𝛺.

2. Compute the kinetic and potential energy of the entire bar.
3. Find the equation of motion using the Lagrange formalism.

Problem 1.8 Repeat the exercise of the double pendulum described in Problem 1.3 but now
using absolute coordinates as displayed on Figure 1.15.c. Compare the equations of motion
obtained with both sets of generalized coordinates.

Problem 1.9 A mass m slides without friction on a rod positioned at a fixed angle 𝛼 with
respect to the horizontal direction (Figure 1.15.d). The mass is fixed to a nonlinear spring
developing a force kx3 where x is its extension. The spring is aligned with the rod. To the
sliding mass a single pendulum is attached. The pendulum consists of a massless rod and two
masses attached to it: a mass m at a distance �∕2 and a mass m∕2 at a distance �. Gravity acts
in the vertical direction.

Write the kinetic and potential energy of the system using x and 𝜃 as degrees of freedom,
then find the equations of motion of the system.

Problem 1.10 The mass m shown in Figure 1.15.e slides without friction on a massless rod
of length �. The mass is attached to a linear spring k1 aligned with the rod (natural length a).
A second linear spring k2 is attached to the end of the rod (zero natural length). This spring is
attached to a massless slider so that it remains vertical. Gravity acts in the vertical direction.

Using the generalized coordinates s and 𝜃, respectively the position of the mass on the rod
and the angle between the horizontal direction and the rod, write the kinetic and potential
energies and derive the equations of motion. What would the equations of motion be if, in
parallel to spring k2, a viscous damper d would be present?

Problem 1.11 Let us consider the system of Figure 1.15.f made of 2 identical pendulums of
mass m, length � and moving in a gravity field g.

They are aligned so that there is no reaction force in the equilibrium position 𝜃1 = 𝜃2 = 0.
Assuming that one of the pendulums is displaced from its equilibrium position and released
from an initial angle 𝜃0, you are asked to:

– Determine the collision time t− and the angular velocity of the moving pendulum just
before the shock.

– Determine the angular velocities of both pendulums just after the shock.
– Sketch the trajectories of both pendulums in the phase plane (𝜃, 𝜃̇).
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