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Semiconductors and
heterostructures

1.1 The mechanics of waves
De Broglie (see reference [1]) stated that a particle of momentum p has an associated wave
of wavelength λ given by:

λ =
h

p
(1.1)

Thus, an electron in a vacuum at a position r and away from the influence of any
electromagnetic potentials could be described by a state function, which is of the form of
a wave, i.e.

ψ = ei(k•r−ωt) (1.2)

where t is the time, ω the angular frequency and the modulus of the wave vector is given by:

k = |k| = 2π

λ
(1.3)

The quantum mechanical momentum has been deduced to be a linear operator [2] acting
upon the wave function ψ, with the momentum p arising as an eigenvalue, i.e.

−i~∇ψ = pψ (1.4)

where
∇ =

∂

∂x
ı̂ +

∂

∂y
̂ +

∂

∂z
k̂ (1.5)

which, when operating on the electron vacuum wave function in equation (1.2), would give
the following:

−i~∇ei(k•r−ωt) = pei(k•r−ωt) (1.6)

and therefore

−i~
(
∂

∂x
ı̂ +

∂

∂y
̂ +

∂

∂z
k̂

)
ei(kxx+kyy+kzz−ωt) = pei(k•r−ωt) (1.7)
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2 Semiconductors and heterostructures

∴ −i~
(
ikx̂ı + iky ̂ + ikzk̂

)
ei(kxx+kyy+kzz−ωt) = pei(k•r−ωt) (1.8)

Thus the eigenvalue
p = ~

(
kx̂ı + ky ̂ + kzk̂

)
= ~k (1.9)

which, not surprisingly, can be simply manipulated (p = ~k = (h/2π)(2π/λ)) to reproduce
de Broglie’s relationship in equation (1.1).

Following on from this, classical mechanics gives the kinetic energy of a particle of mass
m as:

T =
1

2
mv2 =

(mv)2

2m
=

p2

2m
(1.10)

Therefore it may be expected that the quantum mechanical analogy can also be represented
by an eigenvalue equation with an operator:

1

2m
(−i~∇)

2
ψ = Tψ (1.11)

i.e.

− ~2

2m
∇2ψ = Tψ (1.12)

where T is the kinetic energy eigenvalue, and, given the form of∇ in equation (1.5), then:

∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
(1.13)

When acting upon the electron vacuum wave function, i.e.

− ~2

2m
∇2ei(k•r−ωt) = T ei(k•r−ωt) (1.14)

then

− ~2

2m

(
i2k2

x + i2k2
y + i2k2

z

)
ei(k•r−ωt) = T ei(k•r−ωt) (1.15)

Thus the kinetic energy eigenvalue is given by:

T =
~2k2

2m
(1.16)

For an electron in a vacuum away from the influence of electromagnetic fields, the total
energy E is just the kinetic energy T . Thus the dispersion or energy versus momentum
(which is proportional to the wave vector k) curves are parabolic, just as for classical free
particles, as illustrated in Fig. 1.1.

The equation describing the total energy of a particle in this wave description is called
the time-independent Schrödinger equation and, for this case with only a kinetic energy
contribution, can be summarised as follows:

− ~2

2m
∇2ψ = Eψ (1.17)
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E

E = ~2k2

2m

k

Figure 1.1: The energy versus wave vector (proportional to momentum) curve for an electron
in a vacuum

A corresponding equation also exists that includes the time dependency explicitly; this is
obtained by operating on the wave function by the linear operator i~∂/∂t, i.e.

i~
∂

∂t
ei(k•r−ωt) = i~(−iω)ei(k•r−ωt) (1.18)

or
i~
∂

∂t
ψ = ~ωψ (1.19)

Clearly, this eigenvalue ~ω is also the total energy but in a form usually associated
with waves, e.g. a photon. These two operations on the wave function represent the two
complementary descriptions associated with wave–particle duality. Thus the second, i.e.
time-dependent, Schrödinger equation is given by:

i~
∂

∂t
ψ = Eψ (1.20)

1.2 Crystal structure
The vast majority of the mainstream semiconductors have a face-centred cubic Bravais
lattice, as illustrated in Fig 1.2. The lattice points are defined in terms of linear combinations
of a set of primitive lattice vectors, one choice for which is:

a1 =
A0

2
(̂ + k̂), a2 =

A0

2
(k̂ + ı̂), a3 =

A0

2
(̂ı + ̂) (1.21)

The lattice vectors then follow as the set of vectors:

R = α1a1 + α2a2 + α3a3 (1.22)

where α1, α2, and α3 are integers.
The complete crystal structure is obtained by placing the atomic basis at each Bravais

lattice point. For materials such as Si, Ge, GaAs, AlAs and InP, this consists of two atoms,
one at ( 1

8 , 1
8 , 1

8 ) and the other at (− 1
8 ,− 1

8 ,− 1
8 ), in units of A0.
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y
z

x

A0

Figure 1.2: The face-centred cubic Bravais lattice

Figure 1.3: The diamond (left) and zinc blende (right) crystal structures

For the group IV materials, such as Si and Ge, as the atoms within the basis are the
same, the crystal structure is equivalent to diamond (see Fig. 1.3 (left)). For III–V and II–
VI compound semiconductors such as GaAs, AlAs, InP, HgTe and CdTe, the cation sits on
the (− 1

8 ,− 1
8 ,− 1

8 ) site and the anion on (+ 1
8 ,+ 1

8 ,+ 1
8 ); this type of crystal is called the zinc

blende structure, after ZnS (see Fig. 1.3 (right)). The only exception to this rule is GaN, and
its important InxGa1−xN alloys, which have risen to prominence in recent years due to their
use in green and blue light emitting diodes and lasers (see, for example, [3]); these materials
have the wurtzite structure (see [4], p. 47).

From an electrostatics viewpoint, the crystal potential consists of a three-dimensional
lattice of spherically symmetric ionic core potentials screened by the inner shell electrons
(see Fig. 1.4), which are further surrounded by the covalent bond charge distributions that
hold everything together.
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Figure 1.4: Schematic illustration of the ionic core component of the crystal potential across
the {001} planes—a three-dimensional array of spherically symmetric potentials

1.3 The effective mass approximation
Therefore, the crystal potential is complicated; however, using the principle of simplicity,1

imagine that it can be approximated by a constant! Then the Schrödinger equation derived
for an electron in a vacuum would be applicable. Clearly, though, a crystal is not a vacuum so
allow the introduction of an empirical fitting parameter called the effective mass, m∗. Thus
the time-independent Schrödinger equation becomes:

− ~2

2m∗
∇2ψ = Eψ (1.23)

and the energy solutions follow as:

E =
~2k2

2m∗
(1.24)

This is known as the effective mass approximation and has been found to be very suitable
for relatively low electron momenta as occur with low electric fields. Indeed, it is the most
widely used parameterisation in semiconductor physics (see any good solid state physics
book, e.g. [4, 5, 6]). Experimental measurements of the effective mass have revealed it to
be anisotropic—as might be expected since the crystal potential along, say, the [001] axis
is different than along the [111] axis. Adachi [7] collates reported values for GaAs and its
alloys; the effective mass in other materials can be found in Landolt and Börnstein [8].

In GaAs, the reported effective mass is around 0.067 m0, where m0 is the rest mass of an
electron. Figure 1.5 plots the dispersion curve for this effective mass, in comparison with that
of an electron in a vacuum.

1.4 Band theory
It has also been found from experiment that there are two distinct energy bands within
semiconductors. The lower band is almost full of electrons and can conduct by the movement
of the empty states. This band originates from the valence electron states which constitute the
covalent bonds holding the atoms together in the crystal. In many ways, electric charge in a
solid resembles a fluid, and the analogy for this band, labelled the valence band, is that the
empty states behave like bubbles within the fluid—hence their name, holes.

1Choose the simplest thing first; if it works, use it, and if it doesn’t, then try the next simplest!
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vacuum E GaAs

k

Figure 1.5: The energy versus wave vector (proportional to momentum) curves for an electron
in GaAs compared to that in a vacuum

conduction band

valence band

k

Eg

E

Figure 1.6: The energy versus wave vector curves for an electron in the conduction band and
a hole in the valence band of GaAs

In particular, the holes rise to the uppermost point of the valence band, and just as it is
possible to consider the release of carbon dioxide through the motion of beer in a glass, it
is actually easier to study the motion of the bubble (the absence of beer), or in this case the
motion of the hole.

In a semiconductor, the upper band is almost devoid of electrons. It represents excited
electron states which are occupied by electrons promoted from localised covalent bonds into
extended states in the body of the crystal. Such electrons are readily accelerated by an applied
electric field and contribute to current flow. This band is therefore known as the conduction
band.

Figure 1.6 illustrates these two bands. Notice how the valence band is inverted—this is a
reflection of the fact that the ‘bubbles’ rise to the top, i.e. their lowest-energy states are at
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the top of the band. The energy difference between the two bands is known as the band gap,
labelled as Egap on the figure. The particular curvatures used in both bands are indicative of
those measured experimentally for GaAs, namely effective masses of around 0.067 m0 for
an electron in the conduction band, and 0.6 m0 for a (heavy) hole in the valence band. The
convention is to put the zero of the energy at the top of the valence band. Note the extra
qualifier ‘heavy’. In fact, there is more than one valence band, and they are distinguished by
their different effective masses. Chapter 15 will discuss band structure in more detail; this
will be in the context of a microscopic model of the crystal potential which goes beyond the
simple ideas introduced here.

1.5 Heterojunctions
The effective mass approximation is for a bulk crystal, which means the crystal is so large
with respect to the scale of an electron wave function that it is effectively infinite. Within the
effective mass approximation, the Schrödinger equation has been found to be as follows:

− ~2

2m∗
∂2

∂z2
ψ(z) = Eψ(z) (1.25)

When two such materials are placed adjacent to each other to form a heterojunction, this
equation is valid within each, remembering of course that the effective mass could be a
function of position. However, the band gaps of the materials can also be different (see
Fig. 1.7).

E E

z z

Figure 1.7: Two dissimilar semiconductors with different band gaps joined to form a
heterojunction; the curves represent the unrestricted motion parallel to the interface

The discontinuity in either the conduction or the valence band can be represented by a
constant potential term. Thus the Schrödinger equation for any one of the bands, taking the
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effective mass to be the same in each material, would be generalised to:

− ~2

2m∗
∂2

∂z2
ψ(z) + V (z)ψ(z) = Eψ(z) (1.26)

In the above example, the one-dimensional potentials V (z) representing the band
discontinuities at the heterojunction would have the form shown in Fig. 1.8, noting that
increasing hole energy in the valence band is measured downwards.

conduction
band

valence band

V

V

z

Figure 1.8: The one-dimensional potentials V (z) in the conduction and valence band as might
occur at a heterojunction (marked with a dashed line) between two dissimilar materials

1.6 Heterostructures
Heterostructures are formed from multiple heterojunctions, and thus a myriad of possibilities
exist. If a thin layer of a narrower-bandgap material (A, say) is sandwiched between two
layers of a wider-bandgap material (B), as illustrated in Fig. 1.9 (left), then they form a double
heterojunction. If layer A is sufficiently thin for quantum properties to be exhibited, then such
a band alignment is called a single quantum well.

B A B B A

A
0
.5

B
0
.5

B

conduction band

valence band

EA
gap

EB
gap

Figure 1.9: The one-dimensional potentials V (z) in the conduction and valence bands for a
typical single quantum well (left) and a stepped quantum well (right)
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B A B A B

Figure 1.10: The one-dimensional potentials V (z) in the conduction and valence band for
typical symmetric (left) and asymmetric (right) double quantum wells

If any charge carriers exist in the system, whether thermally produced intrinsic or extrinsic
as the result of doping, they will attempt to lower their energies. Hence in this example, any
electrons (solid circles) or holes (open circles) will collect in the quantum well (see Fig. 1.9).
Additional semiconductor layers can be included in the heterostructure, for example a stepped
or asymmetric quantum well can be formed by the inclusion of an alloy between materials A
and B, as shown in Fig. 1.9 (right).

B A B A B A B A B

Figure 1.11: The one-dimensional potentials V (z) in the conduction and valence band for a
typical multiple quantum well or superlattice

Still more complex structures can be formed, such as symmetric or asymmetric double
quantum wells, (see Fig. 1.10) and multiple quantum wells or superlattices (see Fig. 1.11).
The difference between the latter is the extent of the interaction between the quantum wells;
in particular, a multiple quantum well exhibits the properties of a collection of isolated single
quantum wells, whereas in a superlattice the quantum wells do interact. The motivation
behind introducing increasingly complicated structures is an attempt to tailor the electronic
and optical properties of these materials for exploitation in devices. Perhaps the most
complicated layer structure to date is the chirped superlattice active region of a mid-infrared
laser [9].
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All of the structures illustrated so far have been examples of Type-I systems. In this type,
the band gap of one material is nestled entirely within that of the wider-bandgap material. The
consequence of this is that any electrons or holes fall into quantum wells which are within the
same layer of material. Thus both types of charge carrier are localised in the same region of
space, which makes for efficient (fast) recombination. However, other possibilities can exist,
as illustrated in Fig. 1.12.

A B CACA AB B C

Type I Type II

Figure 1.12: The one-dimensional potentials V (z) in the conduction and valence bands for a
typical Type-I superlattice (left) compared to a Type-II system (right)

In Type-II systems the band gaps of the materials (say, A and C) are aligned such that
the quantum wells formed in the conduction and valence bands are in different materials,
as illustrated in Fig. 1.12 (right). This leads to the electrons and holes being confined in
different layers of the semiconductor. The consequence of this is that the recombination times
of electrons and holes are long.

1.7 The envelope function approximation
Two important points have been argued:

1. The effective mass approximation is a valid description of bulk materials.

2. Heterojunctions between dissimilar materials, both of which can be well represented
by the effective mass approximation, can be described by a material potential which
derives from the difference in the band gaps.

The logical extension to point 2 is that the crystal potential of multiple heterojunctions can
also be described in this manner, as illustrated extensively in the previous section.

Once this is accepted, then the electronic structure can be represented by the simple one-
dimensional Schrödinger equation that has been aspired to:

− ~2

2m∗
∂2

∂z2
ψ(z) + V (z)ψ(z) = Eψ(z) (1.27)

The envelope function approximation is the name given to the mathematical justification for
this series of arguments (see, for example, works by Bastard [10, 11] and Burt [12, 13]).
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The name derives from the deduction that physical properties can be derived from the
slowly varying envelope function, identified here as ψ(z), rather than the total wave function
ψ(z)u(z), where the latter is rapidly varying on the scale of the crystal lattice. The validity
of the envelope function approximation is still an active area of research [13]. With the line
of reasoning used here, it is clear that the envelope function approximation can be thought of
as an approximation on the material and not the quantum mechanics.

Some thought is enough to appreciate that the envelope function approximation will have
limitations, and that these will occur for very thin layers of material. The materials are
made of a collection of a large number of atomic potentials, so when a layer becomes thin,
these individual potentials will become significant and the global average of representing
the crystal potential by a constant will breakdown (see, for example, [14]). However, for the
majority of examples this approach works well; this will be demonstrated in later chapters,
and, in particular, a detailed comparison with an alternative approach which does account
fully for the microscopic crystal potential will be made in Chapter 16.

1.8 Band non-parabolicity
For semiconductor heterostructures with relatively low barrier heights and low carrier
densities, the carriers cluster at energies near the conduction-band edge, i.e. within a couple
of hundred millielectronvolts, compared to a band gap of the order of 1.5 eV. In this
region, the band edge can be described by a parabolic E–k curve, i.e. in the form given
by equation (1.24).

However, in situations where the carriers are forced up to higher energies, either by large
barrier heights and narrow wells (as discussed in Chapter 2), or by very high carrier densities
or high temperatures, equation (1.24) is only an approximate description of the carrier
dispersion. This is especially important for holes in the valence band. The approximation
can be improved upon by adding summation terms into the polynomial expansion for the
energy. For example, no matter how complex the band structure along a particular direction,
it clearly has inversion symmetry and hence can always be represented by an expansion in
even powers of k, if sufficient terms are included, i.e. the energy E can be described by:

E = a0k
0 + a2k

2 + a4k
4 + a6k

6 + a8k
8 + . . . =

∞∑
i=0

a2ik
2i (1.28)

Usually when discussing single band models, as has been focused on entirely so far, the
energy origin is set at the bottom of the band of interest, and thus a0 = 0. In addition,
truncating the series at k2 gives a2 = ~2/(2m∗).

The next best approximation is to include terms in k4, hence accounting for band non-
parabolicity, as displayed in Fig. 1.13, with:

E = a2k
2 + a4k

4 =
~2

2m∗
(
k2 + βk4

)
(1.29)

where

β = a2
2m∗

~2
(1.30)
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E
E ∝ k2 + βk4

E ∝ k2

k0
Figure 1.13: Dispersion relations for parabolic (solid line) and non-parabolic band (dashed
line) models

Using the basic definition of effective mass, i.e.

m∗ = ~2

(
∂2E

∂k2

)−1

(1.31)

then clearly m∗ remains a function of k, unlike the case of parabolic bands where it is a
constant. As it is a function of k, then it is also a function of energy, and indeed band non-
parabolicity is accounted for by an energy-dependent effective mass [15]:

m∗(E) = m∗(0)[1 + α(E − V )] (1.32)

where V is the band-edge potential.
The non-parabolicity parameter, α, is usually greatest when the band edge under

consideration is close to other energy bands in the material. Precise values of α may be
obtained experimentally or extracted from more detailed models of the band structure, such
as those considered in Chapters 14 and 16. However, simple approximations exist near the
edge of the conduction band, such as that given by [16, 17]:

α =

[
1− m∗(0)

m0

]2/
Eg (1.33)

where Eg is the semiconductor band gap, or the even simpler model given by [18, 19]:

α = 1/Eg (1.34)

The latter expression can be used to estimate the significance of non-parabolicity in a range
of different materials. In GaAs, for example, Eg = 1.426 eV, giving α = 0.701 eV−1. The
effective mass of an electron 100 meV above the conduction-band edge in GaAs, therefore,
has an effective mass 7% higher than that at the band edge. By comparison, in InSb,
Eg = 0.18 eV and α = 5.6 eV−1, meaning that an equivalent electron has an effective mass
56% higher than that at the band edge. This illustrates that although non-parabolicity may be
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very significant in narrow-bandgap semiconductors, it can be ignored safely for low-energy
electrons in many common materials.

For this reason, non-parabolicity is neglected throughout most of this book, and the focus
is placed on the much more elegant and immediately intuitive models of the behaviour
of carriers with parabolic dispersion. However, Chapter 2 illustrates how non-parabolicity
affects analytical models of certain phenomena, and Chapter 3 describes how it may be
included in numerical methods.

1.9 The reciprocal lattice
For later discussions the concept of the reciprocal lattice needs to be developed. It has
already been shown that considering electron wave functions as plane waves (eik•r), as
found in a vacuum, but with a correction factor called the effective mass, is a useful method
of approximating the electronic band structure. In general, such a wave will not have the
periodicity of the crystal lattice; however, for certain wave vectors it will. Such a set of wave
vectors G are known as the reciprocal lattice vectors with the set of points mapped out by
these primitives known as the reciprocal lattice.

If the set of vectors G did have the periodicity of the lattice, then this would imply that:

eiG•(r+R) = eiG•r (1.35)

i.e. an electron with this wave vector G would have a wave function equal at all points in real
space separated by a Bravais lattice vector R. Therefore:

eiG•reiG•R = eiG•r (1.36)

which implies that
G•R = 2πn, n ∈ Z (1.37)

Now learning from the form for the Bravais lattice vectors R given earlier in equation (1.22),
it might be expected that the reciprocal lattice vectors G could be constructed in a similar
manner from a set of three primitive reciprocal lattice vectors, i.e.

G = β1b1 + β2b2 + β3b3, β1, β2, β3 ∈ Z (1.38)

With these choices, then, the primitive reciprocal lattice vectors can be written as follows:

b1 = 2π
a2 × a3

a1•(a2 × a3)
(1.39)

b2 = 2π
a3 × a1

a1•(a2 × a3)
(1.40)

b3 = 2π
a1 × a2

a1•(a2 × a3)
(1.41)

It is possible to verify that these forms do satisfy equation (1.37):

G•R = (β1b1 + β2b2 + β3b3)• (α1a1 + α2a2 + α3a3) (1.42)
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Now b1 is perpendicular to both a2 and a3, and so only the product of b1 with a1 is non-zero,
and similarly for b2 and b3. Hence:

G•R = β1α1b1•a1 + β2α2b2•a2 + β3α3b3•a3 (1.43)

and in fact, the products bi•ai = 2π. Therefore:

G•R = 2π (β1α1 + β2α2 + β3α3) (1.44)

Clearly β1α1 + β2α2 + β3α3 is an integer, and hence equation (1.37) is satisfied.
Using the face-centred cubic lattice vectors defined in equation (1.21), then:

a1•(a2 × a3) =

∣∣∣∣∣∣
a1x a1y a1z

a2x a2y a2z

a3x a3y a3z

∣∣∣∣∣∣ =

∣∣∣∣∣∣
0 A0

2
A0

2
A0

2 0 A0

2
A0

2
A0

2 0

∣∣∣∣∣∣ (1.45)

which gives:

a1•(a2 × a3) = 0×
∣∣∣∣ 0 A0

2
A0

2 0

∣∣∣∣− A0

2

∣∣∣∣A0

2
A0

2
A0

2 0

∣∣∣∣+
A0

2

∣∣∣∣A0

2 0
A0

2
A0

2

∣∣∣∣ (1.46)

∴ a1•(a2 × a3) = 0− A0

2

[
0−

(
A0

2

)2
]

+
A0

2

[(
A0

2

)2

− 0

]
(1.47)

∴ a1•(a2 × a3) = 2

(
A0

2

)3

(1.48)

Therefore, the first of the primitive reciprocal lattice vectors follows as:

b1 = 2π

[
2

(
A0

2

)3
]−1

∣∣∣∣∣∣
ı̂ ̂ k̂
A0

2 0 A0

2
A0

2
A0

2 0

∣∣∣∣∣∣ (1.49)

∴ b1 = 2π
1

2

(
2

A0

)3

×

{[
0−

(
A0

2

)2
]

ı̂−

[
0−

(
A0

2

)2
]

̂ +

[(
A0

2

)2

− 0

]
k̂

}
(1.50)

∴ b1 =
2π

A0

(
−̂ı + ̂ + k̂

)
(1.51)

A similar calculation of the remaining primitive reciprocal lattice vectors b2 and b3 gives
the complete set as follows:

b1 =
2π

A0
(−̂ı + ̂ + k̂), b2 =

2π

A0
(̂ı− ̂ + k̂), b3 =

2π

A0
(̂ı + ̂− k̂) (1.52)

which are, of course, equivalent to the body-centred cubic Bravais lattice vectors (see [5],
p. 68). Thus the reciprocal lattice constructed from the linear combinations:

G = β1b1 + β2b2 + β3b3, β1, β2, β3 ∈ Z (1.53)
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Table 1.1 Generation of the reciprocal lattice vectors for
the face-centred cubic crystal by the systematic selection of
the integer coefficients β1, β2 and β3

β1 β2 β3 Reciprocal lattice vector, G (2π/A0)

0 0 0 (0, 0, 0)
1 0 0 (1, 1, 1)
0 1 0 (1, 1, 1)
0 0 1 (1, 1, 1)
−1 0 0 (1, 1, 1)

0 −1 0 (1, 1, 1)
0 0 −1 (1, 1, 1)
1 1 1 (1, 1, 1)
−1 −1 −1 (1, 1, 1)

1 1 0 (0, 0, 2)
1 0 1 (0, 2, 0)
0 1 1 (2, 0, 0)
−1 1 0 (2, 2, 2)

(etc.)

is a body-centred cubic lattice with lattice constant 4π/A0.
Taking the face-centred cubic primitive reciprocal lattice vectors in equation (1.52), then:

G =
2π

A0

[
β1(−̂ı + ̂ + k̂) + β2(̂ı− ̂ + k̂) + β3(̂ı + ̂− k̂)

]
(1.54)

∴ G =
2π

A0

[
(−β1 + β2 + β3)̂ı + (β1 − β2 + β3)̂ + (β1 + β2 − β3)k̂

]
(1.55)

The specific reciprocal lattice vectors are therefore generated by taking different
combinations of the integers β1, β2, and β3. This is illustrated in Table 1.1.

It was shown by von Laue that, when waves in a periodic structure satisfied the following:

k•Ĝ =
1

2
|G| (1.56)

diffraction would occur (see [5], p. 99). Thus the ‘free’ electron dispersion curves of earlier
(Fig. 1.5), will be perturbed when the electron wave vector satisfies equation (1.56). Along
the [001] direction, the smallest reciprocal lattice vector G is (0,0,2) (in units of 2π/A0).
Substituting into equation (1.56) gives:

k•(0̂ı + 0̂ + k̂) =
1

2
× 2× 2π

A0
(1.57)

This then implies the electron will be diffracted when:

k =
2π

A0
k̂ (1.58)

Figure 1.14 illustrates the effect that such diffraction would have on the ‘free electron’
curves. At wave vectors which satisfy von Laue’s condition, the energy bands are disturbed
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Figure 1.14: Comparison of the free and nearly free electron models

and an energy gap opens. Such an improvement on the parabolic dispersion curves of earlier
is known as the nearly free electron model.

The space between the lowest wave vector solutions to von Laue’s condition is called
the first Brillouin zone. Note that the reciprocal lattice vectors in any particular direction
span the Brillouin zone. As mentioned above, a face-centred cubic lattice has a body-centred
cubic reciprocal lattice, and therefore the Brillouin zone is a three-dimensional solid, which
happens to be a ‘truncated octahedron’ (see, for example, [5], p. 89). High-symmetry points
around the Brillouin zone are often labelled for ease of reference, with the most important
of these, for this work, being the k = 0 point, referred to as ‘Γ’, and the 〈001〉 zone edges,
which are called the ‘X’ points.

Exercises
All necessary material parameters are given in Appendix A.

(1). Consider a free electron with a velocity of 2× 105 m s−1 in the z-direction.

(a) Calculate the de Broglie wavelength and wave vector of the electron.
(b) Assuming a wave function with the form ψ(r, t) = A exp[i(k•r− ωt)], whereA

is a constant, determine the kinetic energy of the electron using equation (1.17).
(c) Confirm that the result is in agreement with the classical expression for kinetic

energy, given in equation (1.10).

(2). (a) List the atomic locations that lie within a face-centred cubic unit cell of GaAs
[0 ≤ (x, y, z) ≤ A0].

(b) Hence, estimate the number of atoms in a cube of GaAs with 1 µm3 volume.
(c) Taking the molar mass of a GaAs molecule as 144.645 g mol−1 and Avogadro’s

number NA = 6.022× 1023 mol−1, use the answer to part (b) to estimate the
mass density of a GaAs crystal.
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(d) Compare the calculated density with that given in Appendix A. What conclusions
may be drawn from the result?

(3). Find the difference in energy between an electron and a heavy hole with a wave vector
of k = 0.05

−→
ΓX in GaAs.

(4). Sketch the one-dimensional potential profile for the conduction- and valence-band
edges in a heterostructure consisting of a 2 nm thick layer of GaAs surrounded by
a pair of 10 nm thick layers of Al0.15Ga0.85As.

(5). The ‘L’ symmetry points for a face-centred cubic crystal lie at the 〈111〉 zone edges.
Determine their coordinates using equation (1.56) and the results in Table 1.1.

(6). Most semiconductor materials take the diamond or zinc blende structure of two
interlocking face-centred cubic crystal lattices. However, GaN-based semiconductors,
which are being used increasingly in green and blue laser diodes, form a hexagonal,
wurtzite structure. Find the primitive lattice vectors for a hexagonal Bravais lattice and
the atomic basis necessary to describe GaN.
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