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Elastic Waves

In a deformable solid medium, the disturbance to mechanical equilibrium is represented
by the change in particle velocity and the corresponding changes in stress and strain
states. When some parts of a solid are first disturbed, finite time durations are required
for this disequilibrium to be felt by other parts of the body, due to the deformable proper-
ties of the body. This kind of propagation as a result of the disturbance in stress and
strain through a solid body is termed a stress wave.

1.1 Elastic Wave in a Uniform Circular Bar

1.1.1 The Propagation of a Compressive Elastic Wave

Consider a uniform circular bar made of isotropic material, as shown in Figure 1.1. Let x
denote the longitudinal coordinate measured from an origin O, which is fixed in the
space; and let u(x) denote the displacement undergone by a plane AB in the bar, which

is initially at a distance x from O. Then u+
∂u
∂x

δx is the displacement of plane A B which

is parallel to AB but is initially at a distance x+ δx from O.
A force applied rapidly at time t = 0, over the end plane at x = 0, will cause a disturbance

to propagate elastically along the bar, so that a compressive normal stress, −σ0, will pass
through plane AB at time t.
It should be noted that the slender bar assumption is adopted here, i.e. the pulse

length is at least six times the typical cross-sectional dimension of the bar. In this case,
the strain and inertia in the transverse direction can be neglected. The gravitational force
and damping of the material are also ignored in the following analysis.
The equilibrium of a representative element of the bar is illustrated in Figure 1.2. Here

A0 is the initial cross-section area of the bar, ρ0 is the initial density of the material, and
−σ0 is the stress transmitted, with the negative sign reflecting the fact that the stress is
compressive, as shown in the figure.
From Newton’s second law, the equation of motion of the representative element is

−
∂σ0
∂x

δx A0 = ρ0A0δx
∂2u
∂t2

, which could be simplified as

∂σ0
∂x

= −ρ0
∂2u
∂t2
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To analyze the deformation of the representative element of length δx, it is clear that
the strain of the element is

ε=
∂u
∂x

1 2

Assuming the solid material has Young’s modulus E, then, according to Hooke’s law, in
the linear elastic stage we have

−σ0 =E
∂u
∂x

1 3

The stress variation over the element is obtained from the partial differential of
Eq. (1.3) with respect to x:

∂σ0
∂x

= −E
∂2u
∂x2

1 4

Substituting Eq. (1.1) into Eq. (1.4) leads to

ρ0
∂2u
∂t2

=E
∂2u
∂x2

1 5

With the notation of cL = E ρ0, Eq. (1.5) is rewritten as

∂2u
∂t2

= c2L
∂2u
∂x2

1 6
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Figure 1.1 The propagation of a compressive elastic wave in a uniform circular bar.
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δx Figure 1.2 The equilibrium of a
representative element of the bar.
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Obviously, Eq. (1.6) is a typical one-dimensional (1D) wave equation of the
following form:

∂2u
∂t2

= c2
∂2u
∂x2

1 7

Considering the general solution of Eq. (1.7), u(x, t), in the following form:

u x, t = f1 x−ct + f2 x+ ct 1 8

and substituting Eq. (1.8) into the wave equation (Eq. 1.7), we find

∂u
∂t

= −cf1 x−ct + cf2 x+ ct ,
∂2u
∂t2

= c2f1 x−ct + c2f2 x+ ct

∂u
∂x

= f1 x−ct + f2 x+ ct ,
∂2u
∂x2

= f1 x−ct + f2 x+ ct

Thus it can be verified that Eq. (1.8) satisfies the wave equation, so it gives a general
solution to Eq. (1.7). In order to understand the mechanical meaning of Eq. (1.8), only
one term is studied here, u x, t = f1 x−ct , i.e., f2 = 0 (see Figure 1.3).
At t = t1, the particle at position x = x1 has a displacement u = s, and at t = t2, the particle

at position x = x2 also has a displacement u = s. Thus from Eq. (1.8), the displacement
should satisfy s= f1 x1−ct1 = f1 x2−ct2 , which results in x1−ct1 = x2−ct2, leading to the
following speed of wave propagation:

c=
x2−x1
t2− t1

1 9

This confirms that for the wave propagation governed by Eq. (1.6), cL = E ρ0
precisely represents the speed of the longitudinal waves (compressive or tensile).
There are two terms on the right-hand side of the general solution of wave propaga-

tion, Eq. (1.8). The term f1(x − ct) denotes the wave traveling in the +x direction, i.e., a
forward-traveling wave, and the term f2(x + ct) denotes the wave traveling in the −x direc-
tion, i.e., a backward-traveling wave. Both the traveling waves in Eq. (1.8), f1(x − ct) and
f2(x + ct), have the following characteristics: the waves are traveling at a constant
speed with no change in their shape or magnitude, i.e. the 1D longitudinal waves are
non-dispersive.

s

u t = t1 t = t2

O x1 x2 x

Figure 1.3 Particle displacements produced by a forward wave.
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The speed of longitudinal (compressive or tensile) waves in four typical materials
are given in Table 1.1. It should be emphasized that the wave speed depends on
both Young’s modulus and density of the material. Therefore, although the density of
aluminum is only about one-third of that of steel, the wave speeds are similar.
For a 1D longitudinal wave, there are two ways in which you can distinguish between a

compressive and a tensile wave:

• Look at the sign of the stress. A compressive wave produces a negative normal stress and
a tensile wave produces a positive stress.

• Look at the directions of the particle velocity and the wave propagation. For a compres-
sive wave, the particle velocity is in the same direction as the wave propagation,
whereas for a tensile wave, the particle velocity is in the opposite direction to the wave
propagation.

1.2 Types of Elastic Wave

Different types of elastic wave can propagate in solids. These waves are classified accord-
ing to the relationship between the motion of the particles and the direction of propa-
gation of the waves and also according to the boundary conditions. The most common
types of elastic wave in solids are:

• Longitudinal (irrotational) waves

• Transverse (shear) waves

• Surface (Rayleigh) waves

• Interfacial (Stoneley) waves

• Bending (flexural) waves (in beams and plates).

1.2.1 Longitudinal Waves

Longitudinal waves are those in which the particle velocity is parallel to the direction of
travel of the wave. In particular, longitudinal waves are called compressional waves
or compression waves, because they produce compression as the particle velocity and
wave velocity are in the same direction. By contrast, a tensile wave produces tension
as the particles and waves travel in opposite directions.

Table 1.1 Typical longitudinal wave speed in solid materials

Steel Aluminum Glass Polystyrene

E (GPa) 205 75 95

ρ0 (g/cm
3) 7.8 2.7 2.5

cL (m/s) 5100 5300 6200 2300

E, Young’s modulus; ρ0, density; cL, wave speed.
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Longitudinal waves are also known as irrotational waves. In seismology, they are
known as P-waves. This is because a longitudinal wave travels at the fastest speeds
and so arrives at seismic stations first (primary waves); the rock moves forward and
backward in the same direction as the wave is traveling (push–pull wave, parallel to
propagation), and the wave is able to pass through solids and liquids. In infinite and
semi-infinite media, longitudinal waves are also known as dilatational waves, due to
the changes in the volume of the media.

1.2.2 Transverse Waves

Transverse waves are another common type of wave, in which the particle velocity is
perpendicular to the wave’s propagation. An example of a transverse wave is shown
in Figure 1.4. In this arrangement a circular bar is clamped at a given position and a tor-
que is applied to the left end of the bar. Thus there is shear stress on the left side of the
clamp and zero stress on the right-hand side. When the clamp is suddenly released, the
stress disturbance will propagate, i.e., a wave will travel from the left side to the right
side of the bar. The particle velocity is within the cross-sectional plane of the bar, while
the wave propagation direction is along the bar; hence, as the particle velocity is perpen-
dicular to the wave velocity, this torsional wave is a transverse wave. The normal strains
are all zero, with no resulting change in density, while the shear strains are non-zero,
producing a change in shape. Thus, transverse waves are called shear waves, and are also
known as distortional or equivolumal waves.
For an elastic material with shear modulusG and density ρ0, the speed of the transverse

wave is derived as cS = G ρ0, which is slower than that of the longitudinal wave in the

same solid, as
cS
cL

=
G
E
=

1

2 1+ v
< 1.

In seismology, transverse waves are known as S-waves, because they do not travel as
quickly as P-waves (slow wave) and will arrive at a seismic station second (secondary
wave); the rocks move from side to side (shear wave) and the waves only travel through
solids.

1.2.3 Surface Wave (Rayleigh Wave)

Surface waves are analogous to gravitational waves on the surface of water. As shown in
Figure 1.5, the material particles move up and down as well as back and forth, tracing
elliptical paths. The surface wave is restricted to the region adjacent to the surface.
The particle velocity decreases very rapidly (exponentially) as one moves away from

Torque
Clamp release

Shear stress wave

Figure 1.4 The transverse wave in a circular bar produced by suddenly releasing the clamp.
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the surface. Surface waves in solids (called Rayleigh waves) are a particular case of inter-
facial waves where one of the materials has negligible density and elastic wave speed.
If a hammer hits the surface of a semi-infinite solid, several waves are propagated after

the blow – among these the speed of the longitudinal wave (P-wave) is greater than that
of the transverse wave (S-wave), and the surface wave (Rayleigh wave) only affects the
solid for a finite distance under the surface.

1.2.4 Interfacial Waves

When two semi-infinite media with different material properties are in contact, special
waves form at their interface in the case of a disturbance. The surface wave in a solid
(Rayleigh wave) could be regarded as a special case of the interfacial wave – that is,
the density and elastic wave in one of the contacting media, such as air, could be omitted.

1.2.5 Waves in Layered Media (Love Waves)

The earth is composed of layers with different properties, and so special wave patterns
emerge. This was first studied by Love. As a result of Love waves, the horizontal com-
ponent of displacement produced by earthquakes can be significantly larger than the ver-
tical component, which is a behavior that is not consistent with Rayleigh waves.

1.2.6 Bending (Flexural) Waves

These waves involve propagation of flexure in 1D (beams and arches) or 2D (plates and
shells) configurations. Made from a material of density ρ0 and elastic modulus E, a
straight beam with cross-sectional area A0 and principal moment of inertia I is shown
in Figure 1.6. A coordinate system with the x-axis along the beam length and the z-axis
in the direction of deflection is adopted. When a bending moment M and shear force Q
are applied, a transverse deflection w is produced in the beam.
By considering the equilibrium of a small element of length δx as shown in Figure 1.6

(b), the equation of motion of this element gives

− ρ0A0δx
∂2w
∂t2

=
∂Q
∂x

δx 1 10

Reyleigh wave

Figure 1.5 Diagram of a Rayleigh wave.
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From the relation given by elastic mechanics,

EI
∂3w
∂x3

=Q 1 11

The combination of Eqs (1.10) and (1.11) leads to the wave equation of a bending wave:

ρ0A0
∂2w
∂t2

= −EI
∂4w
∂x4

1 12

Or in an equivalent form:

∂2w
∂t2

= −c2Lk
2 ∂

4w
∂x4

1 13

where cL = E ρ0 is the speed of the longitudinal wave, and k denotes the radius of
gyration of the cross-section about the neutral axis, i.e., I =A0k2 holds.
Obviously, solutions in the form of w(x, t) = f1(x − ct) or w(x, t) = f1(x + ct), which are

the general solutions of the regular wave equation, do not satisfy the bending wave
equation (Eq. 1.13). This implies that flexural disturbance of arbitrary form always
propagates with dispersion.

1.3 Reflection and Interaction of Waves

1.3.1 Mechanical Impedance

Let us focus on the longitudinal waves again. As shown in Sections 1.1 and 1.2, for a for-
ward longitudinal wave, i.e., the wavemoving in the positive x-direction, from the general
solution of the wave equation, Eq. (1.8), the displacement of particle is

u x, t = f x−ct 1 14

Differentiating Eq. (1.14) with respect to time t leads to the particle velocity:

v0 =
∂u
∂t

= −cf x, t 1 15

(a) (b) 

δx

O
x A0

z, w
Element

Element

δx Q + ∂Q
∂x

Q δxM + ∂M
∂x

M

δx

Figure 1.6 A straight beam under bending. (a) Beam under bending; (b) free body diagram of an
element.
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A partial differentiation of Eq. (1.14) with respect to particle position x leads to the
strain of this element:

ε=
∂u
∂x

= f x, t 1 16

From the property of an elastic material, the stress on this element is given by

σ = −Eε= −Ef =
Ev0
c

1 17

Using the expression of wave speed, c= E ρ0, Eq.(1.17) can be rewritten as

σ =
Ev0
c

= ρ0cv0 = v0 Eρ0 1 18

where the quantity ρ0c is termed themechanical impedance, or sonic/sound impedance,
of thematerial. This expression can also be applied to the propagation of the tensile wave:

v0 =
σ

Eρ0
=
c
E
σ =

σ

ρ0c
1 19

In Eq. (1.19), the particle velocity is related to the current stress. For example, for steel,
if the stress is 100 MPa, then the particle velocity is

v0 =
c
E
σ =

5100m s × 100MPa
205GPa

≈2 49m s 1 20

The mechanical impedance of steel is

ρ0c= 7800kg m3 × 5100m s≈4 × 107Ns m3 1 21

Wave speed and mechanical impedance are two very important concepts for stress
waves. The wave speed indicates the velocity of the disturbance propagating in a deform-
able solid, while the mechanical impedance represents the degree of resistance of the
deformable solid to the disturbance.

1.3.2 Waves When they Encounter a Boundary

We will briefly describe the interaction of waves when they encounter a boundary.
Figure 1.7 shows the longitudinal waves that are reflected and refracted at the boundary
as well as the two transverse waves that are generated at the interface. These effects,
reflection and refraction, occur when the wave encounters a medium with different
mechanical impedance, which is defined as the product of the medium density and
its elastic wave speed. These refraction and reflection angles are given by a simple
relationship of the form:

sinθ1
cL

=
sinθ2
cS

=
sinθ3
cL

=
sinθ4
cL

=
sinθ5
cS

1 22

The interactions of a wave with an interface are very simple when the incidence is nor-
mal (θ1 = 0). In this case, a longitudinal wave refracts/transmits and reflects longitudinal
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waves, and a shear wave refracts/transmits shear waves. In this way, it becomes a 1Dwave
reflection and transmission problem.

1.3.3 Reflection and Transmission of 1D Longitudinal Waves

Figure 1.8(a) shows the fronts of a wave propagating along a cylinder in a medium in
which the wave speed is cA. The particle velocity is v and the stress is σ. Figure 1.8(b)
illustrates the stresses at the interface related to incident, transmitted, and reflected

A B
Material boundary

cA

vI

dx

(a)

cA
cB

σT

σR

σI

(b)

(c)

cA cB

vI

vR

vT

Figure 1.8 The reflection and transmission of a longitudinal wave in a one-dimensional cylinder.

cL, cS c′L, c′S

A B

Incident longitudinal

Refracted longitudinal

Refracted transverse

Reflected longitudinal

Reflected transverse

θ5

θ4
θ3

θ2

θ1

Figure 1.7 Reflection and refraction when a longitudinal wave encounters an interface.
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waves. Figure 1.8(c) depicts the particle velocities generated by the incident, transmitted,
and reflected waves. The amplitudes of the transmitted and reflected waves can be
calculated from the densities, ρA, ρB, and wave velocities, cA, cB, of the two media.
Let subscripts I, T and R pertain to the incident, transmitted and reflected waves,

respectively. From the force equilibrium at the interface, i.e., the A–B boundary of
the bar,

σI + σR = σT 1 23

Then, from the material’s continuity at the interface,

vI + vR = vT 1 24

For the incident, transmitted, and reflected waves, employing the impedance relation
between particle velocity and stress, i.e., Eq.(1.19),

vI =
σI

ρAcA
, vR = −

σR
ρAcA

, vT =
σT
ρBcB

1 25

The stresses produced by the transmitted and reflected waves are obtained by combin-
ing Eqs (1.23)– (1.25):

σT
σI

=
2ρBcB

ρBcB + ρAcA
,
σR
σI

=
ρBcB−ρAcA
ρBcB + ρAcA

1 26

From Eq. (1.26), the amplitudes of transmitted and reflected waves are all determined
by the mechanical impedances of materials. When the mechanical impedance of
material B is larger, then ρBcB > ρAcA, σR σI > 0, i.e., a wave with the same sign as the inci-
dent wave is reflected; whereas when the mechanical impedance of material A is
larger, then ρBcB < ρAcA, σR σI < 0, i.e., a wave with the opposite sign to the incident wave
is reflected.
Similarly, the particle velocities produced by the transmitted and reflected waves

can be calculated as

vR
vI

=
ρAcA−ρBcB
ρAcA + ρBcB

,
vT
vI

=
2ρAcA

ρAcA + ρBcB
1 27

Special Case 1: Reflection at a Free End
For stress waves being reflected at a free end, material B can be regarded as air with
ρBcB = 0. Substituting ρBcB = 0 into Eq. (1.26) and (1.27) gives

σT
σI

= 0,
σR
σI

= −1,
vR
vI

= 1,
vT
vI

= 2 1 28

The stress and particle velocity are depicted in Figure 1.9. The stress remains zero at
the free end when an incident wave arrives, and the reflected wave at the free end has the
opposite sign to the incident wave; thus, the reflected wave is a tensile wave for a com-
pressive incident wave, and the reflected wave is a compressive wave for a tensile incident
wave. The particle velocity is doubled at the free end; when the reflected wave passes, the
particle velocity is the same as that when the incident wave passes.
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Special Case 2: Reflection at a Fixed End
For stress wave being reflected at a fixed (clamped) end, material B could be regarded as a
rigid body, EB = ∞ , and this leads to ρBcB = ∞ . Substituting ρBcB = ∞ into Eq.(1.26) and
(1.27) results in

σT
σI

= 2,
σR
σI

= 1,
vR
vI

= −1,
vT
vI

= 0 1 29

The stress and particle velocity are depicted in Figure 1.10. The stress is doubled at a
fixed end when an incident wave arrives, and the reflected wave at the fixed end has the
same sign as the incident wave; thus, the reflected wave is also a compressive wave for a
compressive incident wave, and the reflected wave is a tensile wave for a tensile incident
wave. The particle velocity remains at zero at the fixed end; when the reflected wave

F
re

e 
en

d

c
vI

Stress

F
re

e 
en

d

cvI

vR

Particle velocity

2vI

c

c
c

cc

cσR

σI

Figure 1.9 One-dimensional wave reflection at a free end.
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Figure 1.10 One-dimensional wave reflection at a fixed end.
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passes, the particle velocity is in the opposite direction to when the incident wave passes,
but the magnitudes are the same.

Examples of 1-D Wave Propagation and Interaction
Example 1 Formation of a Rectangular Pulse
Consider a semi-infinite long bar made of elastic material, as shown in Figure 1.11. At
time t = 0, give the free end A an initial velocity v0 towards the right, which creates a 1D
compressive wave.
Then at an instant t > 0, the wave front reaches B with AB = ct, whilst the particle orig-

inally located at Amoves to A with AA = v0t. In segment A B, the stress created is com-
pressive with magnitude σ = ρcv0, and all the particles in this segment have the same
velocity v0.
At t = T, give the free end A a velocity v0 towards the left, which creates a 1D ten-

sile wave.
At an instant t > T, the tensile wave front reaches D with A D= c t−T , while the free

end moves to A . These two elastic waves superpose on each other, resulting in a rec-
tangular stress pulse of length cT and magnitude σ = ρcv0. This pulse (in segment DB)
is a compressive wave and moves towards the right at speed c. Apart from the particles
within segment DB, the particles in the bar possess no stress and no velocity, so they are
in their undisturbed state.

Example 2 The Interaction of a Compressive Pulse and a Tensile Pulse
Consider a slender bar A1A2 with a center point B, as shown in Figure 1.12. In the bar
segment A1B, a compressive pulse of stress σ is propagating from the left towards the
right, while the particles within the pulse are traveling at velocity +v0 (to the right).
At the same time, in the bar segment A2B that is symmetrical to segment A1B,

a tensile wave with the same stress magnitude σ is propagating from the right towards
the left, while the particles within the pulse are traveling at velocity +v0 (to the right).

x

A′  x = v0t

c

t > T

t > 0

c+σ

–σ

–σ

c c

v = 0 v = 0v = v0

v = 0

A (x = 0)

v = v0

A‴  x = v0T

B  x = ct

v = v0

O

A″  x = v0(T–t) D  x = c(t–T)

v = 0

Figure 1.11 A rectangular pulse in a semi-infinite long bar.
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When the two pulses meet each other at cross-section B, the stress at B is reduced to
zero, while the particle velocity is doubled, i.e., 2v0. After that, in the region where the two
pulses overlap each other, the stress remains zero, while the particle velocity becomes
2v0, i.e., it is doubled.
After the two pulses are separated, a compressive pulse propagates in segment A2B,

while a tensile wave propagates in segment A1B. Considering the fact that at any instant
the stress at B remains at zero, imagine the bar is cut at B and becomes the free end of
both bars A1B and A2B. Then the above propagation picture represents the wave reflec-
tion at the free end B, i.e., when a 1D wave is reflected at a free end, the stress changes its
sign while the particle velocity is doubled.

Example 3 The Interaction of Two Tensile Pulses
Consider a slender bar A1A2 with center point D, as shown in Figure 1.13. In segments
A1D andA2D, which are symmetrical to each other, two identical tensile pulses of stress σ
are propagating head to head, while the particles within the pulses are traveling at veloc-
ity +v0 (to the right) and −v0 (to the left), respectively.
When the two pulses meet each other at cross-section D, the particle velocity at D is

reduced to zero, while the stress becomes 2σ, i.e., it is doubled. After that, in the region

B
v0 c

v0c

–σ

–σ

–σ

v0 c

v0c

A2

A2

A2

A2

A1

A1

A1

A1
+σ

c

v0c

2v0

v0

v0

c

v0c

σ = 0

σ = 0

+σ

+σ

–σ

+σ

Figure 1.12 The interaction of a compressive pulse and a tensile pulse.

Elastic Waves 15

0003177251.3D 15 14/10/2017 7:02:50 PM



where the two pulses overlap each other, the particle velocity remains zero, whilst the
stress becomes 2σ, i.e., it is doubled.
After the two pulses are separated, two tensile pulses continue to propagate in the

respective segments, but the pulses propagate in the opposite direction to the incident
pulses. Considering the fact that at any instant the particle velocity at D remains zero,
imagine the bar is cut at D and becomes the fixed ends of both bars A1D and A2D. Then
the above propagation picture represents the wave reflection at fixed end D; when a 1D
wave is reflected at a fixed end, the particle velocity will remain zero there, while the
stress is doubled. In the rest of the bars, both the wave propagation and the particle veloc-
ity change their signs.

Example 4 The Normal Collinear Collision of Two Identical Bars
Consider two bars of identical material and size traveling in opposite directions at the
same speed, v0, as shown in Figure 1.14. A collinear collision of these two bars occurs
at t = 0. Immediately after the collision, compressive waves of stress σ = ρcv0 will prop-
agate along the two bars. The velocity of the particles inside the region passed by the wave
fronts becomes zero.
In Figure 1.14(b), the stress wave propagations and reflections are plotted in the plane

of position and time (x − t), which is termed the space–time diagram, or the Lagrange
diagram. As the speed of an elastic wave is constant, in the space–time diagram each
wave is represented by a straight line of slope 1/c. Thus, after the normal collinear col-
lision, the two compression waves generated are represented by two straight lines start-
ing from the originO, with a slope of 1/c, moving towards the upper-left and upper-right
directions, respectively.
At time t = L/c, with L denoting the length of each bar, everywhere in the two bars has

zero particle velocity, i.e., the two bars are at rest, but they still have compressive stress

+σ +σ

+σ

+σ +σ

+σ

A2

D

c c

A2

v0

v0

v0 v0

c

c

A2

cv0c

v = 0
v0

A2

A1

A1

A1

A1

2σ

v = 0 σσ

Figure 1.13 The interaction of two
tensile pulses.
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σ = ρcv0. These compressive pulses are reflected at the free ends and become tensile ones.
When these two reflected tensile pulses travel inwards, in the regions behind the wave-
fronts the stresses reduce to zero, while the particles gain an outward velocity v0. In the
space–time diagram (Figure 1.14b), the two reflected tensile waves are represented by
two straight lines starting from the boundary with a slope of 1/c.
At time t = 2L/c, two reflected tensile wavefronts meet at the interface, x = 0, so that the

particles at the interface also gain an outward velocity v0; consequently, the two bars are
separated. From the analysis of this example, it is evident that the space–time diagram
(Lagrange diagram) is a powerful tool with which to display wave propagations and
interactions.
For the bars of cross-sectional area A, the initial kinetic energy of one bar is K0 =

ALρv20 2. At time t = L c, the initial kinetic energy is converted entirely to the elastic
strain energy of the bar, We =ALσ2 2E =ALρv20 2. After time t = 2L c, however, the
strain energy is converted entirely back to kinetic energy. There is no energy loss in
the whole process, so the coefficient of restitution (COR) is e = 1 in this perfectly elastic
collision case, which is unlikely to happen in real collisions.

In summary, first, the governing equation of elastic waves was derived in this chapter, and
then various types of elastic wave were classified. Finally, the wave reflection and inter-
action were elaborated with several examples.

Questions 1

1 Please list the basic assumptions of 1D elastic wave theory, and point out its
limitations.

2 For engineering applications, in which cases should the effects of elastic wave prop-
agation be considered?

(b) 
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Figure 1.14 The normal collinear collision of two identical bars. (a) Stress distribution;
(b) space–time diagram.
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Problems 1

1.1 A long cylindrical rod is subjected to a suddenly applied torque at one of its ends.
Show that the speed of the elastic torsional wave produced is given by cT = G ρ0,
where G and ρ0 are the shear modulus and density of the material, respectively.

1.2 Three identical bars lie along a straight line, as shown in the figure. The length of
each bar is L. Initially, bars 2 and 3 contact each other, and bar 1 travels with veloc-
ity v0 towards them. With the help of a t–x diagram, illustrate what happens after
the collision at t = 0.

v0

L L L

1 2 3
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