
c01.indd 1 2/12/2016 12:21 PM

 WHAT YOU WILL LEARN IN THIS CHAPTER:

➤ Adding JavaScript to your web pages

➤ Referencing external JavaScript fi les

➤ Changing the background color of a web page

 WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

 You can fi nd the wrox.com code downloads for this chapter at http://www.wiley.com/go/
BeginningJavaScript5E on the Download Code tab. You can also view all of the examples
and related fi les at http://beginningjs.com.

 In this introductory chapter, you look at what JavaScript is, what it can do for you, and what
you need in order to use it. With these foundations in place, you will see throughout the rest of
the book how JavaScript can help you to create powerful web applications for your website.

 The easiest way to learn something is by actually doing it, so throughout the book you create
a number of useful example programs using JavaScript. This process starts in this chapter, by
the end of which you will have created your fi rst piece of JavaScript code.

 INTRODUCTION TO JAVASCRIPT

 In this section you take a brief look at what JavaScript is, where it came from, how it works,
and what sorts of useful things you can do with it.

 1
CO

PYRIG
HTED

 M
ATERIA

L

2 ❘ CHAPTER 1 INTRODUCTION TO JAVASCRIPT AND THE WEB

cc01.indd 2 2/12/2016 12:21 PM

 What Is JavaScript?
 Having bought this book, you are probably already well aware that JavaScript is some sort of
computer language , but what is a computer language? Put simply, a computer language is a series of
instructions that tell the computer to do something. That something can be one of a wide variety of
things, including displaying text, moving an image, or asking the user for information. Normally,
the instructions, or what is termed code , are processed from the top line downward. This simplyd
means that the computer looks at the code you’ve written, works out what action you want it to
take, and then takes that action. The act of processing the code is called running or g executing it.g

 In natural English, here are instructions, or code, you might write to make a cup of instant coffee:

1. Put coffee crystals in cup.

2. Fill kettle with water.

3. Put kettle on to boil.

4. Has the kettle boiled? If so, then pour water into cup; otherwise, continue to wait.

5. Drink coffee.

 You’d start running this code from the fi rst line (instruction 1), and then continue to the next
(instruction 2), then the next, and so on until you came to the end. This is pretty much how most
computer languages work, JavaScript included. However, on some occasions you might change the
fl ow of execution or even skip over some code, but you see more of this in Chapter 3 .

 JavaScript is an interpreted language rather than a compiled language. What is meant by the terms
interpreted and d compiled? d

 Well, to let you in on a secret, your computer doesn’t really understand JavaScript at all. It needs
something to interpret the JavaScript code and convert it into something that it understands; hence
it is an interpreted language . Computers understand only machine code , which is essentially a string
of binary numbers (that is, a string of zeros and ones). As the browser goes through the JavaScript,
it passes it to a special program called an interpreter , which converts the JavaScript to the machinerr
code your computer understands. It’s a bit like having a translator translate English to Spanish, for
example. The important point to note is that the conversion of the JavaScript happens at the time
the code is run; it has to be repeated every time this happens. JavaScript is not the only interpreted
language; others exist, including PHP and Ruby.

 The alternative compiled language is one in which the program code is converted to machine code
before it’s actually run, and this conversion has to be done only once. The programmer uses a
compiler to convert the code that he wrote to machine code, and this machine code is run by the
program’s user. Compiled languages include C#, Java, and many others. Using a real�world analogy,
it’s a bit like having a Spanish translator verbally tell you in English what a Spanish document says.
Unless you change the document, you can use it without retranslation as much as you like.

 Perhaps this is a good place to dispel a widespread myth: JavaScript is not the script version of the Java
language. In fact, although they share the same name, that’s virtually all they do share. Particularly
good news is that JavaScript is much, much easier to learn and use than Java. In fact, languages like
JavaScript are the easiest of all languages to learn, but they are still surprisingly powerful.

Introduction to JavaScript ❘ 3

c01.indd 3 2/12/2016 12:21 PMM

 JavaScript and the Web
 For most of this book you look at JavaScript code that runs inside a web page loaded into a browser.
All you need to create these web pages is a text editor—for example, Windows Notepad—and a web
browser, such as Chrome, Firefox, or Internet Explorer (IE), with which you can view your pages.
These browsers come equipped with JavaScript interpreters (more commonly known as JavaScript
engines).

 In fact, the JavaScript language fi rst became available in Netscape’s Navigator 2. Initially, it was
called LiveScript, but because Java was the hot technology of the time, Netscape decided that
JavaScript sounded more exciting. When JavaScript really took off, Microsoft decided to add its
own dialect of JavaScript, called JScript, to Internet Explorer 3.

 In 1997, JavaScript was standardized by Ecma International, a membership�based non�profi t
organization, and renamed to ECMAScript. Today’s browser makers look to the ECMAScript
standard to implement the JavaScript engines included in their respective browsers, but that doesn’t
necessarily mean that all browsers support the same features. JavaScript support among today’s
browsers is certainly more unifi ed than it has ever been, but as you see in future chapters, developers
still have to cope with older, and in many cases non�standard, JavaScript implementations.

 The ECMAScript standard controls various aspects of the language and helps ensure that different
versions of JavaScript are compatible. However, although Ecma sets standards for the actual
language, it doesn’t specify how it’s used in particular hosts. By host , we mean hosting environment; t
in this book, that is the web browser. Other hosting environments include PDF fi les, web servers,
and many, many other places. In this book, we discuss only its use within the web browser. The
organization that sets the standards for web pages is the World Wide Web Consortium (W3C). It
not only sets standards for HTML and CSS, but also for how JavaScript interacts with web pages
inside a web browser. You learn much more about this in later chapters of the book. Initially, you’ll
look at the essentials of JavaScript before the more advanced stuff. In the appendices of this book,
you’ll fi nd useful guides to the JavaScript language and how it interacts with the web browser.

 The majority of the web pages containing JavaScript that you create in this book can be stored on
your hard drive and loaded directly into your browser from the hard drive itself, just as you’d load
any normal fi le (such as a text fi le). However, this is not how web pages are loaded when you browse
websites on the Internet. The Internet is really just one great big network connecting computers.
Access to websites is a special service provided by particular computers on the Internet; the
computers providing this service are known as web servers .

 Basically, the job of a web server is to hold lots of web pages on its hard drive. When a browser,
usually on a different computer, requests a web page contained on that web server, the web server
loads it from its own hard drive and then passes the page back to the requesting computer via
a special communications protocol called Hypertext Transfer Protocol (HTTP) . The computer

NOTE Throughout this book, we use the terms “IE” and “Internet Explorer”
interchangeably when referring to Microsoft’s Internet Explorer browser.

4 ❘ CHAPTER 1 INTRODUCTION TO JAVASCRIPT AND THE WEB

cc01.indd 4 2/12/2016 12:21 PM

running the web browser that makes the request is known as the client . Think of the client/servert
relationship as a bit like a customer/shopkeeper relationship. The customer goes into a shop and
says, “Give me one of those.” The shopkeeper serves the customer by reaching for the item requested
and passing it back to the customer. In a web situation, the client machine running the web browser
is like the customer, and the web server providing the page requested is like the shopkeeper.

 When you type an address into the web browser, how does it know which web server to get the
page from? Well, just as shops have addresses, say, 45 Central Avenue, Sometownsville, so do web
servers. Web servers don’t have street names; instead, they have Internet protocol (IP) addresses ,
which uniquely identify them on the Internet. These consist of four sets of numbers, separated by
dots (for example, 127.0.0.1).

 If you’ve ever surfed the Net, you’re probably wondering what on earth we’re talking about.
Surely web servers have nice www.somewebsite.com names, not IP addresses? In fact, the
www.somewebsite.com name is the “friendly” name for the actual IP address; it’s a whole lot easier m

for us humans to remember. On the Internet, the friendly name is converted to the actual IP address
by computers called domain name servers , which your Internet service provider will have set up
for you.

 What Can JavaScript Do for Me?
 JavaScript is primarily used to interact with users. That’s a rather broad statement, so let’s break
“interact with users” into two categories: user input validation and enhancement.

 JavaScript was originally created for validating form input. For example, if you had a form that
takes a user’s credit card details in preparation for on online purchase of goods, you’d want to make
sure he had actually fi lled in those details before you sent the goods. You might also want to check
that the data being entered is of the correct type, such as a number for his age rather than text.

 Thanks to the advances made in today’s JavaScript engines, JavaScript is used for much, much
more than input�related tasks. In fact, advanced JavaScript�driven applications can be created
that rival the speed and functionality of conventional desktop applications. Examples of such
applications include Google Maps, Google Calendar, and even full�fl edged productivity software
such as Microsoft’s Offi ce Web Apps. These applications provide a real service. In most of these
applications, JavaScript only powers the user interface, with the actual data processing being done
on the server. But even then, JavaScript could be used on the server if used with a JavaScript�based
processing engine (one such environment is called Node).

 Tools Needed to Create JavaScript Web Applications
 The great news is that learning JavaScript requires no expensive software purchases; you can learn
JavaScript for free on any PC or Mac. This section discusses what tools are available and how to
obtain them.

 Development Tools
 All that you need to get started writing JavaScript code for web applications is a simple text editor,
such as Notepad for Windows or TextEdit for Mac OS X. You can also use one of the many

Introduction to JavaScript ❘ 5

c01.indd 5 2/12/2016 12:21 PMM

advanced text editors that provide line numbering, color coding, search and replace, and so on. Here
are just a few:

➤ Notepad2 (Windows): www.flos�freeware.ch/notepad2.html

➤ WebMatrix (Windows): www.microsoft.com/web/webmatrix/

➤ Brackets (Cross�Platform): brackets.io

➤ Sublime Text (Cross�Platform): www.sublimetext.com

 Sublime Text is not free software, but it does have a time�limited evaluation. If you try it and like it,
please support the developers of that application.

 You might also prefer a proper HTML editor; you’ll need one that enables you to edit the HTML
source code, because that’s where you need to add your JavaScript. A number of very good tools
specifi cally aimed at developing web�based applications, such as Adobe’s Dreamweaver, are also
available. However, this book concentrates on JavaScript rather than any specifi c development
tool. When it comes to learning the basics, it’s often best to write the code by hand rather than
rely on a tool to do it for you. This helps you understand the fundamentals of the language before
you attempt the more advanced logic that is beyond a tool’s capability. When you have a good
understanding of the basics, you can use tools as timesavers so that you can spend time on the more
advanced and more interesting coding.

 Once you become more profi cient, you may fi nd that a web page editor makes life easier by inclusion
of features such as checking the validity of your code, color�coding important JavaScript words, and
making it easier to view your pages before loading them into a web browser. Many other, equally
good, free web page editors are available. A Google search on web editing software will bring back
a long list of software you can use.

 As you write web applications of increasing complexity, you’ll fi nd useful tools that help you spot
and solve errors. Errors in code are what programmers call bugs, though when our programs
go wrong, we prefer to call them “unexpected additional features.” Very useful in solving bugs
are development tools called debuggers. Debuggers let you monitor what is happening in your
code as it’s running. In Chapter 18 , you take an in�depth look at bugs and debugger development
tools.

 Web Browsers
 In addition to software that lets you edit web pages, you’ll also need a browser to view your web
pages. It’s best to develop your JavaScript code on the sorts of browsers you expect visitors to
use to access your website. You see later in the chapter that although browsers are much more
standards based, differences exist in how they view web pages and treat JavaScript code. All the
examples provided in this book have been tested on Chrome, IE9�11, Firefox, Safari, and Opera.
Wherever a piece of code does not work on any of these browsers, a note to this effect is made in
the text.

 If you’re running Windows, you’ll almost certainly have IE installed. If not, a trip to
windows.microsoft.com/en�us/internet�explorer/download�ie will get you the latest version
for your version of Windows.

6 ❘ CHAPTER 1 INTRODUCTION TO JAVASCRIPT AND THE WEB

cc01.indd 6 2/12/2016 12:21 PM

 You can fi nd Chrome at www.google.com/chrome , and you can download Firefox at
www.getfirefox.com .

 By default, most browsers have JavaScript support enabled, but it is possible to disable this
functionality in all browsers except Firefox. So before you start on your fi rst JavaScript
examples in the next section, you should check to make sure JavaScript is enabled in your
browser.

 To do this in Chrome, you want to modify the JavaScript settings in Content Settings, as shown
in Figure 1-1 . You can access these settings by navigating to chrome://settings/content or by
following these instructions:

1. Go to the Settings option in the menu.

2. Click the “Show advanced settings…” link.

3. Under Privacy, click the “Content settings…” button.

 FIGURE 1-1

 It is harder to turn off scripting in Internet Explorer. Choose Internet Options from the menu
(the gear icon in the upper�right corner), click the Security tab, and check whether the Internet
or Local intranet options have custom security settings. If either of them does, click the Custom
Level button and scroll down to the Scripting section. Check that Active Scripting is set to
Enable.

 A fi nal point to note is how to open the code examples in your browser. For this book, you simply
need to open the fi le on your hard drive in which an example is stored. You can do this in a number
of ways, but the easiest is to just double�click the fi le.

Where Do My Scripts Go? ❘ 7

c01.indd 7 2/12/2016 12:21 PMM

 WHERE DO MY SCRIPTS GO?

 Inserting JavaScript into a web page is much like inserting any other HTML content; you use tags
to mark the start and end of your script code. The element you use to do this is <script/> . This
tells the browser that the following chunk of text, bounded by the closing </script> tag, is not
HTML to be displayed, but rather script code to be processed. The chunk of code surrounded by
the <script> and </script> tags is called a script block . Here’s an example:

 <script>
 // JavaScript goes here
 </script>

 Basically, when the browser spots <script> tags, instead of trying to display the contained text to
the user, it uses the browser’s JavaScript engine to run the code’s instructions. Of course, the code
might give instructions about changes to the way the page is displayed or what is shown in the page,
but the text of the code itself is never shown to the user.

 You can put the <script/> element inside the header (between the <head> and </head> tags)
or inside the body (between the <body> and </body> tags) of the HTML page. However,
although you can put them outside these areas—for example, before the <html> tag or after
the </html> tag—this is not permitted in the web standards and so is considered bad practice.
Today’s JavaScript developers typically add their <script/> elements directly before the
</body> tag.

 The <script/> element has a type attribute that tells the browser what type of text is contained
within the element. For JavaScript, the best practice is to omit the type attribute (browsers
automatically assume that any <script/> element without a type attribute is JavaScript). We used
to always set the type attribute to text/javascript , but with the introduction of the HTML5
specifi cation, it is no longer considered good practice to do so. Only include the type attribute if the
<script/> element contains something other than JavaScript.

NOTE The <script/> element can be used for more than just JavaScript.
Some JavaScript‐based templating engines use <script/> elements to contain
snippets of HTML.

 Linking to an External JavaScript File
 The <script/> element has another arrow in its quiver: the capability to specify that the JavaScript
code is not inside the web page, but inside a separate fi le. You should give any external fi les the
fi le extension .js . Though it’s not compulsory, it does make it easier for you to work out what is
contained in each of your fi les.

 To link to an external JavaScript fi le, you need to create a <script/> element as described earlier
and use its src attribute to specify the location of the external fi le. For example, imagine you’ve

8 ❘ CHAPTER 1 INTRODUCTION TO JAVASCRIPT AND THE WEB

cc01.indd 8 2/12/2016 12:21 PM

created a fi le called MyCommonFunctions.js to which you want to link, and the fi le is in the same
directory as your web page. The <script/> element would look like this:

 <script src="MyCommonFunctions.js"></script>

 The web browser will read this code and include the fi le contents as part of your web page. When
linking to external fi les, you must not put any code within the opening and closing <script> tags;
for example, the following would be invalid:

 <script src="MyCommonFunctions.js">
 var myVariable;
 if (myVariable == 1) {
 // do something
 }
 </script>

 It’s important to note that an opening <script> tag must be accompanied by a closing
</script> tag. You cannot use the self�closing syntax found in XML. Therefore, the following
is invalid:

 <script src="MyCommonFunctions.js" />

 Generally, you use the <script/> element to load local fi les (those on the same computer as the web
page itself). However, you can load external fi les from a web server by specifying the web address of
the fi le. For example, if your fi le was called MyCommonFunctions.js and was loaded on a web server
with the domain name www.mysite.com , the <script/> element would look like this:

 <script src="http://www.mysite.com/MyCommonFunctions.js"></script>

 Linking to an external fi le is common when incorporating well�known JavaScript libraries into
a web page. The servers hosting these libraries are referred to as Content Delivery Networks , or
CDNs. CDNs are relatively safe, but beware of linking to external fi les if they are controlled by
other people. It would give those people the ability to control and change your web page, so you
need to be very sure you trust them!

 Advantages of Using an External File
 The biggest advantage of external fi les is code reuse. Say you write a complex bit of JavaScript that
performs a general function you might need in lots of pages. If you include the code inline (within
the web page rather than via an external fi le), you need to cut and paste the code into each web page
that uses it. This is fi ne as long as you never need to change the code, but the reality is you probably
will need to change or improve the code at some point. If you’ve cut and pasted the code to 30
different web pages, you’ll need to update it in 30 different places. Quite a headache! By using one
external fi le and including it in all the pages that need it, you need to update the code only once and
all the 30 pages are updated instantly. So much easier!

 Another advantage of using external fi les is that the browser will cache them, much as it does with
images shared between pages. If your fi les are large, this could save download time and also reduce
bandwidth usage.

Your First Simple JavaScript Program ❘ 9

c01.indd 9 2/12/2016 12:21 PMM

 YOUR FIRST SIMPLE JAVASCRIPT PROGRAM

 Enough talk about the subject of JavaScript; let’s write some! We’ll start with a simple example that
changes the background color of the web page.

TRY IT OUT Painting the Page Red

 This is a simple example of using JavaScript to change the background color of the browser. In your
text editor, type the following:

 <!DOCTYPE html>

 <html lang="en">
 <head>
 <meta charset="utf-8" />
 <title>Chapter 1, Example 1</title>
 </head>
 <body bgcolor="white">
 <p>Paragraph 1</p>
 <script>
 document.bgColor = "red";
 </script>
 </body>
 </html>

 Save the page as ch1 _ example1.html to a convenient place on your hard drive, and load it into your
web browser. You should see a red web page with the text Paragraph 1 in the top�left corner. But
wait—don’t you set the <body> tag’s BGCOLOR attribute to white? Okay, let’s look at what’s going on
here.

 The page is contained within <html> and </html> tags. This block contains a <body> element. When
you defi ne the opening <body> tag, you use HTML to set the page’s background color to white:

 <body bgcolor="white">

 Then you let the browser know that your next lines of code are JavaScript code by using the <script>
start tag:

 <script>

 Everything from here until the close tag, </script>, is JavaScript and is treated as such by the browser.
Within this script block, you use JavaScript to set the document’s background color to red:

 document.bgColor = "red";

 What you might call the page is known as the document for the purpose of scripting in a web page. t
The document has lots of properties, including its background color, bgColor . You can reference r

properties of the document by writing document , followed by a dot, followed by the property name.
Don’t worry about the use of document at the moment; you look at it in greater depth later in the
book.

10 ❘ CHAPTER 1 INTRODUCTION TO JAVASCRIPT AND THE WEB

cc01.indd 10 2/12/2016 12:21 PM

 Note that the preceding line of code is an example of a JavaScript statement . Every line of code t
between the <script> and </script> tags is called a statement, although some statements may run on
to more than one line.

 You’ll also see that there’s a semicolon (;) at the end of the line. You use a semicolon in JavaScript to
indicate the end of a statement. In practice, JavaScript is very relaxed about the need for semicolons,
and when you start a new line, JavaScript will usually be able to work out whether you mean to start
a new line of code. However, for good coding practice, you should use a semicolon at the end of
statements of code, and a single JavaScript statement should fi t onto one line rather than continue on to
two or more lines. Moreover, you’ll fi nd some situations in which you must include a semicolon, which
you’ll come to later in the book.

 Finally, to tell the browser to stop interpreting your text as JavaScript and start interpreting it as
HTML, you use the script close tag:

 </script>

 You’ve now looked at how the code works, but you haven’t looked at the order in which it works. When
the browser loads in the web page, the browser goes through it, rendering it tag by tag from top to
bottom of the page. This process is called parsing . The web browser starts at the top of the page andg
works its way down to the bottom of the page. The browser comes to the <body> tag fi rst and sets the
document’s background to white. Then it continues parsing the page. When it comes to the JavaScript
code, it is instructed to change the document’s background to red.

 WRITING MORE JAVASCRIPT

 The fi rst example let you dip your toes into the JavaScript waters. We’ll write a few more JavaScript
programs to demonstrate the web page fl ow and one of the many ways to display a result in the
browser.

TRY IT OUT Way Things Flow

 Let’s extend the previous example to demonstrate the parsing of a web page in action. Type the
following into your text editor:

 <!DOCTYPE html>

 <html lang="en">
 <head>
 <meta charset="utf-8" />
 <title>Chapter 1, Example 2</title>
 </head>
 <body bgcolor="white">
 <p>Paragraph 1</p>
 <script>
 // script block 1

Writing More JavaScript ❘ 11

c01.indd 11 2/12/2016 12:21 PMM

 alert("First Script Block");
 </script>
 <p>Paragraph 2</p>
 <script>
 // script block 2
 document.bgColor = "red";
 alert("Second Script Block");
 </script>
 <p>Paragraph 3</p>
 </body>
 </html>

 Save the fi le to your hard drive as ch1 _ example2.html and then load it into your browser. When you
load the page, you should see the fi rst paragraph, Paragraph 1 , followed by a message box displayed
by the fi rst script block. The browser halts its parsing until you click the OK button. As you see in

 FIGURE 1-2

Figure 1-2 , the page background is white, as set in the <body> tag, and only the fi rst paragraph is
displayed.

 Click the OK button, and the parsing continues. The browser displays the second paragraph, and the
second script block is reached, which changes the background color to red. Another message box is
displayed by the second script block, as shown in Figure 1-3 .

 Click OK, and again the parsing continues, with the third paragraph, Paragraph 3 , being displayed.
The web page is complete, as shown in Figure 1-4 .

 The fi rst part of the page is the same as in our earlier example. The background color for the page is set
to white in the defi nition of the <body> tag, and then a paragraph is written to the page:

 <body bgcolor="white">
 <p>Paragraph 1</p>

12 ❘ CHAPTER 1 INTRODUCTION TO JAVASCRIPT AND THE WEB

cc01.indd 12 2/12/2016 12:21 PM

 The fi rst new section is contained in the fi rst script block:

 <script>
 // script block 1
 alert("First Script Block");
 </script>

 This script block contains two lines, both of which are new to you. The fi rst line

 // Script block 1

 FIGURE 1-3

 FIGURE 1-4

Writing More JavaScript ❘ 13

c01.indd 13 2/12/2016 12:21 PMM

 is just a comment , solely for your benefi t. The browser recognizes anything on a line after a double t
forward slash (//) to be a comment and does not do anything with it. It is useful for you as a
programmer because you can add explanations to your code that make it easier to remember what you
were doing when you come back to your code later.

 The alert() function in the second line of code is also new to you. Before learning what it does, you
need to know what a function is.

 Functions are defined more fully in Chapter 4 , but for now you need only think of them as pieces
of JavaScript code that you can use to do certain tasks. If you have a background in math, you
may already have some idea of what a function is: it takes some information, processes it, and
gives you a result. A function makes life easier for you as a programmer because you don’t have to
think about how the function does the task—you can just concentrate on when you want the task
done.

 In particular, the alert() function enables you to alert or inform the user about something by
displaying a message box. The message to be given in the message box is specifi ed inside the
parentheses of the alert() function and is known as the function’s parameter . rr

 The message box displayed by the alert() function is modal . This is an important concept, which l
you’ll come across again. It simply means that the message box won’t go away until the user closes it by
clicking the OK button. In fact, parsing of the page stops at the line where the alert() function is used
and doesn’t restart until the user closes the message box. This is quite useful for this example, because
it enables you to demonstrate the results of what has been parsed so far: The page color has been set to
white, and the fi rst paragraph has been displayed.

 When you click OK, the browser carries on parsing down the page through the following lines:

 <p>Paragraph 2</p>
 <script>
 // script block 2
 document.bgColor = "red";
 alert("Second Script Block");
 </script>

 The second paragraph is displayed, and the second block of JavaScript is run. The fi rst line of the script
block code is another comment, so the browser ignores this. You saw the second line of the script code
in the previous example—it changes the background color of the page to red. The third line of code
is the alert() function, which displays the second message box. Parsing is brought to a halt until you
close the message box by clicking OK.

 When you close the message box, the browser moves on to the next lines of code in the page, displaying
the third paragraph and, fi nally, ending the web page:

 <p>Paragraph 3</p>
 </body>
 </html>

 Another important point raised by this example is the difference between setting properties of the
page, such as background color, via HTML and doing the same thing using JavaScript. The method

14 ❘ CHAPTER 1 INTRODUCTION TO JAVASCRIPT AND THE WEB

cc01.indd 14 2/12/2016 12:21 PM

of setting properties using HTML is static : A value can be set only once and never changed again by
means of HTML. Setting properties using JavaScript enables you to dynamically change their values.
The term dynamic refers to something that can be changed and whose value or appearance is not set
in stone.

 This example is just that, an example. In practice, if you want the page’s background to be red, simply
set the background color with CSS (don’t use the bgcolor attribute in practice). Where you want to use
JavaScript is where you want to add some sort of intelligence or logic to the page. For example, if the
user’s screen resolution is particularly low, you might want to change what’s displayed on the page, and
you can do that with JavaScript.

TRY IT OUT Displaying Results in a Web Page

 In this fi nal example, you discover how to write information directly to a web page using JavaScript.
This proves more useful when you’re writing the results of a calculation or text you’ve created using
JavaScript, as you see in the next chapter. For now, you’ll just write “Hello World!” to a blank page
using JavaScript:

 <!DOCTYPE html>

 <html lang="en">
 <head>
 <meta charset="utf-8" />
 <title>Chapter 1, Example 3</title>
 </head>
 <body>
 <p id="results"></p>
 <script>
 document.getElementById("results").innerHTML = "Hello World!";
 </script>
 </body>
 </html>

 Save the page as ch1 _ example3.html to a convenient place on your hard drive. Now load it into your
web browser and you’ll see Hello World! in the page. Although it would be easier to use HTML to do
the same thing, this technique will prove useful in later chapters.

 The fi rst part of the page is the same as in our earlier examples, but things start to change when you
reach this line:

 <p id="results"></p>

 You’ll notice the <p/> element has been given an ID using the id attribute. This ID must be unique in
the web page, because it is used by JavaScript to identify the specifi c HTML element in the following
line:

 document.getElementById("results").innerHTML = "Hello World!";

A Brief Look at Browsers and Compatibility Problems ❘ 15

c01.indd 15 2/12/2016 12:21 PMM

 Don’t worry if this seems complex at the moment; you learn more about how this works in later
chapters. Basically, the code is saying, “Get me the element with the ID of results and set the HTML
inside that element to Hello World!”

 It’s important in that the code accessing the paragraph is after the actual <p/> element. Otherwise,
the code would be attempting to access a paragraph before it existed in the page and would throw an
error.

 A BRIEF LOOK AT BROWSERS AND COMPATIBILITY
PROBLEMS

 In the preceding example you saw that by using JavaScript you can change a web page’s document
background color using the bgColor property of the document . The example worked regardless of
what browser you used because they all support a document with a bgColor property. You can say
that the example is cross�browser compatible . However, it’s not always the case that the property
or language feature available in one browser will be available in another browser. This is even
sometimes the case between versions of the same browser.

 One of the main headaches involved in creating web�based JavaScript is the differences between
different web browsers, the level of HTML and CSS they support, and the functionality their
JavaScript engines can handle. Each new release of any browser sees new and exciting features
added to its HTML, CSS, and JavaScript support. The good news is that to a much greater extent
than ever before, browser creators are complying with standards set by organizations such as Ecma
and the W3C.

 Which browsers you want to support really comes down to the browsers you think the majority of
your website’s visitors—that is, your user base —will be using. This book is aimed at standards�
compliant browsers, such as Chrome, IE9+, Firefox, Safari, and Opera.

 If you want your website to be professional, you need to somehow deal with older browsers. You
could make sure your code is backward compatible—that is, it only uses features available in older
browsers. However, you may decide that it’s simply not worth limiting yourself to the features of
older browsers. In this case you need to make sure your pages degrade gracefully. In other words,
make sure that although your pages won’t work in older browsers, they will fail in a way that
means the user is either never aware of the failure or is alerted to the fact that certain features on
the website are not compatible with his or her browser. The alternative to degrading gracefully is
for your code to raise lots of error messages, cause strange results to be displayed on the page, and
generally make you look like an idiot who doesn’t know what he’s doing!

 So how do you make your web pages degrade gracefully? You can do this by using JavaScript to
determine which browser the web page is running in after it has been partially or completely loaded.
You can use this information to determine what scripts to run or even to redirect the user to another
page written to make best use of her particular browser. In later chapters, you see how to fi nd out
what features the browser supports and take appropriate action so that your pages work acceptably
on as many browsers as possible.

16 ❘ CHAPTER 1 INTRODUCTION TO JAVASCRIPT AND THE WEB

c01.indd 16 2/12/2016 12:21 PM

 SUMMARY

 At this point, you should have a feel for what JavaScript is and what it can do. In particular, this
brief introduction covered the following:

➤ You looked into the process the browser follows when interpreting your web page. It
goes through the page element by element (parsing) and acts upon your HTML tags and
JavaScript code as it comes to them.

➤ Unlike many programming languages, JavaScript requires just a text editor to start creating
code. Something like Windows Notepad is fi ne for getting started, though more extensive
tools will prove valuable once you get more experience.

➤ JavaScript code is embedded into the web page itself, along with the HTML. Its existence is
marked out by the use of <script/> elements. As with HTML, the script executes from the
top of the page and works down to the bottom, interpreting and executing the code state-
ment by statement.

		2018-02-06T09:50:33-0500
	Certified PDF 2 Signature

