
1
INTRODUCTION

1.1 INTRODUCTION

Partial order and lattice theory play an important role in many disciplines of computer
science and engineering. For example, they have applications in distributed comput-
ing (vector clocks and global predicate detection), concurrency theory (pomsets and
occurrence nets), programming language semantics (fixed-point semantics), and data
mining (concept analysis). They are also useful in other disciplines of mathematics
such as combinatorics, number theory, and group theory.

This book differs from earlier books written on the subject in two aspects. First,
this book takes a computational perspective—the emphasis is on algorithms and their
complexity. While mathematicians generally identify necessary and sufficient condi-
tions to characterize a property, this book focuses on efficient algorithms to test the
property. As a result of this bias, much of the book concerns itself only with finite
sets. Second, existing books do not dwell on applications of lattice theory. This book
treats applications at par with the theory. In particular, I have given applications of
lattice theory to distributed computing and combinatorics.

This chapter covers the basic definitions of partial orders.

Introduction to Lattice Theory with Computer Science Applications, First Edition. Vijay K. Garg.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.

CO
PYRIG

HTED
 M

ATERIA
L

2 INTRODUCTION

1.2 RELATIONS

A partial order is simply a relation with certain properties. A relation R over any set
X is a subset of X × X. For example, let

X = {a, b, c}.

Then, one possible relation is

R = {(a, c), (a, a), (b, c), (c, a)}.

It is sometimes useful to visualize a relation as a graph on the vertex set X such
that there is a directed edge from x to y iff (x, y) ∈ R. The graph corresponding to the
relation R in the previous example is shown in Figure 1.1.

A relation is reflexive if for each x ∈ X, (x, x) ∈ R, i.e., each element of X is related
to itself. In terms of a graph, this means that there is a self-loop on each node. If
X is the set of natural numbers,  , then “x divides y” is a reflexive relation. R is
irreflexive if for each x ∈ X, (x, x) ∉ R. In terms of a graph, this means that there are
no self-loops. An example on the set of natural numbers,  , is the relation “x less
than y.” Note that a relation may be neither reflexive nor irreflexive.

A relation R is symmetric if for all x, y ∈ X, (x, y) ∈ R implies (y, x) ∈ R. An
example of a symmetric relation on  is

R = {(x, y) | x mod 5 = y mod 5}. (1.1)

A symmetric relation can be represented using an undirected graph. R is antisym-
metric if for all x, y ∈ X, (x, y) ∈ R and (y, x) ∈ R implies x = y. For example, the
relation less than or equal to defined on  is anti-symmetric. A relation R is asym-
metric if for all x, y ∈ X, (x, y) ∈ R implies (y, x) ∉ R. The relation less than on  is
asymmetric. Note that an asymmetric relation is always irreflexive.

A relation R is transitive if for all x, y, z ∈ X, (x, y) ∈ R and (y, z) ∈ R implies
(x, z) ∈ R. The relations less than and equal to on  are transitive.

c

ba

Figure 1.1 The graph of a relation.

PARTIAL ORDERS 3

A relation R is an equivalence relation if it is reflexive, symmetric, and transitive.
When R is an equivalence relation, we use x ≡R y (or simply x ≡ y when R is clear
from the context) to denote that (x, y) ∈ R. Furthermore, for each x ∈ X, we use [x]R,
called the equivalence class of x, to denote the set of all y ∈ X such that y ≡R x. It
can be seen that the set of all such equivalence classes forms a partition of X. The
relation on  defined in (1.1) is an example of an equivalence relation. It partitions
the set of natural numbers into five equivalence classes.

Given any relation R on a set X, we define its irreflexive transitive closure,
denoted by R+, as follows. For all x, y ∈ X ∶ (x, y) ∈ R+ iff there exists a sequence
x0, x1, ..., xj, j ≥ 1 with x0 = x and xj = y such that

∀i ∶ 0 ≤ i < j ∶ (xi, xi+1) ∈ R.

Thus (x, y) ∈ R+, iff there is a nonempty path from x to y in the graph of the relation R.
We define the reflexive transitive closure, denoted by R∗, as

R∗ = R+ ∪ {(x, x) | x ∈ X}.

Thus (x, y) ∈ R∗ iff y is reachable from x by taking a path with zero or more edges in
the graph of the relation R.

1.3 PARTIAL ORDERS

A relation R is a reflexive partial order (or, a nonstrict partial order) if it is reflex-
ive, antisymmetric, and transitive. The divides relation on the set of natural numbers
is a reflexive partial order. A relation R is an irreflexive partial order, or a strict
partial order if it is irreflexive and transitive. The less than relation on the set of
natural numbers is an irreflexive partial order. When R is a reflexive partial order, we
use x ≤R y (or simply x ≤ ywhen R is clear from the context) to denote that (x, y) ∈ R.
A reflexive partially ordered set, poset for short, is denoted by (X,≤). When R is an
irreflexive partial order, we use x <R y (or simply x < y when R is clear from the con-
text) to denote that (x, y) ∈ R. The set X together with the partial order is denoted by
(X, <). We use P = (X, <) to denote a irreflexive poset defined on X.

The two versions of partial orders—reflexive and irreflexive—are essentially the
same. Given an irreflexive partial order, we can define x ≤ y as x < y or x = y, which
gives us a reflexive partial order. Similarly, given a reflexive partial order (X,≤), we
can define an irreflexive partial order (X, <) by defining x < y as x ≤ y and x ≠ y.

A relation is a total order if R is a partial order and for all distinct x, y ∈ X, either
(x, y) ∈ R or (y, x) ∈ R. The natural order on the set of integers is a total order, but the
divides relation is only a partial order.

Finite posets are often depicted graphically using Hasse diagrams. To define
Hasse diagrams, we first define a relation covers as follows. For any two elements
x, y ∈ X, y covers x if x < y and ∀z ∈ X ∶ x ≤ z < y implies z = x. In other words, if
y covers x then there should not be any element z with x < z < y. We use x <c y to

4 INTRODUCTION

r

q

p

s

Figure 1.2 Hasse diagram.

denote that y covers x (or x is covered by y). We also say that y is an upper cover of
x and x is a lower cover of y. A Hasse diagram of a poset is a graph with the property
that there is an edge from x to y iff x <c y. Furthermore, when drawing the graph on a
Euclidean plane, x is drawn lower than y when y covers x. This allows us to suppress
the directional arrows in the edges. For example, consider the following poset (X,≤),

X
def
= {p, q, r, s}; ≤

def
= {(p, q), (q, r), (p, r), (p, s)}. (1.2)

The corresponding Hasse diagram is shown in Figure 1.2. Note that we will some-
times use directed edges in Hasse diagrams if the context demands it. In general, in
this book, we switch between the directed graph and undirected graph representations
of Hasse diagrams.

Given a poset (X,≤X) a subposet is simply a poset (Y ,≤Y), where Y ⊆ X, and

∀x, y ∈ Y ∶ x ≤Y y
def
= x ≤X y.

Let x, y ∈ X with x ≠ y. If either x < y or y < x, we say x and y are comparable. On
the other hand, if neither x < y nor x > y, then we say x and y are incomparable and
write x||y. A poset (Y ,≤) (or a subposet (Y ,≤) of (X,≤)) is called a chain if every
distinct pair of elements from Y is comparable. Similarly, we call a poset an antichain
if every distinct pair of elements from Y is incomparable. For example, for the poset
represented in Figure 1.2, {p, q, r} is a chain, and {q, s} is an antichain.

A chain C of a poset (X,≤) is a longest chain if no other chain contains more
elements than C. We use a similar definition for the largest antichain. The height
of the poset is the number of elements in a longest chain, and the width of the poset
is the number of elements in a largest antichain. For example, the poset in Figure 1.2
has height equal to 3 (the longest chain is {p, q, r}) and width equal to 2 (a largest
antichain is {q, s}).

JOIN AND MEET OPERATIONS 5

b

d

b c

d

a

c

b

a

a

fe

e

Figure 1.3 Only the first two posets are lattices.

Generalizing the notation for intervals on the real-line, we define an interval [x, y]
in a poset (X,≤) as

{z | x ≤ z ≤ y}.

The meanings of (x, y), [x, y) and (x, y] are similar. A poset is locally finite if all
intervals are finite. Most posets in this book will be locally finite if not finite.

A poset is well-founded iff it has no infinite decreasing chain. The set of natu-
ral numbers under the usual ≤ relation is well-founded but the set of integers is not
well-founded.

Poset Q = (X,≤Q) extends the poset P = (X,≤P) if

∀x, y ∈ X ∶ x ≤P y ⇒ x ≤Q y.

If Q is a total order, then we call Q a linear extension of P. For example, for the
poset P = (X,≤) defined in Figure 1.2, a possible linear extension Q is

X
def
= {p, q, r, s}; ≤Q

def
= {(p, q), (q, r), (p, r), (p, s), (q, s), (r, s)}.

We now give some special posets that will be used as examples in the book.

• n denotes a poset which is a chain of length n. The second poset in Figure 1.3
is 2.

• We use An to denote the poset of n incomparable elements.

1.4 JOIN AND MEET OPERATIONS

We now define two operators on subsets of the set X—meet and join. The opera-
tor meet is also called infimum (or inf). Similarly, the operator join is also called
supremum (or sup).

6 INTRODUCTION

Let Y ⊆ X, where (X,≤) is a poset. For any m ∈ X, we say that m = inf Y iff

1. ∀y ∈ Y ∶ m ≤ y and

2. ∀m′ ∈ X ∶ (∀y ∈ Y ∶ m′ ≤ y) ⇒ m′ ≤ m.

The condition (1) says that m is a lower bound of the set Y . The condition (2) says
that if m′ is any lower bound of Y , then it is less than or equal to m. For this reason,
m is also called the greatest lower bound (glb) of the set Y . It is easy to check that
the infimum of Y is unique whenever it exists. Observe that m is not required to be
an element of Y .

The definition of sup is similar. For any s ∈ X, we say that s = sup Y iff

1. ∀y ∈ Y ∶ y ≤ s and

2. ∀s′ ∈ X ∶ (∀y ∈ Y ∶ y ≤ s′) ⇒ s ≤ s′.

Again, s is also called the least upper bound (lub) of the set Y . We denote the glb
of {a, b} by a ⊓ b and lub of {a, b} by a ⊔ b. In the set of natural numbers ordered by
the divides relation, the glb corresponds to finding the greatest common divisor (gcd)
and the lub corresponds to finding the least common multiple (lcm) of two natural
numbers. The glb or the lub may not always exist. In Figure 1.2, the set {q, s} does
not have any upper bound. In the third poset in Figure 1.3, the set {b, c} does not have
any least upper bound (although both d and e are upper bounds).

The following lemma relates ≤ to the meet and join operators.

Lemma 1.1 (Connecting Lemma) For all elements x, y of a poset,

1. x ≤ y ≡ (x ⊔ y) = y and

2. x ≤ y ≡ (x ⊓ y) = x.

Proof: For the first part, note that x ≤ y implies that y is an upper bound on {x, y}. It is
also the lub because any upper bound of {x, y} is greater than both x and y. Therefore,
(x ⊔ y) = y. Conversely, (x ⊔ y) = y means y is an upper bound on {x, y}. Therefore,
x ≤ y.

The proof for the second part is the dual of this proof.

Lattices, which are special kinds of posets, can be defined using the join and meet
operators as shown in the following discussion.

Definition 1.2 (Lattice) A poset (X,≤) is a lattice iff ∀x, y ∈ X ∶ x ⊔ y and x ⊓ y
exist.

The first two posets in Figure 1.3 are lattices, whereas the third one is not.
If ∀x, y ∈ X ∶ x ⊔ y exists, then we call it a sup semilattice. If ∀x, y ∈ X ∶ x ⊓ y

exists, then we call it an inf semilattice.

OPERATIONS ON POSETS 7

(a) (b)
0

b

c

a

1

0

a b c

1

Figure 1.4 (a) Pentagon(N5) and (b) diamond(M3).

In our definition of lattice, we have required existence of lub’s and glb’s for sets
of size two. This is equivalent to the requirement of existence of lub’s and glb’s for
sets of finite size by using induction. A poset may be a lattice, but it may have sets
of infinite size for which lub/glb may not exist. A simple example is that of the set
of natural numbers. There is no lub of set of even numbers, even though glb and
lub exist as min and max for any finite set. Another example is the set of rational
numbers. For a finite subset of rational numbers, we can easily determine lubs(and
glbs). However, consider the set {x | x ≤

√
2}. The lub of this set is

√
2, which is

not a rational number. A lattice for which any set has lub and glb defined is called a
complete lattice. An example of a complete lattice is the set of real numbers extended
with +∞ and −∞.

Definition 1.3 (Distributive Lattice) A lattice L is distributive if

∀a, b, c ∈ L ∶ a ⊓ (b ⊔ c) = (a ⊓ b) ⊔ (a ⊓ c).

It is easy to verify that the above-mentioned condition is equivalent to

∀a, b, c ∈ L ∶ a ⊔ (b ⊓ c) = (a ⊔ b) ⊓ (a ⊔ c).

Thus, in a distributive lattice, ⊔ and ⊓ operators distribute over each other.
Any power-set lattice is distributive. The lattice of natural numbers with ≤ defined

as the relation divides is also distributive. Some examples of nondistributive lattices
are diamond (M3) and pentagon (N5) shown in Figure 1.4.

1.5 OPERATIONS ON POSETS

Given any set of structures, it is useful to consider ways of composing them to obtain
new structures.

8 INTRODUCTION

1

00

2

(1,1)

(1,0)

(1,2)

1

(0,1)

(0,0)

(0,2)

Figure 1.5 Cross product of posets.

Definition 1.4 (Disjoint Sum) Given two posets P and Q, their disjoint sum,
denoted by P + Q, is defined as follows. Given any two elements x and y in P + Q,
x ≤ y iff

(1) both x and y belong to P and x ≤ y in P or
(2) both x and y belong to Q and x ≤ y in Q.

The Hasse diagram of the disjoint sum of P and Q can be computed by simply placing
the Hasse diagram of P next to Q.

Definition 1.5 (Cross Product of Posets) Given two posets P and Q, the cross prod-
uct denoted by P × Q is defined as

(P × Q,≤P×Q)

where
(p1, q1) ≤ (p2, q2)

def
= (p1 ≤P p2) ∧ (q1 ≤Q q2).

See Figure 1.5 for an example. The definition can be extended to an arbitrary indexing
set.

Definition 1.6 (Linear Sum) Given two posets P and Q, the linear sum (or ordinal
sum) denoted by P⊕ Q is defined as

x ≤P⊕Q y iff (x ≤P y) ∨ (x ≤Q y) ∨ [(x ∈ P) ∧ (y ∈ Q)].

1.6 IDEALS AND FILTERS

Let (X,≤) be any poset. We call a subset Y ⊆ X a down-set if

∀y, z ∈ X ∶ z ∈ Y ∧ y ≤ z ⇒ y ∈ Y .

Down-sets are also called order ideals. It is easy to see that for any x, D[x] defined
below is an order ideal. Such order ideals are called principal order ideals,

D[x] = {y ∈ X | y ≤ x}.

SPECIAL ELEMENTS IN POSETS 9

For example, in Figure 1.2, D[r] = {p, q, r}. Similarly, we call Y ⊆ X an up-set if

y ∈ Y ∧ y ≤ z ⇒ z ∈ Y .

Up-sets are also called order filters. We also use the notation below to denote prin-
cipal order filters

U[x] = {y ∈ X|x ≤ y}.

In Figure 1.2, U[p] = {p, q, r, s}.

The following lemma provides a convenient relationship between principal order
filters and other operators defined earlier.

Lemma 1.7 1. x ≤ y ≡ U[y] ⊆ U[x]
2. x = supY ≡ U[x] = ∩y∈YU[y].

Proof: Left as an exercise.

In some applications, the following notation is also useful:

U(x) = {y ∈ X|x < y}

D(x) = {y ∈ X|y < x}.

We will call U(x) the upper-holdings of x, and D(x), the lower-holdings of x.
We can extend the definitions of D[x],D(x),U[x],U(x) to sets of elements, A. For
example,

U[A] = {y ∈ X|∃x ∈ A ∶ x ≤ y}.

1.7 SPECIAL ELEMENTS IN POSETS

We define some special elements of posets such as bottom and top elements, and
minimal and maximal elements.

Definition 1.8 (Bottom Element) An element x is a bottom element or aminimum
element of a poset P if x ∈ P, and

∀y ∈ P ∶ x ≤ y.

For example, 0 is the bottom element in the poset of whole numbers and ∅ is the
bottom element in the poset of all subsets of a given set W. Similarly, an element x is
a top element, or a maximum element of a poset P if x ∈ P, and

∀y ∈ P ∶ y ≤ x.

A bottom element of the poset is denoted by ⊥ and the top element by ⊤. It is easy
to verify that if bottom and top elements exist, they are unique.

10 INTRODUCTION

Definition 1.9 (Minimal and Maximal Elements) An element x is a minimal ele-
ment of a poset P if

∀y ∈ P ∶ y ≮ x.

The minimum element is also a minimal element. However, a poset may have more
than one minimal element. Similarly, an element x is a maximal element of a poset
P if

∀y ∈ P ∶ y ≯ x.

1.8 IRREDUCIBLE ELEMENTS

Definition 1.10 (Join-irreducible) An element x is join-irreducible in P if it cannot
be expressed as a join of other elements of P. Formally, x is join-irreducible if

∀Y ⊆ P ∶ x = supY ⇒ x ∈ Y .

Note that if a poset has ⊥, then ⊥ is not join-irreducible because when Y = {},
supY is ⊥. The set of join-irreducible elements of a poset P will be denoted by
J(P). The first poset in Figure 1.3 has b,c and d as join-irreducible. The element
e is not join-irreducible in the first poset because e = b ⊔ c. The second poset has
b, and the third poset has b, c, d, and e as join-irreducible. It is easy to verify that
x ∉ J(P) is equivalent to x = supD(x). In a chain, all elements other than the bottom
are join-irreducible.

By duality, we can define meet-irreducible elements of a poset, denoted by M(P).
Loosely speaking, the set of (join)-irreducible elements forms a basis of the poset

because all elements can be expressed using these elements. More formally,

Theorem 1.11 Let P be a finite poset. Then, for any x ∈ P

x = sup(D[x] ∩ J(P)).

Proof: Left as an exercise.

An equivalent characterization of join-irreducible elements is as follows.

Theorem 1.12 For a finite poset P, x ∈ J(P) iff ∃y ∈ P ∶ x ∈ minimal(P − D[y]).
Proof: First assume that x ∈ J(P).

Let LC(x) be the set of elements covered by x. If LC(x) is singleton, then choose
that element as y. It is clear that x ∈ minimal(P − D[y]).

Now consider the case when LC(x) is not singleton (it is empty or has more than
one element). Let Q be the set of upper bounds for LC(x). Q is not empty because
x ∈ Q. Further, x is not the minimum element in Q because x is join-irreducible. Pick
any element y ∈ Q that is incomparable to x. Since D[y] includes LC(x) and not x, we
get that x is minimal in P − D[y].

The converse is left as an exercise.

APPLICATIONS: DISTRIBUTED COMPUTATIONS 11

1.9 DISSECTOR ELEMENTS

We now define a subset of irreducibles called dissectors.

Definition 1.13 (Upper Dissector) For a poset P, x ∈ P is an upper dissector if
there exists y ∈ P such that

P − U[x] = D[y].

In the above-mentioned definition, y is called a lower dissector. We will use dis-
sectors to mean upper dissectors.

A dissector x decomposes the poset into two parts U[x] and D[y] for some y. In the
first poset in Figure 1.3, b is an upper dissector because P − U[b] = P − {b, d, e} =
{a, c} = D[c]. However, d is not an upper dissector because P − U[d] = {a, b, c},
which is not a principal ideal.

The following result is an easy implication of Theorem 1.12.

Theorem 1.14 x is a dissector implies that x is join-irreducible.

Proof: If x is an upper dissector, then there exists y such that x is minimum in
P − D[y]. This implies that x is minimal in P − D[y].

1.10 APPLICATIONS: DISTRIBUTED COMPUTATIONS

As mentioned earlier, posets have a wide range of applications. In this book, we will
focus on applications to distributed computing and combinatorics.

Partial order play an important role in distributed computing because a distributed
computation is most profitably modeled as a partially ordered set of events. A dis-
tributed program consists of two or more processes running on different processors
and communicating via messages. We will be concerned with a single computation of
such a distributed program. Each process Pi in that computation generates a sequence
of events. There are three types of events—internal, send, and receive. It is clear how
to order events within a single process. If event e occurred before f in the process,
then e is ordered before f . How do we order events across processes? If e is the send
event of a message and f is the receive event of the same message, then we can order e
before f . Combining these two ideas, we obtain the following definition.

Definition 1.15 (Happened-Before Relation) The happened-before relation (→)
on a set of events E is the smallest relation on E that satisfies

1. If event e occurred before event f in the same process, then e → f ,

2. If e is the send event of a message and f is the receive event of the samemessage,
then e → f , and

3. If there exists an event g such that (e → g) and (g → f), then (e → f).

12 INTRODUCTION

P1

P2

P3

e1 e2 e3 e4 e5

f1 f2 f3 f4 f5

g1 g2 g3 g4

Figure 1.6 A computation in the happened-before model.

Formally, a computation in the happened-before model is defined as a tuple (E,→),
where E is the set of all events and → is a partial order on events in E. Figure 1.6
illustrates a computation where e2 → e4, e3 → f3, and e1 → g4.

Since a computation is a poset, all the concepts that we have defined for posets are
applicable to distributed computations. For example, in distributed computing, the
notion of a consistent global state is defined as follows.

Definition 1.16 A consistent global state of a distributed computation (E,→) is any
subset G ⊆ E such that

∀e, f ∈ E ∶ (f ∈ G) ∧ (e → f) ⇒ (e ∈ G)

As the reader can verify, there is one-to-one correspondence between consistent
global states and down-sets of a poset. Therefore, many results in lattice theory
carry over to distributed computing. For example, the set of all down-sets of a poset
forms a distributive lattice implies that the set of all consistent global states forms a
distributive lattice.

1.11 APPLICATIONS: COMBINATORICS

We now discuss an example from combinatorics. Integer partitions have been studied
in combinatorics for centuries. We show how we can use lattices to model sets of
integer partitions.

Definition 1.17 (Partition) An integer sequence 𝜆 = (𝜆1, ..., 𝜆k) is a partition of the
integer n if

1. ∀i ∈ [1, k − 1] ∶ 𝜆i ≥ 𝜆i+1

2.
∑k

i=1 𝜆i = n

3. ∀i ∶ 𝜆i ≥ 1.

For example, (5, 2, 2) and (4, 3, 2) are two of the partitions of 9. Integer partitions
are conveniently visualized using Ferrer’s diagrams.

NOTATION AND PROOF FORMAT 13

Figure 1.7 Ferrer’s diagram for (4, 3, 2) shown to contain (2, 2, 2).

Definition 1.18 (Ferrer’s Diagram) A Ferrer’s diagram for an integer partition
𝜆 = (𝜆1, ..., 𝜆k) of integer n is a matrix of dots where the ith row contains 𝜆i dots.
Thus, row i represents the ith part and the number of rows represents the number of
parts in the partition.

We define an order on the partitions as follows: Given two partitions
𝜆 = (𝜆1, 𝜆2,… , 𝜆m), 𝛿 = (𝛿1, 𝛿2,… , 𝛿n), we say that 𝜆 ≥ 𝛿 iff m ≥ n and
∀i ∶ 1 ≤ i ≤ n, 𝜆i ≥ 𝛿i. This can also be viewed in terms of containment in the
Ferrer’s diagram, i.e. 𝜆 ≥ 𝛿 if the Ferrer’s diagram for 𝛿 is contained in the Ferrer’s
diagram of 𝜆. For example, consider the partitions (4, 3, 2) and (2, 2, 2). The Ferrer’s
diagram for (2, 2, 2) is contained in the Ferrer’s diagram for (4, 3, 2) as shown in
Figure 1.7. Hence, (4, 3, 2) ≥ (2, 2, 2).

Definition 1.19 (Young’s Lattice) Given a partition 𝜆, Young’s lattice Y𝜆 is the
poset of all partitions that are less than or equal to 𝜆.

The Young’s lattice for (3, 3, 3) is shown in Figure 1.8. Note that partitions less than
a given partition are not necessarily partitions of the same integer.

Again, it follows easily from lattice theory that the Young’s lattice is distributive.
Furthermore, assume that we are interested in only those partitions in Y𝜆 which have
distinct parts. The notion of slicing posets (explained in Chapter 10 can be used to
analyze such subsets of integer partitions.

1.12 NOTATION AND PROOF FORMAT

We use the following notation for quantified expressions:

(op free-var-list : range-of-free-vars : expression)

where op is a universal or an existential quantifier, free-var-list is the list of variables
over which the quantification is made, and the range-of-free-vars is the range of the
variables. For example, (∀i ∶ 0 ≤ i ≤ 10 ∶ i2 ≤ 100) means that for all i such that
0 ≤ i ≤ 10, i2 ≤ 100 holds. If the range of the variables is clear from the context,
then we simply use

(op free-var-list : expression).

For example, if it is clear that i and j are integers, then we may write

∀i ∶ (∃j ∶ j > i).

14 INTRODUCTION

(3,1,1)

(3)

(3,3,1)

(3,3,3)

(3,3)

(1)

(2,1)

(3,2,1)

(3,3,2)

(3,2,2)

(2,2,2)

(1,1,1)

(1,1) (2)

(0)

(3,1)(2,1,1)

(2,2,1) (3,2)

(2,2)

Figure 1.8 Young’s lattice for (3, 3, 3).

We use a calculational style of proofs for many of our theorems. For example,
a proof that [A ≡ C] is rendered in our format as

A
≡ { hint why [A ≡ B] }

B
≡ { hint why [B ≡ C] }

C.

We use implication (⇒) instead of equivalence when proving A ⇒ C.
A predicate with free variables is assumed to be universally quantified for all pos-

sible values of free variables. We use the usual convention for binding powers of
operators. In order of increasing binding powers, the operators are as follows:

≡

⇒
∨,∧
¬
=,≠, <,≤, and other relational operators over integers and sets,
arithmetic operators, and
function applications.

Operators that appear on the same line have the same binding power, and we use
parentheses to show the order of application. We sometimes omit parentheses in

BIBLIOGRAPHIC REMARKS 15

expressions when they use operators from different lines. Thus

x ≤ y ∧ y ≤ z ⇒ x ≤ z

is equivalent to
∀x, y, z ∶ (((x ≤ y) ∧ (y ≤ z)) ⇒ (x ≤ z)).

1.13 PROBLEMS

1.1. Give an example of a nonempty binary relation that is symmetric and transitive
but not reflexive.

1.2. The transitive closure of a relation R on a finite set can also be defined as the
smallest transitive relation on S that contains R. Show that the transitive closure
is uniquely defined. We use “smaller” in the sense that R1 is smaller than R2 if
|R1| < |R2|.

1.3. Show that if P and Q are posets defined on set X, then so is P ∩ Q.

1.4. Draw the Hasse diagram of all natural numbers less than 10 ordered by the rela-
tion divides.

1.5. Show that if C1 and C2 are down-sets for any poset (E, <), then so is C1 ∩ C2.

1.6. Show the following properties of ⊔ and ⊓.

(L1) a ⊔ (b ⊔ c) = (a ⊔ b) ⊔ c (associativity)

(L1)𝛿 a ⊓ (b ⊓ c) = (a ⊓ b) ⊓ c

(L2) a ⊔ b = b ⊔ a (commutativity)

(L2)𝛿 a ⊓ b = b ⊓ a

(L3) a ⊔ (a ⊓ b) = a (absorption)

(L3)𝛿 a ⊓ (a ⊔ b) = a

1.7. Prove Lemma 1.7.

1.8. Prove Theorem 1.11.

1.9. Complete the proof of Theorem 1.12.

1.14 BIBLIOGRAPHIC REMARKS

The first book on lattice theory was written by Garrett Birkhoff [Bir40, Bir48, Bir67].
The reader will find a discussion of the origins of lattice theory and an extensive
bibliography in the book by Gratzer [Grä71, Grä03]. The book by Davey and Priestley

16 INTRODUCTION

[DP90] provides an easily accessible account of the field. Some other recent books
on lattice theory or ordered sets include books by Caspard, Leclerc, and Monjardet
[CLM12], and Roman [Rom08]. The happened-before relation on the set of events
in a distributed computation is due to Lamport [Lam78]. Reading [Rea02] gives a
detailed discussion of dissectors and their properties. The proof format adopted for
many theorems in this book is taken from Dijkstra and Scholten [DS90].

