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Some basic concepts

1.1 Introduction

Particle physics is the study of the fundamental constituents of
matter and their interactions. However, which particles are regarded
as fundamental has changed with time as physicists’ knowledge has
improved. Modern theory – called the standard model – attempts to
explain all the phenomena of particle physics in terms of the prop-
erties and interactions of a small number of particles of four distinct
types: two spin-1/2 families of fermions called leptons and quarks; one
family of spin-1 bosons – called gauge bosons – which act as ‘force
carriers’ in the theory; and a spin-0 particle, called the Higgs boson,
which explains the origin of mass within the theory, since without
it, leptons, quarks and gauge bosons would all be massless. All the
particles of the standard model are assumed to be elementary: that
is they are treated as point particles, without internal structure or
excited states.

The most familiar example of a lepton is the electron e− (the
superscript denotes the electric charge), which is bound in atoms by
the electromagnetic interaction, one of the four fundamental forces
of nature. A second well-known lepton is the electron neutrino νe,
which is a light, neutral particle observed in the decay products of
some unstable nuclei (the so-called β decays). The force responsible
for the β decay of nuclei is called the weak interaction.

Another class of particles called hadrons is also observed in
nature. Familiar examples are the neutron n and proton p (collec-
tively called nucleons) and the three pions (π+, π−, π0), where the
superscripts again denote the electric charges. These are not ele-
mentary particles, but are made of quarks bound together by a third
force of nature, the strong interaction. The theory is unusual in that
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2 Particle physics

the quarks themselves are not directly observable, only their bound
states. Nevertheless, we shall see in later chapters that there is over-
whelming evidence for the existence of quarks and we shall discuss
the reason why they are unobservable as free particles. The strong
interaction between quarks gives rise to the observed strong interac-
tion between hadrons, such as the nuclear force that binds nucleons
in nuclei. There is an analogy here with the fundamental electro-
magnetic interaction between electrons and nuclei that also gives
rise to the more complicated forces between their bound states, that
is between atoms.

In addition to the strong, weak, and electromagnetic interactions,
there is a fourth force of nature – gravity. However, the gravitational
interaction between elementary particles is so small compared to
those from the other three interactions that it can be neglected at
presently accessible energies. Because of this, we will often refer in
practice to the three forces of nature.

The standard model also specifies the origin of these three forces.
Consider firstly the electromagnetic interaction. In classical physics
this is propagated by electromagnetic waves, which are continuously
emitted and absorbed. While this is an adequate description at long
distances, at short distances the quantum nature of the interaction
must be taken into account. In quantum theory, the interaction
is transmitted discontinuously by the exchange of spin-1 photons,
which are the ‘force carriers’, or gauge bosons, of the electromagnetic
interaction and, as we shall see presently, the long-range nature of
the force is related to the fact that photons have zero mass. The use
of the word ‘gauge’ refers to the fact that the electromagnetic inter-
action possesses a fundamental symmetry called gauge invariance.
This property is common to all the three interactions of nature and
has profound consequences, as we shall see.

The weak and strong interactions are also associated with the
exchange of spin-1 particles. For the weak interaction, they are the
charged W± and the neutral Z0 bosons, with masses about 80–90
times the mass of the proton. The resulting force is very short range,
and in many applications may be approximated by an interaction at
a point. The equivalent particles for the strong interaction are called
gluons g. There are eight gluons, all of which have zero mass and
are electrically neutral, like the photon. Thus, by analogy with elec-
tromagnetism, the basic strong interaction between quarks is long
range. The ‘residual’ strong interaction between the quark bound
states (hadrons) is not the same as the fundamental strong interac-
tion between quarks (but is a consequence of it) and is short range,
again as we shall see later.

In the standard model, which will play a central role in this book,
the main actors are the leptons and quarks, which are the basic
constituents of matter; the ‘force carriers’ (the photon, the W and Z
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bosons, and the gluons) that mediate the interactions between them;
and the Higgs boson, which gives mass to the elementary particles
of the standard model. In addition, because not all these particles
are directly observable, quark bound states (i.e. hadrons) also play
a very important role.

1.2 Antiparticles

In particle physics, high energies are needed both to create new par-
ticles and to explore the structure of hadrons. The latter requires
projectiles whose wavelengths λ are at least as small as hadron radii,
which are of order 10−15 m. It follows that their momenta p = h/λ
must be several hundred MeV/c (1 MeV = 106 eV), and hence their
energies E must be several hundred MeV. Because of this, any the-
ory of elementary particles must combine the requirements of both
special relativity and quantum theory. This has the startling conse-
quence that for every charged particle of nature, whether it is one of
the elementary particles of the standard model, or a hadron, there
exists an associated particle of the same mass, but opposite charge,
called its antiparticle. This important theoretical prediction was first
made for spin-1/2 particles by Dirac in 1928, and follows from the
solutions of the equation he first wrote down to describe relativis-
tic electrons. We therefore start by considering how to construct a
relativistic wave equation.

1.2.1 Relativistic wave equations

We start from the assumption that a particle moving with momen-
tum p in free space is described by a de Broglie wave function1

Ψ(r, t) = N ei(p·r−Et)/�, (1.1)

with frequency ν = E/h and wavelength λ = h/p. Here p ≡ |p| and N
is a normalisation constant that is irrelevant in what follows. The cor-
responding wave equation depends on the assumed relation between
the energy E and momentum p. Non-relativistically,

E = p2/2m (1.2)

and the wave function (1.1) obeys the non-relativistic Schrödinger
equation

i�
∂Ψ(r, t)

∂t
= − �

2

2m
∇2Ψ(r, t). (1.3)

1 We use the notation r = (x1 , x2 , x3 ) = (x, y, z).
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Relativistically, however,

E2 = p2c2 + m2c4, (1.4)

where m is the rest mass,2 and the corresponding wave equation is

− �
2 ∂2Ψ(r, t)

∂t2
= −�

2c2∇2Ψ(r, t) + m2c4Ψ(r, t), (1.5)

as is easily checked by substituting (1.1) into (1.5) and using (1.4).
This equation was first proposed by de Broglie in 1924, but is now
more usually called the Klein–Gordon equation.3 Its most striking
feature is the existence of solutions with negative energy. For every
plane wave solution of the form

Ψ(r, t) = N exp [i(p · r − Ept)/�] , (1.6a)

with momentum p and positive energy

E = Ep ≡ +(p2c2 + m2c4)1/2 ≥ mc2

there is also a solution

Ψ̃(r, t) ≡ Ψ∗(r, t) = N ∗ exp [i(−p · r + Ept)/�] , (1.6b)

corresponding to momentum –p and negative energy

E = −Ep = −(p2c2 + m2c4)1/2 ≤ −mc2.

Other problems also occur, indicating that the Klein–Gordon equa-
tion is not, in itself, a sufficient foundation for relativistic quantum
mechanics. In particular, it does not guarantee the existence of a
positive-definite probability density for position.4

The existence of negative energy solutions is a direct consequence
of the quadratic nature of the mass–energy relation (1.4) and cannot
be avoided in a relativistic theory. However, for spin-1/2 particles
the other problems were resolved by Dirac in 1928, who looked for
an equation of the familiar form

i�
∂Ψ(r, t)

∂t
= H(r, p̂)Ψ(r, t), (1.7)

where H is the Hamiltonian and p̂ = −i�∇ is the momentum opera-
tor. Since (1.7) is first order in ∂/∂t, Lorentz invariance requires that

2 From now on, the word mass will be used to mean the rest mass.
3 These authors incorporated electromagnetic interactions into the equation, in a
form now known to be appropriate for charged spin-0 bosons.
4 For a discussion of this point, see for example pp. 467–468 of Schiff (1968).
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it also be first order in spatial derivatives. Dirac therefore proposed
a Hamiltonian of the general form

H = −i�c
3∑

i=1

αi
∂

∂xi
+ βmc2 = c α · p̂ + βmc2, (1.8)

in which the coefficients β and αi(i = 1, 2, 3) are determined by
requiring that solutions of the Dirac equation (1.8) are also solutions
of the Klein–Gordon equation (1.5). Acting on (1.7) with i�∂/∂t and
comparing with (1.5), leads to the conclusion that this is true if, and
only if,

α2
i = 1, β2 = 1, (1.9a)

αiβ + βαi = 0 (1.9b)
and

αiαj + αjαi = 0 (i �= j). (1.9c)

These relations cannot be satisfied by ordinary numbers, and the
simplest assumption is that β and αi(i = 1, 2, 3) are matrices, which
must be hermitian so that the Hamiltonian is hermitian. The smallest
matrices satisfying these requirements have dimensions 4 × 4 and are
given in many books,5 but are not required below. We thus arrive at
an interpretation of the Dirac equation

i�
∂Ψ
∂t

= HΨ = −i�c
∑

i

αi
∂Ψ
∂xi

+ βmc2Ψ (1.10)

as a four-dimensional matrix equation in which the Ψ are four-
component wave functions

Ψ(r, t) =

⎛
⎜⎜⎝

ψ1(r, t)
ψ2(r, t)
ψ3(r, t)
ψ4(r, t)

⎞
⎟⎟⎠ , (1.11)

called spinors. Plane wave solutions take the form

Ψ(r, t) = u(p) exp [i(p · r − Et)/�] , (1.12)

where u(p) is also a four-component spinor satisfying the eigenvalue
equation

Hpu(p) ≡ (c α · p + βmc2)u(p) = Eu(p), (1.13)

obtained by substituting (1.11) into (1.10). This equation has four
solutions:6 two with positive energy E = +Ep corresponding to the
two possible spin states of a spin-1/2 particle (called ‘spin up’ and

5 See, for example, pp. 473–475 of Schiff (1968).
6 A proof of these results is given in, for example, pp. 475–477 of Schiff (1968).
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‘spin down’, respectively) and two corresponding negative energy
solutions with E = −Ep.

The problem of the negative-energy solutions will be resolved in
the next section. Here we note that the positive-energy solutions of
the Dirac equation lead to many predictions that have been verified
experimentally to a very high precision. Notable among these are
relativistic corrections in atomic spectroscopy, including spin-orbit
effects and the prediction that point-like spin-1/2 particles of mass
m and charge q have a Dirac magnetic moment

μD = q S/m, (1.14)

where S is the spin vector. This is a key result. It not only yields
the correct value for the electron but provides a simple test for the
point-like nature of any other spin-1/2 fermion. For the proton and
neutron, the experimental values are

μp = 2.79 eS/mp and μn = −1.91 eS/mn, (1.15)

in disagreement with Equation (1.14). Historically, the measurement
of the proton magnetic moment by Frisch and Stern in 1933 was
the first indication that the proton was not a point-like elementary
particle.

1.2.2 Hole theory and the positron

The problem of the negative energy states remains. They cannot be
ignored, since their existence leads to unacceptable consequences. For
example, if such states are unoccupied, then transitions from posi-
tive to negative energy states could occur, leading to the prediction
that atoms such as hydrogen would be unstable. This problem was
resolved by Dirac, who postulated that the negative energy states are
almost always filled. For definiteness, consider the case of electrons.
Since they are fermions, they obey the Pauli exclusion principle,
and the Dirac picture of the vacuum is a so-called ‘sea’ of negative
energy states, each with two electrons (one with spin ‘up’, the other
with spin ‘down’), while the positive energy states are all unoccu-
pied (see Figure 1.1). This state is indistinguishable from the usual
vacuum with EV = 0, pV = 0, etc. This is because for each state
of momentum p there is a corresponding state with momentum –
p, so that the momentum of the vacuum pV = Σp = 0. The same
argument applies to spin, while, since energies are measured rela-
tive to the vacuum, EV ≡ 0 by definition. Similarly, we may define
the charge QV ≡ 0, because the constant electrostatic potential pro-
duced by the negative energy sea is unobservable. Thus this state has
all the measurable characteristics of the naive vacuum, and the ‘sea’ is
unobservable.

Figure 1.1 Dirac picture of
the vacuum. The sea of
negative energy states is
totally occupied with two
electrons in each level, one
with spin ‘up’ and one with
spin ‘down’. The positive
energy states are all
unoccupied.
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Dirac’s postulate solves the problem of unacceptable transitions
from positive energy states, but has other consequences. Consider
what happens when an electron is added to, or removed from, the
vacuum. In the former case, the electron is confined to the positive
energy region since all the negative energy states are occupied. In the
latter case, removing a negative energy electron with E = −Ep < 0,
momentum –p, spin –S and charge –e from the vacuum (which
has EV = 0,pV = 0,SV = 0, QV = 0) leaves a state (the sea with
a ‘hole’ in it) with positive energy E = Ep > 0, momentum p, spin
S and charge +e. This state cannot be distinguished by any mea-
surement from a state formed by adding to the vacuum a particle
with momentum p, energy E = Ep > 0, spin S and charge +e. The
two cases are equivalent descriptions of the same phenomena. Using
the latter, Dirac predicted the existence of a spin-1/2 particle e+

with the same mass as the electron, but opposite charge. This parti-
cle is called the positron and is referred to as the antiparticle of the
electron.7

The positron was subsequently discovered by Anderson, and by
Blackett and Ochialini, in 1933. The discovery was made using a
device of great historical importance, called a cloud chamber. When
a charged particle passes through matter, it interacts with it, losing
energy. This energy can take the form of radiation or of excitation
and ionisation of the atoms along the path.8 It is the aim of track
chambers – of which the cloud chamber is the earliest example – to
produce a visible record of this trail and hence of the particle that
produced it.

The cloud chamber was devised by C.T.R. Wilson, who noticed
that the condensation of water vapour into droplets goes much faster
in the presence of ions. It consisted of a vessel filled with air almost
saturated with water vapour and fitted with an expansion piston.
When the vessel was suddenly expanded, the air cooled and became
supersaturated. Droplets were then formed preferentially along the
trails of ions left by charged particles passing through the chamber.
The chamber was illuminated by a flash of light immediately after
expansion, and the tracks of droplets so revealed were photographed
before they had time to disperse.

Figure 1.2 shows one of the first identified positron tracks
observed by Anderson in 1933. The band across the centre of the
picture is a 6 mm lead plate inserted to slow particles down. The
track is curved due to the presence of a 1.5 T applied magnetic field

7 This prediction, which is now regarded as one of the greatest successes of theoret-
ical physics, was not always so enthusiastically received at the time. For example,
in 1933 Pauli wrote: ‘Dirac has tried to identify holes with antielectrons. We do
not believe that this explanation can be seriously considered’ (Pauli, 1933).
8 This will be discussed in detail in Chapter 4.
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Figure 1.2 One of the first
positron tracks observed by
Anderson in a Wilson cloud
chamber (see text for
details). (Anderson 1933.
Reproduced with permission
from the American Physical
Society.)

B, and since the curvature of such tracks increases with decreasing
momentum, we can conclude that the particle enters at the bottom
of the picture and travels upwards. The sign of the particle’s charge
q then follows from the direction of the Lorentz force F = qv × B,
where v is the particle’s velocity, and hence of the curvature; it is
positive.

That the particle is a positron and not a proton follows essen-
tially from the range of the upper track. The rate of energy loss
of a charge particle in matter depends on its charge and velocity.
(This will be discussed in Chapter 4.) From the curvature of the
tracks, one can deduce that the momentum of the upper track is
23 MeV/c, corresponding to either a slow-moving proton with speed
υ � c or a relativistic (υ ≈ c) positron. The former would lose energy
rapidly, coming to rest in a distance of about 5 mm, comparable with
the thickness of the lead plate. The observed track length is more
than 5 cm, enabling a limit m+ ≤ 20me � mp to be set on the mass
m+ of the particle, which Anderson suggested was a positron. Many
other examples were found, especially by Blackett and Ochialini,
and by 1934 Blackett, Ochialini and Chadwick had established that
m+ = me within experimental errors of order 10%. The interpreta-
tion of the light positive particles as positrons was thus established
beyond all reasonable doubt.

The Dirac equation applies to any spin-1/2 particle, and hole
theory predicts that all charged spin-1/2 particles, whether they
are elementary or hadrons, have distinct antiparticles with oppo-
site charge, but the same mass. The argument does not extend to
bosons, because they do not obey the exclusion principle on which
hole theory depends, and to show that charged bosons also have
antiparticles of opposite charge requires the formal apparatus of
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relativistic quantum field theory.9 We shall not pursue this here, but
note that the basic constituents of matter – the leptons and quarks –
are not bosons, but are spin-1/2 fermions. The corresponding results
on the antiparticles of hadrons, irrespective of their spin, can then
be found by considering their quark constituents, as we shall see
in Chapter 3. For neutral particles, there is no general rule govern-
ing the existence of antiparticles, and while some neutral particles
have distinct antiparticles associated with them, others do not. The
photon, for example, does not have an antiparticle (or, rather, the
photon and its antiparticle are identical) whereas the neutron does.
Although the neutron has zero charge, it has a non-zero magnetic
moment, and distinct antineutrons exist in which the sign of this
magnetic moment is reversed relative to the spin direction. The neu-
tron is also characterised by other quantum numbers (that we will
meet later) that change sign between particle and antiparticle.

In what follows, if we denote a particle by P , then the antiparticle
is in general written with a bar over it, that is P . For example,
the antiparticle of the proton p is the antiproton p̄, with negative
electric charge, and associated with every quark, q, is an antiquark,
q̄. However, for some common particles the bar is usually omitted.
Thus, for example, in the case of the positron e+, the superscript
denoting the charge makes explicit the fact that the antiparticle has
the opposite electric charge to that of its associated particle, the
electron.

1.3 Interactions and Feynman diagrams

By analogy with chemical reactions, interactions involving elemen-
tary particles and/or hadrons are conveniently summarised by ‘equa-
tions’, in which the different particles are represented by symbols.
Thus, in the reaction νe + n → e− + p, an electron neutrino νe inter-
acts with a neutron n to produce an electron e− and a proton p;
while e− + p → e− + p represents an electron and proton interacting
to give the same particles in the final state, but in general travel-
ling in different directions. The latter, where the initial and final
particles are the same, is an example of elastic scattering, whereas
νe + n → e− + p, where the initial and final particles differ, is an
example of an inelastic reaction. The forces producing the above
interactions are due to the exchange of particles and a convenient
way of illustrating this is to use the pictorial technique of Feyn-
man diagrams. These were introduced by Feynman in the 1940s
and are now one of the cornerstones of elementary particle physics.

9 For an introduction, see for example Mandl and Shaw (2010).
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Associated with them are mathematical rules and techniques that
enable the calculation of the quantum mechanical probabilities for
given reactions to occur. Here we will avoid the mathematical detail
but use the diagrams to understand the main features of particle
reactions. We will introduce Feynman diagrams by firstly discussing
electromagnetic interactions.

1.3.1 Basic electromagnetic processes

The electromagnetic interactions of electrons and positrons can all
be understood in terms of eight basic processes. In hole theory, they
arise from transitions in which an electron jumps from one state to
another, with the emission or absorption of a single photon. The
interpretation then depends on whether the states are both of posi-
tive energy, both of negative energy or one of each.

 

Figure 1.3 Hole theory
representation of the
processes e− →← e− + γ.

The basic processes whereby an electron either emits or absorbs
a photon are

(a) e− → e− + γ and (b) γ + e− → e−.

They correspond in hole theory to transitions between positive
energy states of the electron and are represented pictorially in Fig-
ure 1.3. They may also be represented diagrammatically by Fig-
ures 1.4(a) and (b), where by convention time runs from left to right.
These are examples of Feynman diagrams.

Similar diagrams may be drawn for the corresponding positron
processes

(c) e+ → e+ + γ and (d) γ + e+ → e+,

and are shown in Figures 1.4(c) and (d). Time again flows to the
right, and we have used the convention that an arrow directed
towards the right indicates a particle (in this case an electron) while
one directed to the left indicates an antiparticle (in this case a
positron). The corresponding hole theory diagram, analogous to Fig-
ure 1.3, is left as an exercise for the reader. Finally, there are pro-
cesses in which an electron is excited from a negative energy state
to a positive energy state, leaving a ‘hole’ behind, or in which a pos-
itive energy electron falls into a vacant level (hole) in the negative
energy sea. These are illustrated in Figure 1.5, and correspond to
the production or annihilation of e+e- pairs. In both cases, a photon
may either be absorbed from the initial state or emitted to the final
state, giving the four processes

(e) e+ + e− → γ, (f) γ → e+ + e−,
(g) vacuum → γ + e+ + e−, (h) γ + e+ + e− → vacuum,

represented by the Feynman diagrams of Figures 1.4(e) to (h).
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Figure 1.4 Feynman diagrams
for the eight basic processes
whereby electrons and
positrons interact with
photons. In all such
diagrams, time runs from left
to right, while a solid line
with its arrow pointing to the
right (left) indicates an
electron (positron).

This exhausts the possibilities in hole theory, so that there are just
eight basic processes represented by the Feynman diagrams, Figures
1.4(a) to (h). Each of these processes has an associated probability
of the order of the electromagnetic fine structure constant

α ≡ 1
4πε0

e2

�c
≈ 1

137
. (1.16)

1.3.2 Real processes

In each of the diagrams in Figures 1.4(a) to (h), each vertex has
a line corresponding to a single photon being emitted or absorbed,

Figure 1.5 Hole theory
representation of the
production or annihilation of
e+ e− pairs.
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Figure 1.6 The forbidden
vertex e− → e+ + γ.

while one fermion line has the arrow pointing toward the vertex and
the other away from the vertex, implying charge conservation at the
vertex.10 For example, a vertex like Figure 1.6 would correspond to
a process in which an electron emitted a photon and turned into
a positron. This would violate charge conservation and is therefore
forbidden.

Momentum and angular momentum are also assumed to be con-
served at the vertices. However, in free space, energy conservation
is violated. For example, if we use the notation (E,k) to denote
the total energy and three-momentum of a particle, then in the rest
frame of the electron, reaction (a), is

e−(E0,0) → e−(Ek,−k) + γ (ck,k), (1.17)

where k ≡ |k | and momentum conservation has been imposed. In free
space, E0 = mc2, Ek = (k2c2 + m2c4)1/2 and ΔE ≡ Ek + kc − E0
satisfies

kc < ΔE < 2kc (1.18)

for all finite k.
Similiar arguments show that energy conservation is violated for

all the basic processes. They are called virtual processes to emphasise
that they cannot occur in isolation in free space. To make a real
process, two or more virtual processes must be combined in such a
way that energy conservation is only violated for a short period of
time τ compatible with the energy–time uncertainty principle

τ ΔE ≈ �. (1.19)

In particular, the initial and final states – which in principle can be
studied in the distant past (t → −∞) and future (t → +∞), respec-
tively – must have the same energy. This is illustrated by Figure
1.7(a), which represents a process whereby an electron emits a pho-
ton that is subsequently absorbed by a second electron. Although
energy conservation is violated at the first vertex, this can be com-
pensated by a similar violation at the second vertex to give exact
energy conservation overall. Figure 1.7(a) represents a contribution
to the physical elastic scattering process

e− + e− → e− + e−

from a single-photon exchange. There is also a second contribution,
represented by Figure 1.7(b) in which the other electron emits the
exchanged photon. Both processes contribute to the observed scat-
tering.

10 Compare Kirchhoff’s laws in electromagnetism.

Figure 1.7 Single-photon
exchange contributions to
electron–electron scattering.
Time as usual runs from left
to right.



JWST765-c01 JWST765-Martin October 13, 2016 7:22 Printer Name: Trim: 246mm × 189mm

Some basic concepts 13

Figure 1.8 A contribution to
electron–electron scattering
from two-photon exchange.

Scattering can also occur via multi-photon exchange and, for
example, one of the diagrams corresponding to two-photon exchange
is shown in Figure 1.8. The contributions of such diagrams are, how-
ever, far smaller than the one-photon exchange contributions. To see
this, we consider the number of vertices in each diagram, called its
order. Since each vertex represents a basic process whose probability
is of order α ≈ 1/137 � 1, any diagram of order n gives a contribu-
tion whose probability is of order αn. On comparing Figures 1.7 and
1.8, we see that single-photon exchange is of order α2, two-photon
exchange is of order α4 and, more generally, n-photon exchange is of
order α2n. To a good approximation multi-photon exchanges can be
neglected, and we would expect the familiar electromagnetic inter-
actions used in atomic spectroscopy, for example, to be accurately
reproduced by considering only one-photon exchange. Detailed cal-
culation confirms that this is indeed the case.

1.3.3 Electron–positron pair production and annihilation

Feynman diagrams like Figures 1.7 and 1.8 play a central role in the
analysis of elementary particle interactions. The contribution of each
diagram to the probability amplitude for a given physical process can
be calculated precisely by using the set of mathematical rules men-
tioned previously (the Feynman rules), which are derived from the
quantum theory of the corresponding interaction. For electromag-
netic interactions, this theory is called quantum electrodynamics (or
QED for short) and the resulting theoretical predictions have been
verified experimentally with quite extraordinary precision. The Feyn-
man rules are beyond the scope of this book and our use of Feynman
diagrams will be much more qualitative. For this, we need consider
only the lowest-order diagrams contributing to a given physical pro-
cess, neglecting higher-order diagrams like Figure 1.8 for electron–
electron scattering.

To illustrate this we consider the reactions e+ + e− → pγ, where
to conserve energy at least two photons must be produced, p ≥ 2. In
lowest order, to produce p photons we must combine p vertices from
the left-hand side of Figure 1.4. For p = 2,

e+ + e− → γ + γ

and there are just two such diagrams: Figure 1.9(a), which is
obtained by combining Figures 1.4(a) and (e), and Figure 1.9(b),
which combines Figures 1.4(c) and (e). These two diagrams are
closely related. If the lines of Figure 1.9(a) were made of rubber, we
could imagine deforming them so that the top vertex occurred after,
instead of before, the bottom vertex, and it became Figure 1.9(b).
Figures 1.7(a) and (b) are related in the same way. Diagrams related
in this way are called different ‘time orderings’ and, in practice, it is

Figure 1.9 Lowest-order
contributions to
e+ + e− → γ + γ. The two
diagrams are related by ‘time
ordering’, as explained in the
text.
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Figure 1.10 The process
e+ + e− → γ + γ + γ in
lowest order. Only one of the
six possible time orderings is
shown, leaving the other five
implied.

usual to draw only one time ordering (e.g. Figure 1.9(a)) leaving the
other(s) implied. Thus for p = 3,

e+ + e− → γ + γ + γ,

and a possible diagram is that of Figure 1.10, obtained by combining
Figures 1.4(a), (c) and (e). Since there are three vertices, there are
3! = 6 different ways of ordering them in time. We leave it as an
exercise for the reader to draw the other five time-ordered diagrams
whose existence is implied by Figure 1.10.

In general, the process e+ + e− → pγ is of order p, with an asso-
ciated probability of order αp. From just the order of the diagrams
(i.e. the number of vertices), we therefore expect that many-photon
annihilation is very rare compared to few-photon annihilation, and
that11

R ≡ Rate(e+e− → 3γ)
Rate(e+e− → 2γ)

= O (α). (1.20)

For very low energy e+e− pairs, this prediction can be tested by
measuring the 2γ and 3γ decay rates of positronium, which is a
bound state of e+ and e− analogous to the hydrogen atom.12 In this
case, the experimental value of R is 0.9 × 10−3. This is somewhat
smaller than α = 0.7 × 10−2, and indeed some authors argue that
α/2π = 1.2 × 10−3 is a more appropriate measure of the strength
of the electromagnetic interaction. We stress that (1.20) is only an
order-of-magnitude prediction, and we will in future use 10−2 − 10−3

as a rough rule-of-thumb estimate of what is meant by a factor of
order α.

As a second example, consider the pair production reaction
γ → e+ + e−. This basic process cannot conserve both energy and
momentum simultaneously, but is allowed in the presence of a
nucleus, that is

γ + (Z, A) → e+ + e− + (Z, A),

where Z and A are the charge and mass number (the number of nucle-
ons) of the nucleus, respectively. Diagrammatically, this is shown in
Figure 1.11, where the two diagrams are not different time order-
ings. (There is no way that (a) can be continuously deformed into
(b).) Since one of the vertices involves a charge Ze, the correspond-
ing factor α → Z2α, and the expected rate is of order Z2α3. This Z
dependence is confirmed experimentally, and is exploited in devices

11We will often use the symbol O to mean ‘order’ in the sense of ‘order-of-
magnitude’.
12This is discussed in Section 5.5.

Figure 1.11 The pair
production process
γ + (Z, A) →
e+ + e− + (Z, A) in lowest
order. The two diagrams
represent ‘distinct’
contributions and are not
related by time ordering.
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Figure 1.12 Contributions of
(a) Z0 exchange to the
elastic weak scattering
reaction e− + νe → e− + νe

and (b) gluon exchange
contribution to the strong
interaction q + q → q + q.

for detecting high-energy photons by the pair production that occurs
readily in the field of a heavy nucleus.13

1.3.4 Other processes

Although we have introduced Feynman diagrams in the context of
electromagnetic interactions, their use is not restricted to this. They
can also be used to describe the fundamental weak and strong inter-
actions. This is illustrated by Figure 1.12(a), which shows a con-
tribution to the elastic weak scattering reaction e− + νe → e− + νe

due to the exchange of a Z0, and by Figure 1.12(b), which shows
the exchange of a gluon g (represented by a coiled line) between two
quarks, which is a strong interaction.

Feynman diagrams that involve hadrons can also be drawn. As an
illustration, Figure 1.13 shows the decay of a neutron via an inter-
mediate charged W boson. In later chapters we will make extensive
use of Feynman diagrams in discussing particle interactions.

1.4 Particle exchange

In Section 1.1 we said that the forces of elementary particle physics
were associated with the exchange of particles. In this section we will
explore the fundamental relation between the range of a force and the
mass of the exchanged particle and show how the weak interaction
can frequently be approximated by a force of zero range.

Figure 1.13 The decay
n → p + e− + ν̄e via an
intermediate W meson.

1.4.1 Range of forces

The Feynman diagram of Figure 1.14 represents the elastic scat-
tering of two particles A and B, of masses MA and MB , that is
A + B → A + B, via the exchange of a third particle X of mass MX ,
with equal coupling strengths g to particles A and B. In the rest
frame of the incident particle A, the lower vertex represents the vir-
tual process

A(MAc2, 0) → A(EA, p) + X(EX, −p), (1.21)

where

EA =
(
p2c2 + M2

Ac4
)1/2

and EX =
(
p2c2 + M2

Xc4
)1/2

, (1.22)

13These detectors will be discussed in Chapter 4.

Figure 1.14 Contribution to
the reaction A + B → A + B
from the exchange of a
particle X.
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and p = |p |. The energy difference between the final and initial states
is given by

ΔE = EX + EA − MAc2 → 2pc, p → ∞,
→ MXc2, p → 0,

(1.23)

and thus ΔE ≥ MXc2 for all p. By the uncertainty principle, such
an energy violation is allowed, but only for a time τ ≈ �/ΔE, so we
immediately obtain

r ≈ R ≡ �/MXc (1.24)

as the maximum distance over which X can propagate before being
absorbed by particle B. This constant R is called the range of the
interaction and this was the sense of the word used in Section 1.1.

The electromagnetic interaction has an infinite range because the
exchanged particle is a massless photon. The strong force between
quarks also has an infinite range because the exchanged particles
are massless gluons.14 In contrast, the weak interaction is associated
with the exchange of very heavy particles, the W and Z bosons, with
masses

MW = 80.4 GeV/c2 and MZ = 91.2 GeV/c2 (1 GeV = 109 eV)
(1.25)

corresponding to ranges that from (1.24) are of order

RW ,Z ≡ �

MW c
≈ 2 × 10−3fm (1fm = 10−15m). (1.26)

In many applications, this range is very small compared with the de
Broglie wavelengths of all the particles involved. The weak interac-
tion can then be approximated by a zero-range or point interaction,
corresponding to the limit MX → ∞, as shown in Figure 1.15.

Figure 1.15 The zero-range or
point interaction resulting
from the exchange of a
particle X in the limit
MX → ∞.

14The force between hadrons is much more complicated, because it is not due to
single-gluon exchange. It has a range of approximately (1–2) fm, where 1 fm =
10−15 m.
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1.4.2 The Yukawa potential

In the limit that MA becomes large, we can regard B as being scat-
tered by a static potential of which A is the source. This potential will
in general be spin dependent, but its main features can be obtained
by neglecting spin and considering X to be a spin-0 boson, in which
case it will obey the Klein–Gordon equation,

− �
2 ∂2φ(r, t)

∂t2
= −�

2c2∇2φ(r, t) + M2
Xc4φ(r, t). (1.27)

The static solution of this equation satisfies

∇2φ(r) =
M2

Xc2

�2 φ(r), (1.28)

where φ(r) is interpreted as a static potential. For MX = 0 this equa-
tion is the same as that obeyed by the electrostatic potential, and for
a point charge −e interacting with a point charge +e at the origin,
the appropriate solution is the Coulomb potential

V (r) = −e φ(r) = − e2

4πε0

1
r
, (1.29)

where r = |r | and ε0 is the dielectric constant. The corresponding
solution in the case where M2

X �= 0 is easily verified by substitution
to be

V (r) = − g2

4π

e−r/R

r
, (1.30)

where R is the range defined in (1.24) and we assume equal coupling
constants g for particle X to the particles A and B. It is conventional
to introduce a dimensionless strength parameter

αX =
g2

4π�c
(1.31)

that characterises the strength of the interaction at short distances,
in analogy to the fine structure constant of QED.

The form of V (r) in (1.30) is called a Yukawa potential, after
the physicist who first introduced the idea of forces due to massive
particle exchange in 1935. As MX → 0, R → ∞ and the Coulomb
potential is recovered from the Yukawa potential, while for very
large masses the interaction is approximately point-like (zero range).
The effective coupling strength in this latter approximation and its
range of validity are best understood by considering the correspond-
ing scattering amplitude.
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1.4.3 The zero-range approximation

In lowest-order perturbation theory, the probability amplitude for a
particle with initial momentum qi to be scattered to a final state with
momentum qf by a potential V (r) is proportional to the scattering
amplitude15

M(q) =
∫

V (r) exp(iq · r/�) d3r , (1.32)

where q ≡ qi − qf is the momentum transfer. The integration may
be done using polar coordinates (r, θ, φ). Taking q in the z direction,
gives

q · r = |q | r cos θ (1.33)

and

d3r = r2 sin θ dθ dr dφ, (1.34)

where r = |r |. For the Yukawa potential, the integral (1.32) gives

M(q) =
−g2

�
2

|q |2 + M2
Xc2

. (1.35)

In using (1.35) for the scattering amplitude we have assumed
potential theory, treating the particle A as a static source. The par-
ticle B then scatters through some angle without loss of energy, so
that |qi| = |qf | and the initial and final energies of particle B are
equal, Ei = Ef . While this is a good approximation at low energies,
at higher energies the recoil energy of the target particle cannot be
neglected, so that the initial and final energies of B are no longer
equal. A fully relativistic calculation taking account of this is more
difficult, but the result is surprisingly simple. Specifically, in lowest-
order perturbation theory, one obtains

M(q2) =
g2

�
2

q2 − M2
Xc2 , (1.36)

where

q2 ≡ (Ef − Ei)2 − (qf − qi)2c2 (1.37)

is called the squared energy–momentum transfer, or squared four-
momentum transfer. In the low-energy limit, Ei = Ef and (1.36)
reduces to (1.35). However, in contrast to (1.35), which was derived
in the rest frame of particle A, the form (1.36) is explicitly Lorentz
invariant and holds in all inertial frames of reference.

15This is called the Born approximation. For a discussion, see for example
pp. 397–399 of Gasiorowicz (1974).
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The amplitude (1.36) corresponds to the exchange of a single par-
ticle, as shown for example in Figure 1.14. (Multiparticle exchange
corresponds to higher orders in perturbation theory and higher pow-
ers of g2.) In the zero-range approximation, (1.36) reduces to a con-
stant. To see this, we note that this approximation is valid when
the range R = �/MXc is very small compared with the de Broglie
wavelengths of all the particles involved. In particular, this implies
q2 � M2

Xc2, and neglecting q2 in (1.36) gives

M(q2) = −G, (1.38)

where the constant G is given by

G

(�c)3 =
1
�c

(
g

MXc2

)2
=

4παX

(MXc2)2 (1.39)

and has the dimensions of inverse energy squared. Thus we see
that in the zero-range approximation, the resulting point interac-
tion between A and B (see Figure 1.15) is characterised by a single
dimensioned coupling constant G and not g and MX separately. As
we shall see in the next chapter, this approximation is extremely
useful in weak interactions, where the corresponding Fermi coupling
constant GF , measured for example in nuclear β-decay, is given by

GF

/
(�c)3 = 1.166 × 10−5 GeV−2. (1.40)

1.5 Units and dimensions

In previous sections, we have quoted numerical values for some con-
stants, for example GF above, and given formulas for others. Before
continuing our discussion, we consider more carefully the question of
units.

Units are a perennial problem in physics, since most branches of
the subject tend to adopt a system that is convenient for their own
purpose. Elementary particle physics is no exception, and adopts so-
called natural units (nu), chosen so that the fundamental constants

c = 1 and � = 1. (1.41)

In other words, c and � are used as fundamental units of velocity
and action (or angular momentum), respectively. To complete the
definition, a third unit must be fixed, which is chosen to be the
unit of energy. This is taken to be the electron volt (eV), defined as
the energy required to raise the electric potential of an electron or
proton by one volt. The abbreviations keV (103 eV), MeV (106 eV),
GeV (109 eV) and TeV (1012 eV) are also in general use.
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Quantum mechanics and special relativity play crucial roles in
elementary particle physics, so that � and c occur frequently in for-
mulas. By choosing natural units, all factors of � and c may be
omitted from equations using (1.41), which leads to considerable
simplifications. For example, the relativistic energy relation

E2 = p2c2 + m2c4

becomes
E2 = p2 + m2,

while the Fermi coupling constant (1.40) becomes

GF = 1.166 × 10−5 GeV−2. (1.42)

In natural units (nu) all quantities have the dimensions of a power
of energy, since they can all be expressed in terms of �, c and an
energy. In particular, masses, lengths and times can be expressed in
the forms

M = E/c2, L = �c/E, T = �/E,

so that a quantity with mks dimensions MpLqT r has the nu dimen-
sions Ep−q−r . Since � and c are suppressed in natural units, this
is the only dimension that is relevant, and dimensional checks and
estimates are very simple. The nu and mks dimensions are listed
for some important quantities in Table 1.1. We note that in natural
units many different quantities (e.g. mass, energy and momentum)
all have the same dimension.

Natural units are very convenient for theoretical arguments, as
we will see. However, we must still know how to convert from nat-
ural units to the ‘practical’ units in which experimental results are
invariably stated. This is done in two steps. We first restore the �

Table 1.1 The mks dimension Mp Lq T r and the nu
dimensions En = Ep−q−r of some quantities.

mks nu
Quantity p q r n

Action (�) 1 2 –1 0
Velocity (c) 0 1 –1 0
Mass 1 0 0 1
Length 0 1 0 –1
Time 0 0 1 –1
Momentum 1 1 –1 1
Energy 1 2 –2 1
Fine structure constant (α) 0 0 0 0
Fermi coupling constant (GF ) 1 5 –2 –2
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and c factors by dimensional arguments and then use the conversion
factors

� = 6.582 × 10−22 MeV s (1.43a)
and

�c = 1.973 × 10−13 MeV m (1.43b)

to evaluate the result.
We illustrate this by using the nu expression for the cross-section

σ for Thomson scattering,16 that is Compton scattering from free
electrons when the photon energy is much less than the electron rest
energy. This is given by17

σ =
8πα2

3m2
e

.

To convert it to practical units, we write

σ =
8πα2

3m2
e

�
acb

and demand that σ has the dimensions of length squared. This gives
a = 2, b = −2, so that

σ =
8πα2(�c)2

3(mec2)2 = 6.65 × 10−29m2, (1.44)

using (1.43b) and me = 0.51 MeV/c2.
Cross-sections are usually quoted in barns b (10−28m2). For

example, the Thomson cross-section (1.44) is 0.665b while the total
cross-section for np scattering is typically of order 30–40 mb, depend-
ing on the energy, where 1 mb = 10−3 b = 10−31 m2. Other abbrevi-
ations commonly used are microbarns mb (10−34m2) and picobarns
(10−40 m2). Similiarly, lengths are often quoted in fermis fm (10−15m)
rather than metres. In these units, the radius of the proton is about
0.8 fm, while the range of the weak force is of order 10−3 fm. Ener-
gies are measured in MeV, GeV, etc., while momenta are measured
in MeV/c, etc. and masses in MeV/c2, etc., as in Equation (1.25)
for the weak boson mass. This should be compared to natural units,
where energy, momentum and mass all have the dimension of energy
(see Table 1.1) and are all measured in, for example, MeV.

A list of some useful physical constants and conversion factors is
given inside the back cover of this book. From now on natural units
will be used in formulas throughout the book unless explicitly stated
otherwise.

16Cross-sections and related quantities are formally defined in Appendix B.
17See, for example, p. 20 of Mandl and Shaw (2010).
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Problems 1

1.1 Write down equations in symbol form that describe the following
interactions:
(a) the elastic scattering of an electron antineutrino and a positron;
(b) the elastic scattering of proton and a neutron;
(c) the annihilation of a proton and an antiproton to an electron, a

positron and a photon.
1.2 The matrices αi (i = 1, 2, 3) and β in the Dirac equation (1.8) can

be chosen to have the explicit forms

αi =
(

0 σi

σi 0

)
, β =

(
1 0
0 −1

)
, (1.45a)

where 1 and 0 are the 2 × 2 unit matrix and null matrix, respectively,
and the Pauli spin matrices σi are

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (1.45b)

Check that these forms satisfy the anticommutation relations

[αi, β] ≡ αiβ + βαi = 0 and [αi, αj ] = 0, where i �= j = 1, 2, 3.

1.3 For a free particle of momentum p = (px, py , pz ), the Dirac equation
has four independent solutions (1.12), where the independent spinors
can be chosen to be of the forms⎛

⎜⎜⎝
u1
u2
u3
u4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

1
0
a1
b1

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

0
1
a2
b2

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

a3
b3
1
0

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

a4
b4
0
1

⎞
⎟⎟⎠ ,

where ai, bi are finite coefficients, if we assume the explicit form
of the Dirac matrices given in Problem 1.2. Verify that solutions of
these forms exist and find the values of the coefficients ai, bi and the
corresponding energies.

1.4 Draw the topologically distinct Feynman diagrams that contribute
to the following process in lowest order:
(a) γ + e− → γ + e−;
(b) e+ + e− → e+ + e−;
(c) νe ν̄e elastic scattering.
(Hint: There are two such diagrams for each reaction.)

1.5 Draw one fourth-order diagram for each of the reactions
(a) γ + e− → γ + e− and (b) e+ + e− → e+ + e−.

1.6 Show that the Yukawa potential of Equation (1.30) is the only spher-
ically symmetric solution of the static Klein–Gordon equation (1.28)
that vanishes as r goes to infinity.

1.7 Verify by explicit integration that substituting the Yukawa potential
(1.30) into (1.32) leads to (1.35) for the corresponding scattering
amplitude.

1.8 In lowest order, the process e+ + e− → γ + γ is given by the Feynman
diagrams of Figure 1.9. Show that for electrons and positrons almost
at rest, the distance between the two vertices is typically of order m−1
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Figure 1.16 Lowest-order
diagram for
e+ + e− → μ+ + μ−.

in natural units, where m is the electron mass. Convert this result to
practical units and evaluate it in fermis.

1.9 In lowest order, the process e+ + e− → μ+ + μ− is given by the Feyn-
man diagram of Figure 1.16. Estimate the typical distance between
the vertices at energies much larger than the masses of any of the
particles in (a) the rest frame of the electron and (b) the centre-of-
mass frame. Check the consistency of these estimates by considering
the Lorentz contraction in going from the rest frame, in which the
initial electron is stationary, to the centre-of-mass frame.

1.10 Parapositronium is an unstable bound state of an electron and a
positron. Its lifetime is given in natural units by τ = 2/mα5 , where
m is the mass of the electron and α is the fine structure constant.
Restore the factors of h̄ and c by dimensional arguments and evaluate
in seconds.

1.11 For total centre-of-mass energies of a few GeV, the cross-section for
the reaction νμ + e− → μ− + νμ is given by σ = G2

F E2/π in natural
units, where GF is the Fermi coupling constant (1.42). What is the
cross-section in picobarns at an energy E = 3GeV?

1.12 (a) The classical radius of an electron is defined as rc = e2/4πε0me

in natural units. What is its value in fm?
(b) A simple classical model of the electron is to regard it as a sphere
of uniform charge density, whose radius R is such that the electro-
static potential accounts for the whole electron mass. Derive the value
of R, expressing it in terms of the classical radius defined above.


