
 Chapter 1
 A Histor y of Test ing

 THE IDEA OF testing is one that has evolved over many years in the development community.
Developers used to have much less focus on testing up front and just wrote code and dealt with
any problems that arose by quickly writing fi xes after a testing period at the end of a project.
Th at isn ’ t to say that there weren’t developers out there who were writing code that was trouble
free when out in the wild, but on the whole, writing code without tests in general is going to
lead to problems down the line. Th ere were also cases where testing was a priority, such as code
that could cause destruction or the possibility of a person dying. In such circumstances there
would be rigorous testing, but this was very much the exception rather than the rule.

 Th e fi rst real change in ideology came with improvements in technology and the resulting
development pressures that came with it. When computers were slower, code modifi cation
cycles took much longer. Even a simple program could take tens of minutes to build, and
large projects could take hours. Th is resulted in a batch development process where people
spent a great deal of time pouring over code, fi guring out issues, and then making sets of
changes. Th e amount of time spent verifying changes to the code was comparatively small
compared with the cycle time.

 As computers became faster, compilation times shrank and development cycle times corre-
spondingly shrank. It became feasible to make small changes to code, quickly build the prod-
uct, and then verify the results of those few changes. Th is meant that code was written and
tests covered that code to ensure it behaved as expected. Also, as computer systems became
more powerful, the complexity of software increased. Even a simple program these days
often has both a client and server component running on diff erent systems (such as a
browser and web server). Operating systems off er a bewildering variety of services to a pro-
gram. Choreographing these interactions requires managing complexity in a systematic way.
Features of Python such as loose typing impose additional verifi cation demands on develop-
ers, as errors in coding cannot be caught at a compilation stage. Similarly, because Python

04_9781118901229-ch01.indd 504_9781118901229-ch01.indd 5 6/26/2014 7:12:15 PM6/26/2014 7:12:15 PM

CO
PYRIG

HTED
 M

ATERIA
L

T E S T I N G P Y T H O N6

has no demands on the type of objects it is manipulating, you can end up with strange
behavior if you have not handled all cases correctly.

 Testing forces developers to think about the code that they are writing and consider all sorts
of diff erent scenarios and the outcomes rather than focusing on the happy path scenario that
takes into account only how the code should be used. When combined with a test driven
development approach (TDD; see Chapter 5), this ideology ensured that testing was baked in
to the development process and not a tedious afterthought. One of the worst traps a devel-
oper can fall into is writing a bunch of code and then going back and testing it all at the end.
Not only is this approach more time consuming and often rushed, but it also means revisiting
code that isn ’ t fresh in the mind like it was at the time of writing. When you revisit the method
to write a test, the context and thought process at the time of writing is often lost to you.

 Similarly, the change from the waterfall development processes to agile has brought a huge
focus on testing while developing rather than treating testing as an afterthought, as I describe
previously. Agile development advocates that teams include dedicated quality assurance (QA)
personnel, whose sole focus is to write tests and maintain a solid test suite around the applica-
tion. Th is allows someone who hasn ’ t written the code to look at it from a fresh angle and
perhaps spot weaknesses or bugs in the code before those glitches reach the customer.

 Following on from TDD, agile development also spawned the concept of behavior driven
development (BDD; see Chapter 6). Th is method takes unit testing one step further and
looks to test the application’s behavior in terms of functionality being delivered. BDD is also
known as an acceptance test and generally comes in the form of a human readable feature
fi le, which describes the functionality and then maps to step fi les, which execute the test
code underneath. Th e huge benefi t of this approach is that non-technical team members,
such as a scrum master (person responsible for removing impediments that arise in a team
and assists in organizational matters) or product owner (person wanting the deliverable and
setting the requirements for the project), can write feature fi les, and then the developer or
QA can implement the code underneath. With this setup in place, you basically have testable
documentation for your system that anyone on the team can understand. Th is approach also
allows you to create a failing acceptance test that you develop your code to pass, ensuring
that you deliver the feature you have set out to create. Unit testing alone does not produce
such reliable results. It is the combination of the two testing practices that ensures you can
deliver quality software and be confi dent when it goes live.

 Clearly, the mindset of developers has changed over the years from not just writing code but
to ensuring that their code is tested from all angles. From unit testing to acceptance testing,
Python developers have implemented libraries and tools to help Python developers follow
these changes to the development process. Th is book covers their implementation and usage
so that you too can get up to speed on the latest testing tools and techniques to ensure you
are not left stuck in the past of testing history.

04_9781118901229-ch01.indd 604_9781118901229-ch01.indd 6 6/26/2014 7:12:15 PM6/26/2014 7:12:15 PM

C H A P T E R 1 A H I S T O R Y O F T E S T I N G 7

 You Do Test, Don’t You?
 A huge shift has occurred in recent years of software development toward testing and ensur-
ing that your application delivers absolute quality. With the advent of social networks and
the ever-increasing pressure of media attention, defects in your code could be costly to both
you and your reputation or that of any company you may represent. Whether it be security
fl aws exposing sensitive customer data, defects that allow hackers access to deface your web-
site, or simply a payments page failing to execute orders, errors can cost your business huge
sums of money.

 Don’t think of problems on only the large-scale, either. Without a proper testing suite in place,
how do you know you have delivered the functionality you set out to deliver at the beginning
of writing code? Take a simple data submission form. You have coded the fi elds to accept a
name, address, and e-mail, without any testing. You quickly enter the data as expected and
your submit works fi ne. But what if your customers enter something you didn ’ t expect in the
fi elds—for instance, a number in the name fi eld? Does your code handle this? What if you
make changes to the code? Are you sure that the program still functions as it should?

 You can see some of the problems developers face when writing code of this nature and how
testing can give you a repeatable process that ensures you are delivering working software every
time. Luckily for you, this shift in mindset to place such importance in testing has spawned
numerous, quality testing tools and frameworks to make the process as simple as possible.

 You can certainly make great code without tests. In fact, it is highly likely that many soft-
ware houses put out software without rigorous testing. Th e key advantage of writing tests,
especially as part of the development process, is that testing gives you confi dence in your
code before it goes live. As a developer, you are often on call to support your applications in
the middle of the night. Do you really want that phone call at 3 a.m. because you didn ’ t
write tests to cover that edge case? Testing won’t stop this from ever happening again, but
it will make it a very rare occurrence. You will have good knowledge of the diff erent routes
through your system, making it easier to debug the situations where the worst may happen.

 Fundamentals and Best Practices
 Before getting stuck in the process of writing tests, it is a good idea to take some time to get
your machine in order and up to date with the tools you will need to proceed. First, ensure
you have the correct version of Python installed. Th en, getting set up with some of the basic
tools Python developers use on a daily basis will mean you can easily follow the rest of this
book and install libraries of code and keep your changes in check using source control. Th is
section is essentially a prerequisite to the rest of the book, and it is recommended you follow
the instructions carefully to get your machine in shape for the examples that will follow later.

04_9781118901229-ch01.indd 704_9781118901229-ch01.indd 7 6/26/2014 7:12:15 PM6/26/2014 7:12:15 PM

T E S T I N G P Y T H O N8

 Python Installation
 Of course, this book assumes that you already have some background in Python program-
ming, even at the most basic level. Th at said, for completeness it is worth mentioning how to
get Python on your system and what version this book uses.

 Th e book focuses on the Python 2.7 release, which is used quite widely in the Python commu-
nity. It is the last version that was released prior to the backward-incompatible release of 3.0
and beyond. Th e vast majority of code will likely work with Python 3.0 and the offi cial docu-
mentation will help with any problems that may arise.

 Linux
 Most Linux distributions come with some version of Python installed. Most notably, recent
Ubuntu releases generally come with version 2.7. x preinstalled. If for some reason you fi nd
you don ’ t have Python, or perhaps you have an older version and want to upgrade, you usu-
ally install using your distributions package manager. Should Python not be available in this
form, then you can visit www.python.org to download the source and compile it yourself.
Instructions should be included on the website.

 Mac
 Like Linux, Apple chose to ship a version of Python with every version of OS X. At the time of
writing, Mavericks had just been released in October 2013; this version included Python 2.7.5
by default. Th erefore, if you are following this book and working on a Mac, then you should be
all set. If you fi nd you need to get Python on your machine for some reason, then you could
install a package manager for Mac. Th is not only will help with the install of Python itself, but
will also come in handy for any other dependencies your system may need. Two popular pack-
age managers for Mac are available: MacPorts and Homebrew. I prefer the latter because its
packages seem to be better maintained and more up to date than those for MacPorts.
Homebrew is also a more lightweight installation, and the install scripts are written in Ruby,
which means it’s easy to write some brews yourself. You can fi nd information on the two pack-
age managers here:

 ■ MacPorts at http://macports.com

 ■ Homebrew at http://brew.sh

 Windows
 Windows is considered out of scope in this book. Having had little to no experience working
with Python on a Windows machine, I am not in the best place to off er advice. However,
that does not mean the code and advice in this book are not of use to a Windows user.

04_9781118901229-ch01.indd 804_9781118901229-ch01.indd 8 6/26/2014 7:12:15 PM6/26/2014 7:12:15 PM

C H A P T E R 1 A H I S T O R Y O F T E S T I N G 9

Plenty of guides on the web can help a Windows user get set up with Python, at which point
you can easily run the tests and code that this book off ers. Some good Python Windows
resources are

 ■ Offi cial Python website: http://www.python.org/downloads/windows/

 ■ Python documentation: http://docs.python.org/2/using/windows.html

 Pip
 Th e new standard package manager for Python, Pip allows you to install any of numerous
Python packages from the PyPi repository. For example, you may want to write a web appli-
cation in which case a popular web framework such as Django or Flask could be installed.
First fi nd out if you have Python. If so, you also should have Pip. If you don’t, you should at
least have easy_install , the package manager that Pip has superseded. To get Pip in this
scenario, simply try:

 $ easy_install pip

 You should then have Pip and be able to install packages, like so:

 $ pip install flask

 More on easy_install and Pip can be found at http://www.pip-installer.org .

 Virtualenv
 If you have been working on any Python projects without using Virtualenv, you are certainly
missing out. Virtualenv helps to give you a clean Python environment for every project you
work on. With all projects, you generally end up installing at least a few packages. If you use
your system Python installation for every project, then you can end up installing many pack-
ages and possibly needing diff erent versions of the same package for diff erent projects. You
could remove and install the package each time you worked on the project, but Virtualenv
removes this headache and keeps your projects separate.

 You need to install two packages to use Virtualenv eff ectively: the Virtualenv package itself,
which provides the functionality already described, and Virtualenvwrapper, which is optional
but highly recommended. Th e wrapper basically provides handy command line utilities for
creating, deleting, and working with Virtualenvs. For instance, with the wrapper installed
you can create a Virtualenv, like so:

 $ mkvirtualenv myenv
 (myenv) $

04_9781118901229-ch01.indd 904_9781118901229-ch01.indd 9 6/26/2014 7:12:15 PM6/26/2014 7:12:15 PM

T E S T I N G P Y T H O N10

 After you create the Virtualenv, it activates automatically. Virtualenv informs you which ver-
sion you are using by including the Virtualenv name at the start of your command prompt.
Another nicety of the wrapper is that you can write your own command hooks to perform
actions after, say, activating a Virtualenv. For example, I have set mine up to change into the
project directory of the Virtualenv I am activating. I won’t go into any more detail on
Virtualenv now, but I highly recommend you install it on your machine. You can fi nd all the
details here:

 ■ Virtualenv: http://www.virtualenv.org/en/latest/

 ■ Virtualenvwrapper: https://pypi.python.org/pypi/virtualenvwrapper

 Source Control (SVN, Git)
 Version control is vital when working on a project—whether alone or with many developers.
Your software will evolve naturally as you work on it, but what if you want to go back to
changes made a few days earlier? You may want to try an idea out but need an easy way to
revert to the prior working state should your current idea not work. How do you manage
multiple developers working on the same code base and but still keep code changes in check?
Source control gives you the power to manage all these problems easily, with great tools and
integration with things like your favorite IDE. Source control also serves as the integration
point for many other processes, such as continuous integration, code review systems, code
quality and coverage reporting and release and deployment among others. Th erefore it is
clear that having a solid, well understood and maintainable source control system in place is
crucial and forms a clear backbone to your code base’s organization.

 Th e two most commonly used source control systems are Subversion (SVN) and Git. SVN is
the older of the two and works based on a single repository model. Th is means you check out
an SVN repository of the code, do your work, and commit the changes back to the repository
on the server.

 Git, however, fl ips this model, where you clone a Git repository from the server. You then do
some work and commit to your local copy of the repository. You can do as many local com-
mits as you like, before pulling changes from the repository on the server, fi xing any confl icts
of code, and then pushing their changes to the server to be pulled by other developers. Git is
known as a distributed source control for this reason. Th e main benefi ts of Git are

 ■ Local commits: You can check in without an Internet connection.

 ■ Branches: Easily create and switch branches to work on ideas or features away from
the main “master” branch.

04_9781118901229-ch01.indd 1004_9781118901229-ch01.indd 10 6/26/2014 7:12:15 PM6/26/2014 7:12:15 PM

C H A P T E R 1 A H I S T O R Y O F T E S T I N G 11

 ■ Merge: Move branches back into the master. Rebase option to replay commits one by
one rather than whole changes in one go a la SVN.

 ■ Git SVN: Easily convert SVN repository to Git with built-in tools.

 Th e main disadvantage to using Git is the lack of a central source of truth for your project.
Because Git allows so much fl exibility and freedom with its distributed repository architecture,
without careful management you can end up with a confusing project structure and merge
issues. With SVN having only the one central repository it makes it simpler for developers to
keep their code on their machine up to date and in sync with the rest of the checked in code.

 Git is becoming the standard for version control, with the added benefi ts of the distributed
model suiting the workfl ows of many developers and its handling of merging code much
better than SVN.

 ■ Git: http://git-scm.com

 ■ Pro Git (Free eBook on Git): http://git-scm.com/book

 ■ Try Git (Free online tutorial): http://try.github.com/

 ■ SVN: http://subversion.apache.org

 ■ Version Control with SVN (Free eBook): http://svnbook.red-bean.com/

 Interactive Development Environment (IDE)
 Using a good IDE can be advantageous. Getting comfortable and familiar with an IDE is
much like a car mechanic knowing every tool in his garage. An IDE doesn’t make you a good
programmer, but knowing how and when to use the right tools can make your life a lot
easier. You can usually fi nd a couple of stand-out IDEs for each language, and the development
communities have their favorites. Two of my favorites for Python are PyCharm and the more
all-encompassing IntelliJ, which handles many programming languages. IntelliJ and
PyCharm are essentially the same product provided by Jetbrains, with PyCharm focused
only on Python development and IntelliJ utilizing a Python plugin to provide the entire
feature set of PyCharm alongside other language support. Both are regularly maintained,
with new features releases and bug fi xes every couple of months. Th e IDE is also well designed
with support for many popular libraries and frameworks, such as Flask and Django web
frameworks, and test support for running tests in the IDE itself instead of the command line
and also Virtualenv’s discussed earlier.

 You also get the usual IDE features of code completion, syntax highlighting, and powerful
searching, which is great when working with larger code bases. Both IDEs also off er expan-
sion for many diff erent types of tools you may want to interact with through the use of
 plug-ins. For example, if you write bash scripts to use with your code, you can install the bash
plug-in and write the scripts in the IDE with full syntax highlight and support for adding

04_9781118901229-ch01.indd 1104_9781118901229-ch01.indd 11 6/26/2014 7:12:15 PM6/26/2014 7:12:15 PM

T E S T I N G P Y T H O N12

code items like shebangs. A large repository of plug-ins is available, so should you need some
extra functionality, you will likely fi nd it there.

 PyCharm, shown in Figure 1-1 , is available on a trial, free (with some features unavailable),
and full-feature set license basis. Pricing and further information is available at http://
www.jetbrains.com/pycharm/.

 Figure 1-1 : PyCharm interface. Th is excellent Python IDE helps you develop great Python code.

 Summary
 Th is introductory chapter provided a brief description of whom this book is for. By now, you
should have a feel for the concepts and topics that are conveyed in subsequent chapters. You
were introduced to the subject of testing and given a brief background in the history of test-
ing. You were shown how it has evolved from merely an afterthought of the product to a
process, which in many cases is now baked in to the development.

 “You do test, don’t you?” poses a great question to many developers and hopefully serves as
a reminder throughout your time reading this book and beyond. Testing is an important part

04_9781118901229-ch01.indd 1204_9781118901229-ch01.indd 12 6/26/2014 7:12:15 PM6/26/2014 7:12:15 PM

C H A P T E R 1 A H I S T O R Y O F T E S T I N G 13

of a developer ’ s work and is shown to produce better results, especially in terms of aiming for
zero defects in production. You looked into why testing is now such a pivotal process and
how it can be benefi cial both in a team and lone developer environment.

 Finally, the chapter closes by ensuring you have some of the essential Python tooling on your
machine, be it Linux, Mac, or Windows. By getting these fundamentals ready, you will be set
to take on the examples and ideas in this book and it should also help you in your next
 projects and beyond.

04_9781118901229-ch01.indd 1304_9781118901229-ch01.indd 13 6/26/2014 7:12:16 PM6/26/2014 7:12:16 PM

04_9781118901229-ch01.indd 1404_9781118901229-ch01.indd 14 6/26/2014 7:12:17 PM6/26/2014 7:12:17 PM

