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The capacity for cognitive control is perhaps the most distinguishing characteristic of human 
behaviour. Broadly defined, cognitive control refers to the ability to pursue goal‐directed 
behaviour, in the face of otherwise more habitual or immediately compelling behaviours. This 
ability is engaged by every faculty that distinguishes human abilities from those of other 
species, and in virtually every domain of human function from perception to action, decision 
making to planning, and problem solving to language processing. Understanding the mech
anisms that underlie our capacity for cognitive control seems essential to unravelling the mys
tery of why, on the one hand, we are capable of intelligent, goal‐directed behaviour, whereas 
on the other hand this ability seems so vulnerable to irrational influences and failure. Not 
surprisingly, the distinction between controlled and automatic processing is one of the most 
fundamental and long‐standing principles of cognitive psychology. However, as fundamental 
as the construct of cognitive control is, it has been almost equally elusive. Most importantly, 
the construct on its own says little about the mechanisms involved.

Fortunately, in the half‐century since the concept of control was first introduced into 
psychology (Miller, Galanter, & Pribram, 1960), and afforded a central role in cognitive psy
chology not long thereafter (Posner & Snyder, 1975; Shiffrin & Schneider, 1977), 
considerable progress has been made in characterising cognitive control in more precise and 
mechanistic terms, at both the psychological and neurobiological levels of analysis (e.g., 
Anderson, 1983; Botvinick & Cohen, 2014; Collins & Frank, 2013; Daw, Niv, & Dayan, 
2005; Dayan, 2012; Duncan, 2010; Koechlin & Summerfield, 2007; Miller & Cohen, 2001; 
O’Reilly, 2006). Much of this progress is reflected in the chapters of this volume. Needless to 
say, however, considerable progress remains to be made, and formulating a way forward may 
benefit by revisiting, and carefully reconsidering some of the foundational ideas that origi
nally motivated the construct of cognitive control, and how these have evolved over the past 
half‐century.

In this introduction, I review the original formulations of the distinction between con
trolled and automatic processing, the issues that this distinction raised, how these have been 
addressed, and questions that remain. This review is intended to be useful in at least two 
ways: (a) as a guide to the central constructs and most pressing issues concerning cognitive 
control for those who are new to this area of research; and (b) as an inventory of challenges 
that a satisfying account of cognitive control must address for those who are familiar with the 
area. I have organised the issues into three broad categories: (a) core, defining features of 
cognitive control; (b) the relationship of cognitive control to other closely related constructs 
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in psychology; and (c) ways in which the understanding of cognitive control may be informed 
by theoretical approaches that have proved valuable in other areas such as computer science.

Core Constructs

Definitional Attributes of Controlled Versus Automatic Processing

As a theoretical construct, cognitive control grew out the study of communications and con
trol systems, including the discipline of cybernetics that flourished in the middle of the last 
century (e.g., Wiener, 1948). In particular, an influential book by Miller et al. (1960) explicitly 
drew the connection between control theory, the goal‐directed nature of human cognition, 
and its apparently hierarchical structure—topics that have regained attention in modern 
research (as will be discussed below). However, three articles are generally credited with opera
tionalising the construct of cognitive control, and placing it at the centre of experimental 
research in cognitive psychology: one by Posner & Snyder (1975), and a pair by Shiffrin and 
Schneider (Schneider & Shiffrin, 1977; Shiffrin & Schneider, 1977). These articles focused on 
three attributes that distinguish controlled from automatic processes: (a) controlled processes 
are slower to execute; (b) are subject to interference by competing automatic processes; 
(c) and rely on a central, limited‐capacity processing mechanism.

The canonical example chosen by Posner & Snyder (1975) to illustrate this was a 
comparison of colour naming and word reading in the Stroop task (MacLeod, 1991; Stroop, 
1935). Adults are almost universally faster to read a word out loud than to name the colour 
of a stimulus (criterion 1). Critically, when responding to incongruent stimuli (e.g., the 
word ‘RED’ displayed in green), the colour of the stimulus has almost no impact on the word 
reading response, whereas the word invariably interferes with naming the colour. 
Furthermore, attempts to name the colour while performing another unrelated task (such 
as mental arithmetic) are likely to be impaired. These properties generally do not apply to 
word reading. These findings were explained by proposing that colour naming is a con
trolled process, whereas word reading is automatic. This account of findings in the Stroop 
task quickly became—and in many areas still remains—a foundational paradigm for studying 
controlled and automatic processing (for example, the same principles are used to infer the 
influence of automatic processes using the Implicit Association Task—IAT; Greenwald & 
Banaji, 1995). However, almost as soon as the construct of controlled processing was 
 introduced, it raised concerns.

Capacity Constraints

Central, limited‐capacity mechanism. Perhaps the most important and controversial assertion 
was that cognitive control relies on a central, limited‐capacity processing mechanism that 
imposes a serial constraint on the execution of controlled processes, as distinct from automatic 
processes that can be carried out in parallel.1 The importance of this assumption cannot be 
overestimated. The idea was paradigmatic in the literal sense. It provided the operational cri
terion that is used almost universally to identify a process as control demanding: dual‐task 
interference. If performance of a task suffers when another task that is unrelated (i.e., does 
not involve the same stimuli or responses) must be performed at the same time, then the first 
task is deemed to be control demanding. However, as practically—and introspectively—
appealing as this assertion is, it is equally problematic.

The capacity constraints on control are generally attributed to its reliance on a limited 
resource; however, neither the nature of the resource, nor the reason for its limitation has 
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yet been identified. Some have argued that the resource may be metabolic (see discussion 
of  effort below). However, there is no reliable evidentiary basis for this (Carter, Kofler, 
Forster, & McCullough, 2015), and it seems improbable given the importance of the 
function, the metabolic resources available to the brain, and the scale on which it is able to 
commit metabolic resources to other processes.

Another suggestion is that the limitation is structural. For example, most models of 
cognitive control propose that control‐demanding processes rely on the activation and main
tenance of control representations that are used to guide execution (see discussion below). 
These representations are considered the ‘resource’ upon which control relies, and the 
limited capacity of control is attributed to a limitation in the scope of such representations 
that can be actively maintained (e.g., a limitation in working memory capacity). However, 
this begs the question: Why is that capacity limited? One possibility is a physical limitation 
(akin to the limited number of memory registers in a CPU). However, like metabolic con
straints, this seems highly improbable. There are 100 billion neurons in the human brain, of 
which about one third reside in areas thought to be responsible for cognitive control (e.g., 
the prefrontal and dorsal parietal cortex). With those resources available, evolution would 
have to be viewed as a poor engineer to be incapable of maintaining more than a single con
trol representation at a time. Another possibility is that there are functional constraints on 
the system; for example, the number of representations that can be simultaneously main
tained in an attractor system, or a tension between their number and resolution (Edin et al., 
2009; Ma & Huang, 2009; Usher, Cohen, Haarmann, & Horn, 2001). Such efforts reflect 
important progress being made in developing quantitative, mechanistically explicit accounts 
of representation and processing in neural systems, and may well explain constraints within 
circumscribed domains of processing. However, once again, this begs the question: Why 
cannot a system as vast as the human neocortex proliferate attractor systems for a function as 
valuable as cognitive control?

Multiple resources hypothesis. An alternative to the idea that dual‐task interference reflects a 
constraint in the control system itself is the idea that, instead, it reflects something about the 
processes being controlled. This idea has its origins in multiple resource theories of attention 
(Allport, 1980; Logan, 1985; Navon & Gopher, 1979; also see Allport, Antonis, & Reynolds, 
1972; Wickens, 1984). They argued that interference between tasks may reflect cross‐talk 
within local resources (e.g., representations or processes) needed to perform different tasks if 
they must make simultaneous use of those resources for different purposes—a problem that 
can arise anywhere in the system, and not just within the control system itself. A classic 
example of such cross‐talk (Shaffer, 1975) contrasted two dual‐task conditions: repeating an 
auditory stream (‘echoing’) while simultaneously typing visually presented text (copy‐typing), 
versus simultaneously reading aloud and taking dictation. The former pair is relatively easy 
to learn, while the latter is considerably more difficult. The multiple resources explanation 
 suggests that echoing and copy‐typing involve non‐overlapping local representations 
and  processing pathways (one auditory—phonological—verbal, and the other visual—
orthographic—manual). Because they make use of distinct resources there is no risk of 
cross‐talk, and so it is possible to do both at once. In contrast, reading out loud and  taking 
dictation make dual competing use of phonological representations (e.g., the one to be 
read and the one to be transcribed), and similarly for orthographic representations, and 
thus are subject to the problem of cross‐talk.

This idea has been expressed in a number of models addressing cognitive control (Botvinick, 
Braver, Carter, Barch, & Cohen, 2001; Cohen, Dunbar, & McClelland, 1990; Meyer & 
Kieras, 1997; Salvucci & Taatgen, 2008). These models suggest that constraints on the 
simultaneous execution of multiple tasks can be viewed as the purpose of control, rather than 
a limitation in its ability: A process relies on control whenever it risks coming into conflict 
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with (i.e., is subject to cross‐talk from) another process. Such conflict can impair performance 
(either by slowing processing, or generating overt errors). Thus, a critical function of the 
control system is to monitor for such indicators (e.g., Botvinick et  al., 2001; Holroyd & 
Coles, 2002), in order to limit processing in such a way as to avoid such conflicts—in just the 
way that traffic signals are meant to limit collisions among vehicles travelling on intersecting 
thoroughfares. There is considerable empirical evidence in support of this (e.g., Carter et al., 
1998; Egner & Hirsch, 2005; Ridderinkhof, Ullsperger, Crone, & Nieuwenhuis, 2004; 
Venkatraman, Rosati, Taren, & Huettel, 2009; Yeung, Botvinick, & Cohen, 2004). Recent 
computational work has suggested that even modest amounts of overlap among processing 
streams within a system can impose surprisingly strict limitations on the number of processes 
that can be safely executed at a given time (Feng, Schwemmer, Gershman, & Cohen, 2014; 
Musslick et al., 2016). Furthermore, these restrictions can be nearly scale invariant, and thus 
may offer a plausible account for the strikingly strict constraints on control‐dependent behav
iour in a system as computationally rich as the human brain.

Constraints on the ability to sustain control. Although most discussions of limited capacity 
focus on a numerical constraint (that is, how many control‐dependent processes can be exe
cuted at once), there is an equally impressive and consistently observed temporal constraint 
(how long control can be sustained for a given task). Here again, the constraint has been 
assumed to reflect a limited resource. One popular version of this account—the ‘ego deple
tion’ hypothesis (Baumeister, Bratslavsky, Muraven, & Tice, 1998)—proposes that the 
resource is literally energetic, and the inability to sustain control reflects metabolic fatigue. 
Although this concurs with the subjective sense of effort associated with control, recent 
studies have called into question both the physiological basis (Kurzban, 2010) and empirical 
support (Carter et al., 2015) for this hypothesis. An alternative is that temporal constraints 
may reflect motivational factors (Inzlicht & Schmeichel, 2012). For example, as discussed in 
the section that follows, effort may reflect the signalling of opportunity costs associated with 
persistent performance of a given task, rather than a metabolic expense.

Effort and Motivation

From the earliest formulations, the construct of cognitive control has been closely associated 
with effort and motivation, an association that continues to be a focus of modern research (as 
evidenced by Chapters 9, 10, 23, and 24 in this volume on the topic by Chiew & Braver, 
Kool et al., Winecoff & Huettel, and Krebs & Woldorff). These terms have frequently elicited 
concern. An obvious and persistent one is about the qualitative—and potentially irreducibly 
subjective—nature of the phenomena to which they refer. Another is the awkwardness of the 
fit, perhaps most notably with regard to the original example: For example, is it really any 
more effortful simply to name the colour of an object, than it is to read a word? Despite these 
concerns, there are at least two reasons for considering effort and motivation, and their 
association with control.

Phenomenologically, the experience of effort helps identify and characterise conditions 
that seem to engage control. For example, while it may not be particularly effortful to name 
the colour of an apple, it is effortful to name the colour of an incongruent stimulus in the 
Stroop task. What is the difference? In one case, there is no interference, while in the other 
there is. Thus, the experience of effort—though subjective—offers a clue that control is 
engaged by conflict between processes (or the potential thereof), rather than by a particular 
process itself. This aligns with the idea, noted above, that a fundamental function of control 
is to reduce interference where it can arise.

The association of effort and motivation with control also highlights a theoretical construct 
that, until recently, has been all but ignored in research on control: the cost of control. 
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Irrespective of the sources of constraint, control mechanisms must manage a limited budget, 
with the consequence that allocating control to one process incurs an opportunity cost for 
others. This is something that was recognised in the earliest conceptions of cognitive control 
(Shiffrin & Schneider, 1977). From this perspective, ‘effort’ might be viewed as the phenom
enological correlate of a signal indexing the opportunity cost associated with the allocation of 
control, and ‘motivation’ as the system’s ‘willingness to pay’ the cost of control. These ideas 
are gaining currency in modern research, as reflected by several chapters in this volume 
(see  also Braver, 2015; Kurzban, Duckworth, Kable, & Myers, 2013), and represent an 
exciting and important direction for future research. In particular, it offers the promise of 
bringing research on the mechanisms underlying cognitive control into contact with the 
study of value‐based decision making and disturbances of behaviour specifically related to 
valuation and motivation, such as savings, drug addiction, and gambling (e.g., Bickel, 
Jarmolowicz, Mueller, Gatchalian, & McClure, 2012; Westbrook & Braver, 2015; Chapter 23 
by Winecoff & Huettel in this volume).

The Continuum of Automaticity and Control

Context dependence. Another major concern with early formulations of controlled versus 
automatic processing was about the treatment of this distinction as a dichotomy. This quickly 
met with empirical challenges (Kahneman & Treisman, 1984). In one particularly striking 
example, each in a set of arbitrary shapes was assigned a colour word as its name, and partic
ipants were taught to name the shapes (MacLeod & Dunbar, 1988). When those shapes were 
presented in colours that conflicted with their newly learned names, shape naming exhibited 
the attributes of a controlled process (it was slower, and subject to interference from the 
colour in which the shape was displayed), whereas colour naming appeared to be the automatic 
process (faster, and unaffected by the shape’s name). At the same time, findings were reported 
suggesting word reading, a process considered to be canonically automatic (LaBerge & 
Samuels, 1974; Posner & Snyder, 1975) could be shown to rely on attention and/or control 
(Kahneman & Henik, 1981). Such observations presented a paradox for the assumption that 
a process was either controlled or automatic; rather, it seemed to depend on the context in 
which the process was executed.

Learning. A closely related observation was that controlled processes could become 
automatic with practice. In particular, in one of the most elegant set of studies in cognitive 
psychology, Schneider and Shiffrin (1977) showed that if a task was practised extensively, it 
developed all of the signs of automaticity: It became faster, less effortful, and less subject to 
control. Critically, however, this required that the association between stimuli and responses 
remained fixed. If these varied, automaticity did not develop even over the course of thou
sands of trials with the same stimuli and responses. Interestingly, recent evidence suggests 
that, under some circumstances, processes with the signature of automaticity can develop 
much more quickly (Meiran, Pereg, Kessler, Cole, & Braver, 2015—see below). The extent—
and type—of training required for a process to become automatic (i.e., less reliant on control) 
remains a critical area of inquiry, and may hold important clues to the mechanisms involved.

Continuum of automaticity and control. Taken together, the observations reviewed above 
have been interpreted as evidence that controlled and automatic processing define the ends 
of a continuum, and that the place occupied by a given process along the continuum is a 
function of both learning (i.e., the number of times that exact process has been executed) 
and the context in which it occurs (i.e., what other processes are engaged at that same time). 
This characterisation has been formalised in a variety of models, ranging from symbolic 
production system models (e.g., Anderson, 1983) to neural network models (e.g., Cohen 
et al., 1990; Cohen, Servan‐Schreiber, & McClelland, 1992). The latter directly address the 
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graded nature of automaticity, attributing this to the strength of the processing pathway 
required to perform a task (which is directly determined by learning), relative to the strength 
of pathways supporting any processes with which it must compete. In such models, control 
augments the sensitivity of a pathway to its inputs, allowing it to compete more effectively 
with other pathways that carry interfering information.

Flexibility

A hallmark of the human capacity for cognitive control is its flexibility: the remarkable ability 
to rapidly configure and execute a seemingly limitless variety of behaviours, including ones 
that have never before been performed (e.g., Meiran et al., 2015). Most current theories of 
cognitive control assume that this relies on the activation of control representations that serve 
as internal context, guiding processing in the parts of the system required to implement goal‐
relevant processes or behaviour. In symbolic architectures (e.g., ones that use production 
system architectures, such as Anderson, 1983), this is assumed to rely on representations in 
declarative memory (e.g., goal representations). In neural models, it is generally assumed to 
rely on the activation of context representations in the prefrontal cortex (e.g., Miller & 
Cohen, 2001). Symbolic models readily afford flexibility, as they have at their core the ability 
to bind control representations (e.g., variables) to arbitrary values, and compose these in arbi
trary ways to implement new behaviours. However, whether arbitrary variable binding and 
full compositionality are implemented in the brain is less clear. At the least, humans exhibit 
limitations in abilities that are trivial to implement in truly symbolic systems, such as multi‐
digit mental arithmetic or parsing recursively embedded phrases (e.g., the mouse the cat the 
dog chased scared squealed). Understanding the flexibility of human behaviour in terms of 
mechanisms that approximate symbol processing, or that use altogether different computa
tional mechanisms, is one of the major challenges for the study of cognitive control (O’Reilly 
et al., 2013). Efforts to address this challenge have brought into focus four functional require
ments that such a system must satisfy: (a) a representational code sufficient to span the seem
ingly limitless range of control‐dependent behaviours; (b) the ability to acquire (or configure) 
such a code from experience; (c) the ability to update the currently active control 
representation(s) in a context‐appropriate manner; and (d) the ability select the appropriate 
representation to activate. Understanding how these requirements are met has become an 
important focus of research on cognitive control.

What code do control representations use? This is perhaps the most fundamental question 
that confronts research on cognitive control: What is the form of the representations used 
to flexibly guide performance? Some have argued against an explicit code, suggesting that a 
sufficiently large, randomly connected network may be powerful enough to explain the 
flexibility of control‐dependent behaviour (Rigotti et al., 2013; Susillo, 2014). However, this 
begs the question of how, out of the vast number of possibilities, the system can be config
ured immediately (e.g., under instruction) to implement the precise combination of processes 
needed to implement an arbitrary, novel task. Others have proposed that, as in fully symbolic 
systems, there must be some more systematic, combinatorial code—a ‘vocabulary’—that 
efficiently spans the space of possibilities (e.g., Eliasmith et al., 2012; Plate, 1995). Whether 
random or systematic, characterising the nature of the representations on which control 
relies remains one of the greatest challenges of cognitive neuroscience. Meeting this challenge 
may rely on progress in addressing another, closely related challenge: understanding how 
control representations arise through learning and development.

How are control representations acquired? The capacity for cognitive control is clearly one 
that emerges over the course of development, almost certainly under the regulation of 
genetic factors, but equally clearly shaped by experience. Understanding this developmental 
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process has been the focus of considerable empirical study (Diamond, 2013; Hanania & 
Smith, 2010; Munakata, Snyder, & Chatham, 2012; Chapter 26 by Cohen & Casey in this 
volume). There are at least two lines of theoretical work that address the learning mechanisms 
underlying cognitive control. One has explored the idea that, with the appropriate neural 
architecture, simple reinforcement learning algorithms can extract representations from expe
rience that are sufficiently abstract and compositional as to approximate symbol‐like 
processing, even if they are not fully symbolic in the sense of supporting arbitrary variable 
binding (Kriete, Noelle, Cohen, & O’Reilly, 2013; Rougier, Noelle, Braver, Cohen, & 
O’Reilly, 2005). Another line of work has explored an extension of simple reinforcement 
learning—referred to as ‘hierarchical reinforcement learning’—that is sensitive to the nested 
goal–subgoal structure of many tasks, and exploits this to extract representations that can be 
used to control behaviour over a wide range of tasks (e.g., Botvinick, Niv, & Barto, 2009; 
Frank & Badre, 2012). These approaches complement one another, and an integration of the 
insights gained from each promises to advance our understanding of the code used to repre
sent control signals, and how it emerges with experience. This work also points to a third 
requirement for flexibility of behaviour: the ability to update control representations in a 
context‐appropriate manner.

How and when are control representations updated? All model architectures that address 
cognitive control implement some mechanism for regulating the activation and mainte
nance of control representations. In production systems, this is typically managed by the 
firing of productions that are responsible for updating the contents of working memory. 
However, several critical features vary across models: How many productions can fire at 
once; whether they do so synchronously (all updates occur at once) or asynchronously 
(whenever a relevant production fires); and the ‘conflict resolution’ mechanisms required to 
select which of a set of competing productions are allowed to fire at a given time. Similar 
issues arise in neural network architectures, for example, whether to update representations 
continuously (as in simple recurrent networks; e.g., Botvinick & Plaut, 2004; Cleermans & 
McClelland, 1991; Elman, 1990) or at discrete intervals. The latter is usually implemented 
using a gating mechanism that regulates access to parts of the system responsible for repre
senting and maintaining control signals. Such a mechanism has been implemented both in 
models used to simulate human performance and brain function (Braver & Cohen, 2000; 
Chatham & Badre, 2015; Frank, Loughry, & O’Reilly, 2001; Todd, Niv, & Cohen, 2008; 
Zipser, 1991), as well as in machine learning applications (Hochreiter & Schmidhuber, 
1997; LeCun, Bengio, & Hinton, 2015). Such models, applied to human function, make 
useful contact with the neural mechanisms involved. However, an important challenge for 
these models is to make contact with the rich set of experimental findings concerning human 
performance in domains such as task switching that address the dynamics of updating of 
control (e.g., Collins & Frank, 2013; Gilbert & Shallice, 2002; Reynolds, Braver, Brown, & 
Van der Stigchel, 2006).

One issue that has come to the fore, concerning the timing of control updating, is whether 
this happens in anticipation of the need to change the control representation or ‘just‐in‐time’ 
(that is, when the first indication occurs of the need for a new control state). These strategies 
have been referred to as ‘proactive’ and ‘reactive’ control, respectively (Braver, 2012; 
Chapter 9 by Chiew & Braver in this volume). This issue raises interesting questions about 
how control can be optimised, as well as its interaction with other memory systems—issues 
that will be touched on further below.

Another critical question is how the system learns when to update control representations. 
One intriguing answer to this question, suggested by neurophysiological data, is that the gat
ing signal may be tightly coupled with, or may even rely on the same mechanisms used for 
reinforcement learning. The latter respond to reward prediction errors, which are elicited by 
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a stimulus that itself was not predicted, but that predicts a later reward (Montague, Dayan, & 
Sejnowski, 1996). This is precisely the timing required for a gating signal: an event that, itself 
unpredicted, signals the possibility of greater reward if control is redeployed. Thus, coupling 
the gating signal to the reinforcement learning signal may allow the system to discover when 
the gating signal should occur (Braver & Cohen, 2000; Frank et al., 2001). Recent work has 
suggested that gating of the output of the control system may be as important as gating its 
input (e.g., Chatham, Frank, & Badre, 2014; Kriete et al., 2013). These ideas offer a rich 
avenue for future research on how the control system develops and how, when it goes awry, 
it may manifest in clinical conditions.

How are control representations selected for activation? The adaptive value of a control 
system relies critically on its ability to determine not only when control signals should be 
updated, but specifically which one(s) to engage at a particular time. The conflict resolution 
mechanisms in symbolic models partially address this point, but typically do so on the basis 
of the structural properties of the opportunities (e.g., which properties are most highly spec
ified) rather than on motivational factors, such as effort and reward. Recent efforts have 
begun to focus on the latter, suggesting that control signals are selected based on a cost‐
benefit analysis that takes account of the expected value of the control signals in contention, 
and selects the one(s) that maximise this value (Shenhav, Botvinick, & Cohen, 2013; see also 
Chapter 10 by Kool et al. in this volume). This kind of normative approach is a promising 
avenue for research on control, as discussed in the final section of this introduction.

An intimately related question is how the value of prior experience (i.e., knowledge already 
accrued about expected outcomes for control signals) is balanced against the value of gaining 
new experience—a tension that is commonly referred to as the explore–exploit trade‐off. 
Managing this trade‐off successfully is a fundamental requirement for any agent that can 
adapt in non‐stationary environments (e.g., Cohen, McClure, & Yu, 2007; Gittins & Jones, 
1974; Kaelbling, Littman, & Moore, 1996; Krebs, Kacelnik, & Taylor, 1978; Pratt & 
Sumpter, 2006; Watkinson et al., 2005). Although there is no fully general solution to the 
explore–exploit trade‐off, recent work has begun to examine how humans manage this 
problem (Daw, O’Doherty, Dayan, Seymour, & Dolan, 2006; Wilson, Geana, White, 
Ludvig, & Cohen, in press). These lines of work examine how, in choosing a course of behav
iour, agents should weigh the value of acquiring information (i.e., exploration, in the service 
of learning, and thus as a proxy for future reward) against the value of immediate reward (i.e., 
exploitation). Here, as with updating mechanisms, there are proposals about the role that 
neuromodulatory mechanisms may play in regulating this critical function of control (Aston‐
Jones & Cohen, 2005; Yu & Dayan, 2005) that may help index this function, and provide 
clues to both its normal operation and the role it plays in clinical conditions. A consideration 
of the explore–exploit trade‐off also suggests an additional point of contact between control 
and motivational constructs, such as boredom. Recent findings have begun to suggest that, 
just as effort may reflect a phenomenological correlate of the opportunity cost associated with 
performance of a given task with respect to reward, so boredom may reflect the opportunity 
cost with respect to information—that is, boredom may signal the value of exploration 
(Geana, Wilson, Daw, & Cohen, under review). These lines of work are beginning to sketch 
the outline of a more formal, comprehensive, and normative model of control.

Unitary or Multiple Constructs

The earliest theories of cognitive control were explicit in suggesting that it relied on a single, 
central processing mechanism. This was based in large measure on the observation of capacity 
constraints (e.g., dual‐task interference) and the assumption that this reflects the limited 
capacity of a central mechanism. As discussed above, this claim has been challenged by the 
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suggestion that controlled processing may lie along a continuum, and that interference effects 
reflect interactions among the local processes that control is engaged to regulate, rather than 
an intrinsic limitation of a centralised mechanism. Nevertheless, even if control can be 
engaged along a continuum and its capacity is not limited, it is meaningful to ask whether 
control relies on a unitary mechanism, or on disparate domain‐specific mechanisms. This 
question closely parallels ones that have been raised with respect to other constructs, such as 
intelligence, working memory, and attention. Here, as in those cases, an intermediate answer 
seems most likely: that control relies on mechanisms of a particular kind, implemented in a 
wide range of domains, with different parameterisations that reflect specific features of those 
domains, but that share common fundamental attributes. If this is so, then understanding this 
‘family resemblance’ may help guide modelling, hypothesis generation, and empirical inquiry. 
Thus, it may be most useful to ask: What are the fundamental functions and attributes that 
define cognitive control, and what are the kinds of mechanisms that can implement these 
functions and attributes?

The sections above—and many of the chapters of this book—are meant to address these 
questions. In summary, the following seem to be a core set of functions and attributes of 
cognitive control: (a) the ability to support control representations as a form of internal con
text, that serve as signals to guide processing elsewhere in the system; (b) the use of such 
signals to avert interference that can arise from cross‐talk among processes sharing overlap
ping pathways; (c) constraints on the capacity for control‐dependent processing that may 
reflect more about the propensity for such cross‐talk, and the need to limit it, than limitations 
in the control system itself; (d) the ability to update control representations in a manner that 
is sensitive to the circumstances in which this is needed; and also to (e) the opportunity costs 
that constraints on control‐dependent processing impose, weighed against the opportunities 
that controlled processes afford for both expected reward (exploitation) and/or to gather 
useful information (exploration and learning). Progress is being made in understanding the 
neural architecture and mechanisms underlying these functions and attributes, which provide 
additional support for the supposition that, at the least, the construct of cognitive control 
remains a coherent and useful one.

Relationship to Other Psychological Constructs

From its inception, the construct of cognitive control has been inextricably intertwined with 
several others in the psychological literature, and thus it seems important to consider how 
these are related. Several of these stand out: executive function, intelligence, volition, 
attention, working memory, and inhibition. In addition, recent research has begun to 
focus on the role of cognitive control in two other domains of function: self‐control and 
long‐term memory.

Executive Function and Intelligence

Executive function. This term has a long history in the psychological literature (e.g., Bianchi, 
1895; Luria, 1966), extending into early work in cognitive psychology (e.g., Baddeley & 
Hitch, 1974; Shallice, 1982). It seems impossible to distinguish the use of ‘executive function’ 
from the construct of cognitive control and, at least within the cognitive psychological liter
ature, ‘cognitive control’ has largely replaced the use of ‘executive function’. This is likely for 
historical reasons (e.g., the close association of ‘executive function’ with older neuropsycho
logical constructs and particular batteries of tasks). In any event, it seems reasonable to treat 
these as synonyms.
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Intelligence. Since Spearman introduced the construct of ‘general intelligence’ 
(g;  Spearman, 1904), it has been both captivating and controversial, and inextricably 
intertwined with the concept of executive function. Like executive function, it has also 
been associated consistently with frontal lobe function (e.g., Duncan et al., 2000). The 
question of whether intelligence should be treated as a unitary construct (as proposed by 
Spearman [1904]), or reflects the operation of a collection of domain‐specific faculties 
parallels, in many ways, a similar question about cognitive control. Answers to these ques
tions may bear on a deeper understanding of the relationship between them, and in 
particular, whether intelligence reflects the functioning of mechanisms beyond those 
responsible for  cognitive control. What does seem clear, however, is that the capacity 
for cognitive c ontrol  represents a necessary, if not sufficient, condition for intelligence 
(e.g., Kane & Engle, 2002).

Volition

The earliest treatments of cognitive control proposed that the mechanisms involved were 
responsible for conscious, voluntary action, and intention. This had strong intuitive appeal, 
and continues to be an interesting and potentially valuable area of inquiry (Dehaene & 
Naccache, 2001; Graziano & Kastner, 2011). In part, this is because it seeks to satisfy our 
intrinsic curiosity about the compelling nature of our experience as ‘volitional’ agents, and 
because it may lend insights into fundamentally important social and moral questions (such 
as responsibility for action; e.g., Bratman, 1987; Vargas, 2013). Progress has been made in 
identifying the correlates of conscious states (e.g., Cleermans, 2007; Dehaene & Changeux, 
2011; Schurger, Pereira, Treisman, & Cohen, 2010) and v olition (Haggard, 2008; Soon, 
Brass, Heinze, & Haynes, 2008). However, the extent to which these are co‐extensive with 
those that engage control remains an open and interesting question.

Attention

The construct of cognitive control grew out of the literature on attention, and remains 
intimately bound to it. One might even argue that these constructs are inseparable, with 
attention referring to one of the most fundamental functions of control: the selection of 
some processes for engagement over others (e.g., Ardid, Wang, & Compte, 2007; Cohen 
et al., 1990; Deco & Rolls, 2005). However, the question of whether ‘attention’ should 
simply be considered as a function of control—and nothing more—raises some of the 
questions discussed above concerning the scope of the construct of control. For example, 
is it meaningful to assume that the mechanisms responsible for sensory selection (to which 
the word attention is most commonly applied) reflect the operation of cognitive control? 
Do they share features in common with those responsible for the selection of actions? 
Similarly, does the ‘exogenous’ and seemingly automatic engagement of attention (e.g., 
the ‘capture of attention’ by salient events, such as a loud sound) engage mechanisms of 
cognitive control, and are those the same as or in some meaningful way similar to those 
responsible for ‘endogenous’ (or ‘strategic’) forms of attention (e.g., responding to a 
verbal instruction)? At the least, it has been known for quite some time that these exhibit 
different dynamics (e.g., Neely, 1977; Petersen & Posner, 2012; Posner & Cohen, 1984). 
Once again, an answer to these questions, and whether it makes sense to consider attention 
to be a function of control in all circumstances and at all levels of analysis will only be 
answered (and may ultimately be rendered irrelevant) with a deeper understanding of the 
mechanisms involved.
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Working Memory

The construct of working memory, first formulated in the context of theories about execu
tive function (Baddeley & Hitch, 1974), referred to a buffer that stored information 
required for executive processes to operate (e.g., the intermediate products of a computa
tion). Symbolic models proposed that working memory (defined as the activated state of 
information in long‐term memory) served not only to buffer intermediate products of com
putation, but also goal representations used to guide behaviour (Anderson, 1983). Neural 
network models of control have emphasised the latter (Cohen et  al., 1990; Dehaene & 
Changeux, 1991; O’Reilly, 2006). In general, there seems to be a consensus that cognitive 
control relies critically on at least one component of working memory: the activation and 
maintenance of control representations used to guide processing (Miller & Cohen) and, 
furthermore, that a critical function of control is to regulate the contents of this component 
of working memory (O’Reilly, 2006). However, as with attention, it is not yet clear how the 
boundaries of this construct coincide with those of cognitive control (see also Chapter 3 by 
Meier & Kane in this volume). This is complicated by overlapping use of the terms ‘working 
memory’ and ‘short‐term memory’, both of which refer to the maintenance of information 
in an activated state. Like the relationship between cognitive control and attention, clarity 
along these lines is most likely to come from a more detailed understanding of the underlying 
mechanisms, and their relationship to those involved in attention and control (e.g., Ikkai & 
Curtis, 2011), rather than from further attempts to refine these definitions in the absence of 
such an understanding.

Inhibition

Directed versus competitive inhibition. The associations of inhibition with executive function 
and the frontal lobes dates back to the report about Phineas Gage (Harlow & Martyn, 1868), 
and neurological studies in the beginning of the last century (Adie & Critchley, 1927; 
Brain & Curran, 1932; Marinesco & Radovici, 1920) identifying reflexes in infants that dis
appear in adults, but reappear in patients with damage to the frontal lobes. These ‘frontal 
release signs’ continue to be used in clinical practice to identify frontal lobe damage. This 
phenomenon, together with the observation of primitive (e.g., ‘utilisation’) behaviours in 
monkeys and humans with frontal lobe lesions, led to the belief that a cardinal function of the 
frontal cortex (and the executive function that it supports) is the inhibition of reflexive and/
or habitual behaviours (e.g., Bianchi, 1895; Fuster, 1980; Lhermitte, 1983). This belief per
sists, in many quarters, in the common and steadfast assumption that frontal control mecha
nisms provide direct and specific inhibition of automatic (e.g., habitual) processes (Buckholtz, 
2015). However, there is little direct support for this assumption beyond the domain of 
neurological reflexes. An alternative to directed inhibition is competitive inhibition: by facil
itating selected processes, control allows those processes to compete more effectively with 
interfering processes (e.g., by way of lateral inhibition, or other ‘normalising’ mechanisms). 
It may be difficult, and even impossible, to distinguish between directed and competitive 
inhibition on theoretical grounds alone. However, competitive inhibition seems both more 
parsimonious (it should be easier to select and support a single process than direct inhibition 
towards all potential competitors), and it is consistent with general principles of neural 
o rganisation (e.g., the scarcity of long‐range inhibitory projections, and the abundance of 
lateral inhibitory interneurons). Nevertheless, an adjudication of these possibilities, or the 
identification of an intermediate solution, is likely to require detailed neurophysiological 
investigation.
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Global inhibition and ‘stopping’. While the mechanisms of inhibition underlying selection 
remain to be identified, it has become increasingly clear that the brain implements, and the con
trol system has access to a ‘stopping mechanism’ that effects a more general or global form of 
inhibition. This is suggested both by behavioural evidence (e.g., using stop‐signal and go‐no‐
go tasks; Logan, 1994; Verbruggen & Logan, 2008), and by neural evidence concerning the 
basal ganglia, and in particular the subthalamic nucleus (e.g., Aron & Poldrack, 2006; Frank, 
2006). One hypothesis is that such systems provide a ‘brake’ that may reflect an asymmetry in 
both mechanism and outcome between rewarding and perilous outcomes: In general, the risks 
associated with erroneous action may be greater or more frequent than those associated with 
inaction. Such a stopping mechanism may also serve a more refined function in the control of 
behaviour, by setting response thresholds used to regulate speed–accuracy trade‐offs in the ser
vice of optimising reward (e.g., Bogacz et al., 2006; Cavanagh et al., 2011; Gold & Shadlen, 
2002). Understanding the mechanisms by which control overrides inappropriate responses—
whether by directed, competitive, or some more global form of inhibition—remains an impor
tant goal not only for basic research, but also for understanding failures of control and, in 
particular, failures of self‐control that are a prevailing social and clinical concern.

Self‐Control

The study of self‐control has become one of increasing importance, at both the individual and 
social level (see Chapter 25 by Davisson & Hoyle in this volume). At the individual level, it is 
obvious that failures of self‐control are a fundamental feature of a wide range of clinical disor
ders, from obsessive‐compulsive disorder to drug addiction and gambling (Chapter 32 by 
Chaarani et al. in this volume). It is also becoming increasingly apparent that problems of 
self‐control are responsible for dysfunctional behaviours in otherwise healthy individuals (such 
as failures to save adequately for retirement) and at the societal level (e.g., energy use policies). 
Although, like many of the constructs discussed above, there is no scientifically accepted defi
nition of the term self‐control, in common use it refers to ‘the ability to control oneself, in 
particular one’s emotions and desires’. Once again, it remains to be determined whether the 
construct of cognitive control, as traditionally defined and studied in the experimental labora
tory, extends seamlessly into the domain of self‐control in the real world (e.g., Buckholtz, 
2015). There are at least two ways in which self‐control may involve domain‐specific factors: 
(a) the nature of the process over which control presides; and (b) what appears to be the 
fundamentally intertemporal nature of decisions involving self‐control.

Value‐based decision making. If a primary function of control is to choose behaviours that 
maximise value (see the section above titled ‘Effort and Motivation’), then it seems natural 
to include decisions driven by emotions and desires in its scope (e.g., see Chapter 23 by 
Winecoff & Huettel in this volume). These can be considered as a class of automatic processes 
that pose challenges to controlled processing similar to more ‘cognitive’ ones (e.g., word 
reading in the Stroop task). Indeed, there is a large literature that exploits this correspondence 
to infer the influence of emotional and valuation processes on behaviour (e.g., Fazio & 
Olson, 2003; Greenwald, Poehlman, Uhlmann, & Banaji, 2009; Chapter 24 by Krebs & 
Woldorff and Chapter 22 by Pessoa in this volume), suggesting that the role of control in 
regulating cognitive processes may share much in common with mechanisms involved in reg
ulating emotional ones (e.g., Gross & Thompson, 2007). At the same time, affective 
processes may exhibit dynamics that distinguish them from other types of automatic processes. 
For example, the ‘force’ of a desire may increase with time, and the control of such processes 
often exhibits a stereotyped recovery‐and‐relapse cycle (e.g., as observed in addiction, 
dieting, etc.) that is not commonly observed in other domains. These factors pose both 
theoretical and experimental challenges that may be unique to the domain of self‐control.
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Intertemporal choice. Decisions about self‐control seem invariably to involve choices bet
ween one option that is immediately desirable (e.g., a piece of cake on the table) and another 
that carries greater future value (dieting), a type of decision often referred to as intertemporal 
choice. Thus, self‐control may fundamentally involve not only inhibition (as discussed above), 
but also intertemporal choice. This is consistent with a growing literature suggesting that 
intertemporal choice involves a competition between automatic and controlled processes 
(Figner et al., 2010; Kahneman, 2003; McClure, Laibson, Loewenstein, & Cohen, 2004). 
Indeed, one intriguing conjecture is that intertemporal choice is fundamental not only to 
self‐control, but to control in general. In other words, the immediacy of the reward associated 
with an outcome may be a critical feature in determining which of two (or more) competing 
processes demands control. In the Stroop task, the greater ease of reading the word might be 
viewed as a form of immediate reward, whereas the benefits of overriding this response in 
order to name the colour come when performance is rewarded, which is usually later. From 
this perspective, the demands for control might be viewed as intimately bound to inter
temporal choice, and control mechanisms as the steward of our future selves. Nevertheless, 
intertemporal choice involving affective processes and self‐control may impose distinct 
requirements (e.g., due to the greater salience of rewards, and/or greater temporal asymmetries) 
and may therefore demand distinctive mechanisms of control.

Long‐Term Memory, Prospective Memory and Planning

Memory search. Mechanisms that actively represent internal context have come to occupy a 
central role in theories about the encoding and retrieval of information from long‐term 
memory. Tulving’s context‐encoding hypothesis proposed that features of the context in 
which a memory was formed are encoded along with the memory itself, and that retrieval 
involves a form of ‘mental time travel’ that reinstates the context in which the memory was 
formed to facilitate retrieval of the memory (Tulving, 2002). The temporal context model 
(TCM, Howard & Kahana, 2002; Polyn, Norman, & Kahana, 2009) extends this idea, sug
gesting that internal, actively maintained representations—such as goals and intentions—are 
a particularly useful form of context that can identify the time at which a particular memory 
was encoded. On this view, retrieval involves reinstating the context representation active 
at  the time of memory encoding and, by association, the memory itself. This beautifully 
ties together the role of context representations in control and long‐term memory, and the 
foundations for a mechanistic understanding of the processes involved.

Prospective memory and planning. Like most studies of cognitive control, TCM focuses on 
its regulative functions—the selection of a process (in this case, memory retrieval) for current 
execution. However, an important and growing area of research is on the interaction between 
control and long‐term memory in the service of prospective memory and planning. Imagine 
the following example: I ask you to perform the colour naming task in 2 s. It is almost certain 
that you will engage the required task representation(s) immediately. However, if instead 
I ask you to do it when I return to the room in an hour, it is just as certain that you will not 
engage and maintain those representations while I am gone. Rather, you will do so when 
I return. Critically, it is likely you will be able to do this without my having to instruct you 
when I return. This represents a form of prospective memory (‘remembering’ to do something 
in the future), and a simple form of planning.

There is increasing evidence that this ability to program a controlled process for future exe
cution relies on an interaction between control mechanisms and episodic memory (e.g., 
Cohen & O’Reilly, 1996; Einstein & McDaniel, 2005; Gollwitzer, 1996). On this account, 
when an instruction is presented (or a plan is conceived), an association is formed in episodic 
memory between the control representation required to execute the necessary behaviour and 

0002833480.indd   15 11/26/2016   10:07:17 AM



16 Jonathan D. Cohen 

the future conditions under which it should be executed (e.g., my reappearance in the 
room). Then, when those conditions occur, the association in episodic memory elicits 
retrieval of the control representation, which is re‐engaged (e.g., gated) in working memory, 
and the task is executed. Although this idea that control representations can be ‘cached’ in 
episodic memory is compelling, it poses many new questions. For example, when is this 
mechanism used rather than the immediate activation of the control representation 
(a question closely related to the use of proactive versus reactive forms of control discussed 
in the previous section titled ‘Flexibility’; e.g., Bugg, McDaniel, & Einstein, 2013; Meiran 
et al., 2015), and what are the factors that influence this decision? When choosing to defer, 
what features of the future state are chosen to associate with the control representation? 
To what extent can the association between control representation and episodic memories 
emerge passively, through experience (cf. Chapter 4 by Egner in this volume)? Answers to 
these questions promise to unravel one of the greatest mysteries of the human brain: how it 
supports the ability to plan for the future.

Theoretical Considerations

Normative Theory

The dominant approach to research on cognitive control has been to characterise the prop
erties of control‐dependent processing, use these to infer candidate mechanisms, and design 
experiments to test those mechanisms. Although this has generated considerable progress, 
there is another, complementary approach that has been conspicuously scarce in research on 
cognitive control: the construction of normative theory. This is sometimes referred to as 
rational analysis, or the ideal observer method (e.g., Barlow, 1981; Tanner & Swets, 1954). 
This seeks to identify the optimal computation for a function of interest, which is then used 
to generate hypotheses about the mechanisms involved. Although it is rare (though not 
unprecedented) that natural systems implement fully optimal mechanisms, this approach pro
vides a rational guide for generating hypotheses, and a formally rigorous framework within 
which to test them. It has driven considerable progress in many domains of science, including 
psychology (Anderson, 1990; Geisler, 2003; Tenenbaum, Griffiths, & Kemp, 2006). The 
scarcity of this approach in research on cognitive control is particularly surprising, given that 
the optimisation of behaviour can be viewed as the fundamental purpose of control. This is 
the definition of control used by systems theory in engineering and, as noted above, inspired 
the earliest thinking about control in the context of human behaviour (e.g., Wiener, 1948; 
Miller et al., 1960).

A critical step in normative theory is defining the ‘objective function’ being optimised; that 
is, in the context of cognitive control, the goal that the behaviour is intended to achieve. 
Identifying the objective function for cognitive control poses a serious challenge, given the 
broad scope of processes, behaviours, and goals it can serve. Once again, this raises questions 
about the extent to which ‘cognitive control’ should be treated as a unitary construct, a class 
of mechanisms sharing a family resemblance, or a disparate set of domain‐specific mecha
nisms. Nevertheless, several lines of work have begun to take on the challenge of this approach.

Task‐level optimisation. One approach has been to focus on the role of control in optimis
ing a particular task. An example of this is work on two‐alternative forced choice decision‐
making tasks. Dramatic progress has been made in identifying and characterising the 
mechanisms involved in such simple decisions, at both the psychological and neural levels of 
analysis (e.g., Gold & Shadlen, 2007; Ratcliff & McKoon, 2009), and in conducting norma
tive analyses of performance (e.g., Bogacz et al., 2006). This has provided a formally rigorous 
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framework within which to interpret psychological constructs (such as expectations, attention, 
and the speed–accuracy trade‐off), and for quantifying performance associated with optimal 
control against which human performance can be compared (e.g., Simen et al., 2009). This 
work serves as an example of how normative theory can be used to study the engagement of 
cognitive control in a given task domain, of which other examples are now beginning to 
emerge (e.g., Verguts, Vassena, & Silvetti, 2015; Wiecki & Frank, 2013; Yu, Dayan, & 
Cohen, 2009).

Meta‐level optimisation. A complementary approach has been to consider the problem at 
the broadest level: How does the control system determine which tasks or goals should be 
pursued at a given time? One approach is to ascribe this to learning (e.g., Verguts & Notebaert, 
2008); another is to consider it as an optimisation problem of its own, nesting the optimisa
tion control for a given task within a higher‐level optimisation of the choice among tasks. 
An example of this is the expected value of control (EVC) theory (Shenhav et al., 2013). 
This  assumes that investment in a control‐demanding task improves the probability of 
reward, but that this carries a cost that scales with the amount of control invested. The EVC 
theory proposes that control is allocated across tasks based on a cost‐benefit analysis of this 
trade‐off, so as to maximise the overall rate of reward. This provides a rigorous framework 
within which to analyse, and make predictions about the allocation of control in a given task 
environment.

Optimisation under constraints: Bounded rationality. The cost of control must be taken 
into account by any normative theory of control. Understanding this cost—its functional 
form, and whether and how it varies across individuals and domains of behaviour—is an 
important direction for research. As discussed above, it seems likely that a central factor is the 
capacity constraint on control, which imposes an opportunity cost: Investing control in one 
task forgoes the opportunities for reward afforded by others. This reinforces the importance 
of understanding the nature and source of the constraints on control. Here, computational 
analyses are proving useful, as discussed further below. Consideration of how control is 
o ptimised in the face of a budget represents an instance of an approach to normative theory, 
broadly referred to as ‘bounded rationality’ (Simon, 1955, 1992), that has begun to attract 
growing attention (Gershman, Horvitz, & Tenenbaum, 2015; Griffiths, Lieder, & Goodman, 
2015; Howes, Lewis, & Vera, 2009). This assumes that optimisation must take account not 
only of the system’s objectives, but also the constraints under which it must operate—akin to 
tuning a radio as best as possible to a weak station. One criticism of this approach is that it is 
possible to explain any pattern of performance post hoc, by conjuring a set of constraints 
under which the observed performance would be optimal. However, rather than a problem, 
this can be viewed as a valuable step in the scientific process, the next step of which is to cast 
those constraints as hypotheses and use them to generate new predictions about performance. 
This approach has begun to show potential (e.g., Balci et al., 2011; Lieder & Griffiths, 2015), 
and is a promising avenue of research for the study of control.

The statistics of natural tasks. The properties of the control system itself, the processes over 
which it presides, and the neural architecture in which these are implemented represent 
important sources of constraint (Botvinick & Cohen, 2014). However, an equally important 
one is the environment in which the system operates. It is, after all, the environment to which 
an adaptive system adapts. Therefore, taking account of the structure of the environment 
should provide important clues about the structure of systems responsive to it. For example, 
recent progress in understanding the function of the human visual system has been driven in 
large measure by a characterisation of the statistics of natural scenes that have shaped its 
architecture (Simoncelli & Olshausen, 2001). The study of cognitive control stands to benefit 
from a similar approach. The human brain is clearly better at carrying out some kinds of tasks 
(e.g., crossing a busy road) than others (long division), likely because it has evolved to solve 
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a wide, but not random, set of tasks required to survive in the natural world. Characterising 
the structure and statistics of tasks should be an important priority for research on cognitive 
control.

Computational Trade‐Offs in Representation and Processing

The constraints on processing considered by the approaches discussed above have largely 
been physical (e.g., limits in the amount or type of data available to the system).

However, a more fundamental set of constraints may be related to trade‐offs inherent to all 
computational systems. One such trade‐off, which has been central to the construct of 
cognitive control since its inception, is between serial and parallel processing. A second trade‐off 
that has begun to attract attention is between model‐free and model‐based processing.

Serial versus parallel processing. This distinction was central to the original formulations of 
controlled and automatic processing (e.g., Shiffrin & Schneider, 1977). Reliance on a central, 
limited‐capacity mechanism was assumed to impose a serial constraint on controlled processing, 
akin to the sequential execution of a programme by the central processing unit of a standard 
computer (i.e., one that implements a von Neumann architecture). Conversely, it was assumed 
that automatic processes can be executed in parallel (i.e., simultaneously without penalty), 
akin to the ‘embarrassing’ parallelism common in multi‐node computer clusters (that is, 
running many unrelated jobs on different nodes simultaneously). The serial constraint on con
trolled processing has also been a central assumption of two of the most fully developed and 
influential models of cognition (ACT‐R and SOAR; Anderson, 1983; Newell, 1990). 
However, the necessity of this assumption has been challenged by models using similar archi
tectures that weaken or eliminate the serial constraint on controlled processing (e.g., Meyer & 
Kieras, 1997; Salvucci & Taatgen, 2008). The debate about whether there is a ‘central bottle
neck’ in cognitive control has also been subject to intense empirical inquiry, centred largely 
around the observation of the psychological refractory period (Pashler, 1984)—a delay in 
performance associated with the attempt to perform two or more tasks at once, interpreted as 
evidence that they are being queued for serial execution. The interpretation of this finding in 
terms of a central bottleneck has been challenged (e.g., Howes et al., 2009; Schumacher et al., 
2001); however, several theories continue to assume that control relies on a centralised 
mechanism (Duncan & Owen, 2000; Roca et al., 2011; Tombu et al., 2011).

The debate about whether controlled processing relies on a central, serially constrained 
mechanism highlights, and is complicated by, another problem: In practice, it may be very 
difficult to distinguish between rapid serial and truly (concurrent) parallel processing (e.g., 
Townsend, 1972). The ability to do so, and the relevance of doing so, depends on the 
temporal resolution—both of the measurement, and of the outcome of interest. For example, 
the serial updating of pixels on a computer display could be detected by an oscilloscope with 
a temporal resolution of greater than 100 Hz, but not the human visual system with a 
temporal resolution of less than 60 Hz (which perceives the update as synchronous). This 
suggests that a definitive answer to the question of whether controlled processing is purely 
sequential, or can support parallel processes, will require, like other questions, finer‐grained 
measurements and possibly neurobiological evidence.

That said, there is another standpoint from which to view the distinction between serial 
and parallel processing, and its relationship to cognitive control, that may lend clarity and 
coherence to the array of phenomena associated with controlled processing. This can best be 
appreciated by considering another kind of parallelism, captured by parallel distributed 
processing (PDP) or ‘connectionist’ architectures (Rumelhart, McClelland, & the PDP 
Research Group, 1986). Here, rather than the number of behavioural tasks that can be performed 
at once, the appeal of parallelism is the number of constraints that can be taken into account 
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in computing the solution to a single problem—a process sometimes referred to as ‘multiple 
constraint satisfaction’. Each individual unit in a PDP network can be thought of as repre
senting a constraint (or ‘micro‐process’), and their interaction serves to take account of the 
mutual influence that these have on each other in parallel, averting the costs of a combinato
rial explosion that would be incurred by doing so in serial. Mutual constraint satisfaction is a 
hallmark of functions at which the human brain excels (such as face perception and natural 
language processing). PDP models have been used to understand how the human brain com
putes these functions, and recent advances in machine learning have begun to approximate 
these abilities using artificial neural networks (LeCun et al., 2015).

The success of PDP networks lies in the extensive interactions among individual 
processing units—sometimes referred to as fine‐grained parallelism. This is in contrast to 
coarse‐grained (or ‘embarrassing’) parallelism that supports the execution of multiple 
independent processes at once. Not surprisingly, there is a trade‐off between these types 
of parallelism: The extent to which a network supports fine‐grained interactions among its 
units in performing a task (in the service of mutual constraint satisfaction) and shares the 
representations involved across multiple tasks (supporting generalisation) is in tension 
with the extent to which it can support the performance of multiple such tasks at once 
(Musslick et al., 2016). This suggests there may be a fundamental link between the rich
ness of interactions among the processes involved in performing a task (e.g., recognising 
a face), and the imposition of a serial constraint on that performance (e.g., finding a face 
in a crowd). This relationship may also help explain the canonical trajectory during 
learning from control‐dependent to automatic processing (e.g., Schneider & Shiffrin, 
1977), in terms of a transition from interactive, g eneralisable representations that rely on 
fine‐grained parallel processing (and thus demand seriality), to independent, dedicated 
representations that afford coarse‐grained parallel execution (i.e., multitasking). A better 
understanding of this relationship between representation and the trade‐off between serial 
versus parallel processing may not only offer a new way to frame important, long‐standing 
questions about control, but also new approaches to measurement (e.g., Musslick et al., 
2016) and, potentially, intervention.

Model‐based versus model‐free processing. This distinction, with origins in the work of 
Tolman (1948), has recently been cast in terms of formal learning algorithms and regained 
the attention of psychologists and neuroscientists (e.g., Dickinson & Balleine, 2002; Daw 
et al., 2005; Keramati, Dezfouli, & Piray, 2011; Chapter 11 by de Wit in this volume). In a 
model‐free system, actions are selected based on direct associations from the stimulus to the 
response, learned through trial and error, and without a representation of potentially 
 mediating factors (Sutton, 1988). In a model‐based system, actions can also be evaluated by 
computing and evaluating potential courses of action, using an ‘internal model’ of the possi
bilities that can include intervening states (i.e., between the stimulus and response). Although 
the former is more efficient at processing (i.e., it requires less computation, and thus can 
respond more quickly in a given environment), the latter is more flexible (it can adjust more 
quickly to changes in the environment, by modifying the model rather than relying exclusively 
on trial‐and‐error‐experience).2 The construct of model‐based processing has played a central 
role in theories about the role of ‘internal replay’ in learning and decision making (e.g., 
Sutton, 1990), in which rehearsal of past sequences of occurrences is used as a proxy for 
actual experience in learning, and in planning future actions (Gershman, Markman, & Otto, 
2014; Redish, 2016; Shohamy & Daw, 2015). Recently, it has been proposed that the distinc
tion between model‐based and model‐free processing may reflect the differential engagement 
of controlled and automatic processing—with model‐based processing relying on control 
mechanisms, whereas model‐free reflects the operation of more automatic ones—and 
empirical evidence has begun to accrue in support of this (Deserno et al., 2015; Otto, Skatova, 
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Madlon‐Kay, & Daw, 2015). This offers a rich theoretical framework within which to explore 
the role of controlled processing in learning and memory, including its role in prospective 
memory and planning as discussed above.

Bringing the lines of work described above—on the relationship of representation to 
parallelism, and on model‐based versus model‐free processing—into contact with one 
another, and using them as a framework for building models of cognitive control is a particularly 
promising direction for future theoretical work.

Summary

The construct of cognitive control is a foundational one in cognitive psychology. The phenom
enology that initially inspired the construct is compelling—in particular, its association with 
‘mental effort’, the manifest constraints on its capacity (in both number and duration), its 
apparent sequentiality, and its place in the trajectory of learning—and, for the most part, these 
are empirically validated. However, defining cognitive control in a more rigorous way and 
identifying the mechanisms that govern its operation have been a challenge. Recent work at the 
intersection of cognitive psychology, neuroscience, and computer science has begun to progress 
in this direction. This introduction was aimed at providing an outline of the theoretical con
structs and issues that have emerged from this work, and their relationship to the growing 
corpus of experimental data—much of which is examined in detail in the remaining chapters of 
this volume. The most important challenge for the next phase of research will be to integrate 
the theoretical constructs and empirical findings that have emerged into a coherent, formally 
rigorous description of the mechanisms involved. The outlines of such a theory are coming 
into focus: Cognitive control reflects the operation of mechanisms that maintain, and appro
priately update internal representations of information needed to guide processes responsible 
for task execution in a context‐relevant, goal‐directed manner. Symbolic models have provided 
a useful high‐level description of this system. However, its implementation in the brain imbues 
it with capabilities (e.g., learning and inference) and constraints (e.g., a tension between gen
eralisation and multitasking) that seem to require a finer grain of analysis and modelling. As in 
other domains of science, bridging these levels of analysis is a critical step towards the 
construction of a comprehensive theory. After half a century of research, this synthesis appears 
to be coming within reach, and doing so promises to provide a scientifically satisfying account 
of the remarkable and characteristically human capacity for cognitive control.
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Notes

1 This idea was closely related to Broadbent’s (1958) highly influential bottleneck theory, which asserted 
that attention should be thought of as a central, limited capacity filter on human information processing 
(the relationship between attention and control will be discussed further below).

2 This distinction parallels one between compiled versus interpreted processes in computer science.
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