
c01.indd 1 29/06/2017 3:15 PM

 Reviewing Core Python
 WHAT YOU WILL LEARN IN THIS CHAPTER:

 ➤ The basic features of the Python language

 ➤ How to use the Python module mechanism

 ➤ How to create a new module

 ➤ How to create a new package

 WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

 You can fi nd the wrox.com downloads for this chapter at www.wrox.com/go/pythonprojects
on the Download Code tab. The code is in the Chapter 1 download and individually named
according to the names throughout the chapter.

 This chapter starts with a brief review of Python—in case you have forgotten some of the
basics—and provides a foundation upon which the rest of the book is built. If you are
confi dent in your ability with basic Python coding, feel free to skip ahead until you see content
that might be of interest to you. After all, you can always come back to this chapter later if
you fi nd you need a refresher.

 In this chapter you start off by looking at the Python ecosystem, the data types, and the major
control structures and then move on to defi ning functions and classes. Next, you look at the
Python module and package system. And, fi nally, you create a basic new package of modules.

 By the end of this chapter, you should be ready to take the next step and start working with
the standard Python modules on real project tasks.

 1
CO

PYRIG
HTED

 M
ATERIA

L

2 ❘ CHAPTER 1 REVIEWING CORE PYTHON

c01.indd 2 29/06/2017 3:15 PM

 EXPLORING THE PYTHON LANGUAGE
AND THE INTERPRETER

 Python is a dynamic but strictly typed programming language. It is both interpreted and compiled
in that the original source code is compiled into byte code and then interpreted, but this happens
transparently to the user; you do not have to explicitly ask Python to compile your code.

 The Python language has several implementations, but the most common is the version written
in C, often referred to as CPython . Other implementations include Jython, written in Java, and
IronPython, written for the Microsoft .NET platform. CPython is the implementation used in this
book.

NOTE At the time of writing, there are two version streams of Python:
versions 2.x and 3.x. This book focuses on version 3, and the code has been
tested on several releases within that stream—up to release 3.4. Where major
compatibility issues arise with 2.x, reference will be made to version 2.7.

 Python programs are written in text fi les that customarily have the extension .py . The Python
interpreter, called python (in lowercase) does not actually care about the extension; it is
only for the user’s benefi t (and in some operating systems to allow the fi le and interpreter to be
linked).

 You can also input Python code directly to the interpreter. This method makes for a highly
interactive development style where ideas are prototyped or tested in the interpreter and then
transferred into a code editor. The Python interpreter is a powerful learning tool when you are
starting to use a new concept or code module.

 When working in this mode, you start the interpreter by typing python at an operating system
command prompt. The system will respond with a message telling you the Python version and some
build details, followed by the interactive prompt at which you type code. It looks like this:

 ActivePython 3.3.2.0 (ActiveState Software Inc.) based on
 Python 3.3.2 (default, Sep 16 2013, 23:10:06) [MSC v.1600 32 bit (Intel)] on win
 32
 Type "help", "copyright", "credits" or "license" for more information.
 >>>

 This message says that this interpreter is for version 3.3.2.0 of Python, it is the ActiveState
distribution (as opposed to the python.org distribution), and it was built for 32-bit Windows. Your
message may differ slightly, but should contain the same types of information.

 If instead of running the Python interpreter interactively you want to execute a program stored in
a fi le, then at the operating system prompt you simply append the name of the fi le after the python
command:

 $ python myscript.py

Reviewing the Python Data Types ❘ 3

c01.indd 3 29/06/2017 3:15 PM

 Python comes with two helpful functions that assist you in exploring the language: dir(name)
and help(name) . dir(name) tells you all of the names available in the object identifi ed by name .
 help(name) displays information about the object called name . When you fi rst import a new
module, you will often not know what functions or classes are included. By looking at the dir()
listing of the module, you can see what is available. You can then use help() on any of the features
listed. Be sure to experiment with these functions; they are an invaluable source of information.

 REVIEWING THE PYTHON DATA TYPES

 Python supports many powerful data types. Superfi cially, these look like their counterparts in other
programming languages, but in Python they often come with super powers. Everything in Python
is an object and, therefore, has methods. This means that you can perform a host of operations on
any variable. The built-in dir() and help() functions will reveal all. In this section you look at the
standard data types and their most important operations.

NOTE Usually you can also double-click the fi le in your fi le explorer tool,
and the operating system makes the connection to python and runs the
program automatically. However, this often results in the program opening in
a window, completing, and the window closing again before you can see the
results, so you may prefer to type the python filename command in full at a
command-line prompt.

TIP The Python Reference Manual (http://docs.python.org/3.3/
reference/) provides the full detail should you need it.

 You need to be aware of some underlying concepts in Python. First, Python variables are just names.
You create variable names by assigning them to objects that are instances of types. Variables do not,
of themselves, have a type; it is the object to which they are bound that has a type. The name is just
a label and, as such, it can be reassigned to a completely different object. Assignment is performed
using = , so assigning a value to a variable looks like this:

 aVariable = aValue

 This code binds the value aValue to the variable name aVariable and, if the name does not already
exist, the interpreter adds the name to the appropriate namespace.

 The distinction between a variable and its underlying value (an object) is thus crucial in Python.
You can test variables for equality using a double equal sign (==) and object identity (that is, if two
names refer to the same object) is compared using the is operator, as shown:

 >>> aString = 'I love spam'
 >>> anotherString = 'I love spam'

4 ❘ CHAPTER 1 REVIEWING CORE PYTHON

c01.indd 4 29/06/2017 3:15 PM

 >>> anInt = 6
 >>> intAlias = anInt
 >>> aString == anotherString # test equality of value
 True
 >>> aString is anotherString # test object identity
 False
 >>> anInt == intAlias # same value
 True
 >>> anInt is intAlias # also same object identity
 True

 Python groups types according to how you can use them. For example, all types are either
categorized as mutable or immutable . If a type is immutable, it means you can’t change an object
of that type once it’s created. You can create a new data item and assign it to the same variable, but
you cannot change the original immutable value.

 Python also supports several collection types, sometimes referred to as sequences . (Strictly
speaking collections are a subset of sequences, the distinction will be made clearer later in the
chapter.) Sequences share a common set of operations, although not all sequences support all of the
operations.

 Some Python data types are callable . That means you can use the type name like a function to
produce a new instance of the type. If no value is given, a default value is returned. You will see
examples of this behavior in the following descriptions of the individual data types.

 Now that you understand the basics of working with Python data types, it’s time to take a look
at the different data types, including the numeric, boolean, and None types, as well as the various
collection types.

 Numeric Types: Integer and Float
 Python supports several numeric types including the most basic forms: integer and fl oating
point.

 Python integers are unusual in that they are theoretically of infi nite size. In practice, integers are
limited by the size of your computer’s memory. Integers support all the usual numeric operations,
such as addition, subtraction, multiplication and so on. You perform arithmetic operations using
traditional infi x notation. For example, to add two integers,

 >>> 5 + 4

 9

 or:

 >>> result = 12 + 8
 >>> print (result)
 20

 Literal integer values are, by default, expressed in decimal. You can use other bases by prefi xing the
number with a zero and the base’s initial. Thus, binary is represented as 0bnnn , octal as 0onnn , and
hexadecimal as 0xnnn .

Reviewing the Python Data Types ❘ 5

c01.indd 5 29/06/2017 3:15 PM

 The type of an integer is int , and you can use it to create integers from fl oating-point numbers or
numeric string representations such as '123' , like this:

 >>> int(5.0)
 5
 >>> int('123')
 123

 int can also convert from nondecimal bases (covering any base up to 36, not just the usual binary,
octal, and hexadecimal) using a second, optional, parameter. To convert a hexadecimal (base 16)
string representation to an integer, you can use:

 >>> intValue = int('AB34',16)
 43828

 Python fl oating-point numbers are of type float . Like int you can use float() to convert string
representations, like '12.34' to fl oat, and you can also use it to convert an integer number to a fl oat
value. Unlike integers, float() cannot handle strings for different bases.

 The float type also supports the normal arithmetic operations, as well as several rounding options.
Python fl oats are based on the Institute of Electrical & Electronic Engineering (IEEE) standards and
have the same ranges as the underlying computer architecture. They also suffer the same levels of
imprecision that make comparing fl oat values a risky option. Python provides modules for handling
fi xed precision decimal numbers (decimal) and rational fractions (fractions) to help alleviate this
issue. Python also natively supports a complex, or imaginary, number type called complex . These
are all typically used for fairly special purposes, so they are not covered here.

 The Boolean Type
 Python supports a Boolean type, bool , with literal values True and False . The default value of a
 bool is False ; that is, bool() yields False .

 Python also supports the concept of truth-like values for other types. For example, integers are
considered False if their value is zero. Anything else is considered True . The same applies to fl oat
values where 0.0 is False and anything else is True .

 You can convert Boolean values to integers using int() , in which case False is represented as 0 and
 True as 1 .

 The Boolean type has most of the Boolean algebra operations you’d expect, including and , or , and
 not , but—surprisingly—not xor .

NOTE Booleans are implemented as a subclass of integer and so also support
a bunch of operations that you might not expect, such as exponentiation. You
can type things like True**False and get a result of 1. You should basically
just pretend these “features” don’t exist and treat them as an implementation
detail; otherwise, your code will become very confusing.

6 ❘ CHAPTER 1 REVIEWING CORE PYTHON

c01.indd 6 29/06/2017 3:15 PM

 In addition to the Boolean type, Python also supports bitwise Boolean operations on integers. That
is to say that Python treats each corresponding pair of bits within two integers as Boolean values
in their own right and applies the corresponding operation to each pair of bits. These operations
include bitwise and (&), or (|), not (̂) and, this time, xor (~), as well as bit shift operators for moving
bit patterns left (<<) or right (>>). You look more closely at these bitwise operations later in the
chapter.

 The None Type
 The None type represents a null object. There is only one None object in the Python environment,
and all references to None use that same single instance. This means that equality tests with None
are usually replaced by an identity test, like so,

 aVariable is None

 rather than:

 aVariable == None

 None is the default return value of a Python function. It is also often used as a place marker or fl ag
for default parameters in functions. None is not callable and so cannot be used as a conversion
function to convert other types to None . None is considered to have a Boolean value of False .

 Collection Types
 As already mentioned Python has several types representing different kinds of collections or
sequences. These are: strings, bytes, tuples, lists, dictionaries and sets. You will see the similarities
and differences in each as they are discussed in the following sections. A standard library module
called collections provides several other more specialized collection types. You will see occasional
references to these in the sections that follow.

NOTE In many of the following discussions, you will see references to
operations accepting a collection type. Usually this includes what Python calls
 iterables , which are objects that conform to Python’s iteration protocol. In
simple terms iterables are objects that you can use in loop constructs. In most
cases you will not need to worry about them, but they are described in the
Python documentation if you are interested in reading the technical details. A
good place to start is: https://wiki.python.org/moin/Iterator .

 Several common features apply to all collections, and rather than bore you by repeating them for
each type, they are covered here.

 You can get the length of any collection in Python by using the built-in len() function. It takes a
collection object argument and returns the number of elements.

 You can access the individual elements of a collection using indexing. You do this by providing an
index number (or a valid key value for dictionaries) inside square brackets. Collection indices start

Reviewing the Python Data Types ❘ 7

c01.indd 7 29/06/2017 3:15 PM

at zero. You can also index backward from the end by using negative indices so that the last item in
the collection will have an index of –1.

 Whereas indexing is used to access just one particular element of a collection, you can use slicing to
access multiple items in the collection. Slicing consists of a start index, an end index, and a step size,
and the numbers are separated by colons. Slicing is not valid for dictionaries or sets. The step size
argument enables you to, for example, select every other element. All values are optional, and the
defaults are the start of the collection, the last item in the collection, and a step size of one. The slice
returned consists of all (selected) elements from start to end-1 .

 Here are a few examples of slicing applied to a string, entered at the Python interactive prompt:

 >>> '0123456789'[:]
 '0123456789'
 >>> '0123456789'[3:]
 '3456789'
 >>> '0123456789'[:3]
 '012'
 >>> '0123456789'[3:7]
 '3456'
 >>> '0123456789'[3:7:2]
 '35'
 >>> '0123456789'[::3]
 '0369'

 You can sort most collections by using the sorted() function. The return value is a sorted list
containing the original collection elements. Optional arguments to sorted() provide fl exibility in
how the elements are sorted and in what order.

 In general, empty collections are treated as False in Boolean expressions and True otherwise. Two
functions, any() and all() , refi ne the concept to allow more precise tests. The any() function takes
a collection as an argument and returns True if any member of the collection is true. The all()
function takes a collection as an argument and returns True if—and only if—all the members are
true.

 Strings
 Python strings are essentially collections of Unicode characters. (The implications of using Unicode
are discussed in Chapter 4 .) The default encoding is UTF8. If you are working in English, most
things will work as you expect. Once you start to use non-English characters, things get more
interesting! For now you will be working in English and sticking with UTF8.

 Python requires that literal strings be enclosed within quotation marks. Python is extremely fl exible
in this regard and accepts single quotes (' Joe '), double quotes ("Joe"), triple single quotes ('''Joe'''),
and triple double quotes ("""Joe""") to delimit a string. Obviously, the start and end quotes must
be of the same type, but any other quote can be contained inside the string. This is most useful for
apostrophes and similar grammatical cases (‘He said, “Hi!”’ or “My brother’s hat”). Triple quotes
of either type can span multiple lines. Here are a few examples:

 >>> 'using single quotes'
 'using single quotes'
 >>> "using double quotes"

8 ❘ CHAPTER 1 REVIEWING CORE PYTHON

c01.indd 8 29/06/2017 3:15 PM

 'using double quotes'
 >>> print('''triple single quotes spanning
 ... multiple lines ''')
 triple single quotes spanning
 multiple lines

 A literal string at the start of a module, class, or function that is not assigned to a variable is treated
as documentation and displayed as part of the built-in help() output for that object.

 Special characters such as tabs (\t) or newlines (\n) must be prefi xed, or quoted, with a backslash
character, and literal backslashes must be quoted so they look like double backslashes. You can
avoid this by preceding the entire string with the letter r (for raw) to indicate that special character
processing should not be done. Nonprintable characters can be included in a string using a
backslash followed by their hex code. For example, the escape character is \x1A . (Note that there is
no leading zero as is used for hexadecimal integer literals.)

 Strings are immutable in that you cannot directly modify or add to a string once it is formed. You
can, however, create a new string based on an existing one, and that is how many of the Python
string operations work. Python supports a wide range of operations on strings, and these are mostly
implemented as methods of the string class. Some of the most common operations are listed in
Table 1-1 .

 Several other string operations are available, but those listed in Table 1-1 are the ones you will use
most often.

 Empty strings are treated as False in Boolean expressions. All other strings are treated as True .

 Bytes and ByteArrays
 Python supports two byte-oriented data types. A byte is an 8-bit value, equivalent to an integer from
0–255, and represents the raw bit patterns stored by the computer or transmitted over a network.
They are very similar to strings in use and support many of the same methods. The type names are
spelled as byte and bytearray respectively.

 Literal byte strings are represented in quotes preceded by the letter b . Byte strings are immutable.
Byte arrays are similar, but they are mutable.

 In practice you will rarely use byte strings or byte arrays unless handling binary data from a fi le or
network. One issue that can catch you by surprise is that if you access an individual element using
indexing, the returned value is an integer. This means that comparing a single character byte string
with an indexed string value results in a False response, which is different from what would happen
using strings in the same way. Here is an example:

 >>> s = b'Alphabet soup'
 >>> c = b'A'
 >>> s[0] == c
 False
 >>> s[0] == c[0]
 True

 As you can see, the key is to use indexing on both sides of the comparison.

Reviewing the Python Data Types ❘ 9

c01.indd 9 29/06/2017 3:15 PM

 TABLE 1-1: String Operations

OPERATION DESCRIPTION

 + Concatenation. This is a somewhat ineffi cient operation, and you can usually
avoid it by using join() instead.

 * Multiplication. This produces multiple copies of the string concatenated
together.

 upper, lower,
capitalize

These change the case of a string.

 center, ljust,
rjust

These justify the string as needed within a given character width, padding as
needed with the specifi ed fi ll character (defaulting to a space).

 startswith,
endswith

These test a substring matching the start or end of a line. Optional parameters
control the actual subsection of the string that is tested so the names are
slightly misleading. They can also test multiple substrings at once if they are
passed as a tuple.

 find, index,
rfind

These return the lowest index where the given substring is found. find returns
 -1 on failure whereas index raises a ValueError exception.

 rfind starts at the right-hand side and, therefore, returns the highest index
where the substring is found.

 isalpha,
isdigit,isalnum,

and so on.

These test the string content. Several test types exist, the most commonly
used being those listed; for alphabetic, numeric, and alphanumeric characters
respectively.

 join This joins a list of strings using the active string as the separator. It is common
to build a string using either a single space or no space as the separator. This
is faster and more memory effi cient than using string concatenation.

 split,
splitlines,

partition

These split a string into a list of substrings based on a given separator (the
default is whitespace). Note that the separators are removed in the process.
 splitlines() returns a list of lines, effectively splitting using the newline
character. partition() splits a string based on the given separator, but only
up to the fi rst occurrence; it then returns the fi rst string, the separator, and the
remaining string.

 strip,
lstrip,rstrip

These strip whitespace (the default) or the specifi ed characters from the ends
of the string. lstrip strips only the left side; rstrip strips only the right. None
of them remove whitespace from the middle of a string; they only remove outer
characters. To globally remove characters, use the replace operation.

 replace This performs string replacement. By specifying an empty string as the
replacement, it can be used to effectively delete characters.

 format This replaces the older C printf-style string formatting used in Python
version 2. Printf style is still available in version 3, but is deprecated in
favor of format() . String formatting is explained in detail in the Python
documentation. The basic concept is that pairs of braces embedded in the
string form placeholders for data passed as arguments to format() . The
braces can contain optional style information, such as padding characters.
(You can fi nd examples throughout this book.)

10 ❘ CHAPTER 1 REVIEWING CORE PYTHON

c01.indd 10 29/06/2017 3:15 PM

 You can use the struct module to convert binary data from the bytes representation to normal
Python types. Of course, to use this you will still have to know what types the byte patterns
represent in the fi rst place.

 Empty byte strings are treated as False in Boolean expressions. All other byte strings are treated as
 True .

 Tuples
 Tuples are collections of arbitrary objects. The fact that they are collected together suggests that
there is probably a logical connection between them, but the language puts no restriction on the
objects contained. Tuples are often described as being the Python equivalent to records, or structs,
in other languages.

 Literal tuples consist of a series of values (or variables) separated by commas. Often, to prevent
syntax ambiguity, the tuple as a whole will be contained in parentheses, but this is not a requirement
of the tuple itself.

 Tuples are immutable, so you cannot modify or extend the tuple once it is created. You can create
a new tuple based on an existing one in the same way you did for strings, and you can create a new
empty tuple using the tuple() type function. You can use a tuple as a key in a dictionary because
they are immutable.

 One feature of Python tuples that is very useful is known as unpacking . This enables you to extract
the values of a tuple into discrete variables. You most often see this when a function returns a tuple
of values and you want to store the individual values in separate variables. An example is shown
here using the divmod() function, which returns the quotient and remainder of an integer division
as a tuple:

 >>> print(divmod(12,7))
 (1, 5)
 >>> q,r = divmod(12,7)
 >>> print (q)
 1
 >>> print (r)
 5

 Notice how q and r can be treated as new, single-valued variables.

 A namedtuple class in the collections module allows elements to be indexed by name rather
than position. This combines some of the advantages of a dictionary with the compactness and
immutability of a tuple.

 Empty tuples are treated as False in Boolean expressions. All other tuples are treated as True .

 Lists
 Lists in Python are highly fl exible and powerful data structures. They can be used to mimic the
behavior of many classic data structures and to form the basis of others in the form of custom
classes. They are dynamic and, like tuples, can hold any kind of object but, unlike tuples, they are
mutable, so you can modify their contents. You can also use tuple-style unpacking to assign list
items to discrete variables.

Reviewing the Python Data Types ❘ 11

c01.indd 11 29/06/2017 3:15 PM

 A literal list is expressed as a comma-separated sequence of objects enclosed in square brackets.
You can create an empty list either by specifying a pair of empty square brackets or by using the
default value of the list() type function. Lists come with several methods for adding and removing
members, and they also support some arithmetic-style operations for concatenating and copying
lists in a similar fashion to strings.

 You can initialize a list directly by using lists of values, or you can build them programmatically
using list comprehensions. The latter looks like a single-line for loop inside list brackets. Here is an
example that builds a list of the even squares from 1 to 10:

 >>> [n*n for n in range(1,11) if not n*n % 2]
 [4, 16, 36, 64, 100]

 Table 1-2 lists some of the most common list operations.

 Empty lists are treated as False in Boolean expressions. All other lists are treated as True .

 TABLE 1-2: List operations

OPERATION DESCRIPTION

 + This concatenates two lists.

 * This creates a list of multiple copies of the fi rst list. Note that the copies all refer
to the same object, which often results in surprising side effects when an object is
modifi ed. Often, list slicing or list comprehension is a better option.

 append This adds an element to the end of an existing list. The new element could itself be
a list. The operation is effective in-place, and None is returned.

 extend This adds the contents of a list to the end of another list, effectively joining the two
lists. The original list is modifi ed in place. None is returned.

 pop This removes an item from the end of a list or at the specifi ed index if one is
provided. Returns the item.

 index This returns the index of the fi rst occurrence of an item in a list. Raise a ValueError
if not found. (The string operation of the same name has similar behavior.)

 count This returns a count of the specifi ed item in the list.

 insert This inserts an element before the specifi ed index. If the index is too large, it is
appended to the end of the list.

 remove This removes the fi rst occurrence of the specifi ed item. It raises a ValueError if the
item does not exist.

 reverse This reverses the elements of the list in-place.

 sort This sorts the elements of the list in-place. Optional parameters provide fl exibility
in how the sort is performed. To get a sorted copy of the list without modifying the
original, use the sorted() function.

12 ❘ CHAPTER 1 REVIEWING CORE PYTHON

c01.indd 12 29/06/2017 3:15 PM

 Dictionaries
 Dictionaries are super powerful data structures that beginners frequently overlook. They offer
solutions to lots of common programming problems. A dictionary is used like a list, but its elements
are accessed by using a key-value mechanism rather than a numeric index. The elements of a Python
dictionary are thus a (non-ordered) sequence of key-value pairs.

 The key can be any immutable value, including a tuple. Keys must be unique. The value can be any
kind of Python object, including another dictionary, a list, or anything else that Python recognizes
as an object.

 Dictionaries are highly optimized, so lookup times are very fast. In fact Python makes extensive use
of dictionaries internally, to implement namespaces and classes, among other things. Dictionaries
also provide a solution anywhere that dynamically named values need to be stored and accessed.
Dictionaries are also effi cient where the keys are not sequential because Python uses a hashing
algorithm to map the keys into a sparse array structure. (If you didn’t understand that last sentence,
don’t worry, you are not alone, and you don’t really need to know. What it means for you is that
Python dictionaries are fast, and they use memory effi ciently.)

 Dictionary literals are composed of comma-separated key-value pairs. The keys and their values are
separated by colons, and the whole is contained in a pair of curly braces, or {} . It looks like this:

 >>> {'aKey':'avalue', 2:7, 'booleans':{False:0,True:1}}
 {'aKey': 'avalue', 2: 7, 'booleans': {False: 0, True: 1}}

 You access the stored values by “indexing” the dictionary using the key rather than a numeric index.
If the preceding example were stored in a variable called D , you could access the aKey and the True
values like this:

 >>> D['aKey']
 'avalue'
 >>> D['booleans'][True]
 1

 You can create an empty dictionary by using an empty pair of braces or by using the default value of
the dict() type function.

 Dictionaries come with some extra operations for extracting lists of keys and values and handling
default values. Some of these are described in Table 1-3 .

 Dictionaries are, by the nature of their implementation, unsorted. Indeed the order may change
when new data is inserted. The collections module contains an OrderedDict class that maintains
the order of insertion should that be required. The sorted() function returns a sorted list of keys if
the keys are comparable. If the keys are incompatible (as in the preceding example), sorted() raises
a TypeError .

 The collections module also provides a defaultdict class that enables you to specify a default
value that is returned any time a nonexistent key is used. In addition to returning the default
value, it also creates a new element for the given key with the default value. This is similar to the
 setdefault method described earlier. This can be a mixed blessing because it can result in bogus
entries for badly spelled keys!

Reviewing the Python Data Types ❘ 13

c01.indd 13 29/06/2017 3:15 PM

 Empty dictionaries are treated as False in Boolean expressions. All other dictionaries are treated as
 True .

 Sets
 Sets embody a mathematical concept that is frequently used in programming where a unique group
of elements is required. In Python, sets are a lot like dictionaries with keys but no corresponding
values.

 Sets have the Python type set . The same basic rules apply as for dictionary keys in that set values
must be immutable and unique (indeed that’s what makes it a set!). The default value from set()
is the empty set, and this is the only way to express an empty set because {} is already used for an
empty dictionary. The set() function accepts any kind of collection as its argument and converts it
to a set (dictionary values will be lost).

 There is another type of set in Python, called frozenset , that is immutable and is basically a
read-only set. Its constructor works like set() , but it supports only a subset of the operations. You
can use a frozenset as an element of a regular set because frozenset is immutable.

 Set literals are expressed with curly braces surrounding elements separated by commas:

 myset = {1,2,3,4,5}

 Sets do not support indexing or slicing and, like dictionaries, they do not have any inherent
order. The sorted() function returns an ordered list of values. Sets have a bunch of math-style
set operations that are distinct from other collections. Table 1-4 shows those operations that are
common to both the set and frozenset types.

 TABLE 1-3: Dictionary Operations

OPERATION DESCRIPTION

 keys, values,
items

These methods return list-like objects (called dictionary views) containing the
keys, values, and key-value tuples respectively. These views are dynamic, so
any changes to the dictionary (deletions and so on) after they are created are
refl ected in the view.

 get, pop These methods take a key and an optional default value. get returns the
value for a key from the dictionary if the key exists or a specifi ed default if the
key does not exist. pop works the same way, but also removes the item from
the dictionary if it exists. get has a default value of None , but pop raises a
 KeyError if no default is given.

 setdefault This operation acts like get , but also creates a new key-value pair in the
dictionary using the given key and the default value if the key does not exist.

 fromkeys This operation initializes a dictionary using a sequence to provide the keys and
a given default value (or None if no value is given). Usually called directly as
 dict.fromkeys() rather than on an existing dictionary.

14 ❘ CHAPTER 1 REVIEWING CORE PYTHON

c01.indd 14 29/06/2017 3:15 PM

 TABLE 1-4: Set Operations

OPERATION DESCRIPTION

 in This tests whether a single element exists in the set. Note: If the
tested item is itself a set, S1, the result will be true only if S1, as
a set, is an element of the target set. This is different from the
 subset() test.

 issubset, <=, < These test whether one set is a subset of the target—that is,
whether all members of the tested set are also members of the
target. If the sets are identical, the test will return True in the fi rst
two cases, but False for the < operator.

 issuperset, >=, > These test whether one set is a superset of the other—that is,
whether all the members of the target set are members of the
source. If they are equal, the fi rst two operations return True ; the
last operation will return False .

 union, | These return the union of two (or more) sets. The union method
takes a comma-separated list of sets as arguments while the pipe
operator is used infi xed between the sets.

 intersection, & These return the intersection set of two (or more) sets. Usage is
similar to union() .

 difference, - These return the members of the source set that are not members
of the target set.

 symmetric_difference, ^ Returns the elements of both sets that are not in the intersection.
The method works only for two sets, but the ̂ operator can be
applied to multiple sets in infi x style.

 Note that the method variations in Table 1-4 will accept any collection type as an argument whereas
the infi x operations will work only with sets.

 Table 1-5 looks at the modifi er operations that are applicable only to sets. These cannot be used
on a frozenset , although a frozenset can be used as an argument for several of them. Note that
these operations adjust the source set itself; they do not return a set—they return the Python default
value of None . The infi x operations work only on two sets (unlike those in Table 1-4) and work
only on actual sets, not other collection types. You can use the methods on multiple sets, and other
collection types are converted to a set where needed.

 Empty sets are treated as False in Boolean expressions. All other sets are treated as True .

 In the next section, you will use the data types in code as you explore the different control
structures that Python offers.

Using Python Control Structures ❘ 15

c01.indd 15 29/06/2017 3:15 PM

 USING PYTHON CONTROL STRUCTURES

 In this section you fi rst look at the overall structure of a Python program and then consider each
of the basic structures: sequence, selection, and iteration. Finally, you look at how Python handles
errors, review context managers, and investigate how to exchange data with the outside world.

 Structuring Your Program
 Python programs do not have any required, predefi ned entry point (for example a main() function)
and are simply expressed as source code in a text fi le that is read and executed in order starting
at the top of the fi le. (Defi nitions, such as functions, are executed in the sense that the function is
created and assigned to a name, but the internal code is not executed until the function is called.)

 Python does not have any special syntax to indicate whether a source fi le is a program or a module
and, as you will see, a given fi le can be used in either role. A typical executable program fi le

 TABLE 1-5: Set Modifi er Operations

OPERATION DESCRIPTION

 update, |= These add the elements of the target set (or sets) to the
source set.

 intersection_update, &= These remove all elements except those in the intersection
of source and target sets. If more than two sets are involved,
the result is the intersection of all sets involved.

 difference_update, -= These remove all elements found in the intersection of the
sets. If multiple sets are provided, the items removed are in
the intersection of the source with any of the other sets.

 symmetric_difference_update,
^=

These return the set of values in both sets involved
excepting those in the intersection. Note that this operation
works only on two sets at a time.

 add This adds the given element to the set.

 remove This removes the specifi ed element from the set. If the
element is not found it raises a KeyError .

 discard This removes the given element from the set if it is present.
No KeyError is raised in this case if the element is not
found.

 pop This removes and returns an arbitrary member from the set.
Raises KeyError if the set is empty.

 clear This removes all elements from a set.

16 ❘ CHAPTER 1 REVIEWING CORE PYTHON

c01.indd 16 29/06/2017 3:15 PM

consists of a set of import statements to bring in any code modules needed, some function and class
defi nitions, and some directly executable code.

 In practice, for a nontrivial program, most function and class defi nitions will exist in module fi les
and be included in the imports. This leaves a short section of driver code to start the application.
Often this code will be placed in a function, and the function will often be called main() , but that is
purely a nod to programming convention, not a requirement of Python.

 Finally this “main” function needs to be called. This is often done within a special if statement at
the end of the main script. It looks like this:

 if __name__ == "__main__":
 main()

 When Python detects that a program fi le is being executed by the interpreter rather than imported
as a module, it sets the special variable __ name__ (note the double underscores on either side) to
 " __ main__ " . This means that any code inside this if block is executed only when the script is
run as a main program and not when the fi le is imported by another program. If the fi le is only ever
expected to be used as a module, the main() function may be replaced by a test() function that
executes a set of unit tests. Again, the actual name used is of no signifi cance to Python.

 Using Sequences, Blocks and Comments
 The most fundamental programming structure is a sequence of statements. Normally Python
statements occur on a line by themselves, so a sequence is simply a series of lines.

 x = 2
 y = 7
 z = 9

 In this case the statements are all assignments. Other valid statements include function calls, module
imports or defi nitions. Defi nitions include functions and classes. The various control structures
described in the following sections are also valid statements.

NOTE Python does enable you to include multiple statements on a single line
by separating them with a semicolon. Thus the following line of code consists
of three statements:

 x = 2; y = 7; z = 9

 This style is not recommended by the Python community; using separate lines
is preferred.

 Python is a block-structured language, and blocks of code are indicated by indentation level. The
amount of indentation is quite fl exible; although most Python programmers stick to using three

Using Python Control Structures ❘ 17

c01.indd 17 29/06/2017 3:15 PM

or four spaces to optimize readability, Python doesn’t care. Different Integrated Development
Environments (IDEs) and text editors have their own ideas about how indentation is done. If you
use multiple programming tools, you may fi nd you get indentation errors reported because the tools
have used different combinations of tabs and spaces. If possible, set up your editor to use spaces
instead of tabs.

 The exception to the indentation rule is comments. A Python comment starts with a # symbol and
continues to the end of the line. Python accepts comments that start anywhere on the line regardless
of current indentation level, but by convention, programmers tend to retain indentation level, even
for comments.

 Selecting an Execution Path
 Python supports a limited set of selection options. The most basic structure is the if/elif/else
construct. The elif and else parts are optional. It looks like this:

 if pages < 9:
 print("It's too short")
 elif pages > 99:
 print("It's too long")
 else: print("Perfect")

 Notice the colon at the end of each test expression. That is Python’s indicator that a new block
of code is coming up. It has no start and end block markers (such as {}); the colon is the only
indication, and the block must either occur on the same line as the colon, if it’s only a single line
block, or as an indented block of code. Many Python programmers prefer the indented block style
even for single line blocks.

 Also note that there can be an arbitrary number of elif tests, but only a single else clause—or
none at all.

 The other selection structure you will fi nd in Python is the conditional expression selector. This
produces one of several values depending on the given test conditions. It looks like this:

 <a value> if <an expression> else <another value>

 An example might be where a screen coordinate is being incremented until a certain limit (perhaps
the screen’s maximum resolution) and then reset to 0 . That could be written as:

 coord = coord + increment if coord < limit else 0

 This is equivalent to the more traditional structure shown here:

 if coord < limit
 coord += increment
 else:
 coord = 0

 You should use caution when using conditional expressions because it is very easy to create obscure
code. If in doubt you should use the expanded if/else form.

18 ❘ CHAPTER 1 REVIEWING CORE PYTHON

c01.indd 18 29/06/2017 3:15 PM

 One fi nal comment on Python’s comparison expressions is worth making here. In many
programming languages, if you want to test whether a value lies between two limits, you need two
separate tests, like this:

 if aValue < upperLimit and aValue > lowerLimit:
 # do something here

 Python will be quite happy to process code like that, but it offers a useful shortcut in that you can
combine the comparisons as shown here:

 if lowerLimit < avalue < upperLimit:
 # do something here

 Iteration
 Python offers several alternatives for iteration. The most fundamental and general is the while loop.
It looks like this:

 while BooleanExpression:
 aBlockOfCode
 else:
 anotherBlock

 Notice the colon (:) at the end of the while statement, which signifi es that a block of code follows.
Also notice the indentation of the block. The block will, in principle, be executed for as long as
 BooleanExpression remains true. However, there are two ways you can exit out of a while loop
regardless of the BooleanExpression value. These are the break statement, which exits the loop
immediately, and a return statement if the loop is inside a function defi nition. A return statement
exits the function immediately and so will also exit any loop within the function.

 The else clause is optional and is rarely used in practice. It is executed any time the
 BooleanExpression is False , including when the loop exits normally. It will not be executed if the
loop is exited by a break or return statement.

 One very common while loop idiom is to use True as the test condition to create an infi nite loop
and then have a break test within the body of the loop. Here is an example where the loop reads
user commands and processes them. If the command contains the letter q , it exits.

 while True:
 command = input('Enter a command[rwq]: ')
 if 'q' in command.lower(): break
 if command.lower() == 'r':
 # process 'r'
 elif command.lower() == 'w':
 # process 'w'
 else:

 print('Invalid command, try again')

 There is a companion statement to break , namely continue . Whereas break exits both the block
and the loop, continue exits the block for the current loop iteration only. Control then returns to
the while statement and, if appropriate, a new iteration of the block will commence.

Using Python Control Structures ❘ 19

c01.indd 19 29/06/2017 3:15 PM

 The next signifi cant looping construct in Python is the for loop, which looks like this:

 for item in <iterable>:
 code block
 else:
 another code block

 The for loop takes each item in the iterable and executes the code block once per item. You can
terminate the loop early using break or return as described for the while loop. You can terminate
a single iteration of the loop using continue as described earlier.

 The else block is executed when all the iterations are completed. It will not be executed if the loop
exits via a break or return .

 The iterable is anything that complies with Python’s iterator protocol. In practice this is usually a
collection such as a list, tuple, or a function that returns a collection of values such as range() . The
 open() function returns a fi le iterator that enables you to loop over a fi le without fi rst reading it into
memory. It’s possible to defi ne your own custom iterable classes, too.

 One common function that is particularly used with for loops is enumerate() . This function returns
tuples containing both the iterable item and a sequence number that, by default, is equivalent to a list
index. This means that the for block can more easily update the iterable directly. enumerate() takes
a second optional argument that specifi es the sequence starting number, which you could use, for
example, to indicate the line number in a fi le, starting with 1 rather than the 0 default.

 Here is an example that illustrates some of these points printing a fi le with associated line numbers:

 for number, line in enumerate(open('myfile.txt')):
 print(number, '\t', line)

 Finally, Python has a couple of inline loop structures. You saw one of these, the list comprehension,
in the discussion of lists earlier in the chapter.

 A list comprehension is a specifi c application of a more general loop form known as a generator
expression that you can use where you might otherwise have a sequence of literal values. If you
recall the list comprehension example earlier in the chapter, you used it to populate a list with the
even squares from 1 to 10, like this:

 >>> [n*n for n in range(1,11) if not n*n % 2]
 [4, 16, 36, 64, 100]

 The part inside the square brackets is a generator expression and the general form is as follows:

 <result expression> for <loop variable> in <iterable> if <filter expression>

 Comparing that with the list comprehension example you see that the result expression was n*n , the
loop variable was n , and the iterable was range(1,11) . The fi lter expression was if not n*n % 2 .

 You can rewrite that as a conventional for loop, like this:

 result = []
 for n in range(1,11):
 if not n*n % 2:
 result.append(n)

20 ❘ CHAPTER 1 REVIEWING CORE PYTHON

c01.indd 20 29/06/2017 3:15 PM

 One important point to appreciate about generator expressions is that they do not generate the
whole data set at once. Rather they generate (hence the name) the data items on demand, which can
lead to a signifi cant saving in memory resources when dealing with large data sets. You fi nd out
more about this later in the chapter when you look at a special type of function called a generator
function .

 Handling Exceptions
 There are two approaches to detecting errors. The fi rst involves explicitly checking each action
as it’s performed; the other attempts the operations and relies on the system generating an error
condition, or exception , if something goes wrong. Although the fi rst approach is appropriate in
some situations, in Python, it’s far more common to use the second. Python supports this technique
with the try/except/else/finally construct. In its general form, it looks like this:

 try:
 A block of application code
 except <an error type> as <anExceptionObject>:
 A block of error handling code
 else:
 Another block of application code
 finally:
 A block of clean-up code

 The except , else , and finally are all optional, although at least one of except or finally must
exist if a try statement is used. There can be multiple except clauses, but only one else or finally .
You can omit the as… part of an except statement line if the exception details are not required.

 The try block is executed and, if an error is encountered, the exception class is tested. If an except
statement exists for that type of error, the corresponding block is executed. (If multiple exception
blocks specify the same exception type, only the fi rst matching clause is executed.) If no matching
 except statement is found, the exception is propagated upwards until the top-level interpreter is
reached and Python generates its usual traceback error report. Note that an empty except statement
will catch any error type; however, this is usually a bad idea because it hides the occurrence of any
unexpected errors.

 The else block is executed if the try block succeeds without any errors. In practice the else is
rarely used. Regardless of whether an error is caught or propagated, or whether the else clause is
executed, the finally clause will always be executed, thus providing an opportunity to release any
computing resources in a locked state. This is true even when the try/except clause is left via a
 break or return statement.

 You can use a single except statement to process multiple exception types. You do this by listing the
exception classes in a tuple (parentheses are required). The optional exception object contains details
of where the exception occurred and provides a string conversion method so that a meaningful error
message may be provided by printing the object.

 It is possible to raise exceptions from your own code. It is also possible to use any of the existing
exception types or to defi ne your own by subclassing from the Exception class. You can also pass
arguments to exceptions you raise, and you can access these in the exception object in the except
clause using the args attribute of the error object.

Getting Data In and Out of Python ❘ 21

c01.indd 21 29/06/2017 3:15 PM

 Here is an example of raising a standard ValueError with a custom argument and then catching
that error and printing the given argument.

 >>> try:
 ... raise ValueError('wrong value')
 ... except ValueError as error:
 ... print (error.args)
 ...
 ('wrong value',)

 Note that you didn’t get a full traceback, only the print output from the except block. You can also
re-raise the original exception after processing by simply calling raise with no arguments.

 Managing Context
 Python has the concept of a runtime context . This typically includes a temporary resource of
some kind that your program wants to interact with. A typical example might be an open fi le or
a concurrent thread of execution. To handle this Python uses the keyword with and a context
manager protocol. This protocol enables you to defi ne your own context manager classes, but you
will mostly use the managers provided by Python.

 You use a context manager by invoking the with statement:

 with open(filename, mode) as contextName:
 process file here

 The context manager ensures the fi le is closed after use. This is fairly typical of a context manager’s
role—to ensure that valuable resources are freed after use or that proper sharing precautions are
taken on fi rst use. Context managers often remove the need for a try/finally construct. The
 contextlib module provides support for building your own context managers.

 You have now seen the different types of data that Python can process as well as the control
structures you can use to do that processing. It is now time to fi nd out how to get data into and out
of your Python programs and that is the subject of the next section.

 GETTING DATA IN AND OUT OF PYTHON

 Basic input and output of data is a major requirement of any programming language. You need to
consider how your programs will interact with users and with data stored in fi les.

 Interacting with Users
 To send data to users via stdout , you use the print() function, which you’ve seen several times
already. You learn how to control the output more precisely in this section. To read data from users,
you use the input() function, which prompts the user for input and then returns a string of raw
characters from stdin .

 The print() function is more complex than it fi rst appears in that it has several optional
parameters. At its simplest level, you simply pass a string and print() displays it on stdout

22 ❘ CHAPTER 1 REVIEWING CORE PYTHON

c01.indd 22 29/06/2017 3:15 PM

followed by an end-of-line (eol) character. The next level of complexity involves passing non-string
data that print() then converts to a string (using the str() type function) before displaying the
result. Stepping up a gear, you can pass multiple items at once to print() , and it will convert and
display them in turn separated by a space.

 The previous paragraph identifi ed three fi xed elements in print() ’s behavior:

 ➤ It displays output on stdout .

 ➤ It terminates with an eol character.

 ➤ It separates items with a space.

 In fact, none of these are really fi xed, and print() enables you to modify any or all of them using
optional parameters. You can change the output by specifying a file argument; the separator is
defi ned by the sep argument, and the terminating character is defi ned by the end argument. The
following line prints the infamous “hello world” message, specifi ed as two strings, to a fi le using a
hyphen separator and the string "END" as an end marker:

 with open("tmp.txt", "w") as tmp:
 print("Hello", "World", end="END", sep="-", file=tmp)

 The content of the fi le should be: "Hello-WorldEND" .

 The string format() method really comes into its own when combined with print() . This
combination is capable of presenting your data neatly and clearly separated. In addition using
 format() can often be more effi cient that trying to print a long list of objects and string fragments.
There are many examples of how to use format() in the Python documentation.

 You can also communicate with the user using the input() function that reads values typed by
the user in response to a given on-screen prompt. It is your responsibility to convert the returned
characters to whatever data type is represented and handle any errors resulting from that
conversion.

NOTE In Python version 2, the raw _ input() function was used instead of
 input() . The version 2 input() function behaved rather differently. It evaluated
whatever the user typed. This created a security issue because malicious code
could be input. The version 2 input() function was removed in version 3 and
 raw _ input() was renamed to input() .

 Here is an example that asks the user to enter a number. If the number is too high or too low it
prints a warning. (This could form the core of a guessing game if you cared to experiment with it.)

 target = 66

 while True :
 value = input("Enter an integer between 1 and 100")
 try:

Getting Data In and Out of Python ❘ 23

c01.indd 23 29/06/2017 3:15 PM

 value = int(value)
 break
 except ValueError:
 print("I said enter an integer!")

 if value > target:
 print (value, "is too high")
 elif int(value) < target:
 print("too low")
 else:
 print("Pefect")

 Here the user is provided with a prompt to enter an integer in the appropriate range. The value
read is then converted to an integer using int() . If the conversion fails, a ValueError exception
is raised, and the error message is then displayed. If the conversion succeeds, you can break
out of the while loop and proceed to test it against the target, confi dent that you have a valid
integer.

 Using Text Files
 Text fi les are the workhorses of programming when it comes to saving data, and Python supports
several functions for dealing with text fi les.

NOTE The fi le interface in Python is really a specialization of a higher-level
abstract interface starting with a class called io.IOBase . You can mostly ignore
these; they simply create a standardized set of operations that applies to text
fi les and other “fi le like” objects.

 You saw the open() function used in previous sections and it takes a fi lename and a mode as
arguments. The mode can be any of r , w , rw , and a for read, write, read-write, and append
respectively. (Some other modes are less often used. There are also a few optional parameters
that control how the data is interpreted, see the documentation for details.) The r mode
requires the fi le to exist; the w and rw modes create a new empty fi le (or overwrite any existing
fi le of the same name). The a mode opens an existing fi le or creates a new empty fi le if a fi le of
the specifi ed fi lename does not already exist. The fi le object returned is also a context manager
and can be used in a with block as you saw in the context manager section. If a with block is
not used, you should explicitly close the fi le using the close() method when you are fi nished
with it, thus ensuring that any data sitting in memory buffers is sent to the physical fi le on disk.
The with construct calls close() automatically, which is one of the advantages of using the
context manager approach.

 Once you have an open fi le object, you can use read() , readlines() , or readline() as required.
 read() reads the entire fi le contents as a single string complete with embedded newline characters.
 readlines() reads line by line into a list, and the newline characters are retained. readline() reads
the next line in the fi le, again retaining the newline. The fi le object is an iterable, so you can use it

24 ❘ CHAPTER 1 REVIEWING CORE PYTHON

c01.indd 24 29/06/2017 3:15 PM

directly in a for loop without the need for any of the read methods. The recommended pattern for
reading the lines in a fi le is therefore:

 with open(filename, mode) as fileobject:
 for line in fileobject:
 # process line

 You can write to a writable fi le object using the write() or writelines() methods, which are the
equivalents to the similarly named read methods. Note that there is no writeline() method for
writing a single line.

 If you are using the rw mode, you might want to move to a specifi c position in the fi le to overwrite the
existing data. You can fi nd your current position in the fi le using the tell() method. You can go to a
specifi c position (possibly one you recorded with tell() earlier) using the seek() method. seek() has
several modes of calculating position; the default is simply the offset from the start of the fi le.

 You now have all of the basic skills to write working Python programs. However, to tackle larger
projects, which are the focus of this book, you will want to extend Python’s capabilities. The next
section starts to explore how you can do just that.

 EXTENDING PYTHON

 The simplest way of extending Python is by writing your own functions. You can defi ne these in the
same fi le as the code that uses them, or you can create a new module and import the functions from
there. You look at modules in the next section; for now you will create the functions and use them
in the same fi le. In fact, you will mostly be using the interactive prompt for the examples in this
section.

 The next step in creating new functionality in Python is to defi ne your own classes and create
objects from them. Again, it is common to create classes in modules, and you see how to do so in the
next section. The examples here are simple enough that you can just use the Python prompt.

 Python programmers frequently use documentation strings in their programs. Documentation
strings are string literals that are not assigned to a variable and respect the indentation level at
which they are defi ned. You use documentation strings to describe functions, classes, or modules.
The help() function reads and presents documentation strings.

 Defi ning and Using Functions
 Several types of functions are available in Python. This section looks at the standard variety fi rst,
followed by a generator function, and concludes with the slightly enigmatic lambda function.

 You defi ne functions in Python using the def keyword. The form looks like this:

 def functionName(parameter1, param2,...):
 function block

 Python functions always return a value. You can specify an explicit return value using the return
keyword; otherwise, Python returns None by default. (If you fi nd unexpected None values appearing
in your output, check that the function concerned has an explicit return statement in its body.) You

Extending Python ❘ 25

c01.indd 25 29/06/2017 3:15 PM

can give default values to parameters by following the name with an equals sign and the value. You
see an example in the odds() generator function in the next section.

 You can most easily understand how a function defi nition is created and used by trying it out.

 TRY IT OUT Creating and Using a Function

 In this Try It Out, you create a new function that takes several input parameters and returns a
value. This function uses the mathematical equation of a straight line to return the corresponding
y-coordinate for a given gradient, x-coordinate, and constant. You then use the function to generate a
set of coordinates for a line.

 1. Start the Python interpreter.

 2. Type the following code to defi ne the function:

 >>> def straight_line(gradient, x, constant):
 ... ''' returns y coordinate of a straight line
 -> gradient * x + constant'''
 ... return gradient*x + constant
 ...
 >>>

 3. Now that you have defi ned the function, test it using some simple values that you can calculate in
your head. Try calling the function with a gradient of 2 , an x value of 4 , and a constant of -3 :

 >>> # test with a single value first
 >>> straight_line(2,4,-3)
 5

 4. Let’s now try a more complex test of the function, using the following code:

 >>> for x in range(10):
 ... print(x,straight_line(2,x,-3))
 ...
 0 -3
 1 -1
 2 1
 3 3
 4 5
 5 7
 6 9
 7 11
 8 13
 9 15

 5. Finally, check that the help() function correctly recognizes the function:

 >>> help(straight_line)
 Help on function straight_line in module __main__:

 straight_line(gradient, x, constant)
 returns y coordinate of a straight line
 -> gradient * x + constant
 (END)

26 ❘ CHAPTER 1 REVIEWING CORE PYTHON

c01.indd 26 29/06/2017 3:15 PM

 How It Works

 In the fi rst line in step 2, you created the function defi nition. You named it straight _ line and said it
had three required parameters: gradient , x , and constant . These parameters correspond to the values
used in the mathematical equation y = mx+c , where m is the gradient and c is a constant.

 The second line is a documentation string that describes what the function is for and how it should be
used.

 The third line is the function code block. It could be arbitrarily complex and several lines long, but in
this case it’s a one-liner and you are returning the result so you prefi xed it with the keyword return .
Note that the code line has to start at the same indentation level as the start of the documentation
string; otherwise, you will get an indentation error.

 You then tested the function with some simple values. Some mental arithmetic confi rms that the return
value of 5 does indeed equal (2*4-3). The function seems to work, at least for a simple case.

 You then used the function to generate a set of x-,y- coordinate pairs using a for loop with a fi xed value
for the gradient (2) and constant (-3) but supplying the loop variable as x . If you have some paper
handy, you can try plotting the coordinates listed to confi rm that they form a straight line.

 Finally, you used the help() function to confi rm that the documentation string was correctly detected
and displayed.

 Generator Functions
 The next form of function you look at is the generator function. Generator functions look exactly
like standard functions except that instead of using return to pass back a value, they use the
keyword yield . (In theory they can use return in addition to yield , but only the yield expressions
produce the generator behavior.)

 The bit of Pythonic magic that makes generator functions special is that they act like a freeze-frame
camera. When a standard function reaches a return statement, it returns the value and the function
then throws away all of its internal data. The next time the function is called, everything starts off
from scratch.

 The yield statement does something different. It returns a value, just like return does, but it
doesn’t cause the function to throw away its data; instead, everything is preserved. The next
call of the function picks up from the yield statement, even if that’s in the middle of a block
or part of a loop. There can even be multiple yield statements in a single function. Because the
 yield statement can be inside a loop, it is possible to create a function that effectively returns
an infi nite series of results. Here is an example that returns an incrementing series of odd
numbers:

 def odds(start=1):
 ''' return all odd numbers from start upwards'''
 if int(start) % 2 == 0: start = int(start) + 1
 while True:
 yield start
 start += 2

Extending Python ❘ 27

c01.indd 27 29/06/2017 3:15 PM

 In this function you fi rst check that the start argument passed is an odd integer (an even integer
divided by 2 has a zero remainder), and if not, you force it to be the next highest odd integer by
adding 1. You then create an infi nite while loop. Normally this would be a very bad idea because
your program would just block forever. However, because this is a generator function, you are using
 yield to return the value of start so the function exits at this point, returning the value of start
at this moment in time. The next time the function is called, execution starts right where you left
off. So start is incremented by 2, and the loop goes round again, yielding the next odd number and
exiting the function until the next time.

 Python ensures that generator functions become iterators so that you can use them in for loops, like
so:

 for n in odds():
 if n > 7: break

 else: print(n)

 You use odds() just like a collection. Every time the loop goes around, it calls the generator function
and receives the next odd value.

 You avoid an infi nite loop by inserting the break test so you never call odds() beyond 7.

NOTE If you use odds() a second time in the same program, it creates a brand-
new instance of the iterator and the sequence starts over.

 Now that you understand how generator functions work, you may have realized that the generator
expressions introduced earlier in this chapter are effectively just anonymous generator functions.
Generator expressions are effectively a disguised form of a generator function without a name.

 This provides a perfect segue to the fi nal function type we will be learning about here—the lambda
function.

 Lambda Functions
 The term lambda comes from a form of mathematical calculus invented by Alonzo Church. The good
news is that you don’t need to know anything about the math to use lambda functions! The idea
behind a lambda function is that it is an anonymous function block, usually very small, that you can
insert into code that then calls the lambda function just like a normal function. Lambda functions
are not things you will use often, but they are very handy when you would otherwise have to create a
lot of small functions that are used only once. They are often used in GUI or network programming
contexts, where the programming toolkit requires a function to call back with a result.

 A lambda function is defi ned like this:

 lambda <param1, param2, ...,paramN> : <expression>

 That’s the literal word lambda , followed by an optional, comma-separated list of parameter names,
a colon, and an arbitrary Python expression that, usually, uses the input parameters. Note that the
expression does not have the word return in front of it.

28 ❘ CHAPTER 1 REVIEWING CORE PYTHON

c01.indd 28 29/06/2017 3:15 PM

 Some languages allow lambda functions to be arbitrarily complex; however, Python limits you to
a single expression. The expression can become quite complex, but in practice it’s better to create a
standard function if that is the case because it will be easier to read and debug if things go wrong.

 You can assign lambda functions to variables, in which case those variables look exactly like
standard Python function names. For example, here is the straight _ line example function re-
implemented as a lambda function:

 >>> straight_line = lambda m,x,c: m*x+c
 >>> straight_line(2,4,-3)

 5

 You see lambda functions popping up later in the book. Just remember that they are simply a
concise way to express a short, single expression, function.

 Defi ning and Using Classes and Objects
 Python supports object-oriented programming using a traditional class-based approach. Python
classes support multiple inheritance and operator overloading (but not method overloading), as
well as the usual mechanisms of encapsulation and message passing. Python classes do not directly
implement data hiding, although some naming conventions are used to provide a thin layer of
privacy for attributes and to suggest when attributes should not be used directly by clients. Class
methods and data are supported as well as the concepts of properties and slots . Classes have both
a constructor (__new__ ()) and an initializer (__init__ ()), as well as a destructor mechanism
(__del__ ()), although the latter is not always guaranteed to be called. Classes act as namespaces
for the methods and data defi ned therein.

 Objects are instances of classes. Instances can have their own attributes added after instantiation,
although this is not normal practice.

 A class is defi ned using the class keyword followed by the class name and a parenthesized list of
super-classes. The class defi nition contains a set of class data and method defi nitions. A method
defi nition has as its fi rst parameter a reference to the calling instance, traditionally called self . A
simple class defi nition looks like this:

 class MyClass(object):
 instance_count = 0
 def __init__(self, value):
 self.__value = value
 MyClass.instance_count += 1
 print("instance No {} created".format(MyClass.instance_count))
 def aMethod(self, aValue):
 self.__value *= aValue
 def __str__(self):
 return "A MyClass instance with value: " + str(self.__value)
 def __del__(self):
 MyClass.instance_count -= 1

 The class name traditionally starts with an uppercase letter. In Python 3 the super class is always
 object unless specifi cally stated otherwise, so the use of object as the super class in the preceding
example is actually redundant. The instance _ count data item is a class attribute because it

Extending Python ❘ 29

c01.indd 29 29/06/2017 3:15 PM

does not appear inside any of the class’ methods. The __ init __ () function is the initializer
(constructors are rarely used in Python unless inheriting from a built-in class). It sets the instance
variable self.__ value , increments the previously defi ned class variable instance _ count , and
then prints a message. The double underscores before value indicate that it is effectively private
data and should not be used directly. The __ init __ () method is called automatically by Python
immediately after the object is constructed. The instance method aMethod() modifi es the instance
attribute created in the __ init __ () method. The __ str __ () method is a special method used to
return a formatted string so that instances passed to the print function, for example, will be printed
in a meaningful way. The destructor __ del __ () decrements the class variable instance _ count
when the object is destroyed.

 You can create an instance of the class like this:

 myInstance = MyClass(42)

 This creates an instance in memory and then calls MyClass.__ init __ () with the new instance as
 self and 42 as value .

 You can call the aMethod() method using dot notation like this:

 myInstance.aMethod(66)

 This is translated to the more explicit invocation,

 MyClass.aMethod(myInstance, 66)

 and results in the desired behavior whereby the value of the __ value attribute is adjusted.

 You can see the __ str __ () method in action if you print the instance, like this:

 print(myInstance)

 This should print the message:

 A MyClass instance with value: 2772

 You could also print the instance _ count value before and after creating/destroying an instance:

 print(MyClass.instance_count)
 inst = MyClass(44)
 print(MyClass.instance_count)
 del(inst)
 print(MyClass.instance_count)

 This should show the count being incremented and then later decremented again. (There may be
a slight delay before the destructor is called during garbage collection, but it should only be a few
moments.)

 The __ init __ () , __ del __ () , and __ str __ () methods are not the only special methods.
Several of these exist, all signifi ed by the use of double underscores (they are sometimes called
 dunder methods). Operator overloading is supported via a set of these special methods including:
 __ add __ () , __ sub __ () , __ mul __ () , __ div __ () , and so on. Other methods provide for the
implementation of Python protocols such as iteration or context management. You can override

30 ❘ CHAPTER 1 REVIEWING CORE PYTHON

c01.indd 30 29/06/2017 3:15 PM

these methods in your own classes. You should never defi ne your own dunder methods; otherwise,
future enhancements to Python could break your code.

 You can override methods in subclasses, and the new defi nitions can invoke the inherited version of
the method by using the super() function, like this:

 class SubClass(Parent):
 def __init__(self, aValue):
 super().__init__(aValue)

 The call to super(). __ init __ () translates to a call to the __ init __ () method of Parent . Using
 super() avoids problems, particularly with multiple inheritance, where a class could be inherited
multiple times and you usually don’t want it to be initialized more than once.

NOTE The use of super() in Python 3 has been greatly simplifi ed
compared to its Python 2 form. The super() line in Python 2 would look like
 super(SubClass, self).__ init __ (aValue) , which is much less intuitive to
use.

 Slots are a memory-saving device, and you invoke them by using the __ slots __ special attribute
and providing a list of the object attribute names. Often __ slots __ are a premature optimization,
and you should use them only if you have a specifi c, known need.

 Properties are another feature available for data attributes. They enable you to make an attribute
read only (or even write only) by forcing access to be via a set of methods even though the usual
method syntax is not used. This is best seen by an example where you create a Circle class with a
 radius attribute and area() method. You want the radius value to always be positive, so you don’t
want clients changing it directly in case they pass a negative value. You also want area to look like a
read-only data attribute even though it is implemented as a method. You achieve both objectives by
making radius and area properties.

 TRY IT OUT Creating a Property within a Class (testCircle.py)

 In this Try It Out, you start by creating a simple Circle1 class that has only one attribute and two
callable methods: setRadius() and area() . You then create a second class, Circle2 , which makes
 radius and area properties. Finally, you see how the use of properties simplifi es the use of the class in
client code.

 1. Start your favorite programming editor or IDE and create a new fi le called testCircle.py (or load
the fi le from the book download site).

 2. Enter the following code:

 class Circle1:
 def __init__(self, radius):
 self.__radius = radius
 def setRadius(self,newValue):
 if newValue >= 0:

Extending Python ❘ 31

c01.indd 31 29/06/2017 3:15 PM

 self.__radius = newValue
 else: raise ValueError("Value must be positive")
 def area(self):
 return 3.14159 * (self.__radius ** 2)

 class Circle2:
 def __init__(self, radius):
 self.__radius = radius

 def __setRadius(self, newValue):
 if newValue >= 0:
 self.__radius = newValue
 else: raise ValueError("Value must be positive")
 radius = property(None, __setRadius)

 @property
 def area(self):
 return 3.14159 * (self.__radius ** 2)

 3. Save the code.

 4. Start the Python interpreter and type the following code to use Circle1 :

 >>> import testCircle as tc
 >>> c1 = tc.Circle1(42)
 >>> c1.area()
 5541.76476
 >>> print(c1.__radius)
 Traceback (most recent call last):
 File "<interactive input>", line 1, in <module>
 AttributeError: 'Circle1' object has no attribute '__radius'
 >>> c1.setRadius(66)
 >>> c1.area()
 13684.766039999999
 >>> c1.setRadius(-4)
 Traceback (most recent call last):
 File "<interactive input>", line 1, in <module>
 File "D:\PythonCode\Chapter1\testCircle.py", line 7, in setRadius
 else: raise ValueError("Value must be positive")
 ValueError: Value must be positive

 5. Play with Circle 2 using the following code:

 >>> c2 = tc.Circle2(42)
 >>> c2.area
 5541.76476
 >>> print(c2.radius)
 Traceback (most recent call last):
 File "<interactive input>", line 1, in <module>
 AttributeError: unreadable attribute
 >>> c2.radius = 12
 >>> c2.area
 452.38896
 >>> c2.radius = -4
 Traceback (most recent call last):

32 ❘ CHAPTER 1 REVIEWING CORE PYTHON

c01.indd 32 29/06/2017 3:15 PM

 File "<interactive input>", line 1, in <module>
 File "D:\PythonCode\Chapter1\testCircle.py", line 18, in __setRadius
 else: raise ValueError("Value must be positive")
 ValueError: Value must be positive
 >>>

 How It Works

 In testCircle.py you created two classes. The fi rst, Circle1 , achieved what you wanted to do by
forcing the user to change the radius value via the setRadius() method. You did this by prefi xing the
attribute self. __ radius with two underscores, which is how Python makes things appear private.
You then created the setRadius() method that validated the supplied value before applying it and
raised an error if a negative value was found. You also provided an area() method so that the user
could evaluate the area using the usual method calling technique.

 The second class, Circle2 , went about things rather differently. It used Python’s property defi nition feature
to create an attribute called radius that was write only. It also created the area method as a read-only
attribute. This made the user code for Circle2 much more intuitive, as you saw when you exercised the
classes in the interpreter. The key lies in the property() type function that you called like this:

 radius = property(None, __setRadius)

 This code takes as arguments a set of functions for read, write, and delete (as well as a documentation
string). The default value of each is None . In this case you created the radius property with a None read
function but with the (now private) __ setRadius() method as a write function. The other values were
left at their default of None . The result was that radius could be accessed by the user as if it were a public
data attribute when assigning a value but, under the covers, Python called the __ setRadius() method.
Any attempt to read (or delete) the attribute would be ignored because the action gets routed to None .

 The area property is slightly different and uses a Python property decorator (@property), which is just
a shortcut for creating a read-only property. This is a very common use of properties.

 Looking at the interactive session, you created a Circle1 instance and printed the area using the
 area() method. You then tried to print the radius directly by accessing __ radius, but Python
pretended that it had no such attribute (because of the double underscore private setting) and raised an
 AttributeError . When you used the setRadius() method, all was well, and printing the area a second
time showed that the modifi cation worked. Finally, you tried to set a negative radius and, as expected,
the method raised a ValueError exception with a custom error message: “Value must be positive.”

 In the session using Circle2, you can see how much simpler the code is. You simply evaluate the area
property name to get the area and you assign a value to the radius property name. When you try
to assign a negative value, the method again raises a ValueError . Printing the radius directly again
generates an AttributeError , although this time it has a slightly different message.

 Properties require a small amount of extra effort on the programmer’s part, but can greatly simplify the
usage of the class.

 Having seen how to extend Pythons capabilities using functions and classes, the next section shows
you how to enclose these extensions in modules and packages for reusability.

Creating and Using Modules and Packages ❘ 33

c01.indd 33 29/06/2017 3:15 PM

 CREATING AND USING MODULES AND PACKAGES

 Modules are fundamental to most programming environments intended for nontrivial programming
tasks. They allow programs to be broken up into manageable chunks and provide a mechanism for code
reuse across projects. In Python, modules are simply source fi les, ending in .py and located somewhere
that Python can fi nd them. In practice, that means the fi le must be located in the current working
directory or a folder listed in the sys.path variable. You can add your own folders to this path by
specifying them in the PYTHONPATH environment variable for your system or dynamically at run time.

 Although modules provide a useful way of packaging up small amounts of source code
for reuse, they are not entirely satisfactory for larger projects such as GUI frameworks or
mathematical function libraries. For these Python provides the concept of a package . A package
is essentially a folder full of modules. The only requirement is that the folder should contain a fi le
called __ init __ .py , which may be empty. To the user a package looks a lot like a module, and the
submodules within the package look like module attributes.

 Using and Creating Modules
 You access modules using the import keyword, which has many variations in Python. The most
common forms are shown here:

 import aModule
 import aModule as anAlias
 import firstModule, secondModule, thirdModule...
 from aModule import anObject
 from aModule import anObject as anAlias
 from aModule import firstObject,secondObject, thirdObject...
 from aModule import *

 The last form imports all the visible names from aModule into the current namespace. (You learn
how to control visibility shortly.) This carries a signifi cant risk of creating naming confl icts with
built-in names or names you have defi ned, or will defi ne, locally. It is therefore recommended that
you use only the last import form for testing modules at the Python prompt. The small amount of
extra typing involved in using the other forms is a small price to pay compared to the confusion
that can result from a name clash. The other from... forms are much safer because you only import
specifi ed names and, if necessary, rename them with an alias. This makes clashes with other local
names much less likely.

 Once you import a module using any of the fi rst three forms, you can access its contents by
prefi xing the required name with the module name (or alias) using dot notation. You have already
seen examples of that in the previous sections; for example, sys.path is an attribute of the sys
module.

 Having said that modules are simply source fi les, in practice, you should observe some do’s and
don’ts when creating modules. You should avoid top-level code that will be run when the module
is imported, except, possibly, for some initialization of variables that may depend on the local
environment. This means that the code you want to reuse should be packaged as a function or a
class. It’s also common to provide a test function that exercises all the functions and classes in the
module. Module names are also traditionally lowercase only.

34 ❘ CHAPTER 1 REVIEWING CORE PYTHON

c01.indd 34 29/06/2017 3:15 PM

 You can control visibility of the objects within your module in one of two ways. The fi rst is similar
to the privacy mechanism used in classes in that you can prefi x a name with an underscore. Such
names will not be exported when a from x import * style statement is used. The other way to
control visibility is to list only the names that you want exported in a top-level variable called
 __ all __ . This ensures that only the names you specifi cally want to be exported will be and is
recommended over the underscore method if visibility is important to you.

NOTE There is a Python style guide known as PEP8 that provides guidance
on naming conventions and code layout rules. Its use is not mandatory, but
you are strongly recommended to follow it, especially if submitting code for
inclusion in the standard library. PEP8 can be found here: http://legacy
.python.org/dev/peps/pep-0008/ .

NOTE One very important gotcha with modules is that the sys.path list is
searched in order. This usually means that any modules you create will be
found before the built-in or standard library modules. It is very important that
you do not use a standard module name for your own module fi les; otherwise,
strange things may happen and, even if you realize that it’s your module, that’s
being accessed, other readers are likely to be fooled.

 You put most of this into practice in the next Try It Out, but fi rst, you need to look at packages and
how they differ from modules.

 Using and Creating Packages
 You discovered at the start of this section that a Python package is just a folder with a fi le called
 __ init __ .py . All other Python fi les within that folder are the modules of the package. Python
considers packages as just another type of module, which means that Python packages can contain
other packages within them to an arbitrary depth—provided each subpackage also has its own
 __ init __ .py fi le, it is a valid package.

NOTE Having just said that a package was defi ned by having an __ init __ .py ,
this is not strictly true. The real defi ning feature of a package is that it has
a __ path __ attribute. However, in practice, you don’t need to provide that
because Python does it for you. So, if you create an __ init __ .py , all will
be well.

 The __ init __ .py fi le itself is not particularly special; it is just another Python fi le, and it will
be loaded when you import the package. This means that the fi le can be empty, in which case
importing the package simply gives access to the included modules, or it can have Python code

Creating and Using Modules and Packages ❘ 35

c01.indd 35 29/06/2017 3:15 PM

within it like any other module. In particular it can defi ne an __ all __ list, as described earlier,
to control visibility, effectively enabling a package to have private implementation fi les that are not
exported when a client imports the package.

 A common requirement when you create a package is to have a set of functions or data shared
between all the included modules. You can achieve this by putting the shared code into a module fi le
called, say, common.py at the top level of the package and having all of the other modules import
common . It will be visible to them as part of the package, but if it is not explicitly included in the
 __ all __ list, external consumers of the packages will not see it.

 When it comes to using a package, you treat it much like any other module. You have all the usual
styles of import available, but the naming scheme is extended by using dot notation to specify which
submodules you need from the package hierarchy. When you import a submodule using the dot notation,
you effectively defi ne two new names: the package and the module. Consider, for example, this statement:

 import os.path

 This code imports the path submodule of the os package. But it also makes the whole of the os
module visible as well. You can proceed to access os functions without having a separate import
statement for os itself. One implication of this is that Python automatically executes all of the
 __ init __ .py fi les that it fi nds in the imported hierarchy. So in the case of os.path , it executes
 os. __ init __ .py and then path. __ init __ .py .

 On the other hand, if you use an alias after the import, like this,

 import os.path as pth

 only the os.path module is exposed. If you want to use the os module functions, you will need an
explicit import. Although only path is exposed, as the name pth , both os and path __ init __ .py
fi les will still be run.

 The Python standard library contains several packages including the os package just mentioned.
Others of note include the UI frameworks tkinter and curses , the email package, and the web-
focused urllib , http , and html packages. You use several of these later in the book.

 NAMESPACE PACKAGES

 Python 3.3 introduced a new type of package called a namespace package . A
namespace package contains a number of portions . A portion is a reference to an
object that may, or may not, have a physical representation and may be located on
the network or in a different part of the local fi le system. Namespace packages do
not use the __ init __ .py fi le technique; rather, they depend on being part of the
 sys.path defi nition used to fi nd modules during imports.

 Namespace packages are so new that, at the time of writing, it is not clear how
extensively they will be used. In the short term, you will probably not meet many of
them in practice, and the intention is that, to a user, they should not appear signifi -
cantly different from the traditional-style packages.

36 ❘ CHAPTER 1 REVIEWING CORE PYTHON

c01.indd 36 29/06/2017 3:15 PM

 You have now covered all of the theory about modules and packages. In the next section, you put
this information to work by creating some modules and a package.

 CREATING AN EXAMPLE PACKAGE

 You’ve read the theory; now it’s time to put it into practice. In this section you create a couple of
modules and bundle them as a package. You utilize the bitwise logical operators mentioned in “The
Boolean Type” section. The intention is to provide a functional interface to those operators and
extend their scope to include testing of individual bit values. In doing this you also see several of
the Python core language features that were discussed previously. The modules you develop are not
optimized for performance, but are designed to illustrate the concepts. However, it would not be
diffi cult to refi ne them into genuinely useful tools.

 TRY IT OUT Creating a Module (bits.py)

 In this Try It Out, you start out by creating a simple, conventional module based on integer inputs.
You then create another module that defi nes a class that can be used to represent a piece of binary
data and expose the bitwise functions as methods. Finally, you create a package containing both
modules.

 1. Create a new folder called bitwise . This eventually becomes your package.

 2. In that folder create a Python script called bits.py containing the following code (or load it from
the book’s downloadable fi lenamed bits.py):

 #! /bin/env python3
 ''' Functional wrapper around the bitwise operators.
 Designed to make their use more intuitive to users not
 familiar with the underlying C operators.
 Extends the functionality with bitmask read/set operations.

 The inputs are integer values and
 return types are 16 bit integers or boolean.
 bit indexes are zero based

 Functions implemented are:
 NOT(int) -> int
 AND(int, int) -> int
 OR(int,int) -> int
 XOR(int, int) -> int
 shiftleft(int, num) -> int
 shiftright(int, num) -> int
 bit(int,index) -> bool
 setbit(int, index) -> int
 zerobit(int,index) -> int
 listbits(int,num) -> [int,int...,int]
 '''

 def NOT(value):
 return ~value

Creating an Example Package ❘ 37

c01.indd 37 29/06/2017 3:15 PM

 def AND(val1,val2):
 return val1 & val2

 def OR(val1, val2):
 return val1 | val2

 def XOR(val1,val2):
 return val1^val2

 def shiftleft(val, num):
 return val << num

 def shiftright(val, num):
 return val >> num

 def bit(val,idx):
 mask = 1 << idx # all 0 except idx
 return bool(val & mask)

 def setbit(val,idx):
 mask = 1 << idx # all 0 except idx
 return val | mask

 def zerobit(val, idx):
 mask = ~(1 << idx) # all 1 except idx
 return val & mask

 def listbits(val):
 num = len(bin(val)) - 2
 result = []
 for n in range(num):
 result.append(1 if bit(val,n) else 0)
 return list(reversed(result))

 3. Save the fi le and, while still in your bitwise folder, start the Python interpreter.

 4. Type the following code to test your new module:

 >>> import bits
 >>> bits.NOT(0b0101)
 -6
 >>> bin(bits.NOT(0b0101))
 '-0b110'
 >>> bin(bits.NOT(0b0101) & 0xF)
 '0b1010'
 >>> bin(bits.AND(0b0101, 0b0011) & 0xF)
 '0b1'
 >>> bin(bits.AND(0b0101, 0b0100) & 0xF)
 '0b100'
 >>> bin(bits.OR(0b0101, 0b0100) & 0xF)
 '0b101'
 >>> bin(bits.OR(0b0101, 0b0011) & 0xF)
 '0b111'
 >>> bin(bits.XOR(0b0101, 0b11) & 0xF)

38 ❘ CHAPTER 1 REVIEWING CORE PYTHON

c01.indd 38 29/06/2017 3:15 PM

 '0b110'
 >>> bin(bits.XOR(0b0101, 0b0101) & 0xF)
 '0b0'
 >>> bin(bits.shiftleft(0b10,1))
 '0b100'
 >>> bin(bits.shiftleft(0b10,4))
 '0b100000'
 >>> bin(bits.shiftright(0b1000,2))
 '0b10'
 >>> bin(bits.shiftright(0b1000,6))
 '0b0'
 >>> bits.bit(0b0101,0)
 True
 >>> bits.bit(0b0101,1)
 False
 >>> bin(bits.setbit(0b1000,1))
 '0b1010'
 >>> bin(bits.zerobit(0b1000,1))
 '0b1000'
 >>> bits.listbits(0b10111)
 [1, 0, 1, 1, 1]

 How It Works

 The module is a fairly straightforward list of functions that wrap the built-in bitwise operators for not
(~), and (&), or (|), xor (̂), shift left (<<), and shift right (>). These operations work on binary data—that
is, simply a sequence of 1s and 0s stored as a unit within the computer. All data in the computer is,
ultimately, stored in binary form.

 These wrapper operations are complemented by a set of functions that test whether a bit has a value of
1 (this is known as being “set”), set a bit (to 1), or zero a bit (also known as “resetting” the bit). The bit
number counts from the right, starting at zero. The tests are done using a bit pattern (also known as a
 bitmask) that, in all cases except zerobit() , consists of all zeros except for the bit you want to test or
set. You created the mask by shifting 1 left by the required number of bits. zerobit() uses the bitwise
complement of the usual mask to create one that consists of all 1s apart from a 0 where you want to
reset the bit.

 Finally, you have a function that lists the individual bits of the given value. This last function is slightly
more complex and demonstrates some of Python’s coding features. You fi rst determine the length of the
number by converting to a binary string with bin() and subtracting 2 (to account for the leading 0b
characters). You then create an empty result list and loop over the bits. For each bit you append either a
1 or 0, depending on whether or not the bit is set, using Python’s conditional expression construct.

 The testing of the module throws up some interesting issues. You start off by importing your new
module. Because you are in the folder where the fi le lives, Python can see it without modifying the
 sys.path value. You start testing with the NOT() function (prefi xed, of course, with the module name,
 bits), and straightaway you can see an anomaly in that the Python interpreter prints the decimal
representation as the result. To get around that, you can use the bin() function to convert the number
to a binary string representation. However, there is still a problem because the number is negative. This
is because Python integers are signed, that is, they can represent positive or negative numbers. Python
does this internally by having the leftmost bit represent the sign. By inverting all of the bits, you also

Creating an Example Package ❘ 39

c01.indd 39 29/06/2017 3:15 PM

invert the sign! You can avoid the confusion by using a bitmask of 0xF (or decimal 15 if you prefer) to
retrieve only the rightmost 4 bits. By converting this with bin() , you now see the inverted bit pattern
you expected. Obviously, if the value you were inverting was bigger than 16, you would need to use a
longer bitmask. Just remember that each hex digit is 4 bits, so all you need to do is add an extra F to
your mask.

 The next set of tests—covering the functions AND() through to shiftleft() —should be
straightforward, and you can check the results by visually inspecting the input bit patterns and the
results. The shiftright() examples do show one interesting outcome in that shifting the bits too far
to the right produces a zero result. In other words, Python fi lls the “empty” space left by the shift
operations with zeros.

 Moving on to the new functionality, you used bit() , setbit() , and zerobit() to test and modify
individual bits within the given value. Again, you can visually inspect the input and result patterns to
see that the correct results are produced. Remember that the index parameter counts from zero starting
from the right.

 Finally, you tested the listbits() function. Once more, you can easily compare the binary input
pattern with the resultant list of numbers.

 So you see that you now have a working module that you can import and use just like any other
module in Python. You could enhance the module further by providing a test function and wrapping
that in an if __ name __ clause if you wanted, but for now you can proceed to look at how to move
from a single module to a package.

 TRY IT OUT Creating a Package (bitmask.py)

 In this Try It Out, you build a class that replicates the functions in bits.py as a set of methods. You
then bundle both modules into a package.

 1. Navigate into your bitwise folder.

 2. Create a new fi le called bitmask.py with the following code (or load it from the book’s
downloadable fi lename bitmask.py):

 #! /bin/env python3
 ''' Class that represents a bit mask.
 It has methods representing all
 the bitwise operations plus some
 additional features. The methods
 return a new BitMask object or
 a boolean result. See the bits
 module for more on the operations
 provided.
 '''

 class BitMask(int):
 def AND(self,bm):
 return BitMask(self & bm)
 def OR(self,bm):

40 ❘ CHAPTER 1 REVIEWING CORE PYTHON

c01.indd 40 24/10/2018 2:28 PM

 return BitMask(self | bm)
 def XOR(self,bm):
 return BitMask(self ^ bm)
 def NOT(self):
 return BitMask(~self)
 def shiftleft(self, num):
 return BitMask(self << num)
 def shiftright(self, num):
 return BitMask(self >> num)
 def bit(self, num):
 mask = 1 << num
 return bool(self & mask)
 def setbit(self, num):
 mask = 1 << num
 return BitMask(self | mask)
 def zerobit(self, num):
 mask = ~(1 << num)
 return BitMask(self & mask)
 def listbits(self, start=0,end=None):
 if end: end = end if end < 0 else end+2
 return [int(c) for c in bin(self)[start+2:end]]

3. Now save it so that you can test it in the Python interpreter.

4. Staying in the bitwise folder, start Python and type the following code:

>>> import bitmask
 >>> bm1 = bitmask.BitMask()
 >>> bm1
 0
 >>> bin(bm1.NOT() & 0xf)
 '0b1111'
 >>> bm2 = bitmask.BitMask(0b10101100)
 >>> bin(bm2 & 0xFF)
 '0b10101100'
 >>> bin(bm2 & 0xF)
 '0b1100'
 >>> bm1.AND(bm2)
 0
 >>> bin(bm1.OR(bm2))
 '0b10101100'
 >>> bm1 = bm1.OR(0b110)
 >>> bin(bm1)
 '0b110'
 >>> bin(bm2)
 '0b10101100'
 >>> bin(bm1.XOR(bm2))
 '0b10101010'
 >>> bm3 = bm1.shiftleft(3)
 >>> bin(bm3)
 '0b110000'
 >>> bm1 == bm3.shiftright(3)
 True
 >>> bm4 = bitmask.BitMask(0b11110000)
 >>> bm4.listbits()

Creating an Example Package ❘ 41

c01.indd 41 29/06/2017 3:15 PM

 [1, 1, 1, 1, 0, 0, 0, 0]
 >>> bm4.listbits(2,5)
 [1, 1, 0]
 >>> bm4.listbits(2,-2)
 [1, 1, 0, 0]

 5. Quit the interpreter.

 Now that you have proved the new module works, you can go ahead and convert the bitwise
directory into a Python package.

 6. Create a new empty __init__.py fi le.

 7. To test that the package works, you need to change your working directory to the directory above
 bitwise . Do that now.

 You now need to test that you can import the package and its contents and access the functionality.

 8. Start the Python interpreter and type the following test code:

 >>> import bitwise.bits as bits
 >>> from bitwise import bitmask
 >>> bits
 <module 'bitwise.bits' from 'bitwise/bits.py'>
 >>> bitmask
 <module 'bitwise.bitmask' from 'bitwise/bitmask.py'>
 >>> bin(bits.AND(0b1010,0b1100))
 '0b1000'
 >>> bin(bits.OR(0b1010,0b1100))
 '0b1110'
 >>> bin(bits.NOT(0b1010))
 '-0b1011'
 >>> bin(bits.NOT(0b1010) & 0xFF)
 '0b11110101'
 >>> bin(bits.NOT(0b1010) & 0xF)
 '0b101'
 >>> bm = bitmask.BitMask(0b1100)
 >>> bin(bm)
 '0b1100'
 >>> bin(bm.AND(0b1110))
 '0b1100'
 >>> bin(bm.OR(0b1110))
 '0b1110'
 >>> bm.listbits()
 [1, 1, 0]

 How It Works

 You created a class based on the built-in integer type, int . Because you are only providing new methods
for the class and not storing any additional data attributes, you don’t need to provide a __ new __ ()
constructor or __ init __ () initializer. The methods are all very similar to the functions written in
 bits.py except that you created a BitMask instance as the return type. The listbits() method also
shows an alternative approach to deriving the list using the bin() string representation, and creating
the list using a list comprehension based on a character-to-integer conversion using int() . listbits()
has also been extended to provide a pair of start and end parameters that default to the full length of

42 ❘ CHAPTER 1 REVIEWING CORE PYTHON

c01.indd 42 29/06/2017 3:15 PM

the binary number, but could be used to extract a subset of bits. There is a small piece of work involved
in adjusting the end value depending on whether it is a positive or negative index. Negative indices do
not need the addition of two characters because they automatically apply from the right-hand end, so a
Python conditional assignment ensures the correct end value is set.

 Having created the class, you then tested it as a standard module by importing it from the local
directory. You then repeated a similar set of tests to the ones you did for bits.py . A few points to
note include the fact that you can mix and match the traditional bitwise operators with the new
functional versions. You can also compare BitMask objects just like any other integer, as you saw in the
shiftright() example. Finally, you proved that your new listbits() algorithm worked and the new
additional arguments function as expected for both positive and negative values.

 At this stage you had created two standard modules in a folder. You then created a blank __ init __ .py
fi le that turned the folder into a Python package. To test that it worked, you moved up a directory
level so that the package was visible to the interpreter. You then confi rmed that you could import the
package and modules within it and access some of the functionality. Congratulations, you now have a
package with two contained modules.

 Knowing how to create—and use—the standard modules and packages, as well as ones you create
yourself, is a great starting point. However, there are many more modules and packages available on
the internet, just waiting to be downloaded. The next section explains how you can do that.

 USING THIRD-PARTY PACKAGES

 Many third-party packages are available for Python. Binary distributions of many of these
packages, complete with installer programs, are available for most common operating systems. If
a binary installer is available, either on the package website or, for Linux users, in your package
management tool, you should use it because it will be the simplest way of getting things up and
running. If a binary package is not available, you need to download and install the base package.

 You can fi nd many of these third-party packages in the Python Package Index (PyPI) at https://
pypi.python.org/pypi . They are distributed in a special format that itself requires the installation
of a third-party package! This chicken-and-egg situation often confuses beginners, so this section
describes how to set up your environment such that you can access these third-party packages.

 PyPI packages come in the form of something called an egg . A Python egg is capable of delivering
either a standard Python package or a binary package written in C, or a mix of Python and C code.

 THE FUTURE OF PYTHON PACKAGING

 The egg format has some issues and is itself being replaced by something called a
 wheel . This is all part of a wider strategy to rationalize the multiple methods of
distributing Python packages and applications. The Python Package Authority is
leading this project. Eventually, all the tools needed to both build and install Python

Summary ❘ 43

c01.indd 43 29/06/2017 3:15 PM

 Installing an egg requires a tool called pip . Fortunately, installing pip does not require pip. As of
version 3.4 of Python, pip is included in the standard library, which simplifi es the process somewhat.
If pip is not included in your version of Python, you can install pip by going to https://pip.pypa
.io/en/latest/reference/pip_install.html and following the instructions.

 Download the get-pip.py fi le using the link on the page into any convenient folder on your computer.
Change into that folder, make sure you are connected to the Internet, and run the following:

 python get-pip.py

 This will take a few moments and downloads some stuff from the Internet. You will see a few
messages like this:

 $ python3 get-pip.py
 Downloading/unpacking pip
 Downloading pip-1.5.2-py2.py3-none-any.whl (1.2MB): 1.2MB downloaded
 Installing collected packages: pip
 Successfully installed pip
 Cleaning up...

 Once pip is installed, you can use it to install a PyPI package using:

 pip install SomePackageName

 This installs the latest version of the specifi ed package. You can uninstall a package just as easily
using:

 pip uninstall SomePackageName

 Many other options are available to use, and they are described on the pip documentation page at:
 https://pip.pypa.io/en/latest/reference/index.html .

 Not all packages use pip, and other install options and tools exist. The package documentation
should explain what you need to do. The current state of confusion should resolve itself in the near
future as explained in the earlier sidebar box: “The Future of Python Packaging.”

 SUMMARY

 In this chapter you reviewed the core language features of Python. You looked at the interpreter
environment, the core data types, and the language control structures and syntax. You also
considered how Python can be extended by writing functions, classes, modules, and packages.

packages should be available in a standard Python installation. The roadmap starts
to take effect in Python 3.4 with the inclusion of pip in the standard distribution.

 You should refer to the latest guidance on the Python Package Authority website
(https://python-packaging-user-guide.readthedocs.org/en/latest/) if
you want to create your own distributable packages.

44 ❘ CHAPTER 1 REVIEWING CORE PYTHON

c01.indd 44 29/06/2017 3:15 PM

 The core data types are Boolean (bool), integer (int), and fl oating point (float) numbers, as well
as the special None type. Python also supports several collection types including strings, bytes, lists,
tuples, dictionaries, and sets.

 The control structures cover all of the structured programming concepts including sequences,
selection, and iteration. Selection is done using if/elif/else and a conditional expression form.
Iteration is supported via two loop constructs: for , which iterates over a collection or iterable object,
and while , which is a more general, and potentially infi nite, loop. Python also supports exception
management via a try/except/finally construct.

 In addition to a large number of built-in functions and a standard library of modules, Python
enables you to extend its capabilities by writing your own functions using the def or lambda
keywords. You can also extend the standard data types by creating your own data types using the
 class keyword and then creating instances of those classes. Functions and classes can be stored
in separate fi les, which constitute Python modules that can be imported into other code, thus
facilitating cross program reuse. Modules can in turn be grouped into packages, which are simply
folders containing an __ init __ .py fi le.

 EXERCISES

 1. How do you convert between the different Python data types? What data quality issues arise
when converting data types?

 2. Which of the Python collection types can be used as the key in a dictionary? Which of the
Python data types can be used as a value in a dictionary?

 3. Write an example program using an if/elif chain involving at least four different selection
expressions.

 4. Write a Python for loop to repeat a message seven times.

 5. How can an infi nite loop be created using a Python while loop? What potential problem might
this cause? How could that issue be resolved?

 6. Write a function that calculates the area of a triangle given the base and height measurements.

 7. Write a class that implements a rotating counter from 0 to 9. That is, the counter starts
at 0, increments to 9, resets to 0 again, and repeats that cycle indefi nitely. It should have
 increment() and reset() methods, the latter of which returns the current count then sets the
count back to 0.

 Answers to exercises can be found in Appendix A.

Summary ❘ 45

c01.indd 45 29/06/2017 3:15 PM

 ▸ WHAT YOU LEARNED IN THIS CHAPTER

TOPIC KEY CONCEPTS

Python infrastructure The Python interpreter can be called without arguments to get an interactive
shell. If a fi lename is given as an argument, the interpreter will execute it and
exit.

Simple data types Python supports integers, fl oating-point Boolean, and None data types. The
type names can be used as conversion functions. Python types are objects
and support a rich set of operations.

Collection data
types

Python supports Unicode and byte strings plus lists, tuples, dictionaries, and
sets. Strings and tuples are immutable (cannot be changed), and dictionaries
and sets require immutable types as keys. Most collections are iterables and
can be used in for loops.

Basic control
structures

Python supports sequences, selection, and repetition. Sequences are simple
lines of code; there are no block markers or statement terminators required.
Selection is via the if/elif/else structure. Two loops are provided: for
and while .

Code blocks are indicated by a terminating colon on the previous line, and
the block will be indented under that line. Restoring the indentation level
ends the block.

Error handling Python supports exception handling through the try/except/.else/
finally structure.

Users can defi ne their own exceptions or parameterize the built-in errors.

Input/output User input can be read, as a string, using the input() function.

User output can be displayed via the print() function.

Text fi les can be opened, read from, and written to. File navigation is possible
using tell() and seek() .

Defi ning functions New functions can be defi ned using the def or lambda keywords. Functions
can receive input via parameters and provide results via the return keyword.

Defi ning classes Classes are defi ned using the class keyword. Classes support single and
multiple inheritance, polymorphism, operator overloading, and method
overriding. Class attributes can be treated as properties and/or slots.
Attributes are accessed via dot notation. Classes are objects, too.

Modules and
packages

Modules are just fi les containing Python code that exist in any of the folders
listed in sys.path . Packages are folders containing modules and a (possibly
empty) fi le called __init__.py . Packages are modules, too. Names within a
module are accessed via dot notation.

		2018-11-14T16:11:47-0500
	Certified PDF 2 Signature

