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1.1 Introduction

Many nutrients and non‐nutrient components of foods have multiple functions. For example, fatty acids not only function 
as constituents of cell membrane phospholipids but also participate in numerous biochemical processes in a cell‐specific 
and tissue‐specific fashion, involving hundreds of genes, many signal transduction pathways, and a large number of 
 biomolecules, such as transcription factors, receptors, hormones, apolipoproteins, enzymes, and so on. Hence, the mea-
surements of single genes, single proteins, or single metabolites are not enough to provide us sufficient thorough information 
to understand the mechanisms that underlie the beneficial or adverse effects induced in the human body by the uptake of 
dietary nutrients or components. In recent years, novel omics technologies, including transcriptomics, proteomics, metabo-
lomics, and systems biology, have received increased attention due to their power in addressing complex issues related to 
human health, disease, and nutrition.

Currently, in order to study the molecular basis of health effects of specific components of the diet, nutritionists are 
 making increasing use of these state‐of‐the‐art omics technologies (Zhang et al., 2008). The term “genomics” refers to the 
study of all nucleotide sequences in the genome of an organism. Nutrigenomics refers to the study of the impact of specific 
nutrients or diets on gene expression. Note that it should not be confused with another closely related discipline “nutrige-
netics”, which investigates how genetic variability influences the body’s response to a nutrient or diet. Thus, nutrigenomics 
and nutrigenetics approach the interplay of diet and genes from opposing start points. Transcriptomics measures the relative 
amounts of all messenger RNAs (mRNAs) in a given organism for determining the patterns and levels of gene expression. 
Proteomics is the study of all proteins expressed in a cell, tissue, or organism, including all protein isoforms and post‐ 
translational modifications. Metabolomics is defined as the comprehensive analysis of all metabolites generated in a given 
biological system, focusing on the measurements of metabolite concentrations and secretions in cells and tissues. It is not 
to be confused with “metabonomics”, which investigates the fingerprint of biochemical perturbations caused by disease, 
drugs, and toxins (Goodacre, 2007). Systems biology aims for simultaneous measurement of genomic, transcriptomic, 
proteomic, and metabolomic parameters in a given system under defined conditions. The vast amount of data generated 
with such omics technologies requires the application of advanced bioinformatics tools, to obtain a holistic view of the 
effects of the nutrients or non‐nutrient components of foods, and to identify a system of biomarkers that can predict the 
beneficial or adverse effects of dietary nutrients or components. The ultimate goals are to understand how nutrients/foods 
interact with the body and the related mechanisms of action and hence to enhance health and treat diet‐related diseases 
(Norheim et al., 2012).
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1.2 Transcriptomics in Nutritional Research

The classical gene analysis approach, such as Northern blotting and real‐time RT‐PCR, can only analyze gene expression 
for a limited number of candidate genes at a time. DNA microarray technology allows us to measure the expression level 
of thousands of genes, or even entire genomes, simultaneously. A typical DNA microarray experiment includes a number 
of characteristic steps:

1. RNA extraction from a sample;
2. reverse transcription of the RNA to obtain complementary DNA (cDNA) and labeling of the cDNA with specific dyes 

(usually fluorophores like Cyanine 3 and 5), or reverse transcription of the cDNA to obtain cRNA and labeling of the 
cRNA;

3. hybridization of the labeled cDNA or cRNA onto the microarray under given conditions;
4. washing the slides to remove non‐hybridized labeled oligonucleotides;
5. using an appropriate scanning device to detect signal; and
6. data analysis by bioinformatics tools.

There are more and more examples of DNA microarray technology being performed in cell culture systems or laboratory 
animals to identify the cellular responses to dietary constituents and their molecular targets. For example, green tea 
 catechins (McLoughlin et al., 2004; Vittal et al., 2004), soy isoflavones (Herzog et al., 2004), polyunsaturated fatty acids 
(Kitajka et al., 2004; Lapillonne et al., 2004; Narayanan et al., 2003), vitamins D and E (Johnson and Manor 2004; Lin 
et  al., 2002), quercetin (Murtaza et  al., 2006), arginine (Leong et  al., 2006), anthocyanins (Tsuda et  al., 2006), and 
 hypoallergenic wheat flour (Narasaka et al., 2006).

For example, Lavigne et al. (2008) used a DNA oligo microarray approach to examine effects of genistein on global 
gene expression in MCF‐7 breast cancer cells. They found that genistein altered the expression of genes belonging to a 
wide range of pathways, including estrogen‐ and p53‐mediated pathways. At physiologic concentrations (1 or 5 μM), 
genistein elicited an expression pattern of increased mitogenic activity, while at pharmacologic concentrations (25 μM), 
genistein generated an expression pattern of increased apoptosis, decreased proliferation, and decreased total cell 
number. Park et al. (2008) performed a comprehensive analysis of hepatic gene expression in a rat model of an alcohol‐
induced fatty liver using the cDNA microarray. It was found that chronic ethanol consumption regulated mainly the 
genes related to the processes of signal transduction, transcription, immune response, and protein/amino acid  metabolism. 
For the first time, this study revealed that five genes (including beta‐glucuronidase, UDP‐glycosyltransferase 1, UDP‐
glucose dehydrogenase, apoC‐III, and gonadotropin‐releasing hormone receptor) were regulated by chronic ethanol 
exposure in the rat liver.

Furthermore, the number of microarray‐based transcriptomics analysis for assessing the biological effects of dietary inter-
ventions on human nutrition and health is steadily increasing. van Erk et  al. (2006) investigated the effect of a high‐ 
carbohydrate (HC) or a high‐protein (HP) breakfast on the transcriptome of human blood cells with RNA samples taken from 
eight healthy men before and 2 h after consumption of the diets. About 317 genes for the HC breakfast and 919 genes for the 
HP breakfast were found to be differentially expressed. Specifically, consumption of the HC breakfast resulted in differential 
expression of glycogen metabolism genes, and consumption of the HP breakfast resulted in differential expression of genes 
involved in protein biosynthesis. Using GeneChip microarrays, Schauber et  al. (2006) examined the effect of regular 
 consumption of the low‐digestible and prebiotic isomalt and the digestible sucrose on gene expression in rectal mucosa in a 
randomized double‐blind crossover trial with 19 healthy volunteers over 4 weeks of feeding. They revealed that dietary 
intervention with the low digestible isomalt compared with the digestible sucrose did not affect gene expression in the lining 
rectal mucosa, although gene expression of the human rectal mucosa can reliably be measured in biopsy material. Mangravite 
et al. (2007) used expression array analysis to identify the molecular pathways responsive to both caloric restriction and 
dietary composition within adipose tissue from 131 moderately overweight men. They found that more than 1000 transcripts 
were significantly downregulated in expression in response to acute weight loss. The results demonstrated that stearoyl‐
coenzyme A desaturase (SCD) expression in adipose tissue is independently regulated by weight loss and by carbohydrate 
and saturated fat intakes, and SCD and diacylglycerol transferase 2 (DGAT2) expression may be involved in dietary 
 regulation of systemic triacylglycerol metabolism. Kallio et al. (2007) assessed the effect of two different carbohydrate mod-
ifications (a rye‐pasta diet characterized by a low postprandial insulin response and an oat‐wheat‐potato diet characterized 
by a high postprandial insulin response) on subcutaneous adipose tissue (SAT) gene expression in 47 people with metabolic 
syndrome. They detected that there are rye‐pasta diet downregulated 71 genes (linked to insulin signaling and apoptosis) and 
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oat‐wheat‐potato diet up‐regulated 62 genes (related to stress, cytokine‐chemokine‐mediated immunity, and the interleukin 
pathway). Using microarray analysis, Niculescu et al. (2007) investigated the effects of dietary soy isoflavones on gene 
expression changes in lymphocytes from 30 postmenopausal women. They indicated that isoflavones had a stronger effect 
on some putative estrogen‐responsive genes in equol producers than in nonproducers. In general, the gene expression 
changes caused by isoflavone intervention are related to increased cell differentiation, increased cAMP signaling and 
G‐protein‐coupted protein metabolism and increased steroid hormone receptor activity.

Rcently, using transcriptomics, Marlow et  al. (2013) investigated the effect of a Mediterranean‐inspired diet on 
 inflammation in Crohn’s disease patients. They observed significant changes in gene expression, totally, 1902 genes were 
up‐regulated and 1649 genes were downregulated, after a 6‐week diet intervention. By Ingenuity Pathway Analysis (IPA), 
key canonical pathways affected by diet intervention were identified, including EIF2 signaling, B‐cell development, T‐helper 
cell differentiation, and thymine degradation. Rosqvist et  al. (2014) performed transcriptomics to investigate liver fat 
accumulation and body composition after overfeeding saturated (SFA) (palm oil) or n‐6 polyunsaturated (PUFA) (sunflower 
oil) for 7 weeks in 39 young and normal‐weight individuals. The results revealed that SFA markedly increased liver fat com-
pared with PUFA, and PUFA caused an almost three‐fold increase in lean tissue than SFA. The differentially regulated genes 
were involved in regulating energy dissipation, insulin resistance, body composition, and fat cell differentiation.

However, there are some problems or limitations for transcriptomics approaches in nutritional research. One major problem 
is non‐reproducibility of gene expression profiles. Different conclusions could be drawn from the same experiment but per-
formed at different times or different labs or different platforms. Fortunately, for reducing errors or variations,  standards for 
reporting microarray data have been established under MIAME (minimum information about a microarray experiment) 
(Brazma et al., 2001). Barnes et al. (2005) evaluated the reproducibility of microarray results using two platforms, Affymetrix 
GeneChips and Illumina BeadArrays. The results demonstrated that agreement was strongly correlated with the level of 
expression of a gene, and concordance was also improved when probes on the two platforms could be identified as being likely 
to target the same set of transcripts of a given gene. Another major issue is the analysis of the data sets and their interpretation. 
Analyses only providing gene lists with significant p‐values are insufficient to fully understand the underlying biological 
mechanisms, a single gene that is significantly upregulated or downregulated does not necessarily have any physiological 
meaning (Kussmann et  al., 2008). The combination of statistical and functional analysis is   appropriate to facilitate the 
identification of biologically relevant and robust gene signatures, even across different  microarray platforms (Bosotti et al., 
2007). An additional and more specific limitation in human nutritional applications is that microarray studies require significant 
quantities of tissues material for isolation of the needed RNA, while access to human tissues is obviously limited, although it 
is not impossible to obtain biopsies from a control subjects involved in a nutrition research. If using human blood cells instead 
of tissue material, large inter‐individual variation exists in gene expression profiles of healthy individuals (Cobb et al., 2005), 
this makes it challenging to identify robust gene expression signatures in response to a nutrition intervention. On the other 
hand, sample handling and prolonged transportation  significantly  influences gene expression profiles (Debey et al., 2004), the 
highly standardized protocol across different labs is needed. In particular whole‐blood samples require the depletion of globin 
mRNA for enabling detection of low‐ abundance transcripts. Shin et al. (2014) showed that the experimental globin depletion 
removed approximately 80% of globin  transcripts, and allowed for reliable detection of thousands of additional transcripts. 
However, a concern is that globin depletion leads to the significant reduction in RNA yields.

1.3 Proteomics in Nutritional Research

In the last two decades, proteomics has developed into a technology for biomarker discovery, disease diagnosis, and clinical 
applications (Beretta, 2007; Lescuyer et  al., 2007; Zhang et  al., 2007a, b). The workflow for the proteomics analysis 
 essentially consists of sample preparation, protein separation, and protein identification.

For the gel‐based proteomics experiments, proteins are extracted from cell or tissue samples, separated by two‐ 
dimensional polyacrylamide gel electrophoresis (2D‐Gel), and stained. In order to identify differences in protein content 
between protein samples, images of the spots on the gels can be compared. Subsequently, the protein spots of interest are 
excised and the proteins are digested. Last, the resulting peptides can be identified by mass spectrometry (MS). However, 
2D‐gel technology has many inherent drawbacks (Corthesy‐Theulaz et al., 2005; Kussmann et al., 2005): (1) bias towards 
the most abundant changes, giving poor resolution for low abundant proteins, which might generate erroneous conclusions 
due to the fact that subtle variation may lead to important changes in metabolic pathways; (2) inability to detect proteins 
with extreme properties (very small, very large, very hydrophobic, and very acidic or basic proteins); and (3) difficulty in 
identification of the proteins, time‐consuming and costly.

0002535556.indd   5 16/07/2015   05:54:54 PM
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Instead of the gel approaches, chromatography‐based techniques have been developed for protein/peptide separation, 
such as gas chromatography (GC), liquid chromatography (LC). When these separation technologies is combined with MS 
or tandem MS (MS/MS), the superior power of MS in the proteomic analysis is greatly enhanced. The mostly used MS 
instruments for proteomics experiments are ESI‐MS (electrospray ionization MS), MALDI‐TOF‐MS (matrix‐assisted laser 
desorption ionization with a time‐of‐flight MS) and its variant SELDI‐TOF‐MS (surface‐enhanced laser desorption 
 ionization with a time‐of‐flight MS). In addition, FTICR‐MS (Fourier transform ion cyclotron resonance MS) is an increas-
ingly useful technique in proteomic research, which provides the highest mass resolution, mass accuracy, and sensitivity of 
present MS technologies, although its relatively expensive (Bogdanov and Smith, 2005).

In recent years, there have been exponentially increasing numbers of publications on the application of proteomic tech-
niques to nutrition research (Griffiths and Grant, 2006), but many investigations were performed in animal models (Breikers 
et al., 2006; de Roos et al., 2005; Kim et al., 2006). Limited proteomics analysis in humans was involved in identifying the 
molecular target of dietary components in human subjects. For example, proteomic analysis of butyrate‐treated human 
colon cancer cells (Tan et al., 2002), and identification of molecular targets of quercetin in human colon cancer cells 
(Wenzel et al., 2004), the identification of cellular target proteins of genistein action in human endothelial cells (Fuchs 
et al., 2005). Smolenski et al. (2007) applied 2D‐gel and MALDI‐TOF‐MS identified 15 proteins that are involved in host 
defense. Batista et al. (2007) employed 2D‐gel and the MS method to identify new potential soybean allergens from trans-
genic and non‐transgenic soy samples. Similarly, a proteomic analysis method based on 2D‐gel and MALDI‐TOF‐MS was 
used to characterize wheat flour allergens and revealed that nine subunits of glutenins are the most predominant IgE‐
binding antigens (Akagawa et al., 2007). Fuchs et al. (2007) conducted the proteomic analysis of human peripheral blood 
mononuclear cells (PBMC) from seven healthy men after a dietary flaxseed‐intervention. The results showed that flaxseed 
consumption affected significantly the steady‐state levels of 16 proteins, including enhanced levels of peroxiredoxin, 
reduced levels of the long‐chain fatty acid beta‐oxidation multienzyme complex and reduced levels of glycoprotein IIIa/II. 
PBMCs are an important sample for monitoring dietary interventions and are accessible with little invasive means. Vergara 
et al. (2008) have established a public 2‐DE database for human peripheral blood mononuclear cells (PBMCs) proteins, 
which have the potentiality of PBMCs to investigate the proteomics changes possibly associated with food or drug 
interventions.

Recently, Bachmair et al. (2012) evaluated the effect of supplementation with an 80:20 cis‐9,trans‐11 conjugated lino-
leic acid blend on the human platelet proteome. Forty differentially regulated proteins were identified by LC‐ESI‐MS/MS, 
which participate in regulation of the cytoskeleton and platelet structure, as well as receptor action, signaling, and focal 
adhesion. Keeney et al. (2013) examined the effect of vitamin D (VitD) on brain during aging from middle to old age. 
Proteomics analysis revealed that several brain proteins were significantly elevated in the low‐VitD group compared to the 
control and high‐VitD groups, such as 6‐phosphofructokinase, triose phosphate isomerase, pyruvate kinase,  peroxiredoxin‐3, 
and DJ‐1/PARK7. This demonstrates that dietary VitD deficiency contributes to significant nitrosative stress in brain and 
may promote cognitive decline in middle aged and elderly adults. Qiu et al. (2013) applied quantitative proteomics to 
investigate the effects of lycopene on protein expression in human primary prostatic epithelial cells. The proteins that were 
significantly upregulated or downregulated following lycopene exposure were identified, which were involved in antioxi-
dant responses, cytoprotection, apoptosis, growth inhibition, androgen receptor signaling, and the Akt/mTOR cascade. This 
suggests the preventive role of lycopene in prostate cancer.

In any proteomic study aiming for biomarker discovery a critical question is “how much of a given protein is present at 
a given time in a given condition?” Now a number of quantitative proteomic techniques have been developed, such as 2D 
DIGE (difference gel electrophoresis), ICAT (isotope‐coded affinity tag), iTRAQ (isobaric tags for relative and absolute 
quantification), and proteolytic O‐18‐labeling strategies (Chen et al., 2007a; Miyagi et al., 2007). Wu et al. (2006) con-
ducted the comparative study of three methods (DIGE, ICAT, and iTRAQ) and demonstrated that all three techniques 
yielded quantitative results with reasonable accuracy, although iTRAQ is most sensitive than DIGE and ICAT. Due to the 
fact that these methods displayed limited overlapping among the proteins identified, the complementary information 
obtained from different methods should potentially provide a better understanding of biological effects of dietary 
 intervention. However, there are still some potential problems: the protein comigration problem for DIGE, cysteine‐content 
bias for ICAT and susceptibility to errors in precursor ion isolation for iTRAQ. It is noted that all quantification approaches 
discussed so far deliver relative quantitative information. Moreover, absolute or stoichiometric quantification of proteome 
is becoming feasible, in particular, with the development of strategies with isotope‐labeled standards composed of 
 concatenated peptides. On the other hand, remarkable progress has also been made in label‐free quantification methods 
based on the number of identified peptides (Gerber et al., 2003; Kito and Ito, 2008; Old et al., 2005). To date, few sample 
of quantitative proteomics analysis in nutritional research is available. For example, using DIGE and MALDI‐MS/MS, 
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Alm et al. (2007) performed proteomic variation analysis within and between different strawberry varieties. They found 
that biological variation was more affected by different growth conditions than by different varieties, the amount of 
strawberry allergen varied between different strawberry varieties, and the allergen content in colorless (white) strawberry 
varieties was always lower than that of the red ones. However, only three proteins were the same among the proteins 
 correlated with allergen and the color and this means that it is possible to breed a strawberry with low amount of allergen. 
Thus, the proteomic‐based method has the potential to be used for variety improvement of fruit and vegetables.

Furthermore, protein microarray technology is a promising approach for proteomics, which can be used to detect changes 
in the expression and post‐translational modifications of hundreds or even thousands of proteins in a parallel way. Its 
advantages include high sensitivity, good reproducibility, quantitative accuracy, and parallelization. The details of protein 
microarray method are described in recent review (Kricka et al., 2006). Protein microarray platforms should open new 
possibilities to gain novel insight into the molecular mechanisms underlying nutrient‐gene or nutrient‐drug interactions 
(such as grapefruit‐cyclosporine interaction). Puskas et al. (2006) applied the Panorama protein microarray to analyze the 
cholesterol diet‐induced protein expression and found that a different phosphorylation pattern could be detected as well. 
Lin et al. (2007) showed that coupling the diversity of protein array with the biological output of basophilic cells was able 
to detect allergic sensitization. This is of great interest in nutrition research.

1.4 Metabolomics in Nutritional Research

Changes in mRNA concentration do not necessarily result in changes in cellular protein levels, and changes in protein 
levels may not always cause changes in protein activity. Metabolites represent the real endpoints of gene expression. Thus, 
alterations in the concentrations of metabolites may be better suited to describe the physiological regulatory processes in a 
biological system and may be a better measure of gene function than the transcriptome and proteome. Biological effects in 
nutrition cannot be reduced to the action of a single molecule but actually result from the modulation of many metabolic 
pathways at the same time, which is the product of a complex interplay between multiple genomes represented by the 
 mammalian host and its gut microflora, and environmental factors (e.g., food habits, diet composition, and other lifestyle 
components) (Nicholson et al., 2004; Rezzi et al., 2007a). Metabolomics in nutrition has already delivered interesting 
insights to understanding the metabolic responses of humans or animals to dietary interventions.

The workflow for metabolomics involves a tandem use of analytical chemistry techniques to generate metabolic profiles 
and various bioinformatics tools to extract relevant metabolic information. Currently, the widely used tool for  metabolomics 
experiments in nutrition research is proton nuclear magnetic resonance (NMR) technology. For example, the determination 
of metabolic effect of vitamin E supplementation in a mouse model of motor neuron degeneration (Griffin et al., 2002); the 
evaluation of biochemical effects following dietary intervention with soy isoflavones in five healthy premenopausal women 
(Solanky et al., 2003); the detection of human biological responses to different diets (e.g., chamomile tea, Wang et al., 
2005; or vegetarian, low meat, and high meat diets, Stella et al., 2006); the characterization of the metabolic variability due 
to different populations (e.g., American, Chinese, and Japanese – Dumas et al., 2006a; or Swedish and British popula-
tions – Lenz et al., 2004). Bertram et al. (2007) employed a NMR‐based metabolomic method to investigate biochemical 
effects of a short‐term high intake of milk protein or meat protein on 8‐year‐old boys; this was the first report to demon-
strate the capability of proton NMR‐based metabolomics in identifying the overall biochemical effects of consumption of 
different animal proteins. They found that the milk diet increased the urinary excretion of hippurate, while the meat diet 
increased the urinary excretion of creatine, histidine, and urea. Moreover, based on NMR analysis of serum, the results 
demonstrated that the milk diet slightly changed the lipid profile of serum, but the meat diet had no effect on the metabolic 
profile of serum. Fardet et al. (2007) investigated the metabolic responses of rats fed whole‐grain flour (WGF) and refined 
wheat flour (RF) using a NMR‐based metabolomic approach. The results showed that some tricarboxylic acid cycle inter-
mediates, aromatic amino acids, and hippurate were significantly increased in the urine of rats fed the WGF diet. Moazzami 
et al. (2011) evaluated the effects of a whole grain rye and rye bran diet on the metabolic profile of plasma in prostate 
cancer patients using (1)H NMR‐based metabolomics. They found that five metabolites were increased after rye bran prod-
uct (RP), including 3‐hydroxybutyric acid, acetone, betaine, N,N‐dimethylglycine, and dimethyl sulfone. This suggests a 
shift in energy metabolism from anabolic to catabolic status. Rasmussen et al. (2012) assessed the effect of high or low 
protein diet on the human urine metabolome by (1)H NMR and chemometrics. The results showed that citric acid was 
increased by the low (LP) protein diet, while urinary creatine was increased by the high (HP) protein diet.

Another exciting and powerful tool for metabolomics is MS‐based technology. The main advantage of MS technique 
is its high sensitivity and rapid determination of mass or structure information. MS instruments in combination with 
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some separation technologies (such as gas or liquid chromatography, GC or LC, or capillary electrophoresis, CE) can 
 quantitatively profile molecular entities like lipids, amino acids, bile acids, and other organic solutes at high sensitivity 
(Fiehn et al., 2000; Watkins and German, 2002). A typical MS‐based metabolomics system is the HPLC system using 
sub‐2‐μm packing columns combined with high operating pressures (UPLC technology). Compared with conventional 
HPLC‐TOF‐MS systems using 3–5‐μm packing columns, UPLC‐TOF‐MS systems allow a remarkable decrease of the 
analysis time, higher peak capacity, and increased sensitivity. Recently, a number of applications of MS‐based metabo-
lomics to nutritional research have been reported. For example, a HPLC‐TOF‐MS‐based study of changes of urinary 
endogenous metabolites associated with aging in rats (Williams et al., 2005); a noninvasive extractive ESI‐Q‐TOF‐MS 
for differentiation of maturity and quality of bananas, grapes, and strawberries (Chen et al., 2007b); and combined 
GC‐MS and LC‐MS metabolic profiling for comprehensive understanding of system response to aristolochic acid 
intervention in rats (Ni et al., 2007).

Recently, Tulipani et al. (2011) examined urinary changes in subjects with metabolic syndrome following 12‐week nut 
consumption by an HPLC‐Q‐TOF‐MS‐driven nontargeted metabolomics approach. Twenty potential markers of nut intake 
were identified, including fatty acid conjugated metabolites, microbial‐derived phenolic metabolites, and serotonin metab-
olites. Through employing urinary metabolic‐profiling analysis based on UPLC coupled with quadrupole time‐of‐flight 
tandem mass spectrometry, Wang et al. (2013) identified reliable biomarkers of calcium deficiency from the rat model. In 
particular, significant correlations between calcium intake and two biomarkers, pseudouridine and citrate, were further 
confirmed in 70 women. Astarita et al. (2014) applied a multi‐platform lipidomic approach to compare the plasma lipidome 
between WT and fat‐1 mice, which can convert omega‐6 to omega‐3 PUFAs and protect against a wide variety of diseases 
including chronic inflammatory diseases and cancer. Fat‐1 mice exhibited a significant increase in the levels of omega‐3 
lipids (unesterified eicosapentaenoic acid [EPA], EPA‐containing cholesteryl ester, and omega‐3 lysophosphospholipids), 
and a significant reduction in omega‐6 lipids (unesterified docosapentaenoic acid [omega‐6 DPA], DPA‐containing choles-
teryl ester, omega‐6 phospholipids, and triacylglycerides). These lipidomic biosignatures may be used to monitor the health 
status and the efficacy of omega‐3 intervention in humans.

However, a major problem for metabolomics is that the experimental metabolic profile is influenced not only by the 
genotype but also by age, gender, lifestyle, nutritional status, drugs, stress, physical activity, and so on. To minimize 
the variations in studies with humans, some attempts were made, such as using standardized diet, avoiding any vigorous 
activity, excluding smokers, and so on. Unfortunately, even under the consumption of standard diet, the metabolic  variability 
remains. Using 1H NMR spectroscopy, Walsh et al. (2006) investigated the acute effects of standard diet on the  metabonomic 
profiles of urine, plasma and saliva samples from 30 healthy volunteers. There are important biochemical variabilities to be 
observed for all biofluids at both intra‐ and inter‐individual levels, significant variations in creatinine and acetate for urine 
and saliva, respectively, exist. After the consumption of standard diet, a reduction in inter‐individual variation was 
observed in urine, but not in plasma or saliva. Indeed, different diets consumption in different populations leads to different 
 metabolic profiles (Rezzi et al., 2007a): higher urinary levels in creatine, creatinine, carnitine, acetylcarnitine, taurine, 
 trimethylamine‐N‐oxide (TMAO), and glutamine are the metabolic signature of high‐meat diet; higher urinary excretion of 
p‐hydroxyphenylacetate, a microbial mammalian co‐metabolite, and a decreased level in N,N,N‐trimethyllysine are asso-
ciated with the vegetarian diet; elevated β‐aminoisobutyric acid and ethanol in Chinese urinary samples; increased urinary 
excretion in TMAO in the Japanese and Swedish populations due to the high dietary intake of fish; and usually high level 
of urinary taurine in the British population as a consequence of the Atkins diet. It is noted that a report reveals a “natural”, 
stable over time, and invariant metabolic profile for each person, although the existence of human metabolic variations 
resulting from various dietary patterns (Assfalg et al., 2008). This provides the possibility of eliminating the day‐to‐day 
“noise” of the individual metabolic fingerprint and opens new perspectives to metabolomic studies for personalized therapy 
and nutrition.

Another important issue in nutritional metabolomics is gut microbiota‐host metabolic interactions, such as the inter-
action between the microbiome and the human, which makes the human become a “superorganism” (Goodacre, 2007). 
More than 400 microbial species exist in the large‐bowel microflora of healthy humans, which produce significant 
metabolic signals so that the true metabolomic signals of nutrients in the diet could be “swamped” and the metabolome 
of biofluids in human nutrition is altered. Dumas et al. (2006b) investigated the metabolic relationship between gut 
microflora and host co‐metabolic phenotypes using the plasma and urine metabolic NMR profile of the mouse. They 
found that the urinary excretion of methylamines from the precursor choline was directly related to microflora metab-
olism, demonstrating significant interaction between the mammalian host and microbiota metabolism. Rezzi et  al. 
(2007b) performed the NMR analysis of plasma and urine metabolic profiles in 22 healthy male volunteers with 
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behavioral/psychological dietary preference (chocolate desire or chocolate indifference). The results revealed that 
chocolate preference was associated with a specific metabolic signature, which is imprinted in the metabolism even in 
the absence of chocolate as a stimulus. Marcobal et al. (2013) applied the UPLC technique to investigate the effects of 
the human gut microbiota on the fecal and urinary metabolome of a humanized (HUM) mouse. They found that the vast 
majority of metabolomic features are produced in the corresponding HUM mice, the metabolite signatures can be mod-
ified by host diet, and simplified bacterial communities can drive major changes in the host metabolomic profile. This 
demonstrates that metabolomics constitutes a powerful avenue for functional characterization of the intestinal micro-
biota and its interaction with the host.

1.5 Systems Biology in Nutritional Research

In order to better understand the complex interplay between genes, diet, lifestyle, and endogenous gut microflora, and 
to understand how diet can be modified to maintain optimal health throughout life, the integrative use of various 
omics  technologies‐systems biology technology offer exciting opportunities to develop the emerging area of person-
alized nutrition and healthcare (Naylor et al., 2008; Zhang et al., 2008). Currently, there has been limited work in this 
arena.

Using an integrated reverse functional genomic and metabolic approach, Griffin et al. (2004) identified perturbed 
metabolic pathways by orotic acid treatment. In the searching for correlations between the 60 most differentially 
expressed genes and the largest changed metabolite trimethylamine‐N‐oxide, they found that the most significant nega-
tive correlation is stearyl‐CoA desaturase 1, which highlights the relationship between transcripts and metabolites in 
lipid pathways. Herzog et al. (2004) performed proteome and transcriptome analysis of human colon cancer cells treated 
with flavone. About 488 mRNA targets were found to be regulated by flavone at least two‐fold. On the other hand, many 
proteins involved in gene regulation, detoxification, and intermediary metabolism, such as annexin II, apolipoprotein 
A1, and so on, were found to be altered by flavone exposure. Dieck et al. (2005) conducted transcriptome and proteome 
analysis to identify the underlying molecular changes in hepatic lipid metabolism in zinc‐deficient rats. The experi-
mental findings provide evidence that an unbalanced gene transcription control via the PPAR‐α, thyroid hormone, and 
SREBP‐dependent pathways could explain most of the effects of zinc deficiency on hepatic fat metabolism. Mutch et al. 
(2005) used an integrative transcriptome and lipid‐metabolome approach to understand the molecular mechanisms 
 regulated by the consumption of PUFA. They identified stearoyl‐CoA desaturase as a target of an arachidonate‐enriched 
diet and revealed a previously unrecognized and distinct role for arachidonate in the regulation of hepatic lipid 
 metabolism. By combining DNA microarray, proteomics, and metabolomics platforms, Schnackenberg et al. (2006) 
investigated the acute effects of valproic acid in the liver and demonstrated a perturbation in the glycogenolysis pathway 
after administration of valproic acid.

Recently, by applying transcriptomics, proteomics, and metabolomics technologies to liver samples from C57BL/6J 
mice, Rubio‐Aliaga et al. (2011) revealed alterations of key metabolites and enzyme transcript levels of hepatic one‐carbon 
metabolism and related pathways, suggesting the important role of coupling high levels of choline and low levels of 
 methionine in the development of insulin resistance and liver steatosis. Vendel Nielsen et al. (2013) investigated the hepatic 
response to the most abundant trans fatty acid in the human diet, elaidic acid, using a combined proteomic, transcriptomic, 
and lipidomic approach in HepG2 cells. They found that many proteins involved in cholesterol synthesis and the esterifi-
cation and hepatic import/export of cholesterol were upregulated. Moreover, at the phospholipid level, there existed a 
marked remodeling of the cellular membrane. This suggests that trans fatty acids from the diet induce abundance changes 
in several hepatic proteins and hepatic membrane composition to alter plasma cholesterol levels.

1.6 Conclusions

The main goal of omics‐based nutrition research is to understand the relationships between diet and disease and the rela-
tionships between diet and health, and finally to make recommendations for personalized nutrition or individualized diets 
(Figure 1.1, modified from Zhang et al., 2008). In order to better understand the complex interplay that occurs between the 
individual in terms of genetics, physiology, health, diet, and environment, comparative genetic, transcriptomic, proteomic, 
and metabolomic analyses for individuals and populations are highly required. In particular, systems biology, more than the 
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simple merger of various omics technologies (transcriptomics, proteomics, and metabolomics), aims for understanding the 
biological behavior of a cellular system in response to external stimuli, and opens up a new road to understanding the 
 complex interaction network between nutrients and molecules in biological systems. An era of personalized medicine and 
nutrition is coming.
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