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1.1 INTRODUCTION

When we look at nature, everything seems to be working very systematically. All
natural phenomena, ranging from molecular level to ecological level, and from indi-
vidual level to population level, are functioning effectively. The flawless operation of
various natural systems becomes possible due to some underlying governing rules.

From the beginning of human history, people have borrowed ideas and mimicked
different natural processes in solving their daily-life problems. With the progress of
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4 A BRIEF INTRODUCTION TO EVOLUTIONARY AND OTHER NATURE-INSPIRED ALGORITHMS

civilization, we started to analyze and understand the basic laws and fundamental
mechanisms behind natural phenomena and imitate those in designing artificial sys-
tems. With the beginning of information era, researchers started to investigate these
natural processes from the perspective of information processing. We started to mimic
how information is stored, processed, and transferred in natural systems in develop-
ing new techniques for solving complex problems. Today, a broad field of research is
involved in the design, development, and study of intelligent computational systems
that are inspired by the mechanisms and principles (often highly simplified versions
of those) observed in various natural processes.

Perhaps, the largest natural information processing system that we have studied
most widely and understand reasonably is evolution. Evolution refers to the scien-
tific theory that explains how biological hierarchy of DNA, cells, individuals, and
populations slowly change over time and give rise to the fantastic diversity that we
see around us. Through the evolutionary process, the changes taking place in an
organism’s genotypes give rise to optimized phenotypic behaviors. Therefore, evolu-
tion can be considered as a process capable of finding optimized, albeit not optimal,
solutions for problems.

Evolutionary computation (EC) is a branch of computer science, dedicated to the
study and development of search and optimization techniques which draw inspiration
from Darwinian theory of evolution and molecular genetics. The incremental growth
of the field resulted in algorithms with different flavors although all of them utilize
the in silico simulation of natural evolution. Classically, the most prominent types of
evolutionary computation are genetic algorithms (GA), genetic programming (GP),
Evolutionary Strategy (ES) and Evolutionary Programming (EP). Although, at the
beginning, each class of algorithms had their distinct characteristics, lately, because of
hybridization and concept borrowing, it is difficult to categorize some new algorithms
as a specific class of EC.

After natural evolution, the artificial intelligence community has been heavily
influenced by the social behavior emerged, through information processing and shar-
ing, among relatively simpler life forms. Social insects like ants, termites and bees
exhibit remarkable intelligence in improving their way of life, for example, retrieval
of food, reducing the threat of predator, division of labour, or nest building. They pos-
sess impressive problem-solving capabilities through collaboration and cooperation
among fellow members which themselves have very limited intelligence. Many com-
putational algorithms and problem-solving techniques, commonly known as swarm
intelligence, have been developed by simulating the coordination and teamwork
strategies in social insects.

Other than evolutionary computation and swarm intelligence, many other compu-
tational algorithms have been proposed which are inspired by different natural phe-
nomenon such as immune systems of vertebrate, biological nervous systems, chemical
systems, or the behavior of different animals such as bat, firefly, and cuckoo. There
exist a lot of variation and differences among these algorithms in terms of problem
representation and solution searching mechanism; however, the common connec-
tion among them is that all of these algorithms extract metaphor and inspiration
from nature. These classes of algorithms are commonly known as nature-inspired
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algorithms or bio-inspired algorithms. In this book, we will mostly focus on evolu-
tionary computation and a few other swarm and nature-inspired algorithms; therefore,
we will commonly refer to them as evolutionary computation.

Because of their robust and reliable search performance, these algorithms are
preferred for solving many complex problems where traditional computational
approaches are found to be inadequate. Gene regulatory networks (GRNs) are com-
plex, nonlinear systems with incomplete understanding of their underlying mecha-
nism at molecular level. Consequently, evolutionary and other nature-inspired algo-
rithms are preferred as the computational approach in different research in GRN
which is the topic of this book. Therefore, in this first chapter, we present a gentle
introduction of evolutionary and other nature-inspired computation so that the readers
can have a better understanding of the more advanced versions of these algorithms
presented in subsequent chapters. After the generalized introduction, we also discuss
relative advantages/disadvantages and application areas of these algorithms.

1.2 CLASSES OF EVOLUTIONARY COMPUTATION

1.2.1 Genetic Algorithms

Genetic algorithms, which are typical examples of evolutionary computation, have
the following characteristics:

� Work with a population of solutions in parallel
� Express candidate solutions to a problem as a string of characters
� Use mutation and crossover to generate next-generation solutions

Elements comprising GAs are data representation (genotypes or phenotypes),
selection, crossover, mutation, and alternation of generations. How to implement
these elements is a significant issue that determines the search performance. Each
element is explained below.

1.2.1.1 Data Representation Data structures in GAs are genotypes (GTYPE)
and phenotypes (PTYPE). GTYPE corresponds to genes of organisms, and indicates
strings expressing candidate solutions (bit strings with fixed length). Genetic opera-
tors, such as crossover and mutation which are discussed later, operate on GTYPE.
The implementer can determine how to convert candidate solutions to strings. For
instance, GTYPE may be a candidate solution converted into an array of concatenated
integers.

On the other hand, PTYPE corresponds to individual organisms, and indicates
candidate solutions to a problem based on interpretation of GTYPE. The fitness
value that indicates the quality of a candidate solution is calculated using PTYPE.

1.2.1.2 Selection In GAs, individuals that adapt better to the environment leave
many children and others are eliminated in line with Darwinian evolution theory.
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Individuals that adapt to the environment are candidate solutions that score highly
regarding the problem, and the fitness function determines the score. Various methods
of selecting parent individuals that generate children comprising the next generation
have been proposed. Among these, the roulette selection (each individual generates
children with a probability proportional to its fitness value) and the tournament
selection (a number of individuals are selected at random and the best individual is
chosen as the parent, and this procedure is repeated as necessary) are frequently used.

The elite strategy (best individual always remains in the next generation) is often
used in addition to these selection methods. This strategy does not reduce the fitness
value of the best individual in subsequent generations (as long as the environment to
be evaluated does not change). However, using the elite strategy too much in the initial
stages of a search may lead to premature convergence, which means convergence to
a local solution.

1.2.1.3 Crossover Crossover is an analogy of sexual reproduction, and is an
operation that mates two parent individuals to generate new children. There are a
number of crossover methods with different granularity when splitting individuals;
examples are one-point crossover and uniform crossover.

One-point crossover selects a crossover point at random and switches parts of
two parent individuals at this crossover point for generating children. Figure 1.1 is
an example of a one-point crossover. The point between bits 3 and 4 is chosen as
the crossover point, and two children are generated. Two-point crossover, where two
crossover points are chosen and two switches are made, and multiple-point crossover
with three or more crossover points are also possible.

Uniform crossover is the most refined crossover method where the parent value to
inherit is determined for each bit. Hitchhiking is a problematic phenomenon regarding

Figure 1.1 One-point crossover in a genetic algorithm.
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Figure 1.2 Mutation in a genetic algorithm.

crossover in GAs, in which unnecessary bits existing around a good partial solution
spread as parasites to the good partial solution regardless of whether the fitness value
is good or not. In general, uniform crossover is considered to suppress hitchhiking.

1.2.1.4 Mutation Mutation corresponds to errors in gene reproduction in nature.
In GAs, this operation changes one character in an individual after crossover (in a
bit sequence, switches between 0 and 1). Figure 1.2 is one example. Crossover can,
in principle, only search for combinations of existing solutions. Therefore, mutation
is expected to increase the diversity of the population and broaden the search space
by breaking part of a genotype. The reciprocal of the GTYPE length is often used as
the mutation rate, which means that on average there is one mutation per genotype.
Increasing the mutation rate diversifies the population, but the tradeoff is that there
is a higher probability of destroying good partial solutions.

1.2.1.5 Algorithm Flow Summarizing the above, the flow in a GA is as follows.

1. Randomly generate strings (GTYPE) of the initial population.

2. Convert GTYPE to PTYPE and calculate the fitness value for all individuals.

3. Select parents based on the selection method.

4. Generate individuals of the next generation (children) using genetic operators.

5. Check termination conditions; return to 2 if termination conditions are not met.

Generation alternation is a procedure where children generated by operations
such as selection, crossover, and mutation replace parent individuals to create the
population of the next generation. Typical termination conditions are discovery of an
individual with sufficient fitness value or iterating the algorithm for a predetermined
number of generations. Instead, one may continue calculations for as long as possible
while calculation resources exist, and finish when sufficient convergence is achieved
or further improvement of the fitness value is not expected.

1.2.1.6 Extension of GA GTYPE has been explained as a string of fixed length,
but improved GAs without this restriction have been proposed. Examples are real
coded GA (a vector of real numbers is used as the genotype, see Section 1.2.1.7)
and MessyGA where variable length strings are supported by pairing the position
in the gene and its value. Genetic programming supporting tree structures, which is
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explained in the next section, is one example of a variable length GA. Interactive
genetic calculation (the user provides the fitness value to simulate breeding, which
can be used when applying GAs to fields such as design and art where an objective
function cannot be explicitly described) and multi-objective optimization (multiple
objective functions are optimized simultaneously; see Section 1.2.6) have also been
proposed and are known to be very effective when designing desirable targets.

1.2.1.7 Real Coded GA Function optimization, where a function is optimized
in a continuous search space, is one of the important problems that frequently show
up in real-world problems. Research on evolutionary computations for function opti-
mization has a long history. Proposed methods are the bit-string GA where gene
expressions are binary code or gray code, real coded GA where vectors of real
numbers are used as gene expressions, evolution strategy (ES, see Section 1.2.3),
differential evolution (DE, see Section 1.2.4), and meta evolutionary programming
(meta-EP). This section describes crossover methods and generation alternation mod-
els for real coded GA that show good performance among evolutionary computation
methods for function optimization.

Function optimization is a problem to find a set of (x1,⋯ , xn) that minimizes or
maximizes a function f (x1,⋯ , xn) consisting of n continuous variables. Intuitively,
this is a problem to find the highest or lowest point of the target function. Minimization
problems are considered hereafter as these do not lose generality. A unimodal function
has only one local solution that is also the global optimum solution in the search
space, whereas a multimodal function has many local solutions. Generally speaking,
multimodal functions are more difficult to optimize. When considering a function
geometrically, there is “dependence between variables” if there are valleys that are not
parallel to the coordinate axis, which means that multiple variables must be changed
appropriately at the same time to improve the value of the function. Optimization is
usually more difficult if the function has dependence between variables.

Design of methods to generate children, such as crossover and mutation, is the key
to good performance when applying evolutionary computation methods to optimiza-
tion problems. Beyer et al. [3] and Kita et al. [18] proposed guidelines for methods
to generate children. Beyer et al.’s design guidelines consider dynamic environments
where the form of the function changes with time; however, dependencies between
variables are not taken into account. On the other hand, Kita et al.’s guidelines assume
a static environment and can reflect dependencies between variables. The crossover
design guidelines for real coded GAs by Kita et al. are described below.

Design guideline 1 (Inheritance of statistics): The distribution of children gen-
erated by crossover should inherit the average vector and the variance-covariance
matrix of the parent distribution. In particular, inheritance of covariance is impor-
tant in optimizing non-separable functions that have strong dependencies between
variables. This means that children generated by crossover should have a similar
distribution to that of parents.
Design guideline 2 (Generation of diverse solutions): The crossover procedure
should be able to generate a population as diverse as possible within the constraint
of “inheritance of statistics.”
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Figure 1.3 Schematic of BLX-𝛼.

Design guideline 3 (Guarantee of robustness): To make the search more robust, the
distribution of children should be slightly broader than one that satisfies the design
guidelines.

Proposed crossover methods for real coded GA include the blend crossover (BLX-
𝛼) by Eshelman et al. [8] and unimodal normal distribution crossover (UNDX) by
Ono et al. [21]. BLX-𝛼 generates children over a uniform distribution within a hyper-
rectangle where each edge determined by parents is parallel to the coordinate axes
(Figure 1.3). The algorithm of BLX-𝛼 is as follows.

1. Take two parent individuals x1 and x2.

2. Each component xc
i of a child individual xc is determined independently of

each other using a uniform random number within the interval [X1
i , X2

i ]. Here,

X1
i = min(x1

i , x2
i ) − 𝛼di

X2
i = max(x1

i , x2
i ) + 𝛼di

di = |x1
i − x2

i |
Where x1

i and x2
i are the i-th component of x1 and x2, respectively, and 𝛼 is a

parameter.

On the other hand, UNDX generates children on or near a line connecting two
parents using a normal distribution determined by these parents and a third parent.
The UNDX algorithm is as follows.

1. Select three parents x1, x2, and x3.

2. Find the center of parents x1 and x2, that is, xp = (x1 + x2)∕2.

3. Define the difference vector of parents x1 and x2 as d = x1 − x2.

4. The primary search line is defined as the line connecting parents x1 and x2, and
the distance between parent x3 and the primary search line is denoted as D.
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5. Child xc is generated using the formula

xc = xp + 𝜉d +
n−1∑
i=1

𝜂iDei,

𝜉 ∼ N(0, 𝜎2
𝜉
), 𝜂i ∼ N(0, 𝜎2

𝜂 ).

(1.1)

Here, n is the dimension of the search space, N(0, 𝜎2) is a normal distribution
with average 0 and variance 𝜎2, and ei’s are orthonormal basis vectors of the
subspace normal to the primary search line.

System parameters of each crossover method can be determined to satisfy the
above design guideline 1 (inheritance of statistics).

Crossover methods for real coded GAs can be combined with various selection
methods. Generation alternation models for a single objective optimization using
a single evaluation function include simple GA (SGA) by Goldberg [10], iterated
genetic search (IGS) by Ackley [10], steady state (SS) by Syswerda [31] and eli-
tist recombination (ER) by Thierens et al. [32]. Many engineering problems are
formulated as multi-objective optimization problems that explicitly handle various
evaluation functions in tradeoff relations (see Section 1.2.6). Combination with a
generation alternation model that retains a high level of diversity is desirable for
maximum crossover performance in real coded GAs for both single objective and
multi-objective optimization.

Finally, evolution strategy, which is closely related to real coded GAs in the sense
that real number vectors are used as gene expressions, is discussed. ES uses mutation
as the main search operator in contrast to real coded GAs that instead use crossover.
ES generates children based on a normal distribution around parent individuals,
which is similar to some real coded GAs such as UNDX, UNDX-m, and extended
normal distribution crossover (ENDX). However, ES codes evolution parameters,
such as the standard deviation of the normal distribution, into the individual along
with the decision variable to be optimized. The region where children are generated
is adaptively derived through adaptation of the parameters by mutation. Correlated
mutation proposed by Schwefel [27] uses a similar mechanism that considers depen-
dencies between variables and tilts the axis of the normal distribution relative to the
coordinate axes.

1.2.2 Genetic Programming

Genetic programming is an evolutionary computation method applicable to many
problems and uses tree structures as the genotype. Programming languages such as
LISP, relations between concepts, and many knowledge representations including
mathematical expressions can be described using tree structures. As a result, GP can
be used to apply evolutionary approaches to automatic code generation and problem
solving by artificial intelligence. The basic idea of GP was originally proposed by
John Koza et al. [19]. The main difference between GP and GAs is the expression of
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Figure 1.4 Crossover in genetic programming.

GTYPE and operator implementation; selection methods and generation alternation
is the same. Data representation and genetic operators unique to GP are described
below.

1.2.2.1 Data Representation GP generally expresses GTYPE, which are can-
didate solutions to a problem, as tree structures. Each node can be categorized into
terminal symbols without arguments (corresponding to constants and variables) and
nonterminal symbols with arguments (corresponding to functions). Design of GTYPE
is carried out by defining usable symbols. As in GAs, the fitness value is obtained by
converting each individual into PTYPE (for instance, the results after running code
or the evaluated value of a mathematical expression).

1.2.2.2 Crossover Crossover in GP exchanges partial trees between two indi-
viduals. The node that would be the crossover point is selected at random in each
individual, and partial trees beyond that node are exchanged to generate child indi-
viduals. Figure 1.4 is an example of a crossover. NT1 of parent 1 and nt3 of parent
2 are selected as crossover points, and children 1 and 2 are generated by exchang-
ing partial trees beyond these points. However, repeating such simple crossover can
lead to unnecessary expansion of tree size as the number of generations increases.
This phenomenon is called “bloat” or “fluff,” which means to become “structurally
complex.” The bloat is one factor that inhibits effective search using GP (see Section
1.2.2.4 for details).

1.2.2.3 Mutation Mutation in GP corresponds to replacement of one node by
a randomly generated partial tree. Figure 1.5 shows an example of mutation. The
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Figure 1.5 Mutation in genetic programming.

effect of mutation in GP is significantly influenced by the node undergoing mutation,
thus care is necessary when selecting the node. Examples of mutation are changing a
terminal symbol into another terminal symbol, replacing a nonterminal symbol with
another nonterminal symbol with the same arguments, changing one nonterminal
symbol into a terminal symbol (remove a partial tree), switching nodes in a GTYPE
(inversion), and inserting or deleting a terminal symbol.

1.2.2.4 Extension of GP As a method to expand GP, the automatically defined
function (ADF) that modularizes and reuses functions to streamline processing has
been proposed.

Normal GP can only search combinations of nonterminal and terminal symbols;
therefore, the size of GTYPE tends to increase in complex systems (the bloat phe-
nomenon as mentioned above). ADF retains two tree structures per individual, that
is, the function definition tree (ADF tree) and the evaluation tree (standard GTYPE).
Modularization is achieved by reusing subroutine functions defined in the ADF tree
within the evaluation tree. The ADF tree contains dedicated nodes that define func-
tions and arguments, and the evaluation tree takes in functions defined in the ADF tree
as nonterminal symbols. Crossover is carried out between ADF trees and between
evaluation trees.

Bloat is one of the most persistent issues hindering the efficiency of GP searches.
It would cause the following problems:

1. The large programs are difficult for people to understand.

2. The programs require much time and memory space to run.

3. Complicated programs tend to be inflexible and difficult to adapt to general
cases, so that they are not very robust.

The following approaches are currently being used to control bloat:

1. Set maxima for tree depth and size. Try to avoid creating tree structures exceed-
ing these upper limits by means of crossover, mutation, etc. This is the easiest
way to impose such controls, but the user needs to have a good understanding
of the problem at hand, and needs heuristics in order to choose the appropriate
settings for maxima.
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2. Incorporate program size in the fitness value calculations, that is, penalize large
programs for being large. This is called “parsimony.” More robust assessment
standards using MDL (minimum description length) have been proposed (see
Ref. [13] for details).

3. Suppress the tree length by adjustments to genetic operators. For instance,
Langdon proposed a homologous crossover or a size-fair crossover to control
the tree growth [20]. Other methods to suppress bloat include size-dependent
crossover (attempts wherever possible to crossover partial trees of similar size)
and depth-dependent crossover (bias crossover such that large partial trees are
more likely to be exchanged [15]).

1.2.3 Evolution Strategy

Some research groups in Europe (especially in Germany) have been working on
concepts similar to GAs for a long time, that is, “evolution strategy”. One leader in
ES is Ingo Rechenberg [24]. ES in its early days differed from GAs in the following
two ways:

1. Mutation is used as the main operator.

2. Real number expressions are handled.

Individuals in ES are expressed as a pair of real number vectors, (⃖⃗x, ⃖⃗𝜎). Here, ⃖⃗x is a
position vector in the search space and ⃖⃗𝜎 is a standard deviation vector. Mutation can
be expressed as

⃖⃗xt+1 = ⃖⃗xt + N( ⃖⃗0, ⃖⃗𝜎), (1.2)

where N( ⃖⃗0, ⃖⃗𝜎)is a random number from a Gaussian distribution of average ⃖⃗0 and
standard deviation ⃖⃗𝜎.

ES in its early days carried out search using a population consisting of one
individual. A child (⃖⃗xt+1 in the above equation) generated by mutation can become a
member of the new population (become the parent of the next generation) only when
its fitness value is better than that of the parent (⃖⃗xt).

Quantitative research on ES is more feasible than on GAs because the former is
not affected by crossover, and the effect of the mutation rate has been mathemati-
cally analyzed. For example, theorems regarding convergence have been proven. In
addition, the “ 1

5
rule,” that is, “let the probability that a mutation succeeds be 1

5
; if

this value is larger (smaller) than 1
5
, increase (reduce) ⃖⃗𝜎.” In practice, the probability

that a mutation succeeds in the last k generations, 𝜑(k), is observed and mutation is
controlled such that

⃖⃗𝜎
t+1 =

⎧⎪⎨⎪⎩
cd × ⃖⃗𝜎

t, if 𝜑(k) < 1∕5,
ci × ⃖⃗𝜎

t, if 𝜑(k) > 1∕5,
⃖⃗𝜎

t, if 𝜑(k) = 1∕5.

(1.3)
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In particular, Schwefel adopted cd = 0.82 and ci = 1∕0.82. The intuitive meaning of
this rule is: “if successful, continue searching with bigger steps; otherwise, reduce
the step size”.

ES was later extended to be a search method employing a population of multiple
individuals. In addition to the mutation operator mentioned above, the crossover
operator and the average operator (an operator that takes the average of two parent
vectors) were introduced. Unlike GAs, ES uses the following two selection methods.

1. (𝜇 + 𝜆) − ES
A parent population with 𝜇 individuals generates 𝜆 children. 𝜇 individuals
are selected from a total of (𝜇 + 𝜆) individuals to be the parents in the next
generation.

2. (𝜇, 𝜆) − ES
A parent population with 𝜇 individuals generates 𝜆 children (𝜇 < 𝜆). 𝜇 indi-
viduals are selected from 𝜆 individuals to be the parents in the next generation.

In general, (𝜇, 𝜆) − ES is considered to perform better in environments that change
with time and in problems with noise.

ES has been applied to many optimization problems, and recently is being applied
to problems other than real number problems.

1.2.4 Differential Evolution

Differential evolution [30] is one category of evolutionary computation that derives an
approximate solution to optimization problems. DE is known to be effective in provid-
ing algorithms for various problems such as nonlinear problems, non-differentiable
problems, and multimodal problems.

Individuals in DE are real number vectors (points in search space). The flow of
this method is outlined below (see Figures 1.6 and 1.7).

Step 1: Input random numbers in each individual (vector) to generate the initial
population. Here, the number of elements in the population is N and each
individual is denoted as x⃗i (i = 0, 1,⋯ , N − 1).

Step 2: Three individuals are randomly chosen from the solution set and are
labeled as x⃗r1, x⃗r2, x⃗r3 (r1, r2, r3 ∈ {0, 1,⋯ , N − 1} and r1 ≠ r2 ≠ r3). The
individual after mutation, v⃗i, is generated as

v⃗i = x⃗r1 + F × (x⃗r2 − x⃗r3) (F is a constant). (1.4)

This is repeated N times to generate N individuals v⃗0,⋯ , ⃗vN−1.
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Figure 1.6 Generation alternation in differential evolution (Reprinted with permission from Ref.
[23]).

Figure 1.7 Crossover and mutation in differential evolution (Reprinted with permission from Ref.
[30]).
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Step 3: Generate a child population u⃗i from the parent population x⃗i. The elements
in u⃗i are selected from elements in x⃗i and v⃗i based on the crossover rate CR.

ui,j =

{
xi,j if rand ≥ CR,

vi,j if rand < CR.
(1.5)

Here, ui,j, xi,j, vi,j are the j-th element of the i-th individual (vector) u⃗i, x⃗i, v⃗i, and
rand is a random number within the interval [0,1]. As a result, the elements in
u⃗i contain the elements of both x⃗i and v⃗i.

Step 4: Evaluate the child population u⃗i generated in Step3 and the parent popu-
lation x⃗i, and decide which solution to adopt.

x⃗i =
{

x⃗i if fit(x⃗i) > fit(u⃗i),

u⃗i if fit(x⃗i) < fit(u⃗i).
(1.6)

Here, fit() is the evaluation function and fit(x) is the evaluated value of x.

Step 5: Repeat Step2∼4 for a fixed number of generations, and output the most
valuable individual from the final set of solutions as the optimum solution.

Conventional GAs crossover vectors of two individuals and children obtained by
crossover are included in the next generation regardless of their fitness values. Muta-
tion occurs at a fixed parameter value (mutation rate); hence, the amount of mutation
does not differ between early generations and later generations near convergence.

In contrast, DE crossovers one individual with (one individual + scaled difference
vector of two individuals). Crossover involving a difference vector instead of just
position vectors of individuals allows a higher possibility of obtaining children in
regions with high fitness value. Faster convergence of the population can be attained
because a generated child individual is retained only if it is better than its parent
individual. Moreover, mutation in DE is based on the difference vector of individuals;
thus the amount of mutation changes depending on the population. As a result, the
amount of mutation is large in early generations and becomes smaller in generations
near convergence. In other words, evolution progresses effectively and setting of
mutation parameters is unnecessary for mutation because the amount of mutation is
automatically adjusted.

1.2.5 Swarm Intelligence

Many scientists have tried, using various methods, to reproduce collective behavior
in groups of ants, birds, and fish on a computer. Reynolds and Heppner, who have
simulated the motion of birds, are well known among such scientists. Reynolds
was strongly attracted by the beauty of flocks of birds [25] while Heppner was
interested in rules hidden in flocks of birds that instantly gather and scatter. These
two researchers had the insight to focus on unpredictable motion of birds. The
motion is microscopically very simple, resembling that of cellular automata, but
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macroscopically is very complex and chaotic. The effect of interactions between
individuals has a huge influence in their models as they emphasized the rule that a
bird wants to keep an optimum distance between itself and other individuals when
considering the overall motion of birds in a flock.

Reynolds’ CG animation consists of agents called boids. Each boid determines its
motion by combining three vectors, which are (1) the force to move away from the
closest neighbor or obstacle, (2) the force to move toward the center of the flock, and
(3) the force to move toward the target position. Various patterns of motion can be
obtained by adjusting the coefficients used in combining vectors. Complex motion as
a whole group emerges when each individual acts based on simple action principles.
Technology related to boids is currently widely used for special effects in movies and
for animation.

1.2.5.1 Ant Colony Optimization Simple models on the behavior of ants have
provided new ideas regarding routing, agents, and distributed control. Applications
of ant behavior models have been the focus of many papers and are being established
as a research field.

Marching of ants is a cooperative behavior that can be explained by the pheromone
trail model. Many cooperative behaviors as a group, such as ant marches, are observed
in colonies of ants, and have strongly attracted the interest of entomologists and
behavioral scientists. During collecting activities, many types of ants leave a trail of
chemical substance when moving from food to their nest, and ants searching for food
move along trails that other ants made, if any exists. The chemical substance, which
ants generate in their bodies, is called a pheromone.

Ant colony optimization (ACO) is a method that uses the pheromone trail model,
for instance, to solve the traveling salesman problem (TSP) [7]. In TSP, there are a
number of cities located in different places on a map, and the aim is to look at all of the
paths that go through every city exactly once and return to the starting point (called
a Hamiltonian cycle or path) and determine the shortest route. There is no efficient
algorithm that will solve the traveling salesman problem; in all cases, an exhaustive
investigation is required in order to find the optimum solution. Consequently, as the
number of cities grows, we see a dramatic leap in the complexity of the problem.
This is called a “combinatorial explosion,” and is an important issue (an NP-complete
problem) in the field of computer science.

ACO optimizes the travel path through the following algorithm:

1. Place ants randomly in each city.

2. Ants move to the next city. The destination is probabilistically determined based
on pheromones and given information. Cities already visited are excluded.

3. This procedure is repeated until all cities are visited.

4. Ants completing one loop drop pheromones according to the path length.

5. Return to 1 if a satisfactory solution has not been found.

The length of the path between each city (dij) and the amount of pheromones on
the path are stored in a table, and ants have knowledge about its surroundings. Ants
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then probabilistically determine the next city to visit. The probability that an ant k at
a city i chooses a city j as the next destination, pk

ij(t), is obtained using the reciprocal
of the distance 1∕dij and the amount of pheromone 𝜏ij(t) as follows:

pk
ij(t) =

[𝜏ij(t)] ⋅ [dij]
𝛼∑

h∈Jk
i
[𝜏ij(t)] ⋅ [dij]𝛼

. (1.7)

Here, Jk
i is the set of all cities that ant k can move to from city i. The setting that

ants are more likely to select paths with more pheromone reflects positive feedback
from past searches and incorporates the heuristic that ants are more likely to select
shorter paths. As shown above, information unique to each problem can be adequately
reflected in ACO.

The pheromone table is updated using the following two equations. Here, Q(k) is
the reciprocal of the length of the loop that ant k found.

Δ𝜏ij(t) =
∑

k∈Aij

Q(k) (1.8)

𝜏ij(t + 1) = (1 − 𝜌)�̇�ij(t) + Δ𝜏ij(t). (1.9)

The amount of pheromone to be added to each path is inversely proportional to
the length of the loop that an ant found. The score of all ants that passed through a
path is reflected in the path. Here, Aij is the set of all ants that passed through the
path from city i to city j. Negative feedback to avoid local minima is provided as
the pheromone evaporation coefficient. In other words, the pheromone in each path
evaporated with a fixed probability (𝜌), thereby discarding past information.

The ACO has been applied to, and demonstrated to be effective in combination
optimization problems such as the TSP and network routing problems.

1.2.5.2 Particle Swarm Optimization Particle swarm optimization (PSO) was
introduced by Eberhart and Kennedy in 1995 [17]. The PSO algorithm was inspired
by social behavior, and is closely related to code that simulates the collective behavior
of birds and fish (for example, of boids by Reynolds). In contrast to GAs that perform
genetic operations, PSO decides the next move based on the motion of itself and its
neighbors.

The basic PSO proposed by Kennedy et al. consists of many individuals (particles)
moving around in a multi-dimensional space and can be applied to real number
problems [17]. Each individual remembers its position vector (xi), velocity vector
(vi), and the position where that individual had its maximum fitness value (pi). In
addition, the position where the group as a whole had its maximum fitness value (pg)
is shared in each individual.

The velocity is updated in each individual based on the best position as a whole
and for itself that was found over the generations. The velocity is obtained by

vi = 𝜒(𝜔vi + 𝜙1 ⋅ (pi − xi) + 𝜙2 ⋅ (pg − xi)).
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The coefficients used here are the convergence coefficient 𝜒 (random number
between 0.9 and 1.0) and the decay coefficient 𝜔. In addition, 𝜙1 and 𝜙2 are random
numbers equal to or smaller than 2 that are unique to each individual and dimension.
The maximum velocity Vmax is used when the velocity exceeds a given limit. In this
way, a search can be performed while keeping individuals in the search space.

The position of each individual is updated in each generation according to the
equation

xi = xi + vi.

Unlike GAs, PSO does not require complex operations such as mutation and
crossover, and the structure is very simple. There is theoretical research to derive
appropriate values for PSO parameters through mathematical analysis of stability
and convergence. PSO is known to give performance comparable to GAs in function
optimization properties. Active research is under way for improving the performance
of PSO and PSO is being applied to many real-world problems such as power grids
and disease diagnosis.

1.2.5.3 Bee Algorithms Bees, together with ants, are well known as social
insects. Honey bees can be categorized into three types:

� Employed bees
� Onlooker bees
� Scout bees

Employed bees fly around feeding grounds that they memorize and convey informa-
tion about food to onlooker bees. Onlooker bees use information from employed bees
to selectively find the best food in the feeding ground. When information on a feeding
ground becomes too old, employed bees throw away the information, become scout
bees, and move to find a new feeding ground. The objective of a beehive is to find
the most efficient feeding ground. It is considered that in general about half of the
bees in the hive are employed bees, 10–15% are scout bees, and the rest are onlooker
bees.

Employed bees waggle-dance (figure-of-eight dance) to convey information to
onlooker bees. An employed bee that finds flower nectar or pollen and returns to the
nest does a figure-of-eight dance to indicate the direction of the feeding ground to
other bees. The direction opposite to gravity corresponds to the direction of the sun
and the direction of a straight-line waggle corresponds to the direction of the feeding
ground. In other words, bees indicate the angle between the direction of the sun and
the direction of the feeding ground to other bees by expressing the angle between
the opposite of gravity and the direction of the straight-line waggle. The speed of the
waggle represents the distance to the food, and a faster waggle means that the food is
nearer. Communication using a similar dance is used to convey the position of a new
nest in addition to pollen or the position of water.
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Karaboga proposed the artificial bee colony (ABC) optimization algorithm based
on the above behavior [16]. The ABC algorithm is a collective search method that
mimics food collection by bees. One benefit of the ABC algorithm is the small number
of control parameters compared to GAs and the PSO.

The artificial group of bees in the ABC algorithm is separated into employed
bees, onlooker bees, and scout bees. N solutions to a problem with d dimensions are
generated as feeding grounds. Each employed bee is assigned to a feeding ground x⃗i
and finds a new feeding ground v⃗i using the operator

vij = xij + rand(−1, 1) × (xij − xkj). (1.10)

Here, k ∈ {1, 2,⋯ , N}, k ≠ i, and j ∈ {1, 2,⋯ , d} is a randomly chosen index. vij

is the j-th element of vector v⃗i. In other words, v⃗i = (vi1, vi2, vi3,⋯ , vid)T and x⃗i =
(xi1, xi2, xi3,⋯ , xid)T. If the new position is outside the domain, the position is moved
to the allowed range. The obtained v⃗i is compared to x⃗i, and the better feeding ground
is adopted.

In contrast to employed bees, onlooker bees search the feeding ground further using
equation (1.10) to select better food. The choosing scheme is based on feedback from
employed bees. If a feeding ground cannot be improved for a number of iterations,
the feeding ground is abandoned and the bee that was assigned to that feeding ground
becomes a scout and reassociates itself with a new feeding ground that is chosen via
some principles (in classical ABC it is random initialization).

ABC algorithm is one of the new swarm algorithms that has exhibited very good
search performances comparable to many other established algorithms in EC such as
DE or PSO.

1.2.5.4 Learning Classifier Systems The classifier system (CS) is a typical
example where a GA is applied to machine learning, and has been studied by many
researchers such as Holland. Machine learning has two objectives, that is, learning
of knowledge in complex systems and generation of appropriate output. A CS uses a
GA to enhance and generate rule-based knowledge in achieving these objectives.

Machine learning using a GA is called genetic-based machine learning (GBML).
The cognitive system level-1 (CS1) of Holland and Reitman is a famous early example
of GBML [11]. Holland and coworkers used this system to learn how to search in
maze problems. Smith later developed learning system one (LS1) [28]. LS1 was
applied to maze searches and poker game strategy learning, and its effectiveness has
been demonstrated.

GBML with its origin in these two systems led to two approaches, that is, the
Michigan and Pittsburgh approaches. The difference between these approaches is
whether the number of rule sets is just one or more than one. The Michigan approach
is based on CS1, where one rule is considered as one individual, and is the main type
of CSs.

Machine learning differs from optimization which searches for a solution close to
the optimum solution. Instead, machine learning generates new structures and obtains
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a coordinated set of rules while incorporating given information. Therefore, GBML
must consider the following.

1. New rules are continuously generated, and good rules remain while bad rules
are discarded.

2. Good rules generated during the learning process are not destroyed in later
learning.

3. The number of rules is not limited, and retaining of all necessary rules is
possible.

4. Similar rules are sorted out to generate a rule set with little redundancy.

CSs use the following symbol in learning to achieve a creative rule generation
mechanism:

If <<condition>> then <<action>>

This is the same as the production rule often used in expert systems. The rules in
CSs consist of a condition that can be expressed with a string of 0, 1, and # (don’t
care) and an action that can be expressed with a string of 0 and 1. Here, # is a string
that matches both 0 and 1. Providing an external message from the environment to a
system that learned data in this format results in simultaneous booting of many rules
in the system that gives a corresponding output. In other words, the action part of
rules where the input message matches the condition part is executed. The following
paragraphs describe the key characteristics of Michigan approach and Pittsburgh
approach.

(1) Michigan approach

Each rule, called a classifier (CF), corresponds to one individual in the Michigan
approach. The system needs a strengthening functionality that provides a “strength”
parameter to each CF in addition to functionality to execute learned CFs. Here,
strength is a measure of the reliability of CFs in CSs. Moreover, a functionality to
generate new classifiers is necessary, and a GA is used in this generation process.
The following is an explanation of the functionalities.

� Execution functionality: Searches for a CF that corresponds to input data (state)
from the environment and outputs an action resulting from this CF to the envi-
ronment. The CF that is selected is determined from the strength obtained using
past usefulness.

� Strengthening functionality: Observes changes in the environment caused by
CF execution and updates the strength of the CF. If the result is good, the CF
is determined to be effective and the strength of the executed CF increases. In
contrast, the strength decreases if the result is bad. The system is strengthened to
be centered on good CFs by repeating this process. Proposed learning methods to
update the strength include the bucket brigade algorithm and the profit- sharing
plan.
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� Generation functionality: The types of CFs in a system are finite and the influence
on the environment is limited. Generation of new CFs is necessary to increase
the kinds of action to the environment. However, random generation of CFs
would require too much time before a useful CF was generated. Therefore,
genetic operations are carried out using a GA where CF is the individual and the
strength is the fitness function. New individuals generated by the GA replace
individuals in the previous population with low strength or high similarity. CFs
are generated after every few steps to reflect the strengthening of CFs based on
a combination of many actions to the new CFs.

(2) Pittsburgh approach

The Pittsburgh approach considers one individual as a set of rules that comprise one
function, and can consider genetic operations for each rule, which are each regarded
as one unit. Consequently, GAs can be implemented more directly and therefore more
easily. The following are the characteristics of the Pittsburgh approach.

� Rules are considered as genes; thus crossover means recombination of rules and
mutation means conversion into a different rule. As a result, the rule strength-
ening functionality is unnecessary, and the implemented GA will be natural and
easy to handle.

� The gene length (number of rules that make up one individual) is variable, not
fixed, because many rules comprise one individual. Therefore, some tricks may
be necessary for the gene structure in the GA, such as making the apparent
length the same for all genes.

� A large number of rules are necessary to avoid premature convergence. As a
result, the number of individuals and the number of rules that each individual
contains are very large. Furthermore, evaluation of each individual needs to be
carried out for the rule set rather than a simple sum of evaluated values of each
rule comprising the individual. Consequently, learning takes time.

Reports of methods that improve CF systems include the zeroth level CS system
(ZCS) by Wilson [33], the CS system based on accuracy (XCS) by Wilson [34], and
the anticipatory CS system by Stolzmann [29].

1.2.5.5 Artificial Immune System The objective of using algorithms mimick-
ing biological systems, such as neural networks and GAs, in engineering applications
is mainly to leverage the adaptability and flexibility of natural systems. The same is
true for immune system algorithms that are mainly used to achieve diversity. Details
of immune systems in organisms are given in Ref. [22]. This section mainly discusses
antibody reactions and outlines the mechanisms that are important for engineering
applications.

Foreign bodies such as germs and viruses entering from outside the body have
antigens, which are “non-self” markers that do not exist in the body. Immune reactions
are caused by detection of antigens. T-cells, which are a type of lymphocyte, identify
cells that have been changed by antigens and give commands to B-cells by secreting
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interleukin (IL). B-cells are another type of lymphocyte and secrete antibodies that
react only to a specific antigen.

The relation between antigens, lymphocytes, and antibodies is called “relation
between keys and keyholes.” An antigen invading from outside the body selects the
lymphocyte that is the closest match. This lymphocyte becomes active and triggers
an immune reaction. This mechanism is called clonal selection, and is used, in
combination with a GA, to determine the number of individuals in the next generation
that is proportional to its fitness value.

Reactions to antigens encountered in the past are memorized, and swift reaction
and repression is possible in subsequent invasions. This is known as immunological
memory and is used to memorize good solutions in case-based reasoning (CBR)
and evolutionary computation methods. Considering diversity at this time allows
searching for diverse solutions and suppression of the number of cases.

There is a limit to the number of antibodies and lymphocytes that can exist in the
body while the number of possible antigens is infinite. Moreover, attacking of cells
comprising the body must be avoided. The immune system enables both identification
of self and non-self as well as retention of diversity.

Somatic mutation in antibody genes is a mechanism to improve the fitness value
to an antigen by causing abnormally frequent mutations in a portion of an antibody
gene. Affinity maturation is a similar mechanism that is incorporated into evolution-
ary computations in the form of a step to improve the fitness value (identification
capability) of a given individual.

Negative selection is the mechanism in which T-cells generated in bone marrow
are sent to the thymus, undergo reaction tests against self-derived cells, and those
that did not react are selected. Negative selection is applied to detection of computer
viruses and anomalies. Here, normal data (packets and logs) are kept as self-data
and a population of detectors is obtained by negative selection that does not react to
self-data. This procedure can be used to check and detect viruses.

The immune network is a network that assumes identification between antibodies.
This explains why antibodies can stay for a long time in a body as immunological
memory long after the corresponding antigen is removed from the body and why
a diverse set of antibodies can always be retained. This mechanism has one of the
largest number of engineering applications, and can be applied to systems that consist
of many elements, including multi-agent systems. Typical examples are coordinated
control between agents, detection of abnormal processes, and information visualiza-
tion through active propagations between keywords.

Artificial immune systems (AIS) are a class of computationally intelligent systems
inspired by the principles and processes of the above-mentioned vertebrate immune
system. AIS has been successfully applied in a number of areas (see Refs. [4, 5] for
details).

1.2.6 Multi-Objective EA’s

The design of engineering systems must address many needs at the same time, such as
enhancement of functionalities and reliability, improvement of user-friendliness, and
reduction of manufacturing costs. Multi-objective optimization problems (MOPs)
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are characterized by the requirement of optimization of multiple objectives simulta-
neously. In other words, multiple objective functions f = (f1,⋯ , fm) are considered
which will be minimized simultaneously as

(MOP) min
x

f (x) = (f1(x),⋯ , fm(x)) x ∈  .

Here, x is the decision variable, which is a vector, and  is the feasible region.
Objective functions typically have tradeoff relations and a decision variable x that
minimizes all objective functions does not necessarily exist.

The concept of “dominance” is introduced in multi-objective optimization. For
two solutions x1 and x2 ∈  , x1 dominates x2 if fk(x1) ≤ fk(x2) for all k = 1,⋯ , m
and fk(x1) < fk(x2) for at least one k = 1,⋯ , m.

A “Pareto optimal solution” or “non-inferior solution” x is a reasonable solution
to a MOP that is not dominant over any other solution. In general, multiple Pareto
optimal solutions exist and the entire set of such solutions is called the Pareto optimal
set. Therefore, the objective of solving a MOP is to obtain the Pareto optimal set or
to appropriately sample solutions in the Pareto optimal set.

The multi-objective GA (MOGA) is a well-researched method to search a number
of Pareto optimal solutions to a MOP at the same time by leveraging a GA that
searches many points using a solution set. Although standard GAs use a single
objective function as the standard for selection and elimination to solve optimization
problems, MOGAs need to address a number of requirements in searching the Pareto
optimum set:

1. Retain solutions closer to the Pareto optimal set while eliminating distant
solutions.

2. The solution set should not be concentrated in a part of the Pareto optimal set
but instead be spread out as much as possible.

3. New solutions should be efficiently obtained using crossover and selection
from the group of solutions in the Pareto optimal set.

The following measures regarding the above issues are taken when designing the
algorithm:

1. To search Pareto optimal solutions, selection and elimination are carried out
using “dominance” relations within solutions in the solution population. For
instance, Goldberg [10] and Fonseca [9] proposed the Pareto ranking method
where solutions in the solution population are ranked based on dominance.
The vector evaluated GA (VEGA) by Schaffer [26] and the Pareto tournament
strategy by Horn et al. [12] are also demonstrated to be effective.

2. Methods to consider the local density of individuals during selection and elim-
ination are included to disperse solutions in the Pareto optimal set. In other
words, the number of other solutions near an individual could be evaluated as
the solution density and be reflected in selection and elimination.
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3. Generally speaking, good solutions from a GA cannot be obtained from
a crossover of very different solutions. This becomes very problematic in
MOGAs because the solution population is scattered over the Pareto optimal
set. Consequently, one might make efforts such as placing crossover mates
close to each other. However, there has been little general discussion regard-
ing this point because the design of the crossover operation in a GA depends
heavily on the problem.

MOGAs addressing these problems are rapidly being sorted out. Ref. [6] provides
examples of how such algorithms are actually designed.

1.3 ADVANTAGES/DISADVANTAGES OF EVOLUTIONARY
COMPUTATION

Evolutionary computations offer some unique advantages over the traditional
algorithms for searching and optimization. The classical optimization algorithms
such as Quasi-Newtons method, conjugate gradient methods, etc. are often iterative
algorithms that can be effective in solving linear, quadratic, convex, or unimodal
problems. Often, many of these algorithms have additional requirements such as
continuity and/or differentiability of the search space for their working principle.
Unfortunately, most of the problems in real life are very complex, nonlinear,
non-convex, non-separable, and multi-modal. Often, we do not have a very good
understanding of the search spaces or rather knowledge of their continuity or differ-
entiability. Therefore, traditional approaches are often not suitable for searching the
optimal solution of these problems.

Generally, evolutionary computation can work in poorly understood search prob-
lems with limited or almost no specific knowledge about the search space. Usually,
by virtue of their parallel search mechanism, these algorithms show superior per-
formances for multi-modal, nonlinear, non-separable, and non-convex search spaces
compared to classical algorithms. One big advantage of these algorithms is their
scalability—these algorithms can be readily applied to really large dimensional prob-
lems. Another advantage of EC over traditional search algorithms is they are capable
of delivering multiple competing solutions which is often desirable in real- world
problem solving but not possible in case of most of the traditional algorithms that
generally utilize single-point search strategy. EC can also exhibit very good perfor-
mance in optimizing noisy search spaces and can search with imperfect models as
well, which makes them valuable in real-life scenarios because real world is noisy and
we often have to work with approximate models for many complex systems such as
biological systems. Another advantage of evolutionary algorithms is that they can gen-
erate multiple tradeoff solutions by optimizing multiple competitive criteria, which is
very useful for practical applications. The parallel nature of EC is an inherent advan-
tage for these algorithms in terms of designing computationally efficient methods.

Although evolutionary algorithms have many benefits when it comes to solving
critical problems, they are not free of demerits. The main criticism against EC is that
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it cannot guarantee finding the optimum solution in a finite amount of time. EC can
only guarantee quasi-optimal solution which is particularly useful with very large and
complex problems where the optimal solution is unknown. The second shortcoming
of these algorithms is that many of these algorithms need to tune various search
parameters without proper guidance on how to set them for unknown problems. Today,
many adaptive strategies have been incorporated in different algorithms where these
parameters can be automatically adjusted online based on the algorithms’ search
performance. EC is often blamed for utilizing too much exploration; hence it is
computationally expensive due to its population-based search approach. However,
parallel implementation and other sophisticated approaches like surrogate assistance
are used to overcome this limitation. Nevertheless, according to no-free-lunch (NFL)
theorem [35], there does not exist any algorithm that has superior performance
compared to some other algorithm in solving all optimization problems in general.
Therefore, EC cannot be claimed to be superior/inferior to some other algorithm, but
they certainly have advantages and limitation over some specific classes of problems.

1.4 APPLICATION AREAS OF EC

Because of their robust and reliable performance in solving complex and odd prob-
lems, EC found numerous applications in diverse domains: engineering, science,
biology, architecture, arts, music, design, transportation, etc. Almost in every field
where we need to solve difficult optimization problems, EC has been successfully
used. EC draws researchers’ attention through its success in solving different planning
problems in the form of routing and scheduling tasks. Different kinds of optimization
problems arise in engineering design that ranges from the filter design for digital
systems to gearbox or accelerator design for automobiles, to blades, turbine or to
engine design for aircrafts. Numerous applications of EC exist in structural engineer-
ing, architectural design, environmental engineering, geotechnical and water resource
engineering. Today, another broad application area of EC is biological and medical
science. In the field of biological sciences, EC is a preferred technique for data anal-
ysis, classification, pattern recognition, reverse engineering, and model optimization.
In medicine and pharmacology, EC is used for diagnosis, disease data classification,
drug design, optimal therapy design for complex disease, etc. In the post-genome
era, an increasing surge is observed in analysis and interpretation of the enormous
amount of data that is being generated by different studies. EC has also been utilized
for solving many problems in finance and economics such as investment planning,
market forecasting, etc. Another major application area of EC is control problems
where it is applied for fault diagnosis, stability analysis, structure and parameter
identification for controllers, etc. Several applications of EC have been observed in
robotics which vary from robotic motion planning to automatic learning of coop-
eration among robots. Besides, EC has found application in other fields as well,
such as agriculture, climatology, environmental science and ecology, geo and hydro
science, etc.
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1.5 CONCLUSION

In this chapter, we have presented a very brief introduction to various algorithms
that come under the broad umbrella of evolutionary computation. This introduction
is incomplete in every sense —we did not cover many major algorithms in this field
such as adaptive evolutionary algorithms, cellular evolutionary algorithms, memetic
algorithms (MAs), estimation of distribution algorithms, (EDA) etc.; there are hun-
dreds of variants for each of these algorithms which are not included; parameter
setting and relative merits/demerits of each class of algorithms were not discussed.
In fact these discussions are not within the purpose and scope of this introduction.
The aim of this much generalized introduction is to prepare a background for novice
readers to this branch of computation so that they can easily follow the specialized
variants of some of these algorithms applied to various GRN research presented in
this book.
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