
 Par t

I
Introduction too ArduinoIntroduction too Arduino

In This Part

Chapter 1: Introduction to Arduino

Chapter 2: Programming for the Arduino

Chapter 3: Electronics Basics

CO
PYRIG

HTED
 M

ATERIA
L

3

Electronics enthusiasts have always been present. For decades, they have been

creating interesting devices and products. Amateur radio enthusiasts typically

made their own radio sets using schematics found in magazines or simply from

their own design. How many of us built a radio system to discover electronics,

only to be hooked? With a few dollars’ worth of components, you could create

your own radio and listen to glorious long-wave transmissions on a small low-

quality speaker, and yet it was better than what could be bought in the shops

because it was homemade. If you wanted better sound, you could buy a better

speaker. More volume? There were kits for that, too. Audiophiles built their own

amplifi ers and accessories depending on their needs. Electronics shops proposed

books for all levels, from beginner to expert. Kits were also available using the

simplest of components all the way to entire computer systems. It was a time

in which you could build just about anything, and everything. You could, quite

literally, walk into an electronics shop, buy a DIY computer, and spend a few

hours soldering memory chips onto a printed circuit board. That’s how I started.

In the 1990s, things changed slightly. Most hobbyists had a PC on their desk

and could use them to create schematics, simulate parts of a system, and even

print circuit board with transparent layouts, making the entire process much

easier. However, something was missing. Almost all the devices that could be

made were not programmable. Microprocessors were available but were either

too expensive or too complicated. At the time, the 68000 microprocessor was

one of the most reliable components available and was relatively cheap but

C H A P T E R

1

Introduction to Arduinoo Arduino

4 Part I ■ Introduction to Arduino

complex. The microprocessor by itself was useless; it had to be hooked up to

external memory. To run a program on every boot, it had to also have read-only

memory. If you wanted interrupts, again, you had to add a chip into the design.

The end result was complicated and out of the reach of some enthusiasts. To do

without this complexity, enthusiasts that wanted programmable devices tended

to use what was already on their desk: a personal computer.

Most PCs at the time used the ISA bus, as shown in Figure 1-1. ISA was a

simple bus that allowed components to be added to the processor and general

computer system. It was a simple system that allowed users to insert add-on cards

into their computer, and it was extremely easy to use. It wasn’t hard to create

a circuit board that could be plugged into an ISA slot, and complete prototyp-

ing boards existed, enabling enthusiasts and engineers to test a solution before

making their own board. Some of these boards even included breadboards, a

simple system allowing users to place their components and wires without the

need to solder. This sparked a small revolution, and many enthusiasts turned

to this type of board to do what previously could not be done: create program-

mable systems. An ISA board could have digital inputs and outputs, analog

inputs and outputs, radios, communication devices—just about anything was

possible. All this would be controlled by the computer’s CPU, using simple

programming languages such as C or Pascal. My ISA card kept my student

apartment nice and warm by reading data from a thermometer and turning

on electric heaters, acting like a thermostat. It also served as an alarm clock,

programmed depending on my classes the next day. Although I did manage

to miss a few morning classes, in all fairness it was usually my fault; the ISA

card worked perfectly on a tight budget.

Figure 1-1: ISA prototyping board

Computers became faster, and systems evolved. The industry changed, and

so did the expansion ports. Just as enthusiasts became experts on the ISA bus,

the industry invented a new system: the VESA Local Bus (VLB). The VLB bus

 Chapter 1 ■ Introduction to Arduino 5

was an extension to ISA, only adding a second connector for memory-mapped

I/O and Direct Memory Access (DMA), but it announced a change. Computers

were indeed getting faster, and some computer bus systems couldn’t keep up.

Even VLB couldn’t keep up, and after only a year, PCI became the reference.

The PCI bus is an advanced bus but requires components and logic to identify

itself. It suddenly became increasingly diffi cult to create homemade boards.

Some users decided to use other industry-standard ports, such as the parallel

port or RS-232, but most stopped creating such systems. Those that did continue

mainly used analog systems or nonprogrammable digital systems. Instead of

having a programmable microcontroller, the system was designed using logic

gates. For example, a bulb could turn on if both inputs A and B were true, or

if input C was false. These tasks became more and more complicated as the

number of inputs increased.

Analog systems, such as radios and amplifi ers, did not have a form of pro-

gramming. They were designed with a specifi c task in mind. Confi guration

was analog; with a small screwdriver, the designer could “tweak” values with

potentiometers, variable resistances. It wasn’t possible to program the device to

multiply an input signal by a specifi c value; instead, potentiometers were added

to counter the effect of tolerances in the components. Designs therefore added

an additional phase, calibration. Specifi c input signals were fed into devices,

and a specifi c output was expected.

Processors did exist that could be used, and some projects did use them, but

integrating a processor into a design generally meant that several components

needed to be used. Memory chips, I/O controllers, or bus controllers had to be

used, even after a decade of technological advancements, and circuits became

more and more complicated. Even when designs worked, programming them

proved to be a challenge. Most programming was done via EEPROM devices,

short for Electronically Erasable Programmable Read-Only Memory. These

devices could contain a computer program and could be programmed using

an external programmer attached to a computer. They were called erasable

read-only because the contents could indeed be wiped and replaced, but doing

so required removal of the circuit and subjecting it to ultra-violet light for 20

minutes. One small error in a program could often take 30 minutes or more

to correct.

Atmel AVR

Atmel is an American semi-conductor company, founded in 1984, and the name

Atmel is an acronym for Advanced Technology for Memory and Logic. Right

from the start, Atmel designed memory chips that used less power than com-

peting designs, but it soon decided to create programmable devices. In 1994,

Atmel entered the microprocessor market, creating an extremely fast 8051-based

6 Part I ■ Introduction to Arduino

microcontroller. In 1995, Atmel was one of the fi rst companies to license the

ARM architecture, giving it access to advanced processor technology.

Atmel didn’t use only ARM technology, it also created its own processor, the

AVR, in 1996 (see Figure 1-2). What does AVR stand for? Well, that is one of the

many mysteries of Atmel. Designed by Alf-Egil Bogen and Vegard Wollan, some

say it stands for Alf and Vegard’s RISC processor. We will never know, and at the

time, people were not interested in understanding the name, but rather getting

their hands on this advanced piece of technology. Today, more and more people

are curious as to the origin of this curious processor, Atmel continues to tease

the public with videos of the inventors explaining the name, only to have the

big reveal scrambled by mobile telephone interference.

Figure 1-2: Atmel AVR Microprocessor

Previously, programming the read-only memory of a device required some

tedious tasks, like subjecting the chip to UV light, or complicated erase techniques.

This all changed with Atmel’s 8-bit AVR. The AVR was the fi rst microcontroller

family to use on-chip fl ash memory for program storage. It also included Random

Access Memory (RAM) directly on the chip, essentially containing everything

needed to run a microcontroller on a single chip. Suddenly, all the complicated

design could be replaced with a single component. Even better, programming

the chip could be done in minutes, using minimal hardware. Some Atmel

designs allowed users to plug the microcontroller directly into a USB port and

to program it using Atmel’s software. From compilation to program execution

took less than a minute.

Several learning platforms existed: Parallax’s BASIC Stamp and PIC devices

were in use, but Atmel’s AVR made its appearance and added another alternative

for electronics enthusiasts. Previously, on digital systems, the logic was defi ned

before creating the board. Inputs and outputs were connected to logic gates,

and the functionality was designed into the product. Now, with the AVR series,

enthusiasts and engineers had a new possibility. Instead of designing functionality

electronically, systems could be designed to interact with the outside world using

 Chapter 1 ■ Introduction to Arduino 7

computer programming. This simplifi ed electronics; instead of using multiple

logic gates, everything was connected directly to the microcontroller, which could

then be programmed to react to events from the outside world. Programs could be

fl ashed and re-fl ashed, and devices could be programmed and re-programmed,

opening the gates to a whole new world of electronics. In theory, a device could

be made that would adapt to almost every situation possible. The technology

existed; all that was left was for someone to create the device.

The Arduino Project

The Arduino project started in 2005, and was a project for the students at the Interaction

Design Institute Ivrea in Ivrea, Italy. Students were taught to use a BASIC Stamp, a

small microcontroller device programmable in PBASIC (a variation of the BASIC

programming language), but the price for this device (almost $75) was considered

to be too expensive for students, not only on acquisition, but also to replace dam-

aged units.

Arduino started as a project for design students, targeted as a replacement

for the BASIC Stamp. The Atmel 8-bit AVR was chosen for its simplicity and

low price, and had the extra advantage of requiring few external components.

It also has an impressive amount of inputs and outputs, making it a perfect

choice for future designs.

Students and teachers worked together on a new design, one that used the

Atmel AVR and that could easily accept external cards. When the original

design was completed, researchers worked to make the design lighter, less

expensive and easily usable by students, enthusiasts, and engineers. The fi rst

Arduino board was born. Improvements on the Arduino’s original design,

such as replacing the DB-9 serial connector with USB, has helped expand the

platform’s appeal.

There are two sides to every Arduino. There is, of course, the hardware, but

this is only part of an Arduino project. Every Atmel microcontroller used for

Arduino comes with a specifi c fi rmware, a small program embedded on every

device that looks for a program to run or helps install a program using a serial

device.

The fi nal design was released as open source and was designed and sold

by Arduino. Releasing Arduino as an Open Source Hardware project was an

interesting move. Because it was open source, it attracted more and more users

to look into their projects. Because the Arduino already had an excellent input/

output design, users began to create boards that could be added to the original

Arduino. When Arduino designed a new board, it kept the original input/output

layout, enabling existing add-ons to be used with new designs.

Originally designed for education, the Arduino project became famous with

electronics enthusiasts, and its boards were sold by more and more distributors.

8 Part I ■ Introduction to Arduino

Arduino not only created the hardware—an embedded device that does not

have corresponding software and support programs might still be diffi cult to

use—but also spent a lot of time developing its own language and Integrated

Development Environment (IDE). The end result is a nice IDE that can work on

Windows, MacOS, and Linux and converts the Arduino language (a high level

variant of C/C++) to AVR code. The Arduino development environment hides

away all the complications linked to embedded systems and mixing software—

such as setting up an environment, linkers, pesky command lines—and lets the

developer program using simple C language functions through the Arduino

Programming Language.

The ATmega Series

Atmel has placed its AVR design into different groups, depending on various

factors. There are numerous AVR microcontrollers, and knowing which one to

use is essential for projects. Some ATmega devices have more memory, or more

digital and analog inputs and outputs, or have a specifi c package size.

The ATmega Series

The Atmel megaAVR is the muscle of the AVR series. They are designed for

applications requiring large amounts of code, with fl ash memory ranging from

4 k all the way to 512 k, enough for the most demanding of programs. Atmel

megaAVR devices come in various sizes, ranging from 28 pins all the way to 100

pins. These devices have an impressive amount of embedded systems: analog

to digital converters, multiple serial modes, and watchdog timers, to name but

a few. They also have a large amount of digital input and output lines, making

them ideal for devices that communicate with numerous components.

There are close to 100 ATmega devices, ranging in fl ash memory size and

package size, and some models have advanced features such as internal LCD

Controllers, CAN controllers, USB controllers, and Lightning controllers. ATmega

chips are found in almost every Arduino board produced.

You can fi nd more information on the ATmega series on Atmel’s website at:

http://www.atmel.com/products/microcontrollers/avr/megaavr.aspx.

The ATtiny Series

The Atmel tinyAVR series has small-package devices designed for applications

that require performance and power effi ciency. These devices live up to their

name “tiny”; the smallest tinyAVR is 1.5 mm by 1.4 mm. The word “tiny” is only

a reference to their size. Their power is comparable to the larger AVRs; they have

multiple I/O pins that can be easily confi gured and a Universal Serial Interface

that can be confi gured as SPI, UART, or TWI. They can also be powered with as

Chapter 1 ■ Introduction to Arduino 9

little as 0.7 V, making them highly energy-effi cient. They can be used in single-

chip solutions or in glue logic and distributed intelligence in larger systems.

There are more than 30 ATtiny devices, and they come with between 0.5 k and

16 k of fl ash memory, and range from 6-pin packages to 32-pin packages. You

can fi nd more information on the ATtiny series on Atmel’s website at: http://

www.atmel.com/products/microcontrollers/avr/tinyavr.aspx.

While the ATtiny series are powerful devices given their size, no Arduino

uses this device as its microcontroller.

Other Series

Atmel also has different AVR series: The XMEGA series deliver real-time per-

formance, with added encryption using AES and DES modules, and includes

an interesting technology, the XMEGA Custom Logic, reducing the need for

external electronics.

Atmel also produces a 32-bit version of its AVR microcontroller: the UC3.

Supporting fi xed-point DSP, a DMA controller, Atmel’s famous Peripheral Event

System and advanced power management, the UC3 is a formidable microcon-

troller. You can fi nd more information on Atmel’s AVR website at: http://www

.atmel.com/products/microcontrollers/avr/default.aspx.

The Diff erent Arduinos

The original Arduino was designed for one specifi c task, and it fi t that task

perfectly. With the success of the original Arduino board, the company decided

to create more designs, some of them for very specifi c tasks. Also, because the

original Arduino design was open source, several companies and individuals

have developed their own Arduino-compatible boards, or have followed in

the open source tradition, and have proposed their modifi cations to Arduino.

Arduino has begun a certifi cation program to ensure compatibility with boards

that use different processors, with the Intel Galileo being the fi rst to receive such

a certifi cation. Anyone is free to make their own Arduino-based derivative, but

the name and logo of Arduino are trademarked. As such, you’ll fi nd a number

of boards with names ending in “uino”, implying compatibility.

W A R N I N G Beware of counterfeits! Some companies propose Arduino boards

that are cheaper than the original Arduino series, but these boards tend to have less

reliable hardware. Arduino boards are cheap but still use good quality electronic

components, whereas counterfeit boards may well use components that will not last

as long. Paying a few extra dollars for a board helps Arduino fi nance more research to

create new Arduino boards and software, and ensures a better user experience. You

can read more about how to spot counterfeit boards at: http://arduino.cc/en/

Products/Counterfeit.

10 Part I0 ■ Introduction to Arduino

Arduino made the board design open source, but it still produces its own

boards. These boards are known as offi cial boards. Other companies also make

Arduino-compatible boards.

Arduino Uno

The Arduino Uno is the “standard” Arduino board and the most readily available.

It is powered by an Atmel ATmega328, with a total of 32 KB of fl ash memory,

2 KB of SRAM, and 1 KB of EEPROM memory. With a total of 14 digital I/O pins

and 6 analog I/O pins, this is a very capable device, able to run most programs.

An on-board ATmega16u2 chip manages serial communication. It is one of the

least expensive boards and the most used. When starting a new project, if you

do not know what Arduino to use, start with the Uno, as shown in Figure 1-3.

Figure 1-3: The Arduino Uno

Arduino Leonardo

The Arduino Leonardo is slightly different to the Uno. Based on the ATmega32u4,

this microcontroller has enhanced USB capabilities and therefore does not require

a dedicated microchip for USB serial communication like the Uno. One advan-

tage to this is cost; one less microchip means a cheaper solution. It also means

that a developer can use the microcontroller as a native USB device, increasing

fl exibility in the communication with a computer. The Leonardo can effectively

emulate a keyboard and mouse via USB HID, as shown in Figure 1-4.

 Chapter 1 ■ Introduction to Arduino 11

Figure 1-4: The Arduino Leonardo

Arduino Ethernet

The Arduino Ethernet, based on the ATmega328 found in the Uno, can connect to

an Ethernet network, a functionality needed in a number of projects. Physically,

the Arduino Ethernet has the same 14-digital inputs/outputs as the Arduino

Uno, with the exception that 4 are used to control the Ethernet module and on-

board micro-SD card reader, limiting the amount of pins available.

It is interesting to note that the Arduino Ethernet has an optional POE mod-

ule, short for Power Over Ethernet. This option enables the Arduino Ethernet

to be powered directly from an Ethernet connection, without the need for an

external power source provided that there is a POE supply on the other end of

the Ethernet cable. Without POE, the Arduino must be powered by an external

source

Another difference from other Arduino boards is the lack of a USB connector.

Because most of the space is taken up with an Ethernet connector, this device

instead supports a 6-pin serial programming header and is compatible with

numerous programming devices (including a device from Arduino, the USB-

Serial adapter). The Arduino Ethernet is shown in Figure 1-5.

Arduino Mega 2560

The Arduino Mega 2560 is only slightly larger than the Arduino Uno, but it has

more input and output pins. It has a total of 54 digital I/O pins and 16 analog

12 Part I ■ Introduction to Arduino

inputs. It also has a large amount of fl ash memory: 256 KB, capable of storing

larger programs than the Uno. It also has generous SRAM and EEPROM: 8 KB

and 4 KB, respectively. It also has 4 hardware UART ports, making it an ideal

platform for communicating with multiple devices serially.

Figure 1-5: The Arduino Ethernet

Arduino Mega boards are used when large amount of inputs and outputs

are required. It is shown in Figure 1-6.

Figure 1-6: The Arduino Mega 2560

 Chapter 1 ■ Introduction to Arduino 13

Arduino Mini

The Arduino Mini is a tiny device, useful for applications where space is reduced

to the absolute minimum (see Figure 1-7). It has 14 digital I/O pins and 4 analog

input pins. (Four more are available but are not broken out.) The device has the

strict minimum: it does not have a USB connector; it has no power regulator;

and it has no headers. Programming is done via an external USB or RS232 to

TTL serial adapter. It is shown in Figure 1-7.

Figure 1-7: The Arduino Mini

Arduino Micro

The Arduino Micro lives up to its name; it is one of the smallest Arduino boards

available. Despite its small size, it still has a large amount of input and output

pins; it has 20 digital input/output pins, of which 7 can be used as PWM outputs.

It also has 12 analog inputs.

The Micro is not designed to have shields but it does have an interesting layout,

as shown in Figure 1-8. It can be placed directly onto a breadboard.

Arduino Due

The Arduino Due differs from all other Arduino designs in that it is not

based on an AVR, but rather uses a microcontroller based on an ARM

Cortex-M3, the Atmel SAM3X8E. This advanced microcontroller is clocked

14 Part I4 ■ Introduction to Arduino

at 84 MHz and is a full 32-bit device. It has a large amount of digital and

analog I/O: 54 digital pins (12 of which can be used as PWM) and 12 analog

inputs. The board has 4 UARTs, an SPI header, a Twin-Wire Interface, and

even includes a JTAG header.

Figure 1-8: The Arduino Micro

The Arduino Due has more strict power supply requirements, and the micro-

controller itself is powered under 3.3 V. Be careful not to apply 5 V to any of the

pins: otherwise, you will damage the board. When choosing a shield for the

Due, make sure the shield supports 3.3 V. You can identify if a shield is Due

compatible by making sure it conforms to the Arduino R3 layout.

The Arduino Due is an incredibly powerful Arduino. The Due has 512 KB of

fl ash memory and a total of 96 KB of SRAM. It can handle the largest programs

at a fast speed. If you have a lot of calculations to perform, this is the Arduino

that you need (Figure 1-9).

LilyPad Arduino

The LilyPad Arduino is an interesting device. It strays from the typical Arduino

build because it is not rectangular, but round. Secondly, it does not support

shields. What it is designed for, however, is to be a small device that is perfect

for wearable computing, or e-fabric. The round shape means that connectors

are evenly distributed, and its small scale (2 inches in diameter) makes it perfect

for wearable devices. This device is easily hidden, and multiple manufacturers

have designed devices especially for the LilyPad: Wearable LEDs, light sensors,

even battery supply boxes that can be sewn into fabric.

 Chapter 1 ■ Introduction to Arduino 15

To make the LilyPad as small and as light as possible, some sacrifi ces were

made. The LilyPad does not have a voltage regulator, so it is vitally important to

deliver at least 2.7 volts, but more important, no more than 5.5 volts; otherwise,

the LilyPad will be destroyed (see Figure 1-10).

Figure 1-9: The Arduino Due

Figure 1-10: The LilyPad Arduino

16 Part I6 ■ Introduction to Arduino

Arduino Pro

The Arduino Pro exists in two versions, based either on the ATmega168 or

the ATmega328. The 168 version operates at 3.3 V with an 8 MHz clock, and

the 328 version runs on 5 V at 16 MHz. Both versions have 14 digital inputs/

outputs and 6 analog inputs. It has a JST battery power connector, a power

switch to select between power modes, and space reserved for a power jack,

if needed. It does not have a USB connector but instead uses a FTDI cable for

programming.

The Arduino Pro is different from most other Arduinos in that while it is

a prototyping board it is designed to be embedded in projects. It does not

come with headers—indeed, it does not have any headers at all, as shown in

Figure 1-11. All the digital and analog inputs and outputs are placed at the

exterior of the board, retaining shield layout, ready to be soldered to wire or

connectors if necessary. Instead of being used for prototyping, the Arduino

Pro is aimed at semipermanent installation in fi nished products. The Arduino

Pro was not designed by Arduino but was designed and is manufactured by

SparkFun Electronics.

Arduino Robot

The Arduino Robot is, simply put, an Arduino on wheels. There are two Arduino

boards on the Robot—one controls the on-board motors, and the other contains

sensors. The Control board controls the Motor board and gives it instructions

on how to operate.

The Control board is powered by an ATmega32u4, with 32 KB of fl ash, 2.5 KB

of SRAM, and 1 KB of EEPROM. It also has an external I2C EEPROM device,

providing more storage. It has a compass, a speaker, three LEDs, a fi ve-button

key pad, and an LCD screen. It also has three solder points for external I2C

devices. It also has I/O capability, with fi ve digital I/Os, six PWMs, and four

analog inputs. There is space for eight analog inputs (for distance sensors,

ultrasound sensors, or other sensors) and six digital I/O pins for other devices

(four of which can be used for analog input).

The Motor board is a fully independent board, powered by an ATmega32u4,

the same microcontroller as on the Control board. The Motor board contains

two wheels powered independently, fi ve IR sensors, and I2C and SPI ports. It

also contains the power supply; it is powered by four rechargeable AA batter-

ies, and contains a jack port to recharge the on-board batteries. The board can

also be powered by an on-board USB connector, but in this confi guration, for

safety reasons, the motors are disabled (Figure 1-12).

 Chapter 1 ■ Introduction to Arduino 17

Figure 1-11: The Arduino Pro

Figure 1-12: The Arduino Robot

18 Part I8 ■ Introduction to Arduino

Arduino Esplora

The Arduino Esplora is a strange device. Where most Arduinos are designed

to sit on a table or be placed under fabric, the Esplora is designed to be held

in your hand. Based on an ATmega32u4, it is not shield compatible and does

not have any solder points for inputs and outputs. Instead, it looks and feels

like a game pad; it has thumb inputs in the form of four digital switches, one

analog joystick, and a linear potentiometer. For more feedback, the Esplora has

a buzzer and an RGB LED. It also features more advanced devices; it has an

on-board microphone, a temperature sensor, a connector for an LCD screen,

and a three-axis accelerometer.

The Esplora has 32 KB of fl ash; 4 KB are used by the bootloader. It has 2.5 KB

of SRAM, and 1 KB of EEPROM. It is a capable device, and it makes up for its

lack of connectors with four TinkerKit connectors: two inputs and two outputs,

as shown in Figure 1-13.

Figure 1-13: The Arduino Esplora

Arduino Yún

The Arduino Yún is based on an ATmega32u4, but it also has an Atheros AR9331

on the same board. The Atheros processor has a complete Linux distribution,

based on OpenWRT, famous for Linux-based wireless routers.

The Arduino Yún has built-in Ethernet and WiFi, and also has a micro-SD slot.

The Yún is different from other Arduinos and shields in that it has advanced

network functionality; the Arduino can send commands to OpenWRT and

 Chapter 1 ■ Introduction to Arduino 19

then continue processing its sketch (Figure 1-14). The two processors work

independently, the Bridge library facilitates communication between the two

processors.

 Figure 1-14: The Arduino Yún

Arduino Tre

The not-yet-released Arduino Tre promises to be a phenomenal beast. Up until

now, the fastest Arduino was the Arduino Due, based on an ARM-compatible

microcontroller. The Tre, created by Arduino and BeagleBoard, combines the

power of a full computer with the fl exible input and output of an Arduino.

The Tre has a Cortex-A8 class processor, the Sitara AM335X processor, run-

ning at 1 GHz. This processor has access to 512 MB of RAM and has an HDMI

port capable of displaying Full HD (1920 x 1080). All this power is interfaced

by an Atmel ATmega32u4 using the Arduino programming environment that

enthusiasts have come to love.

Arduino Zero

The Arduino Zero is a brand new Arduino using Atmel’s SAM D21 micro-

controller. It has 256 KB of fl ash memory, 32 KB of RAM, and runs at 48 MHz.

The Arduino Zero is designed to handle future requirements from the Maker

community, by creating a design that is powerful, robust, and fl exible enough

to be used in robotics and wearable projects, as well as the IoT. It is also the fi rst

design to have an advanced debugger interface.

20 Part I0 ■ Introduction to Arduino

Your Own Arduino?

Arduino has always created open-source designs, and all the boards listed

previously have schematic fi les available directly from the Arduino website,

under a Creative Commons Attribution Share-Alike license. Put simply, this

means that you are free to study the Arduino schematics to make your own or

to make modifi cations either for personal use or professional use on the condi-

tion that you give credit to Arduino for the original design and release your

own design under the same license.

With the exception of the Arduino Due, all Arduino boards are based on the

Atmel AVR. These chips can be bought from electronic distributors with the

Arduino fi rmware pre-installed, or if you have the proper tools, you can buy

blank chips and load the fi rmware yourself.

Shields

An Arduino by itself is a capable device and already includes numerous input

and outputs, but its power only starts there. Because Arduino designs are open

source, numerous companies have developed shields, printed circuit boards

that are placed on top of the Arduino board that connect to the Arduino’s pins.

There shields add functionality by using different inputs and outputs, either

digital I/O or through serial communication.

What Is a Shield?

A shield is a printed circuit board that can be placed on the top of most Arduino

boards. It connects to the Arduino’s processor through male header pins. Adding

a shield to an Arduino does not necessarily expand the possibilities of an Arduino,

but most do.

For most prototyping projects, you connect wires to the Arduino’s headers

and connect them to a breadboard. This is easy enough for a lot of applications,

like outputting data to two or three LEDs. For more complex applications, a

breadboard isn’t practical due to the complexity of the wiring, or the size of the

components. Micro-SD card readers are extremely small and cannot be placed

onto a breadboard. Soldering wires to a micro-SD reader isn’t particularly easy,

so your choices are limited. Writing data to a micro-SD card is something that

can happen a lot, so it’s fortunate several companies have developed shields

with a micro-SD reader. If your application requires data logging, all you have

to do is to connect the shield to the top of the Arduino, add a few lines of code,

and you are ready to go. It is that simple.

As said previously, not all shields add functionality. Some shields exist to

help prototyping— allowing you to solder components onto the shield—without

 Chapter 1 ■ Introduction to Arduino 21

having to make your own PCB. Prototyping on a breadboard is an excellent

way to test that your design works, but after the design is proven, it is time to

make a better board. For example, if you were creating a doorbell application, it

would be complicated to hide a breadboard behind the ringer. Instead, you could

solder those components onto a prototyping board, saving space and making

your design much more resistant to shock or tampering. The added advantage

of this type of board is that you do not need to create your own printed circuit

board or do any complicated routing.

The Diff erent Shields

Shields exist for a wide variety of applications: storage on SD cards, network

connectivity by Ethernet or WiFi robotics control, enabling displays like LCD

and TFT screens, to name but a few.

Most shields can be stacked, so you are not limited to using only one at a time.

However, some shields may require input and outputs that will subsequently

be unavailable to other designs. Be careful when you choose your shields!

Arduino Motor Shield

When using motors, special care has to be taken. When turned off, motors can

induce voltage spikes, and components need to be added to a design account

for this possibility. Also, typically, USB power is insuffi cient for motors. The

Arduino Motor Shield takes care of this and enables the programmer indepen-

dent control of two DC motors, or one stepper motor. This shield can either be

powered from the Arduino or rely on an external power supply.

Arduino Wireless SD Shield

The Wireless SD shield is designed for an Xbee module but works with any

radio modem with the same footprint. The on-board micro-SD slot allows the

shield to act as a data logger. It also has a small prototyping area for adding

components.

Arduino Ethernet Shield

The Arduino Ethernet shield does exactly as the name implies; it adds

Ethernet connectivity through a W5100 controller, supporting up to four

simultaneous socket connections. This module also includes a micro-SD

slot for data-logging.

The Arduino Ethernet Shield has an optional POE module. On a POE

network, the module (and the parent Arduino) can be powered directly over

Ethernet.

22 Part I ■ Introduction to Arduino

Arduino WiFi Shield

The Arduino WiFi Shield includes an HDG104 Wireless LAN controller, enabling

an Arduino to access 802.11b/g networks. It can connect to open and encrypted

networks. This module also includes a micro-SD slot for data-logging.

Arduino GSM Shield

The Arduino GSM shield connects to the Internet through a GPRS network, at

a maximum of 85.6 KBps. It also has voice capabilities; by adding an external

microphone and speaker circuit, it can make and receive voice calls. It can also

send and receive SMS messages. The modem, an M10 by Quectel, is confi gured

using AT commands, handled in software by the GSM library.

The Arduino GSM Shield comes with a Bluevia SIM card; which allows

for machine-to-machine roaming data connections in blocks of 10 or 20

megabytes. However, the GSM shield will work with a SIM card from a dif-

ferent provider.

Your Own Shield

In some cases, you will want to make your own electronics. For prototyping, a

breadboard is suffi cient, but when you need something more robust and more

professional, it is time to make your own shield. There are several software

options to assist you, but one of the best is the Fritzing application. In Fritzing,

you can create breadboard designs, translate them into electronic schematics,

and generate a shield layout directly. Fritzing also has its own shield creation

system; just upload your schematic to its website and receive a professionally

built shield.

What Can You Do with an Arduino?

This is one of the most commonly asked questions, but the answer is both simple

and complicated. Put simply, you can do almost anything you can imagine. The

most diffi cult part of any Arduino project is identifying a need. Maybe you

have an aquarium at home and would like to control the lighting in a specifi c

way? Maybe you would like to add a parking assist device onto your car. Some

people just want to add some automation to their house, opening and closing

motorized shades at the push of a button. Some people come up with even

more amazing and fun projects: a remote-controlled lawn mower, even a chess

playing robot. The possibilities are almost unlimited. There are a few things

that an Arduino cannot do, but that list is becoming shorter every time a new

Arduino-compatible board is released.

 Chapter 1 ■ Introduction to Arduino 23

Arduino is an excellent way to learn about software development and elec-

tronics because it is a low-cost, robust device that is easy to program.

Some people use Arduino for hobbyist electronics, with projects ranging

from the simple to the incredibly absurd. I know of one person who has entirely

automated his house using 10 Arduino Megas, each room communicating with

the others to better estimate electrical consumption, heating, and personal

comfort.

Arduino is also used professionally because the components are low-cost

and highly reliable and have the added fl exibility of being open source. When

an initial design is completed, developers can make a board much smaller to

be included in toys, small embedded systems, and even industrial machines.

Several 3-D printers are based on Arduino for their ease of use and reliability.

What You Will Need for This Book

Each chapter has a list of elements required to complete. However, when creat-

ing an Arduino project, a few items are required every time. Following is a list:

■ A power supply—The Arduino Uno accepts an input voltage of 6 to 20 V, yy

with 7 to 12 V being recommended. Any standard AC-to-DC center-positive

adapter should work fi ne, preferably one that can supply up to or over 1

amp of current.

■ Multimeter—Almost any model. You do not need to buy the most expen-rr

sive, far from it, but it should test DC voltage, DC amperage and continu-

ity, with optional resistance calculation, and AC voltage and amperage if

you plan to interface your Arduino to main’s power.

■ Breadboard—The size depends on your project. Consider a medium-sized

board; if it is too small you might not fi t all your components (or it might

be too cramped, possibly creating short circuits), and large breadboards

can cost more and require more space. (I use 680-point breadboards for

most of my examples and projects.)

■ Resistors—A common element of every project. There are numerous

values, but there are some values that will be used more often. There are

kits on the market that propose 10 of every value, or you can go with the

most common, the choice is yours. To start out, ten 220-ohm, ten 1-kilohm,

and ten 10-kilohm resistors should suffi ce.

■ LEDs—A great way of knowing the output of a pin. Coupled with a resis-

tor, it can instantly show the state of your project.

■ Other electronic components—Sometimes it is handy to have a small

collection of capacitors, switches, and diodes on hand. Each example in

this book has a complete list of the required components.

24 Part I 4 ■ Introduction to Arduino

Summary

This chapter briefl y talked about some of what an Arduino can do, but there

is no way of knowing exactly what everyone will do with it. As I said, your

only limitation will be your imagination, and I would love to hear about

what you have done with an Arduino! You can contact me on my website at

http://packetfury.net. I look forward to hearing about your projects!

In the next chapter, you will learn more about programming an Arduino,

including how to install the Arduino IDE, how to connect an Arduino to your

computer, and uploading your fi rst sketch.

