
1

c01.indd 02:33:19:PM 02/15/2017 Page 1

Welcome to Wireshark for Security Professionals. This introductory chapter covers

three broad topics. In the fi rst part, we discuss what Wireshark is used for and

when to use it.

The second part of this chapter introduces the popular graphic user interface

(GUI). The GUI for Wireshark can appear quite busy at fi rst, so we immediately

want to get familiar with its layout. We break down the different areas of the

interface, how they relate to one another, and the reasoning for needing each

one. We also discuss how and when each part of the interface helps you maxi-

mize your use of Wireshark.

In the third part of this chapter, we discuss the way Wireshark fi lters data

presented on the interface. Being familiar with Wireshark’s interface helps you

appreciate all the data presented, but the amount of data can still be overpow-

ering. Wireshark offers ways to fi lter or separate what you need from all that

is presented. The last part is about different types of fi lters and how you can

customize these fi lters.

Wireshark can appear to be a complicated tool, but by the end of this fi rst

chapter, the hope is you have a much higher comfort level with the tool’s pur-

pose, interface, and ability to present you with what you want to see.

 C H A P T E R

1

Introducing WiresharkWireshark

CO
PYRIG

HTED
 M

ATERIA
L

2 Chapter 1 ■ Introducing Wireshark

c01.indd 02:33:19:PM 02/15/2017 Page 2

What Is Wireshark?

Wireshark, in its most basic sense, is a tool to understand data you capture from

a network. The captured data is interpreted and presented in individual packet

form for analysis, all within Wireshark. As you probably already know,

packets are the chunks of data streaming on a network. (Technically, depend-

ing on the context level of where in the system the data is interpreted, chunks

are called frames, datagrams, packets, or segments, but we’ll just use “packets” for

now.) Wireshark is a network and protocol analyzer tool, free for download and

use on a variety of platforms, spanning many fl avors of Unix and Windows.

Wireshark fi rst captures the data from a network interface and then breaks

the capture into the frames, segments, and packets, understanding where they

begin and end. Wireshark then interprets and presents this data in the context

of addressing, protocols and data. You can analyze the captures immediately

or save them to load later and share with others. In order for Wireshark to

view and capture all packets, not just those involving the capturing system,

the network interface is placed in promiscuous mode (also called monitor mode)e
in the context of capturing on a wireless network. Finally, what grants you the

ability to analyze packets in Wireshark are the dissectors. All these basic ele-

ments are discussed in more detail in Chapter 4, in the context of “sniffi ng” or

capturing data, and how that captured data is interpreted.

A Best Time to Use Wireshark?

Wireshark is an immensely powerful tool with quite a bit of deep and complex

functionality. It is capable of handling a wide range of known (and unknown)

protocols. But although the functionality range is broad, most of it aligns to

one end: to capture packets and analyze them. Being able to take the bits and

bytes and present them in an organized, familiar, and human-readable format

is what brings people to think of using Wireshark.

Before launching Wireshark, it’s important to understand when to use it and

when not to use it. Sure, it’s a great tool, but like any tool, it’s best used when

it’s the right tool for the job.

Here are scenarios when it’s ideal to use Wireshark:

■ To look for the root cause of a known problem

■ To search for a certain protocol or stream between devices

■ To analyze specifi c timing, protocol fl ags, or bits on the wire

And while not ideal, Wireshark can also be used:

■ To discover which devices or protocols are the top talkers

■ To see a rough picture of network traffi c

■ To follow a conversation between two devices

 Chapter 1 ■ Introducing Wireshark 3

c01.indd 02:33:19:PM 02/15/2017 Page 3

You get the idea. Wireshark is ideal for determining a root cause of an

understood problem. While not ideal for browsing network traffi c or making

high-level judgments about the network, Wireshark does have some features to

show those statistics. But Wireshark can’t and shouldn’t be the fi rst tool thought

of early on in discovering a problem. Someone who opens Wireshark to skim

through the list of packets to assess network health would soon be overwhelmed.

Instead, Wireshark is for problem solvers, for the detectives who already know

their suspects well.

Avoiding Being Overwhelmed

The majority of people who walk away from Wireshark do so because they

fi nd it overwhelming after only a few early experiences. To label Wireshark

as overwhelming is misleading, however. What really paralyzes new users is

the traffi c, the list of packets fl ying by, not the application’s functionality. And,

fair enough, once you start a capture and the packets scroll by in real time, it’s

defi nitely intimidating. (But that’s what fi lters are for!)

To avoid being overwhelmed, consider two aspects of Wireshark before
diving into it:

■ The interface—how it’s laid out and why

■ Filters—how they work to reveal what you want

Once you get a quick appreciation of the tool’s interface and how to write a

fi lter, Wireshark suddenly appears intuitive and shows its power, without the

scare factor. And that’s what we focus on for the rest of this chapter.

The following sections are on the most important aspects that you need

immediately to be comfortable using Wireshark. If you are already familiar with

Wireshark, as well as fi lters, feel free to skim this chapter as a refresher so that

you can be sure you are on the same page for the rest of the book.

The Wireshark User Interface

We start with the busy Wireshark GUI, which is packed with features. We

provide a high-level overview of where you need to look to start seeing some

packet data. With packet capturing covered, we then discuss the more power-

ful features of Wireshark, starting with dissectors. In Wireshark, dissectors are

what parse a protocol and decode it for presenting on the interface. They enable

Wireshark to give the raw bits and bytes streaming across the wire some context

by displaying them into something more meaningful to the human analyst. We

then round off the chapter by covering the various fi lters available to help limit

and zero in on just the network data you are interested in.

The home screen appears when you open Wireshark. On this screen are

shortcuts you can use to start a new capture or open a previous capture fi le.

4 Chapter 1 ■ Introducing Wireshark

c01.indd 02:33:19:PM 02/15/2017 Page 4

For most newcomers to Wireshark, the brightly colored Capture button is the

most attractive option. Starting a capture leads to a fl urry of scrolling packets,

which for the newcomer then leads to overwhelm. But let’s go back to the home

screen. There are also links to online documentation that you can use to fi gure

out how to accomplish a certain task.

On the top of the screen, as shown in Figure 1-1, is the menu bar in the classic

format you are probably familiar with. These menus have settings and other

features like statistics that can be accessed when needed. (Don’t worry—we aren’t

really worried about statistics.) Below these menus is the Main toolbar, which

has quick access icons for the functionality you will use most while analyzing

network traffi c. These icons include things like starting or stopping a capture,

and the various navigation buttons for fi nding your way around captured pack-

ets. Icon buttons are typically grayed if not applicable or usable—for example,

without a capture yet.

Icons change over time from version to version. At the time this book was written,

the blue shark fi n starts a capture and the red square stops a capture. The shark

fi n is gray until the network interface is chosen, and we cover that soon. Also note

that this toolbar area gives you a visual indication of the capture process. Again,

many options are grayed out in Figure 1-1 because we are not yet capturing or

don’t have a capture completed. As you go through this chapter, pay attention to

this area to understand how it changes and how it refl ects the various capture

states. In many respects, Wireshark has an intuitive user experience.

Figure 1-1: The Wireshark home screen

 Chapter 1 ■ Introducing Wireshark 5

c01.indd 02:33:19:PM 02/15/2017 Page 5

The Filter toolbar, which is below the Main toolbar, is a vital part of the

Wireshark UI. You will soon fall in love with this little box, as you often fi nd

yourself drowning in a torrent of traffi c. The Filter toolbar lets you remove what-

ever is uninteresting to the task at hand and presents just what you’re looking

for (or takes out what you’re not looking for). You can enter display fi lters in the

Filter text box that help you drill down what packets you see in the Packet List

pane. We discuss fi lters in detail later in this chapter, but for now just trust me:

They will be your new best friends.

Packet List Pane

The largest portion in the middle of the interface is reserved for the packet list.

This list shows all the packets captured along with useful information, such as

source and destination IP, and the time difference between when the packets

were received. Wireshark supports color coding various packets to make sorting

of traffi c and troubleshooting easier. You can add custom colors for packets of

interest, and the columns within the Packet List pane display useful informa-

tion such as the protocol, packet length, and other protocol-specifi c information

(see Figure 1-2).

Figure 1-2: The Packet List pane

This window is the bird’s-eye view into the network you are sniffi ng or the

packet capture you have loaded into Wireshark. The last column, by default

6 Chapter 1 ■ Introducing Wireshark

c01.indd 02:33:19:PM 02/15/2017 Page 6

labeled “Info,” offers a quick summary of what that packet contains. Of course,

it depends on the packet, but it might be the URL for an HTTP request or the

contents of a DNS query, which is really useful for getting a quick handle on

important traffi c in your capture.

Packet Details Pane

Below the Packet List pane is the Packet Details pane. The Packet Details pane shows

information for the selected packet in the Packet List pane. This pane contains a ton

of information, down to what the various bytes are within the packet. Information

such as the source and destination MAC address is included here. The next row

contains IP information. The next row reveals the packet is sending to UDP port

58351. The next row reveals what information is contained in that UDP packet.

These rows are ordered by the headers as they are ordered when sending

data on the network. That means they are subject to change if you are capturing

on a different type of network, such as a wireless network, that has different

headers. The DNS column, which is the application data encapsulated within

UDP, is expanded in Figure 1-3. Notice how Wireshark allows you to easily pull

out information, such as the actual DNS query that was made within this DNS

packet. This is what makes Wireshark the powerful network analysis tool that it

is. You don’t have to memorize the DNS protocol to know which bits and bytes

at what offset translate into a DNS query.

Figure 1-3: The Packet Details pane

 Chapter 1 ■ Introducing Wireshark 7

c01.indd 02:33:19:PM 02/15/2017 Page 7

Subtrees

Because the details would be overwhelming if shown all at once, the informa-

tion is organized and collapsed into sections. The sections, called subtrees, can

be collapsed and expanded to display only what you need. (In Figure 1-2, the

subtrees are collapsed; in Figure 1-3, they are expanded.)

N O T E You might hear the message sent between devices referred to as a data

frame or a packet. But what’s the diff erence? When referring to the message at the

OSI layer 2 (the data link layer, where the MAC address is used), the whole message is

called a frame. When referring to the message at OSI model layer 3 (the network layer,

for example, using the IP address), then the message is called a packet.

If you’re already familiar with how a data frame is structured, you rec-

ognize how the packet details subtrees are divided. Details are structured

into subtrees along the lines of the data frame’s headers. You can collapse/expand a

subtree by clicking the arrow sign next to the relevant section. The arrow is

pointing to the right if the subtree is collapsed. Once you click on the arrow to

expand that subtree, you’ll see the arrow points down (refer to Figure 1-3). And,

of course, you’ll always have the option to expand or collapse all subtrees by

right-clicking anywhere in the Packet Details pane to launch its pop-up menu.

In Figures 1-2 and 1-3, packet number 7 is selected. Whatever packet is selected

in the Packet List pane is the packet presented in the panes below it. In this case,

it’s packet number 7 showing within the Packet Details pane.

N O T E Packets are usually numbered based on the time they are received, although

this isn’t guaranteed. The packet capture (pcap) library determines how to order the

packets.

If you double-click this packet, a separate window appears, to open the packet details.

This is useful when you want to visually compare two different packets quickly.

The Packet Details area in Figure 1-3 shows various rows of information that

can be expanded or collapsed.

Capturing Enough Detail

The fi rst row contains metadata regarding the packet, such as the number of

the packet, when it was captured, on what interface it was captured, and the

number of bytes captured versus the number of bytes that were on the wire.

That last part might sound a little strange. Wouldn’t you always capture all

the bytes that go across the wire? Not necessarily. Some network capture tools

allow you to capture only a subset of the bytes that are actually transmitted

across the wire. This is useful if you only want to get an idea of the type of

packets that are going across the wire but not what actual data those packets

8 Chapter 1 ■ Introducing Wireshark

c01.indd 02:33:19:PM 02/15/2017 Page 8

have, which can greatly reduce the size of the packet capture. The downside,

of course, is that you get only a limited amount of information. If disk space is

not an issue, feel free to capture it all. Just be mindful that you are capturing

and storing all traffi c traversing that network cable, which can quickly become

a signifi cant amount.

There are ways to limit the size of the capture. For example, instead of truncated

packet data, capture only specifi c packet types and not all traffi c. If someone

wants to send you a capture, or if you want to see specifi c traffi c, you can have

Wireshark capture only the traffi c you want, saving space. Everything is done

using the right fi lters—and that section is coming soon enough!

Packet Bytes Pane

What follows the Packet Details pane is the Packet Bytes pane. This pane is at

the bottom of the screen and wins the award for least intuitive. At fi rst glance,

it simply looks like gibberish. Bear with me for a couple of paragraphs; it will

all make sense soon.

Off sets, Hex, and ASCII

You can see the Packet Bytes pane is divided into three columns. The fi rst, left-

most column simply counts incrementally: 0000, 0010, 0020, and so on. That’s

the offset (in hexadecimal) of the selected packet. Here, offset simply means the

number of bits off from the beginning—again, counting in hexadecimal (where

0x0010 = 16 in decimal). The middle column shows information, in hexadecimal,

at that offset. The right-hand column shows the same information, but in ASCII.

For example, the total amount of information from the very beginning (offset

0000) to offset 0010 is 16 bytes. The middle column shows each of the 16 bytes

in hex. The right-hand column shows each of the 16 bytes in ASCII characters.

When a hexadecimal value doesn’t translate to a printable ASCII character, only

a “.” (period), is shown. So the Packet Bytes pane is actually the raw packet data

as seen by Wireshark. By default, it is displayed in hex bytes.

Right-clicking the pane gives you the option to convert the hex bytes into

bits, which is the purest representation of the data, though often this might

not be as intuitive as the hex representation. Another neat feature is that any

row you highlight within the Packet Details pane causes the corresponding

data within the Packet Bytes pane to be highlighted. This can be helpful when

troubleshooting Wireshark’s dissection, as it allows you to see exactly which

packet bytes the dissector is looking at.

 Chapter 1 ■ Introducing Wireshark 9

c01.indd 02:33:19:PM 02/15/2017 Page 9

Filters

When you start your fi rst packet capture, a lot will probably be going on in the

Packet List pane. The packets move across the screen too fast to make sense of

anything meaningful. Fortunately, this is where fi lters can help. Filters are the

best way to quickly drill down to the information that matters most during your

analysis sessions. The fi ltering engine in Wireshark allows you to narrow down

the packets in the packet list so that communication fl ows or certain activity by

network devices becomes immediately apparent.

Wireshark supports two kinds of fi lters: display fi lters and capture fi lters. Display

fi lter are concerned only with what you see in the packet list; capture fi lters

operate on the capture and drop packets that do not match the rules supplied.

Note that the syntax of the two types of fi lters is not the same.

Capture fi lters use a low-level syntax called the Berkeley Packet Filter (BPF),

whereas display fi lters use a logic syntax you will recognize from most popular

programming languages. Three other packet-capturing tools—TShark, Dumpcap,

and tcpdump—also use BPF for capture fi ltering, as it’s quick and effi cient.

TShark and Dumpcap are both command-line packet-capturing tools and pro-

vide analysis capabilities, the former being the command-line counterpart to

Wireshark. TShark, covered more deeply with example output, is introduced in

Chapter 4. The third, tcpdump, is strictly a packet-capturing tool.

Generally, you use capture fi lters when you want to limit the amount of

network data that goes into processing and is getting saved; you use display

fi lters to drill down into only the packets you want to analyze once the data

has been processed.

 Capture Filters

There are times when capturing network traffi c that you can limit the traffi c

you want beforehand; at other times you will have to because the capture fi les

will grow too large too fast if you don’t start fi ltering. Wireshark allows you

to fi lter traffi c in the capture phase. This is somewhat similar to the display

fi lters, which you will read about later in this chapter, but there are fewer fi elds

that can be used to fi lter on, and the syntax is different. It’s most important to

understand that a capture fi lter screens packets before they are captured. A

display fi lter, however, screens what saved packets are displayed. Therefore,

a restrictive capture fi lter means your capture fi le will be small (and thus a

smaller number of displayed packets, too). But using no capture fi lter means

10 Chapter 10 ■ Introducing Wireshark

c01.indd 02:33:19:PM 02/15/2017 Page 10

capturing every packet, and thus a large capture fi le, on which display fi lters

can be used to narrow the list of packets shown.

While it makes sense for Wireshark to capture everything by default, it does

actually use default capture fi lters in some scenarios. If you are using Wireshark

on a remote session, such as through Remote Desktop or through SSH, then

capturing every packet would include many packets relaying the session traffi c.

Upon startup, Wireshark checks to see whether a remote session is in use. If so,

a capture fi lter to fi lter out remote session traffi c is in use by default.

The building blocks of a capture fi lter are the protocol, direction, and type. For

example, tcp dst port 22 captures only TCP packets with a destination port

of 22. The possible types are:

■ host

■ port

■ net

■ portrange

Direction can be set using src or dst. As you suspect, src is for capturing

from a specifi ed source address, while dst can specify the destination address.

If it is not specifi ed, both will be matched. In addition to specifying one direc-

tion, the following combined direction modifi ers can be used: src or dst and

src and dst.

In a similar way, if a type is not specifi ed, a host type will be assumed. Note

that you need to specify at least one object to compare to; the host modifi er

will not be assumed if you would only specify an IP address as fi lter and will

result in a syntax error.

The direction and protocol can be omitted to match a type in both source and

destination across all protocols. For example, dst host 192.168.1.1 would only

show traffi c going to the specifi ed IP. If dst is omitted, it would show traffi c to

and from that IP address.

The following are the most commonly used BPF protocols:

■ ether (fi ltering Ethernet protocols)

■ tcp (fi ltering TCP traffi c)

■ ip (fi ltering IP traffi c)

■ ip6 (fi ltering IPv6 traffi c)

■ arp (fi ltering ARP traffi c)

In addition to the standard components, there is a set of primitives that do not

fi t in one of the categories:

■ gateway (matches if a packet used the specifi ed host as gateway)

■ broadcast (for broadcast, not unicast, traffi c)

 Chapter 1 ■ Introducing Wireshark 11

c01.indd 02:33:19:PM 02/15/2017 Page 11

■ less (less than, followed by a length)

■ greater (greater than, followed by a length)

These primitives can be combined with the other components. For example,

ether broadcast will match all Ethernet broadcast traffi c.

Capture fi lter expressions can be strung together using logical operators.

Again, with both the English and the logical notation:

■ and (&&)

■ or (||)

■ not (!)

For example, here are some fi lters for systems named alpha and beta:

■ host beta (captures all packets to and from the alpha system)

■ ip6 host alpha and not beta (captures all IP packets between alpha

and any host except beta)

■ tcp port 80 (captures all TCP traffi c across port 80)

Debugging Capture Filters

Capture fi lters operate on a low level of the captured network data. They are

compiled to processor opcodes (processor language) in order to ensure high

performance. The compiled BPF can be shown by using the -d operator on

tcpdump, Dumpcap, or TShark, and in the Capture Options menu in the GUI.

This is useful when debugging a problem where your fi lter is not doing exactly

what you were expecting. The following is an example output of a BPF fi lter:

localhost:~$ dumpcap -f "ether host 00:01:02:03:04:05" -d
Capturing on 'eth0'
(000) ld [8]
(001) jeq #0x2030405 jt 2 jf 4
(002) ldh [6]
(003) jeq #0x1 jt 8 jf 4
(004) ld [2]
(005) jeq #0x2030405 jt 6 jf 9
(006) ldh [0]
(007) jeq #0x1 jt 8 jf 9
(008) ret #65535
(009) ret #0

As previously mentioned, using the -d operator will show the BPF code

for the capture fi lter. And, used in the example above, the -f operator will show

the libpcap fi lter syntax.

12 Chapter 1 ■ Introducing Wireshark

c01.indd 02:33:19:PM 02/15/2017 Page 12

Following is a line-by-line explanation of the BPF:

■ Line 0 loads the offset for the second part of the source address.

■ Line 1 compares the packet at the offset to 2030405 and jumps to line 2 if

it matches, or line 4 if it doesn’t match.

■ Lines 2 and 3 load the offset for the fi rst part of the source address and

compare it to 0001. If this also matches, it can return 65535 to capture

this packet.

■ Lines 4 through 7 do the same as lines 0 through 3 but for the destination

address.

■ Lines 8 and 9 are instructions to return.

You can use this method of analyzing the fi lter step by step to verify where

the fi lter is going wrong.

Capture Filters for Pentesting

We suspect you already know this, but we’ll add this, just in case: “Pentesting”

is short for penetration testing, the art of testing a computer, network, or applica-

tion to search for vulnerabilities. Any pentesters reading this book are familiar

with the concept that you end up getting blamed for every problem that happens

on the network even if you aren’t connected to it at the time. As such captur-

ing data on a pentest is helpful when you need to prove to upset clients that

you genuinely had nothing to do with the switch dying or a business-critical

SCADA system exploding. It is also helpful when you need to review your packet

captures for general information gathering or post-test analysis and reporting.

The following snippet would capture all your outgoing traffi c to serve as a

logbook for your actions on the network. It captures only traffi c coming from

your network card identifi ed by the MAC address and saves it split up in mul-

tiple time-stamped fi les prefi xed by pentest. Notice that Dumpcap was used

here instead of the GUI or TShark.

dumpcap -f "ether src host 00:0c:29:57:b3:ff" -w pentest -b
 filesize:10000

You can run this snippet in the background, as running an entire instance

of Wireshark would tie up too much of the system resources.

Saving only the outgoing traffi c is not much use for pentest analysis. To cap-

ture all traffi c going to and from your testing machine combined with broadcast

traffi c, use the following snippet:

dumpcap -f "ether host 00:0c:29:57:b3:ff or broadcast" -w pentest -b
 filesize:10000

 Chapter 1 ■ Introducing Wireshark 13

c01.indd 02:33:19:PM 02/15/2017 Page 13

As you can see, only the src directive was dropped, and a broadcast expres-

sion was combined with the Ethernet expression using the or statement.

The following pentesting snippet can also be used to capture traffi c to and

from a list of IP addresses, such as all the IPs that are in scope for your pentest.

This applies to cases where you are using multiple virtual machines and thus

MAC addresses, but you want to be able to log all relevant traffi c.

dumpcap -f "ip host 192.168.0.1 or ip host 192.168.0.5"

The list of hosts could get a little large to type by hand, so it is more practical

to store your in-scope targets in a hosts.txt fi le and use it instead. To generate

the fi lter itself, use the following one-liner and strip the last or:

cat hosts.txt | xargs -I% echo -n "ip host % or "

Display Filters

To get started with display fi lters, we begin with a brief explanation of the syntax

and available operators, followed by a walkthrough of a typical use that should

get you up to speed in no time.

The display fi lter syntax is based on expressions returning true or false

by using operators for comparison. This can be combined with Boolean logic

operators to combine several expressions so that you can really drill down your

results. See Table 1-1 for the most common comparison operators.

Table 1-1: Comparison Operators

ENGLISH CLIKE DESCRIPTION

eq == Equal

ne != Not equal

gt > Greater than

lt < Less than

ge >= Greater than or equal to

le <= Less than or equal to

Contains Tests if the fi lter fi eld contains a given value

Matches Tests a fi eld against a Perl style regular expression

Source: http://www.wireshark.org/docs/wsug_html_chunked/ChWorkBuildDisplayFilter-
Section.html

If you have used any modern programming language, the syntax should

look familiar. To make a useful expression, you have to match these operators

14 Chapter 14 ■ Introducing Wireshark

c01.indd 02:33:19:PM 02/15/2017 Page 14

against variables in the packet. This is possible in Wireshark by accessing vari-

ables grouped by protocol. For example, ip.addr would contain the destination

and the source address. The following statement fi lters all the traffi c coming

from or going to the supplied IP address: ip.addr == 1.2.3.4. This works by

matching against both the destination and the source address header in the IP

packet so that it will return true for packets in both directions.

N O T E Keep in mind that the expression tests both values of the specifi ed variable

if it occurs more than once in the packet. For example, eth.addr will match both the

source and destination. This can lead to unexpected behavior if the expressions are

grouped incorrectly. This is especially true in expressions featuring negation, such as

eth.addr != 00:01:02:03:04:05 . This will always return true.

In the previous example on comparison operators, an IP address was compared

to the variable ip.addr to only show traffi c from and to that IP. If you were tor

try to compare the same variable to google.com, Wireshark would present an

error message because the variable is not an IP address. The variables available

to use in expressions are typed. This means that the language expects an object

of a certain type to be compared only to a variable of the same type. To see the

available variables and their types, you can use the Wireshark Display Filter

Reference page at http://www.wireshark.org/docs/dfref/. In practice, you can

also see the values Wireshark expects for each element in the packet by inspect-

ing the packet using the Packet Details pane. The variable names can be found

on the bottom left of the screen in the status bar or looked up in the reference.

The status bar lists the fi lter fi eld for the selected line in the Packet Details pane.

For an example of this, see Figure 1-4. A packet is captured, and 1 byte is high-

lighted in the Packet Details pane. The 1-byte portion denotes the IP version. See

the lower left of the application, on the status bar: “Version (ip.version), 1 byte.”

Figure 1-4: Field information in the status bar

 Chapter 1 ■ Introducing Wireshark 15

c01.indd 02:33:19:PM 02/15/2017 Page 15

A good way to fi lter the available packets is to decide on an expression by

inspecting a packet that interests you. It is easier to see the differentiating

markers between packets you do want to see by comparing fi elds in the Packet

Details pane. As shown in Figure 1-5, each fi eld in the ARP packet is listed with

a readable value (hex in the Packet Details pane) followed by the raw value (on

the right side of the Packet Details pane). Both of these values can generally be

used in an expression, as Wireshark transforms the readable format to the cor-

responding raw format for your convenience. For example, if you want to see

only ARP requests in the Packet List pane, the fi lter would be arp.opcode == 1.

In this case, typing request would not work, because it is not a named rep-

resentation of the same data. (The number 1 could mean many things.) With

MAC addresses, protocol names, and so on, the named version can be used.

Figure 1-5: ARP packet Opcode

Usually a single expression is not specifi c enough to narrow down the stream

of packets you are looking for when dealing with larger packet captures, as is

the case with Figure 1-5. To locate the exact set of packets you want to see, you

can combine expressions by logical operators. Table 1-2 shows the available

operators. The symbol and English-word operator can be used interchangeably

according to personal preference.

Table 1-2: Logical Operators

ENGLISH CLIKE DESCRIPTION

and && Logical AND. Returns true if both expressions are true.

or || Logical OR. Returns true if one or both expressions are true.

xor ^^ Logical Exclusive OR. Returns true if only one of both expres-
sions is true.

Continues

16 Chapter 16 ■ Introducing Wireshark

c01.indd 02:33:19:PM 02/15/2017 Page 16

ENGLISH CLIKE DESCRIPTION

not ! Logical NOT. Negates the following expression.

[] Slice operator. With this operator a slice (substring) of the string
can be accessed. dns.resp.name[1..4] accesses the fi rst
four characters of the DNS response name.

() Groups expressions together.

Source: http://www.wireshark.org/docs/wsug_html_chunked/ChWorkBuildDisplayFilter-
Section.html

Building Display Filters Interactively

To quickly gain experience at building fi lters, you can use the graphical interface

of Wireshark and the various context menus to build fi lters interactively. Start by

right-clicking on a section of a packet that interests you, and then select Apply

as Filter ➪ Selected to fi lter the packet list by the selected variable. For example,

selecting the source IP address fi eld and applying a fi lter to it is a good way to

start quickly narrowing down the packets you are interested in.

After fi ltering for this particular IP address, you might want to add a destina-

tion port to the fi lter to only see traffi c from this host to port 80. This can also be

done in the GUI without throwing away the current fi lter by right-clicking the

source port in the Packet Details pane and selecting Apply as Filter➪ Selected

to combine the new fi lter with the old one using and. The GUI also lists other

combinations, such as or, not, and so on. Additionally, you can use the Prepare

as Filter context menu to create the fi lter without actually applying it to your

Packet List pane.

Figure 1-6 shows an example of the display fi lter code after selecting two

items: ARP protocol packets and the source MAC address.

Figure 1-6: Filter results of ARP from a source address

Table 1-2 (continued)

 Chapter 1 ■ Introducing Wireshark 17

c01.indd 02:33:19:PM 02/15/2017 Page 17

After selecting ARP to apply as a fi lter, only ARP protocol packets from

various systems were displayed in the Packet List pane. Subsequently selecting

a source MAC (SamsungE_e1:ad:3c) as a fi lter expression, the display fi lter was

amended to become arp.src.hw_mac == c4:57:6e:e1:ad:3c.

Figure 1-7 shows how complex fi lter statements can be built using this technique.

As you can see in the status bar, Wireshark might suggest adding parentheses

or suggest the User Guide. In upcoming chapters we will build and use many

fi lters; this is just to show that fi lters can certainly grow past one or two functions.

Figure 1-7: Complex display filter example

You can always use the context menus to edit the fi lter in the Filter bar after

you start it. If building them interactively, make sure you are aware of the fi lters

Wireshark applies for you by noting what syntax was inserted in the Filter bar.

Building fi lters interactively provides a great way to understand the most

commonly used fi lter fi elds and protocols. This will pay off when dealing with

advanced Wireshark use cases in the future.

Summary

Congratulations on fi nishing the fi rst chapter. It’s a fairly light chapter, as we

haven’t begun actually working with the application yet. Given the belief that

new Wireshark users are commonly surprised by the fast-growing number of

packets, the book aims to nip overwhelm before it happens. The two big areas

to cover before actually using Wireshark are the GUI and fi lters.

18 Chapter 18 ■ Introducing Wireshark

c01.indd 02:33:19:PM 02/15/2017 Page 18

We provided a general overview of the GUI, focusing on its layout and the

reasoning behind it. The layout is divided into three panes: Packet List, Packet

Details, and Packet Bytes. The panes present packet data at different levels of

detail and serve to help the user drill down to individual bytes.

The chapter also discussed Wireshark’s two types of fi lters. You can use cap-

ture fi lters to fi lter what packets are captured. Capture fi lters operate while a

capture is taking place, screening what network traffi c is kept and what traffi c

is ignored. You also can use display fi lters to fi lter what packets are presented.

Display fi lters operate either while a capture is taking place or after a capture

has fi nished.

The next chapter presents options for running Wireshark, particularly using

virtual environments.

Exercises

 1. Consider existing network issues you might have where Wireshark might

be helpful. (Knowing these issues might be useful in later chapters.)

 2. Write down a few fi lter examples to help in the case of exercise #1.

 3. Design a display fi lter that will help you see DHCP request and response

traffi c for when another machine fi rst connects to the network.

