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Motivation for Heavy-Tailed
Models

1.1 Structure of the Book

This book is split into a few core components covering fundamental concepts:

• Chapter 1 motivates the need to consider heavy-tailed loss process models in operational
risk (OpRisk) and insurance modeling frameworks. It provides a basic introduction to
the concept of separating the modeling of the central loss process and the tails of the
loss process through splice models. It also sets out the key statistical questions one must
consider studying when performing analysis and modeling of high consequence rare-event
loss processes.

• Chapter 2 covers all the fundamental properties one may require in univariate loss process
modeling under an extreme value theory (EVT) approach. Of importance is the detailed
discussion on the associated statistical assumptions that must be made regarding the prop-
erties of any data utilized in model estimation when working with EVT models. This
chapter provides a relatively advanced coverage of generalized extreme value (GEV) fam-
ily of models, block maximum and peaks over threshold frameworks. It provides detailed
discussion on statistical estimation that should be utilized in practice for such models and
how one may adapt such methods to small sample settings that may arise in OpRisk set-
tings. In the process, the chapter details clearly how to construct several loss distributional
approach models based on EVT analysis. It then concludes with results of EVT in the
context of compound processes.

• Chapter 3 provides a set of formal mathematical definitions for different notions regarding
a heavy-tailed or fat-tailed loss distribution and its properties. It is important that when
modeling such loss processes, especially the asymptotic properties of compound process
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2 CHAPTER 1: Motivation for Heavy-Tailed Models

models built with heavy-tailed loss models, a clear understanding of the tail properties of
such loss models is understood. In this regard, we discuss the family of sub-exponential
loss models, the family of regularly varying and slowly varying models. There are within
these large classes of models sub-categorizations that are often of use to understand when
thinking about risk measures resulting from such loss models, these are also detailed, for
example, long-tailed models, subversively varying models and extended regular variation.
In addition, the chapter opens with a basic introduction to key notations and properties
of asymptotic notations that are utilized throughout the book.

• Chapter 4 begins with a basic introduction to properties of mathematical representations
and characterizations of heavy-tailed loss models through the characteristic function and
its representation. It then details the notions of divisibility, self-decomposability and the
resulting consequences such distributional properties have on loss distributional approach
compound process models. The remainder of the chapter provides a detailed coverage of
the family of univariateα-stable models, detailing their characterization, the parameteriza-
tions, density and distribution representations and parameter estimation. Such a family of
models is becoming increasingly interesting for OpRisk modeling and insurance. It is rec-
ognized that such a family of models possesses many relevant and useful features that will
capture aspects of OpRisk and insurance loss processes accurately and with advantageous
features when used in a compound process model under a loss distributional approach
structure.

• Chapter 5 provides the representations of flexible severity models based on tempering or
exponential tilting of the α-stable family of loss models. Under this concept, there are
many families of tempered stable models available; this chapter characterizes each and
discusses the mathematical properties of each sub-class of models and how they may be
used in compound process models for heavy-tailed loss models in OpRisk and insurance.
In addition, it discusses the aspects of model estimation and simulation for such mod-
els. The chapter then finishes with a detailed discussion on quantile-transformed-based
heavy-tailed loss models for OpRisk and insurance, such as the Tukey transforms and the
sub-family of the g-and-h distributions that have been popular in OpRisk.

• Chapter 6 discusses compound processes and convolutional semi-group structures. This
then leads to developing representations of closed-form compound process loss distribu-
tions and densities that admit heavy-tailed loss processes. The chapter characterizes several
classes of such models that can be used in practice, which avoid the need for computa-
tionally costly Monte Carlo simulation when working with such models.

• Chapter 7 discusses many properties of different classes of heavy-tailed loss processes with
regard to asymptotic representations and properties of the tail of both partial sums and
compound random sums. It does so under first-, second- and third-order asymptotic
expansions for the tail process of such heavy-tailed loss processes. This is achieved under
many different assumptions relating to the frequency and severity distribution and the
possible dependence structures in such loss processes.

• Chapter 8 extends the results of the asymptotics for the tail of heavy-tailed loss processes
partial sums and compound random sums to the asymptotics of risk measures developed
from such loss processes. In particular, it discusses closed-form single-loss approxima-
tions and first-order, second-order and higher order expansion representations. It covers
value-at-risk, expected shortfall and spectral risk measure asymptotics. This chapter also
covers some alternative risk measure asymptotic results based on EVT known as penulti-
mate approximations.
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• Chapter 9 rounds off the book with a coverage of numerical simulation and estima-
tion procedures for rare-event simulations in heavy-tailed loss processes, primarily for the
estimation of properties of risk measures that provides an efficient numerical alternative
procedure to utilization of such asymptotic closed-form representations.

1.2 Dominance of the Heaviest Tail Risks

In this book, we develop and discuss models for OpRisk to better understand statistical prop-
erties and capital frameworks which incorporate risk classes in which infrequent, though catas-
trophic or high consequence loss events may occur.This is particularly relevant inOpRisk as can
be illustrated by the historical events which demonstrate just how significant the appropriate
modeling of OpRisk can be to a financial institution.

Examples of large recent OpRisk losses are

• J.P. Morgan, GBP 3760 million in 2013—US authorities demand money because of
mis-sold securities to Fannie Mae and Freddie Mac;

• Madoff and investors, GBP 40,819 million in 2008—B. Madoff’s Ponzi scheme;
• Société Générale, GBP 4548 million in 2008—a trader entered futures positions circum-
venting internal regulations.

Other well-known examples of OpRisk-related events include the 1995 Barings Bank loss
of around GBP 1.3 billion; the 2001 Enron loss of around USD 2.2 billion and the 2004
National Australia Bank loss of AUD 360 m.

The impact that such significant losses have had on the financial industry and its perceived
stability combined with the Basel II regulatory requirements BCBS (2006) have significantly
changed the view that financial institutions have regarding OpRisk. Under the three pillars of
the Basel II framework, internationally active banks are required to set aside capital reserves
against risk, to implement risk management frameworks and processes for their continual
review and to adhere to certain disclosure requirements. There are three broad approaches that
a bank may use to calculate its minimal capital reserve, as specified in the first Basel II pillar.
They are known as basic indicator approach, standardized approach and advanced measurement
approach (AMA) discussed in detail in Cruz et al. (2015). AMA is of interest here because it is
the most advanced framework with regards to statistical modeling. A bank adopting the AMA
must develop a comprehensive internal risk quantification system. This approach is the most
flexible from a quantitative perspective, as banks may use a variety of methods and models,
which they believe are most suitable for their operating environment and culture, provided
they can convince the local regulator (BCBS 2006, pp. 150–152). The key quantitative crite-
rion is that a bank’s models must sufficiently account for potentially high impact rare events.
The most widely used approach for AMA is loss distribution approach (LDA) that involves
modeling the severity and frequency distributions over a predetermined time horizon so that
the overall loss Z of a risk over this time period (e.g. year) is

Z = X1 + · · · + XN , (1.1)

where N is the frequency modeled by random variable from discrete distribution and
X1,X2, . . . the independent severities from continuous distribution FX(x). There are many
important aspects of LDA such as estimation of frequency and severity distributions using
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data and expert judgements or modeling dependence between risks considered in detail in
Cruz et al. (2015). In this book, we focus on modeling heavy-tailed severities.

Whilst many OpRisk events occur frequently and with low impact (indeed, are ‘expected
losses’), others are rare and their impact may be as extreme as the total collapse of the bank.
The modeling and development of methodology to capture, classify and understand proper-
ties of operational losses is a new research area in the banking and finance sector. These rare
losses are often referred to as low frequency/high severity risks. It is recognized that these risks
have heavy-tailed (sub-exponential) severity distributions, that is, the distribution with the tail
decaying to zero slower than any exponential.

In practice, heavy-tailed loss distribution typically means that the observed losses are
ranging over several orders of magnitude, even for relatively small datasets. One of the main
properties of heavy-tailed distributions is that if X1, . . . ,Xn are independent random vari-
ables from common heavy-tailed distribution F (x), then

lim
x→∞

Pr[X1 + · · · + Xn > x]
Pr[max(X1, . . . ,Xn) > x]

= 1. (1.2)

This means that the tail of the sum of the random variables has the same order of magnitude as
the tail of the maximum of these random variables, with interpretation that severe overall loss
is due to a single large loss rather than due to accumulated small losses.

In OpRisk and insurance, we are often interested in the tail of distribution for the overall
loss over a predetermined time horizon Z = X1 + · · · + XN . In this case, if X1,X2, . . . are
independent severities from heavy-tailed distribution FX(x) and

∞∑
n=0

(1 + ε)n
Pr[N = n] < ∞

for some ε > 0 (which is satisfied, e.g. for Poisson and negative binomial distributions), then

1 − FZ(x) = Pr[X1 + · · · + XN > x] ∼ E[N ](1 − FX(x)), x → ∞. (1.3)

This can be used to approximate high quantiles of the distribution of Z as

F−1
Z (q) ∼ F−1

X

(
1 − 1 − q

E[N ]

)
, q → 1, (1.4)

where q is the quantile level. This approximation is often referred to as the single-loss approxi-
mation because the compound distribution is expressed in terms of the single-loss distribution.

Heavy-tailed distributions include many well-known distributions. For example, the Log-
Normal distribution is heavy tailed. An important class of heavy-tailed distributions is the
so-called regular varying tail distributions (often referred to as power laws or Pareto distributions)

1 − F (x) = x−αC(x), x → ∞, α ≥ 0, (1.5)

where α is the so-called power tail index and C(x) the slowly varying function that satisfies

lim
x→∞

C(tx )/C(x) = 1, for t > 0. (1.6)
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Often, sub-exponential distributions provide a good fit to the real datasets of OpRisk and
insurance losses. However, corresponding datasets are typically small and the estimation of
these distributions is a difficult task with a large uncertainly in the estimates.

Remark 1.1 From the perspective of capital calculation, the most important processes to model
accurately are those which have relatively infrequent losses. However, when these losses do occur, they
are distributed as a very heavy-tailed severity distribution such as members of the sub-exponential
family. Therefore, the intention of this book is to present families of models suitable for such severity
distribution modeling as well as their properties and estimators for the parameters that specify these
models.

The precise definition and properties of the heavy-tailed distributions is a subject of
Chapter 3, and single-loss approximation is discussed in detail in Chapters 7 and 8. For
a methodological insight, consider J independent risks, where each risk is modeled by a
compound Poisson. Then, the sum of risks is a compound Poisson with the intensity and
severity distribution given by the following proposition.

Proposition 1.1 Consider J independent compound Poisson random variables

Z( j) =
N ( j)∑
s=1

X ( j)
s , j = 1, . . . , J, (1.7)

where the frequencies N ( j) ∼ Poisson(λj) and the severities X( j)
s ∼ Fj(x), j = 1, . . . , J and

s = 1, 2, . . . are all independent. Then, the sum Z =
∑J

j=1 Z( j) is a compound Poisson random
variable with the frequency distribution Poisson(λ) and the severity distribution

F (x) =
J∑

j =1

λj

λ
Fj(x),

where λ = λ1 + · · · + λJ .

The proof is simple and can be found, for example, in Shevchenko (2011, proposition
7.1). Suppose that all severity distributions Fj(x) are heavy tailed, that is,

F j(x) = x−αj Cj(x),

where α1 < · · · < αJ and Cj(x) are the slowly varying functions as defined in Equation 1.6.
Then, F (x) =

∑J
j=1(λj/λ)Fj(x) is a heavy-tailed distribution too, with the tail index α1 for

x → ∞. Thus, using the result (Equation 1.3) for heavy-tailed distributions, we obtain that

lim
x→∞

Pr[Z > x]
1 − F1(x)

= λ1. (1.8)

This means that high quantiles of the total loss are due to the high losses of the risk with
the heaviest tail. For illustration of this phenomenon with the real data from ORX database,
see Cope et al. (2009). In their example, LogNormal (μ = 8, σ = 2.24) gave a good fit for
10 business lines with average 100 losses per year in each line using 10,000 observations. The
estimated capital across these 10 business lines was Euro 634 million with 95% confidence
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interval (uncertainty in the capital estimate due to finite data size) of width Euro 98 million.
Then, extra risk cell (corresponding to the “clients, products & business practices” event type
in the ‘corporate finance’ business line) was added with one loss per year on an average and
the LogNormal(μ = 9.67, σ = 3.83) severity estimated using 300 data points. The obtained
estimate for the capital over the 10 business units plus the additional one was Euro 5260million
with 95% confidence interval of the width Euro 19 billion. This shows that one high severity
risk cell contributes 88% to the capital estimate and 99.5% to the uncertainty range. In this
example, the high severity unit accounts for 0.1% of the bank’s losses.

Another important topic in modeling large losses is EVT that allows to extrapolate to
losses beyond those historically observed and estimate their probability. There are two types of
EVT: block maxima and threshold exceedances; both are considered in Chapter 2. EVT block
maxima are focused on modeling the largest loss per time period of interest. Modeling of all
large losses exceeding a large threshold is dealt by EVT threshold exceedances. The key result
of EVT is that the largest losses or losses exceeding a large threshold can be approximated by
some limiting distributions which are the same regardless of the underlying process.This allows
to extrapolate to losses beyond those historically observed. However, EVT is an asymptotic
theory. Whether the conditions validating the use of the asymptotic theory are satisfied is often
a difficult question to answer. The convergence of some parametric models to EVT regime
is very slow. In general, it should not preclude the use of other parametric distributions. In
Chapter 4, we consider many useful flexible parametric heavy-tailed distributions.

It is important to mention that empirical data analysis for OpRisk often indicates stability
of an infinite mean model for some risk cells (e.g. see Moscadelli (2004)), that is, the severity
distribution is a Pareto-type distribution (Equation 1.5) with 0 < α ≤ 1 that has infinite
mean. For a discussion about infinite mean models in OpRisk, see discussions in Nešlehová
et al. (2006). Often, practitioners question this type of model and apply different techniques
such as truncation from the above but then the high quantiles become highly dependent
on the cut-off level. Typically, the estimates of high quantiles for fat-tailed risks have a very
large uncertainty and the overall analysis is less conclusive than in the case of thin-tailed risks;
however, it is not the reason to avoid these models if the data analysis points to heavy-tailed
behaviour. Recent experience of large losses in OpRisk, when one large loss may lead to the
bankruptcy, certainly highlights the importance of the fat-tailed models.

1.3 Empirical Analysis Justifying Heavy-Tailed Loss
Models in OpRisk

There are several well-known published empirical studies of OpRisk data such as Moscadelli
(2004) analysing 2002 Loss Data Collection Exercise (LDCE) survey data across 89 banks
from 19 countries; Dutta & Perry (2006) analysing 2004 LDCE for US banks and Lu & Guo
(2013) analysing data in Chinese banks.

• Moscadelli (2004) analysed 2002 Loss Data Collection Exercise (LDCE) survey data with
more than 47,000 observations across 89 banks from 19 countries in Europe, North and
South Americas, Asia and Australasia. The data were mapped to the Basel II standard
eight business lines and seven event types. To model severity distribution, this study con-
sidered generalized Pareto distribution (EVT distribution for threshold exceedances in the
limit of large threshold) and many standard two-parameter distributions such as gamma,
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exponential, Gumbel and LogNormal. The analysis showed that EVT explains the tail
behaviour of OpRisk data well.

• Dutta & Perry’s (2006) study of US banking institutions considered the 2004 LDCE
survey data and narrowed down the number of suitable candidate datasets from all insti-
tutions surveyed to just seven institutions for which it was deemed sufficient numbers of
reported losses were acquired. The somewhat heuristic selection criterion that the authors
utilized was that a total of at least 1,000 reported total losses were required and, in addi-
tion, each institution was required to have consistent and coherent risk profiles relative to
each other, which would cover a range of business types and risk types as well as asset sizes
for the institutions.

• Feng et al.’s (2012) study on the Chinese banking sector utilized less reliable data sources
for loss data of Chinese commercial banks collected through the national media cov-
ering 1990–2010. In the process collecting data for banks which include the 4 major
state-owned commercial banks (SOCBs), 9 joint-stock commercial banks (JSCBs), 35 city
commercial banks (CCBs), 74 urban and rural credit cooperatives (URCCs) and 13 China
Postal Savings subsidiaries (CPS).The authors also note that the highest single OpRisk loss
amount is up to 7.4 billion yuan, whereas the lowest amount is 50,000 yuan. In addition,
losses measured in foreign currency were converted back via the real exchange rate when
the loss occurred to convert it to the equivalent amount in yuan. Details of the incidence
bank, incidence bank location, type of OpRisk loss, amount of loss, incident time and
time span and the sources of OpRisk events were noted.

In the following, we focus on the study of Dutta & Perry (2006), where the authors
explored a number of key statistical questions relating to the modeling of OpRisk data in
practical banking settings. As noted, a key concern for banks and financial institutions, when
designing an LDA model, is the choice of model to use for modeling the severity (dollar value)
of operational losses. In addition, a key concern for regulatory authorities is the question of
whether institutions using different severity modeling techniques can arrive at very different
(and inconsistent) estimates of their exposure.They found, not surprisingly, that using different
models for the same institution can result in materially different capital estimates. However, on
the more promising side for LDA modeling in OpRisk, they found that there are some models
that yield consistent and plausible results for different institutions even when their data differs
in some core characteristics related to the collection processes. This suggests that OpRisk data
displays some regularity across institutions which can be modeled. In this analysis, the authors
noted that they were careful to consider both the modeling of aggregate data at the enterprise
level, which would group losses from different business lines and risk types and modeling the
attributes of the individual business line and risk types under the recommended business lines
of Basel II/Basel III.

On the basis of data collected from seven institutions, with each institution selected as
it had at least 1,000 loss events in total, and the data was part of the 2004 LDCE, they per-
formed a detailed statistical study of attributes of the data and flexible distributional models
that could be considered for OpRisk models. On the basis of these seven data sources, over a
range of different business units and risk types, they found that fitting all of the various datasets
one would need to use a model that is flexible enough in its structure. Dutta & Perry (2006)
considered modeling via several different means: parametric distributions, EVT models and
non-parametric empirical models.

The study focused on models considered by financial institutions in Quantitative Impact
Study 4 (QIS-4) submissions, which included one-, two- and four-parameter models. The
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one- and two-parameter distributions for the severity models included exponential, gamma,
generalized Pareto, LogLogistic, truncated LogNormal and Weibull. The four-parameter dis-
tributions include the generalized Beta distribution of second kind (GB2) and the g-and-h
distribution.These models were also considered in Peters & Sisson (2006a) for modeling sever-
ity models in OpRisk under a Bayesian framework.

Dutta & Perry (2006) discussed the importance of fitting distributions that are flexible
but appropriate for the accurate modeling of OpRisk data; they focussed on the following five
simple attributes in deciding on a suitable statistical model for the severity distribution.

1. Good Fit. Statistically, how well does the model fit the data?
2. Realistic. If a model fits well in a statistical sense, does it generate a loss distribution with

a realistic capital estimate?
3. Well Specified. Are the characteristics of the fitted data similar to the loss data and logically

consistent?
4. Flexible. Howwell is the model able to reasonably accommodate a wide variety of empirical

loss data?
5. Simple. Is the model easy to apply in practice, and is it easy to generate random numbers

for the purposes of loss simulation?

Their criterion was to regard any technique that is rejected as a poor statistical fit for the
majority of institutions to be inferior for modeling OpRisk. The reason for this consideration
was related to their desire to investigate the ability to find aspects of uniformity or universality
in the OpRisk loss process that they studied. From the analysis undertaken, they concluded that
such an approach would suggest OpRisk can be modeled, and there is regularity in the loss data
across institutions.Whilst this approach combined elements of expert judgement and statistical
hypothesis testing, it was partially heuristic and not the most formal statistical approach to
address such problems. However, it does represent a plausible attempt given the limited data
sources and resources as well as competing constraints mentioned in the measurement criterion
they considered.

We note that an alternative purely statistical approach to such model selection processes
was proposed in OpRisk modeling in the work of Peters & Sisson (2006a), whose approach to
model selection was to consider a Bayesian model selection based on Bayesian methodology of
the Bayes factor and information criterion for penalized model selection such as the Bayesian
information criterion.

In either approach, it is generally acknowledged that accurate model selection of an appro-
priate severity model is paramount to appropriate modeling of the loss processes and, therefore,
to the accurate estimation of capital.

Returning to the findings from the seven sources of OpRisk data studied in Dutta & Perry
(2006), they found that the exponential, gamma andWeibull distributions are rejected as good
fits to the loss data for virtually all institutions at the enterprise, business line and event type
levels. This was decided based on formal one sample statistical goodness of fit tests for these
models.

When considering the g-and-h distribution, they did not perform the standard hypothesis
test for goodness of fit instead opting for a comparison of quantile–quantile (Q–Q) plots and
diagnostics based on the five criteria posed above. In all the situations, they found that the
g-and-h distribution fits as well as other distributions on the Q–Q plot. The next most pre-
ferred distributions were the GB2, LogLogistic, truncated LogNormal and generalized Pareto
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models, indicating the importance of considering flexible severity loss models. However, only
g-and-h distribution resulted in realistic and consistent capital estimates across all seven institu-
tions. In addition, they noted that the EVTmodels fitted under an EVT threshold exceedances
framework were also generally suitable fits for the tails, consistent with the discussions and find-
ings in Lu & Guo (2013) for OpRisk data in the Chinese banking sector and with the results
in Moscadelli (2004) analysing 2002 LDCE.

1.4 Motivating Parametric, Spliced and
Non-Parametric Severity Models

In this section, we discuss the different approaches that have been adopted in the literature to
model aspects of heavy-tailed loss processes. Primarily we focus on the modeling of the sever-
ity process in an OpRisk LDA framework; however, we note that many of these approaches
can also be adopted for modeling of the annual loss process should sufficient data be available.
Before discussing these approaches, it is important to understand some of the basic implica-
tions associated with subscribing to such modeling frameworks. We detail two of the most
fundamental of these in the following.

Basic Statistical Assumptions to be Considered in Practice

1. It is typical from the statistical perspective to apply the models to be discussed later on
the proviso that the underlying process under consideration is actually arising from a
single physical process responsible for the losses to be observed. However, in practice,
several authors have discussed the impracticality of such assumptions in real-world finan-
cial environments, which unlike their physical extreme process counterparts often studied
in atmospheric science, hydrology and meteorology, such financial processes are difficult
to attribute to a fundamental single ‘physical’ driving force. Discussion on such issues and
their consequences to the suitability of such modeling approaches is provided in Cope
et al. (2009) and Chavez-Demoulin et al. (2006).

2. The other typical statistical assumption that will have potential consequences to applica-
tion of such modeling paradigms to be discussed later relates to the assumptions made
on the temporal characteristics of the underlying loss process driving the heavy-tailed
behaviour. In most modeling frameworks discussed later, the parameters causing the loss
process will typically be considered unknown but static over time. However, it is likely
that in dynamically evolving commercial environments in which financial institutions,
disappear, appear and merge on a global scale, whilst regulation continually adapts to the
corporate and political landscape, such loss processes driving the heavy-tailed behaviour
may not have parameters which are static over time. For example, it is common that under
severe losses from an event such as rogue trading, one would typically see the financial insti-
tution involved take significant measures to modify the process with the aim to prevent
such losses in the same manner again in future, by changing the financial controls, poli-
cies and regulatory oversight. This has practical consequences for the ability to satisfy the
typical statistical assumptions one would like to adopt with such heavy-tailed models.

3. Typically, the application and development of theoretical properties of the models to
be developed, including the classical estimators developed for the parameters of such
models under either a frequentist or a Bayesian modeling paradigm, revolve around the
assumption that the losses observed are independent and identically distributed. Again,
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several authors have developed frameworksmotivating the necessity to capture dependence
features adequately in OpRisk and insurance modeling of heavy-tailed data, see Böcker &
Klüppelberg (2008), Chavez-Demoulin et al. (2006) and Peters et al. (2009a). In practice,
the models presented later can be adapted to incorporate dependence, once a fundamental
understanding of their properties and representations is understood for the independently
and identically distributed (i.i.d.) cases and this is an active field of research in OpRisk at
present.

4. Finally, there is also, typically for several high consequence loss processes, a potential upper
limit of the total loss that may be experienced by such a loss process. Again, this is practi-
cally important to consider before developing such models to be presented.

The actuarial literature has undertaken several approaches to attempt to address aspects
of modeling when such assumptions are violated. For example, should one believe that the
underlying risk process is a consequence of multiple driving exposures and processes, then it is
common to develop what are known as mixture loss processes. Where if one can identify key
loss processes that are combining to create the observed loss process in the OpRisk framework
under study, then fitting a mixture model in which there is one component per driving process
(potentially with different heavy-tailed features) is a possibility. Another approach that can be
adopted and we discuss in some detail throughout next section is the method known as splic-
ing. In such a framework, a flexible severity distribution is created, which aims to account for
two or more driving processes that give rise to the observed loss process. This is achieved under
a splicing framework under the consideration that the loss processes combining to create the
observed process actually may differ significantly in the amounts of losses they generate and
also in OpRisk perhaps in the frequency at which these losses are observed. Therefore, a splic-
ing approach adopts different models for particular intervals of the observed loss magnitudes.
Therefore, small losses may be modeled by one parametric model over a particular interval of
loss magnitudes and large severe losses captured by a second model fitted directly to the losses
observed in the adjacent loss magnitude partition of the loss domain. These will be discussed
in some detail in the following chapter.

In general, it is a serious challenge for the risk managers in practice to try to reconcile
such assumptions into a consistent, robust and defensible modeling framework. Therefore, we
proceed with an understanding that such assumptions may not all be satisfied jointly under any
given model when developing the frameworks to be discussed later. However, in several cases,
the models we will present will in many respects provide a conservative modeling framework
for OpRisk regulatory reporting and capital estimation should these assumptions be violated
as discussed earlier.

Statistical Modeling Approaches to Heavy-Tailed Loss Processes:

Thefive basic statistical approaches tomodeling the severity distribution for a single-loss process
that will be considered throughout this book are:

1. EVT methods for modeling explicitly the tail behaviour of the severity distribution in the
loss process: ‘block maxima’ and ‘points over threshold’ models.

2. Spliced parametric distributional models combining exponential family members with
EVT model tail representations: mixtures and composite distributions.

3. Spliced non-parametric kernel density estimators with EVT tail representations.
4. Flexible parametric models for the entire severity distribution considered from

sub-exponential family members: α-stable, tempered and generalized tempered α-stable,
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generalized hypergeometric (normal inverse Gaussian), GB2, generalized Champernowne
and quantile distributions (g-and-h).

5. Spliced parametric distributional models examples combining exponential family mem-
bers with sub-exponential family parametric models.

As is evident from the survey of different approaches to modeling heavy-tailed loss
processes, mentioned earlier, there is a large variety of models and techniques developed to
study and understand such important phenomena as heavy-tailed processes. In the context of
OpRisk, the consequences of failing to model adequately the possible heavy-tailed behaviour
of certain OpRisk loss processes could result in significant under estimation of the required
capital to guard against realizations of such losses in a commercial banking environment and
the subsequent failure or insolvency of the institution.

1.5 Creating Flexible Heavy-Tailed Models via Splicing

In this section, we briefly detail the basic approaches to create a spliced distribution and the
motivation for such models. These will then be significantly elaborated in the proceeding
models when they are incorporated with various modeling approaches to capture heavy-tailed
behaviour of a loss process.

It is common in practice for actuarial scientist and risk managers to consider the class
of flexible distributional models known as spliced distributions. In fact, there are standard
packages implemented in several widely utilized software platforms for statistical and risk
modeling that incorporate at least basic features of spliced models. The basic k-component
spliced distribution as presented in Klugman et al. (1998, section 5.2.6) is defined according to
Definition 1.1.

Definition 1.1 (Spliced Distribution) A random variable X ∈ R
+ representing the loss of a

particular risk process can be modeled by a k-component spliced distribution, defined according to the
density function partitioned over the loss magnitudes according to the intervals ∪k

i=1[xi−1, xi) =
R

+ and given by

fX(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

w1 f1(x), 0 ≤ x < x1,

w2 f2(x), x1 ≤ x < x2,

...

wk−1 fk−1(x), xk−2 ≤ x < xk−1,

wk fk(x), xk−1 ≤ x < ∞,

(1.9)

where the weight parameters wi ≥ 0, i = 1, . . . , k satisfy w1 + · · · + wk = 1, and
f1(x), . . . , fk(x) are proper density functions, that is,

∫
fi(x)dx = 1, i = 1, . . . , k.

To illustrate this, consider the typically applied model involving the choice of k = 2
in which the loss processes have loss magnitudes which are partitioned into two regions
[0, xmin) ∪ [xmin,∞). The interpretation being that two driving processes give rise to the risk
processes under study. Less frequent but more severe loss processes would typically experience
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losses exceeding xmin. Therefore, we may utilise a lighter tailed parametric model f1(x) in the
region [0, xmin) and an associated normalization for the truncation of the distribution over
this region. This would be followed by a heavier tailed perhaps parametric model f2(x) in the
region [xmin,∞), which would also be standardized by w2 to ensure that the total resulting
density on R

+ was appropriately normalized. Clearly, there are several approaches that can
be adopted to achieve this, for example, one may wish to ensure continuity or smoothness
of the joint distribution such as at the boundary points between adjacent partitions. This
will impose restrictions on the parameters controlling the distributional models; in other
settings, such concerns will not be of consequence. Example illustrations of such models
are provided in Examples 1.1–1.4, which illustrate a discontinuous model and continuous
models, respectively.

EXAMPLE 1.1 Parametric Body and Parametric Tail

Assume that losses X1,X2, . . . ,XK are independent and identically distributed. If
we want to model the losses above a selected threshold xmin using some parametric
distribution G2(x) with density g2(x) defined on x > 0 (e.g. LogNormal distribution)
and the losses below using another parametric distribution G1(x) with density g1(x)
defined on x > 0 (e.g. Gamma distribution), then corresponding density f(x) and
distribution F (x) for spliced model to fit are

f(x) = wf1(x) + (1 − w)f2(x),

F (x) =

⎧⎨
⎩

wF1(x), 0 < x < xmin,

w + (1 − w)F2(x), x ≥ xmin,

where w ∈ [0, 1] is the weight parameter and the proper densities f1(x) and f2(x)
(and their distribution functions F1(x) and F2(x)) correspond to the densities g1(x)
and g2(x) truncated above and below xmin, respectively:

f1(x) =
g1(x)

G1(xmin)
Ix<xmin

, F1(x) =
G1(x)

G1(xmin)
, x < xmin,

f2(x) =
g2(x)

1 − G2(xmin)
Ix≥xmin

, F2(x) =
G2(x) − G2(xmin)

1 − G2(xmin)
, x ≥ xmin.

EXAMPLE 1.2 Empirical Body and Parametric Tail

Assume that losses X1,X2, . . . ,XK are independent and identically distributed. If
we want to model the losses above a selected threshold xmin using some parametric
distribution G2(x) with density g2(x) defined on x > 0 (e.g. LogNormal distribution)
and the losses below using empirical distribution

G1(x) =
1
K

K∑
k =1

IXk≤x,
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then corresponding distribution F (x) for the spliced model is

F (x) =

{
G1(x), 0 < x < xmin,

G1(xmin) + (1 − G1(xmin))F2(x), x ≥ xmin,

where F2(x) is distribution G2(x) truncated below xmin, that is,

F2(x) =
G2(x) − G2(xmin)

1 − G2(xmin)
Ix≥xmin

.

Comparing to Example 1.1, note that we selected weight parameter w = G1(xmin) to
have a model consistent with the data below xmin.

If the threshold xmin is large enough, then (under the regularity conditions of EVT
threshold exceedances discussed in Chapter 2 and satisfied for most of the distribu-
tions used in practice), the truncated distribution F2(x) may be approximated by the
generalized Pareto distribution

Gξ,β(x − xmin) =

{
1 − (1 + ξ(x − xmin)/β)−1/ξ, ξ 	= 0,

1 − exp(−(x − xmin)/β), ξ = 0.

EXAMPLE 1.3 Gamma Body and Pareto Tail, Discontinuous Density

Consider a loss process with loss random variable X ∼ fX(x) modeled according to
a k = 2 component spliced distribution comprised of a gamma distribution over the
intervals [0, xmin) and a Pareto distribution over the interval [xmin,∞). The resulting
density, without any continuity restrictions at the partition boundary, is, therefore,
given by

fX(x) =

⎧⎪⎨
⎪⎩

w1Z
−1
1

β−α

Γ(α)
xα−1 exp

(
− x

β

)
, x ∈ [0, xmin), α, β > 0

w2
γxγ

min

xγ+1 , x ∈ [xmin,∞), γ > 0
(1.10)

with

Z1 = FX(x;α, β) =
∫ xmin

0

β−α

Γ(α)
xα−1 exp

(
−x

β

)
dx

= Γ−1(α)
∫ x/β

0
tα−1 exp(−t)dt︸ ︷︷ ︸

lower incomplete Gamma function

(1.11)

= Γ−1(α)γ
(

α,
x

β

)

and subject to the constraint that
∑2

i=1 wi = 1. Furthermore, we may wish to consider
cases typically in practice in which the mode of the first partitions distribution lies in
the interval (0, xmin) in which cases we further impose the restriction on the shape and
scale parameters such that (α − 1)β ∈ (0, xmin). In the illustration, we consider the
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resulting density for the settings xmin = 100, w1 = 0.5, α = 2, β = 10 and γ = 0.4
giving a density in Figure 1.1.
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Spliced distribution component 1 − gamma density
Spliced distribution component 2 − Pareto density

FIGURE 1.1 Spliced density plot for gamma and Pareto distribution single risk severity
model, no continuity constraints.

EXAMPLE 1.4 Gamma Body and Pareto Tail, Continuous Density

Consider a loss process with loss random variable X ∼ fX(x) modeled according to a
k = 2 component spliced distribution comprised again of a gamma distribution over
the intervals [0, xmin) and a Pareto distribution over the interval [xmin,∞). This time
the resulting density is developed subject to the constraint that a certain degree of
smoothness is present at the partition boundary connecting the two density functions
as captured by equality of the first moments. The resulting density is then developed
according to

fX(x) =

⎧⎪⎨
⎪⎩

w1Z
−1
1

β−α

Γ(α)
xα−1 exp

(
−x

β

)
, x ∈ [0, xmin), α, β > 0,

w2
γxγ

min

xγ+1 , x ∈ [xmin,∞), γ > 0,

(1.12)

with
Z1 = FX(x;α, β) =

∫ xmin

0

β−α

Γ(α)
xα−1 exp

(
−x

β

)
dx

= Γ−1(α)
∫ x/β

0
tα−1 exp(−t)dt︸ ︷︷ ︸

lower incomplete gamma function

= Γ−1(α)γ
(

α,
x

β

)
(1.13)
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and subject to the constraint that
∑2

i=1 wi = 1. Furthermore, we may wish to consider
cases typically in practice in which the mode of the first partitions distribution lies in
the interval (0, xmin) in which cases we further impose the restriction on the shape and
scale parameters such that (α − 1)β ∈ (0, xmin). In addition, the continuity constraint
implies the following restriction on the two densities at xmin,

f1(xmin) = f2(xmin)

df1(x)
dx

∣∣∣∣
x=xmin

=
df2(x)

dx

∣∣∣∣
x=xmin

. (1.14)

Where these two restrictions create the following system of constraints that the model
parameters must satisfy

f1(xmin) − f2(xmin) = w1Z
−1
1

β−α

Γ(α)
xα−1

min exp
(
−xmin

β

)
− w2

γxγ
min

xγ+1
min

= 0

df1(x)
dx

∣∣∣∣
x=xmin

−df2(x)
dx

∣∣∣∣
x=xmin

=
w1

Z1

β−α

Γ(α)

[
(α − 1)xα−2

min exp
(
−xmin

β

)

− 1
β

xα−1
min exp

(
−xmin

β

)]
+ w2γx−2

min(γ + 1) = 0. (1.15)

In the following example illustration, we consider the resulting density for the settings
xmin = 100, w1 = 0.5, α = 2 and β, γ each set to satisfy these constraints giving a
density given in Figure 1.2.
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FIGURE 1.2 Spliced density plot for Gamma and Pareto distribution single risk severity
model, with continuity constraints.




