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General Information

1.1 Introduction

In the classification of mechanical structures, somewhere between one-dimensional
(1D) bar structures and three-dimensional (3D) solid structures, a class of
two-dimensional (2D) plates and shells (thin-walled flat and curved structures)
can be distinguished. The attention is focused on a deformable solid body, which is
limited by two surfaces (top and bottom) and lateral surfaces, see Figure 1.1. The
distance between the top and bottom surfaces, identified as the thickness, is small
compared to the other dimensions of the body (e.g. radius of curvature or span),
measured referring to the so-called primary surface (2D physical model), most often
taken as the middle surface defined as equidistant from the top and bottom surfaces.
The following, generally accepted nomenclature is going to be used throughout the

book:

• shells = thin-walled curved shells
• curved membranes = special shells that have no bending rigidity
• plates = thin plane structures that have some subclasses:

– flat membranes = plates with load in the middle plane, sometimes also called
panels

– plates under bending = plates with transverse load (normal to the middle plane),
sometimes also called slabs

In the general description, for all these classes we will use the name ‘shell structures’
or, in brief, ‘shells’. In other words, we understand that shell structures can be flat.
Scientists, teachers, students, engineers and even the authors of software are inter-

ested in the mechanics of plates and shells. Due to the variety of potential users, the
following variants of the mechanical theory have evolved:

• general advanced tensorial shell theory
• technical (engineering) shell theory

The scope of this book is limited to the case of linear constitutive and kinematic
equations.
The theory is the basis for the construction of appropriate mathematical models (sets

of differential and algebraic equations) and is associated with the calculation method
that can be used to solve general or particular mechanical problems.
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4 Plate and Shell Structures

(a)

top surface
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Figure 1.1 Structures: (a) bar (1D), (b) surface (2D) and (c) solid (3D)

In Section 1.2, encyclopedic information on the development of theories describing
elastic plates and shells is included.
The description of shell structures, which makes them different from bar (1D) and

solid (3D) bodies, must contain the following aspects:

• information on the coordinate systems and geometry of representative surfaces
• specification of kinematic constraints related to the mode of deformation
• definitions of so-called generalized strains with respect to the middle surface
• definitions of resultant forces and moments on the middle surface
• characteristics of fundamental stress and strain states

Detailed discussion is given in Sections 1.3 and 1.4.
A classification of plates and shells can be performed taking into account the slen-

derness (thickness to span ratio), the shape of the middle surface, the definitions and
assumptions presented further in Section 1.4 and the character of stress distribution
along the thickness, related to the stress state. In Section 1.5 and in Box 1.1, we present
the classification of surface structures according to these aspects.
Thin-walled shell structures of various types are very important structural elements.

Examples of shell structures can be encountered in civil and mechanical engineering
(slabs, vaults, roofs, domes, chimneys, cooling towers, pipes, tanks, containers, pres-
sure vessels), shipbuilding (ship hulls, submarine hulls) and in the vehicle and aerospace
industries (car bodies and tyres, wings and fuselages of aeroplanes).
From an engineering point of view, it is necessary to predict different modes of

behaviour of plates and shells under applied loading. In the case of a (flat) plate
subjected to a transverse load, static equilibrium is preserved by the action of bending
and twisting moments and transverse shear forces. On the other hand, the (curved)
shell structure is able to carry the load inducing membrane tension or compression,
distributed uniformly throughout the thickness (it is an optimal case from the viewpoint
the material strength). This feature of shell structures makes them more economical
and stiffer in comparison to plates.
Familiarity with the technical shell theory is necessary for engineers who are respon-

sible for the safety of structures and are supposed to take into account various safety
factors using computer-aided design.
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Box 1.1 Summary of classification of shell structures

Thin plates for h
Lmin

<
1
10

Moderately thick plates for 1
10

≤ h
Lmin

Thin shells for h
Rmin

≤ 1
20

Moderately thick shells for 1
20

<
h

Rmin
≤ 1

6

Thick shells for 1
6
<

h
Rmin

Shallow shell for
f
L
<

1
5

h – thickness of plate or shell

L – characteristic dimension of plate or shell

Lmin – the smallest dimension in the middle plane of a plate

Rmin – smaller of two principal radii of curvature

f – distance of shell from the horizontal plane, of its projection,
that is rise

w – representative deflection

Geometrically linear theory of plates

with small deflections for |w| < h
5

von Kármán theory of plates

with moderately large deflections for |w| ≈ h

Geometrically nonlinear theory of plates

with large deflections for |w| > 5h

As emphasized in Ramm and Wall (2004), shell structures exhibit the strong influ-
ence of initial geometry, slenderness, type of loading and boundary conditions on the
deformation and load carrying capacity. Small variations or even imperfections of these
parameters can change the structural response significantly and, in particular, cause loss
of stability.
Shells are characterized by an advantageous ratio of stiffness to weight, which makes

them suitable for lightweight and long-spanned structures. Moreover, optimal shells are
designed to carry predominantly membrane forces with minimum bending effects. It is
therefore extremely important to understand the principal mechanical features of plates
and shells before using computer-aided design involving numerical simulation.
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1.2 Review of Theories Describing Elastic Plates and Shells

The general description of the historical development of plate and shell theory, as well
as details of specific theories are referred to in a lot of books andmonographs. Here, the
authors do not try to present the developmental trends of this branch ofmechanics, even
limiting interest to the theory of elastic plates and shells undergoing small deformations.
The beginnings of the linear theory of plates and shells date back to the nineteenth

century, however, the vibration problem of bells was considered by Leonhard Euler in
1764. The name of Sophie Germain is associated with the theory of plates: in 1811 she
submitted work on plates for a contest announced by the French Academy of Sciences.
Following the two encyclopaedic elaborations:

• Mechanics of Elastic Plates and Shells, vol. 8 in Technical Mechanics (Borkowski et al.
2001)

• Models and Finite Elements for Thin-walled Structures, Chapter 3 by Bischoff et al.
in vol. 2 of The Encyclopedia of Computational Mechanics (Stein et al. 2004)

the authors of this book would like to mention the names of researchers associated with
the theories of plates and shells from three different, consecutive periods (listing names
in alphabetical order):

• nineteenth century:
A. Cauchy, S. Germain, A.E. Green, G. Kirchhoff, A.H. Love, S.D. Poisson and
L. Rayleigh

• first half of the twentieth century:
E. Cosserat and F. Cosserat, A.L. Gol’denveizer, Th. von Kármán, S. Lévy, A.I. Lur’e
and E. Reissner

• second half of the twentieth century:
Y. Başar, B. Budiansky, L.H. Donnell, J.L. Ericksen,W. Flügge, J.M.Gere, K. Girkmann,
K.Z. Golimov, R. Harte, Z. Kączkowski, W.T. Koiter, W.B. Krätzig, H. Kraus, R.D.
Mindlin, K.M. Mushtari, P.M. Naghdi, F.I. Niordson, W. Nowacki, V.V. Novozhilov,
W. Pietraszkiewicz, E. Ramm, J.L. Sanders, J.G. Simmonds, I. Szabó, S.P. Timoshenko,
C. Truesdell, V.Z. Vlasov, W. Wunderlich, S. Woinowski-Krieger, Cz. Woźniak and
W. Zerna

We also mention some previous works relevant to the subject of this book, dividing
them into:

• books dealing with the basis of mechanics: Timoshenko and Goodier (1951), Fung
(1965), Washizu (1975), Reddy (1986), Borkowski et al. (2001) and Stein et al. (2004)

• monographs related to the theories of plates and shells: Girkmann (1956),
Timoshenko and Woinowsky-Krieger (1959), Kolkunov (1972), Nowacki (1980),
Niordson (1985), Noor et al. (1989), Waszczyszyn and Radwańska (1995), Reddy
(1999), Başar and Krätzig (2001), Borkowski et al. (2001), Reddy (2007), Radwańska
(2009), Wiśniewski (2010) and Oñate (2013)

The general formulation of the theory of thin-walled structures is determined by their
specific geometry with one dimension (thickness) much smaller in comparison to the
other two dimensions. There are two essential concepts that can be used to formulate
the mathematical description of the problem.
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One possibility is to start from the equations of three-dimensional continuum,
describing a body with a specified geometry. Applying a power series representation of
certain quantities as a function of coordinate z (measured in the direction of a thickness)
the reduction to a two-dimensional theory is performed. Using a specified number of
terms of this representation a 2D problem with varying accuracy of approximation is
obtained.
Alternatively, one can adopt suitable kinematic assumptions and treat a thin-walled

structure as a two-dimensional continuum representation of a substitute problem, (see
Borkowski et al. 2001). This option is associated with direct methods of formulating
two-dimensional models of plates and shells, based on appropriate static and kinematic
hypotheses. The approximation in this theory is that the deformed state of the shell is
determined entirely by the configuration of its middle surface.
Beside the two approaches based on three-dimensional continuum mechanics or

two-dimensional surface-based theories we mention a so-called Cosserat surface
concept, see for instance Chapter 3 in vol. 2 of Stein et al. (2004). This approach is
an extension of classical continuum formulation by adding information about the
orientation of a material point equipped with rotational degrees of freedom.
Among the developed theories for shells a few specific approaches can be distin-

guished:

• general theory applying any parametrization of the curved middle surface
• theory that uses the orthogonal parameterization of the middle surface based on

principal curvature coordinates
• general membrane-bending shell theory with or without the consideration of trans-

verse shear deformation
• theories for particular cases of shells (e.g. for cylindrical or spherical shells of

revolution)
• theory of plates
• theory of flat membranes

The full set of equations of the linear theory of shells, which contains Kirchhoff plate
equations as a special case, are given in pages 173–174 of Love (1944). This theory is
called the Kirchhoff–Love (K–L) theory of first approximation or order. In theory based
on assumptions of K–L the effects of transverse shear and normal strains in the thick-
ness direction are neglected. The weakening of these assumptions leads to enhanced
variants of the equations, the so-called second and third approximations. This involves
more complex forms of measurement of deformation and construction of constitutive
equations. In fact, the first approximation theory ismathematically and physically incor-
rect. When the kinematic equations and constitutive equations, used in this approach,
are substituted into the sixth equilibrium equation (expressing equilibrium of moments
around the normal to the middle surface), the equation is not satisfied. The sixth equi-
librium equation guarantees that all strains vanish for small rigid-body rotations of the
shell.
The inconsistency of Love’s first order theory was removed in the improved theory

for thin shells by Sanders (1959), formulating the equations in principal curva-
ture coordinates. For this new improved theory modified equilibrium equations,
strain-displacement relations and boundary conditions were derived using the
principle of virtual work. The detailed information about the basics of theory of
Sanders is presented in Chapter 3.
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Koiter checked and corrected Love’s theory (see Koiter 1960). An assessment of the
order of magnitude of the terms in Love’s strain-energy expression was carried out.
Appropriate consistent stress-strain relations for stress resultants and equilibrium
equations in tensorial form were presented. In the theory the sixth equation of
equilibrium is satisfied identically.
In work of Budiansky and Sanders (1963) the equations of the ‘best’ first-order linear

elastic shell theory were formulated for shells of arbitrary shape in a coordinate system
related to the middle surface using general tensor notation.
In the broad literature a variety of kinematic and constitutive equations can be found,

because different simplifications were used in their derivation.The summary of various
descriptions of the strain state and kinematic relations (even for linear analysis) is also
presented in the work by Lewiński (1980). The following four essential features of the
improved first approximation shell theory are cited here from this paper:

• matrices of generalized strains (membrane strains and changes of curvature) and
stress resultants (forces and moments) are symmetric

• constitutive equations are decoupled
• the sixth equation of equilibrium is identically satisfied
• a rigid motion of the shell does not cause strains or stresses

Now, a little information about the classical three-parameter Sanders thin shell theory
is given, because this formulation is applied in our book. The equations are considered
to be the most suitable with respect to both theoretical and numerical applications. In
the geometry description the orthogonality of the coordinate lines implies that the first
metric tensor is diagonal, and the surface is described by only two Lame parameters and
two radii of curvature (or curvatures themselves), see Subsection 1.3.2. The following
fields are used in the shell problem description: translation(s), rotation(s), generalized
strain(s) and stress resultants, all defined with respect to the two-dimensional middle
surface. In this three-parameter thin shell theory three translations u1,u2,w are adopted
as independent variables in the description of the deformation (see Subsection 1.4.1).
The five-parameter theory is used to describe moderately thick shells with five inde-

pendent generalized displacements: three translations u1,u2,w and two rotations 𝜗1, 𝜗2
(see Subsection 1.4.2).
At this point the assumptions adopted in this book are specified:

• translations, rotations and strains are assumed to be small enough for nonlinear com-
ponents in the kinematic and equilibrium equations to be omitted (thus taking into
account only the first order terms)

• the initial undeformed configuration of the structure is the reference configuration
• the material is treated as isotropic linearly elastic, described by Hooke’s constitutive

equations, that is to define the material only two parameters are used: Young’s mod-
ulus and Poisson’s ratio

Amore advanced tensorial formulation of the theory of shell structures can be found,
for instance, in Başar and Krätzig (2001). The theoretical foundations there are coupled
with:

• local formulation using differential and algebraic equations
• global formulations employing energy theorems and variational principles for plates

and shells



�

� �

�

1 General Information 9

In Chapter 3 of Vol. 2 of Stein et al. (2004), entitled ‘Models and Finite Elements
for Thin-walled Structures’, both the mathematical and mechanical foundations of the
theory of plates and shells and the description of FE formulations are presented. The
chapter includes an extensive derivation of kinematic equations and strains, constitu-
tive equations and stresses aswell as the parametrization of displacements and rotations,
both in linear and nonlinear range. The long list of references contains 211 items from
1833 to 2003.
Most recent efforts of scientists are aimed at the analysis of:

• anisotropic, composite (in particular layered) shells
• shells undergoing large deformations (with varyingmagnitude of displacements, rota-

tions and strains)
• shell in inelastic (in particular plastic) states

However, these issues are beyond the scope of this book.The reader is referred to the fol-
lowingworks on nonlinear theories of plates and shells:Woźniak (1966), Pietraszkiewicz
(1977, 1979, 2001), Crisfield (1982), Hinton et al. (1982), Kleiber (1985), Borkowski et al.
(2001), Wiśniewski (2010), de Borst et al. (2012).

1.3 Description of Geometry for 2D Formulation

The description of the geometry of 2D surfaces is based on the works by Waszczyszyn
and Radwańska (1995) and Radwańska (2009).

1.3.1 Coordinate Systems, Middle Surface, Cross Section, Principal Coordinate
Lines

The analysis of thin and moderately thick shell structures is most often performed with
respect to the middle surface, that is to a geometrically two-dimensional object; only
thick shells are treated as three-dimensional bodies.
The geometry of a shell structure is defined when the shape of the middle surface, the

boundary contour and the thickness distribution have been specified. In the theoretical
consideration we assume for simplicity that the thickness is constant.
Two families of curves are introduced. They are parametrized with so-called curvi-

linear coordinates 𝜉1, 𝜉2, see Figure 1.2a, used for an explicit definition of the position
of a point on the surface, In most cases a general curvilinear coordinate system will be
employed, and further a discussion of particular cases will be provided, for instance the
cylindrical (x, 𝜃), spherical (𝜑, 𝜃) or Cartesian (x, y) coordinate systems will be applied.
In the two-dimensional description of shells analogous pairs of variables (e.g. R𝛼) or
pairs of formulae (e.g. ds𝛼 = A𝛼d𝜉𝛼) will be used, where the Greek index 𝛼 represents
numbers 1 or 2.
On the middle surface the so-called principal curvature lines related to principal cur-

vature radii are specified. Many equations formulated for particular shells refer to these
principal (extreme) curvature lines.
At any point P on the middle surface a cross section can be defined. We consider

two normal section planes Π1 and Π2, see Figure 1.2b. These planes are perpendic-
ular to each other and their intersections with the middle surface generate arc seg-
ments of unit length ds𝛼 = 1. We emphasize that the intersection of the planes Π𝛼 is a
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Figure 1.2 (a) A middle surface with curvilinear coordinates 𝜉𝛼 and local base vectors e𝛼,n at point P,
(b) straight fibre – intersection of planes Π𝛼 , 𝛼 = 1, 2. Source: Waszczyszyn and Radwańska (1995).
Reproduced with permission of Waszczyszyn.
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Figure 1.3 Three surfaces: (a) spherical, (b) cylindrical and (c) shallow hyperbolic, corresponding to
appropriate coordinate systems

straight fibre (the so-called director), see Figure 1.2b. Its behaviour during deformation
is precisely described according to the so-called kinematic hypothesis of Kirchhoff–Love
(see Subsection 1.4.1) or Mindlin–Reissner (see Subsection 1.4.2).
Surface coordinates 𝜉𝛼 are used to identify three common types of surface (see

Figure 1.3):
(a) spherical surface described in a spherical coordinate system (𝜑, 𝜃)
(b) cylindrical surface in a cylindrical system (x, 𝜃)
(c) shallow ruled hyperbolic surface in a Cartesian system (x, y)

1.3.2 Geometry of Middle Surface

For point P on the middle surface Π the connection between global Cartesian coordi-
nates X, Y , Z and local curvilinear coordinates 𝜉1, 𝜉2 is expressed by the relation

r = X iX + Y iY + Z iZ (1.1)
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where:

X = f1(𝜉1, 𝜉2), Y = f2(𝜉1, 𝜉2), Z = f3(𝜉1, 𝜉2) (1.2)

On the middle surface, a two-dimensional segment P − P1 − M − P2 is identified,
resulting from the intersection of four lines 𝜉1 = const., 𝜉1 + d𝜉1 = const., 𝜉2 = const,
𝜉2 + d𝜉2 = const. (see Figure 1.4a). Next, curve l is considered.The curve, parametrized
by coordinate 𝜆, passes through points P and M that are located on the elementary
surface subdomain, with lengths of sides ds𝛼 , 𝛼 = 1, 2 measured by so-called Lame
parameters A𝛼 , which are magnitudes of the tangential vectors r,𝛼 :

ds𝛼 = A𝛼d𝜉𝛼, A𝛼 = |r,𝛼| = |g𝛼|, ( ),𝛼 =
𝜕( )
𝜕𝜉𝛼

, 𝛼 = 1, 2 (1.3)

r = r[𝜉1(𝜆), 𝜉2(𝜆)], dr =
(

𝜕r
𝜕𝜉1

d𝜉1
d𝜆

+ 𝜕r
𝜕𝜉2

d𝜉2
d𝜆

)
d𝜆 = r,1 d𝜉1 + r,2 d𝜉2 (1.4)

The length of the arch between points P and M on line l is calculated using the formula

(ds)2 = r,1 ⋅ r,1 (d𝜉1)2 + 2r,1 ⋅ r,2 d𝜉1d𝜉2 + r,2 ⋅ r,2 (d𝜉2)2

= (A1)2 (d𝜉1)2 + 2A1A2 cos(g1, g2) d𝜉1d𝜉2 + (A2)2 (d𝜉2)2 (1.5)

The product of tangential vectors g𝛼 defines the first (I) metric tensor g𝛼𝛽

g𝛼𝛽 = g𝛼 ⋅ g𝛽 = r,𝛼 ⋅ r,𝛽 (1.6)

Moreover, the I fundamental quadratic form of the surface is derived

(ds)2 = g11 (d𝜉1)2 + 2g12 d𝜉1d𝜉2 + g22 (d𝜉2)2 (1.7)

Next, base vectors with unit length (versors) e𝛼,n are obtained:

e𝛼 =
r,𝛼
A𝛼

=
g𝛼
A𝛼

, n = e3 = e1 × e2 (1.8)

r

M Π
Δr Δr

m
n dr

(a) (b)

m

M

n

lR

Πv
ξ1 =

 const.

ξ
2 + dξ

2  = const.

ξ 1 
+ dξ 1

 = co
nst.

ξ
2  = const.

PΠs

P

dr

P1

P2

ds
2

ds1

Figure 1.4 Description of objects: (a) on middle surface Π and in plane Πs, (b) in plane Π𝜈 . Source:
Waszczyszyn and Radwańska (1995). Reproduced with permission of Waszczyszyn.
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where × denotes the vector product of two vectors. The components of load p̂ and dis-
placement vectors u can be defined using the local base versors (e𝛼,n):

p̂ = p̂1e1 + p̂2e2 + p̂nn (1.9)
u = u1e1 + u2e2 + wn (1.10)

Themeasure of themiddle surface curvature for a shell, denoted by m, can be calculated
as the length of projection of vector Δr on direction n, see Figure 1.4b

m = n ⋅ Δr = n ⋅
(
dr + 1

2
d2r + ...

)
= 1

2
n ⋅ d2r + ... . (1.11)

To this end the second (II) metric tensor b𝛼𝛽

b𝛼𝛽 = r,𝛼𝛽 ⋅ n = −r,𝛼 ⋅ n,𝛽 (1.12)

and the II fundamental form of the surface

2m = b11 (d𝜉1)2 + 2b12 d𝜉1d𝜉2 + b22 (d𝜉2)2 (1.13)

are defined. For line l its curvature radius R and curvature k are calculated as

1
R
≡ k = lim|Δr|→0

2m|Δr|2 = n ⋅
d2r
ds2

(1.14)

In relation to the so-called principal coordinate lines, for which g12 = b12 = 0, two
extreme principal curvature radii R𝛼𝛼 , as well as two characteristic parameters, mean
curvature H and so-called Gaussian curvature K , are calculated using the formulae:

k𝛼𝛼 = − 1
R𝛼𝛼

=
b𝛼𝛼

g𝛼𝛼
=

b𝛼𝛼

(A𝛼)2
(1.15)

k2 − 2Hk + K = 0, H = 1
2
(k1 + k2), K = k1k2 (1.16)

1.3.3 Geometry of Surface Equidistant fromMiddle Surface

Similar to point P on the middle surface Π (see Figure 1.5), we consider point P(z) on
surface Π(z), equidistant from the middle surface. The position vector r(z) of point P(z) is
the sum of position vector r of point P and vector zn:

r(z) = r + zn, −h
2
≤ z ≤ h

2
(1.17)

The following objects ds(z)𝛼 , e(z)𝛼 , A(z)
𝛼 , R(z)

𝛼 , 𝛼 = 1, 2, are introduced for the equidistant
surface. They are associated with analogous objects for the middle surface by linear
functions of coordinate z:

ds(z)𝛼 = A(z)
𝛼 d𝜉𝛼, e(z)𝛼 = 1

A(z)
𝛼

r(z),𝛼 , n(z) ≡ n (1.18)

A(z)
𝛼 = A𝛼

(
1 + z

R𝛼

)
, R(z)

𝛼 = R𝛼

(
1 + z

R𝛼

)
(1.19)
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Figure 1.5 Middle surface Π and
equidistant surface Π(z). Source:
Waszczyszyn and Radwańska (1995).
Reproduced with permission of
Waszczyszyn.

r(z)

Π

P(z)

e2

e1P

r

n = n(z)

Π(z)

zn
e1

(z)

e2
(z)

ξ1 = const.

ξ1
(z)

 = const.

ξ2 = const.

ξ2
(z)

 = const.

1.3.4 Geometry of Selected Surfaces

We will now present three typical coordinate systems and three selected surfaces as
well as scalar, vector and tensor quantities, useful in the description of a surface identi-
fied with the middle surface of a shell structure. We will specify base vectors and the
first metric tensor. Omitting detailed derivations, we will provide formulae used for
the description of geometry of these surface. For more information on the subject, the
reader is referred, for instance, to Başar and Krätzig (2001).

1.3.4.1 Spherical Surface
A spherical surface is located in a 3D space with a Cartesian coordinate system (x1 =
x, x2 = y, x3 = z). On this surface point P is considered, whose position is defined using
two spherical surface coordinates 𝜉1 = 𝜑, 𝜉2 = 𝜃 and radius R1 = R2 = R (see Figure 1.6).
In the global system of axes xi, i = 1, 2, 3, the position vector r of point P is written

first with Cartesian coordinates xi, and next using two spherical coordinates 𝜉𝛼
r = xi ii = R sin𝜑 sin 𝜃 i1 + R cos𝜑 i2 + R sin𝜑 cos 𝜃 i3 (1.20)

Base vectors (e𝛼,n) are derived from the formulae:[
g1
g2

]
= R

[
cos𝜑 sin 𝜃 i1 − sin𝜑 i2 + cos𝜑 cos 𝜃 i3
sin𝜑 cos 𝜃 i1 + 0 i2 − sin𝜑 sin 𝜃 i3

]
e𝛼 =

1
R
g𝛼, n = sin𝜑 sin 𝜃 i1 + cos𝜑 i2 + sin𝜑 cos 𝜃 i3

(1.21)

Figure 1.6 Spherical surface

n

x1 = x

x3 = z
ξ2 = θ

ξ1 = φ
P

r(φ)
x2 = y

R

e1

e2

i3

i2

i1
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The following formulae are used in the description of a sphere:

• Lame parameters:

A1 = |g1| = R, A2 = |g2| = R sin𝜑 (1.22)

• first metric tensor

g𝛼𝛽 =

[
g11 g12
g21 g22

]
=
[ R2 0

0 R2 sin2𝜑

]
(1.23)

• principal curvature radii

R1 = R2 = R (1.24)

• Gaussian and mean curvatures:

K = 1
R2 , H = 1

R
(1.25)

1.3.4.2 Cylindrical Surface
Acylindrical surface, for which the symmetry axis is identical to axis x1 = x of the Carte-
sian coordinate system (x, y, z), is shown in Figure 1.7. The position of point P from the
cylindrical surface is specified using three Cartesian coordinates xi, which are related to
two cylindrical surface coordinates 𝜉1 = x and 𝜉2 = 𝜃 and radius R.
Themain formulae for the calculation of characteristic parameters, vectors and tensor

are (the names are as for the previous surface):

r = xi ii = x i1 + R sin 𝜃 i2 + R cos 𝜃 i3 (1.26)

[
g1
g2

]
=
[ 1 i1

R cos 𝜃 i2 − R sin 𝜃 i3

]
[
e1
e2

]
=
[ 1 i1
cos 𝜃 i2 − sin 𝜃 i3

]
n = sin 𝜃 i2 + cos 𝜃 i3

(1.27)

x3 = z

e1

r
n

P

x1
 = x = ξ1

x2 = y

R

i2

e2

i3
i1

ξ2 = θ

Figure 1.7 Cylindrical surface
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A1 = |g1| = 1, A2 = |g2| = R (1.28)

g𝛼𝛽 =
[

g11 g12
g21 g22

]
=
[

1 0
0 R2

]
(1.29)

R1 = ∞, R2 = R (1.30)

K = 0, H = 1
2R

(1.31)

1.3.4.3 Hyperbolic Paraboloid
The surface called the hyperbolic paraboloid is defined over a rectangle with dimensions
2a × 2b on plane x3 = z = 0 with two Cartesian coordinates 𝜉1 = x, 𝜉2 = y. The surface
(see Figure 1.8) is defined by the equation:

z(x, y) = kxy, k =
f

ab
, m = z,y = kx, n = z,x = ky (1.32)

The characteristic formulae used to describe the surface in question are:

r = xi ii = x i1 + y i2 + kxy i3 (1.33)

[
g1
g2

]
=
[

1 i1 + n i3
1 i2 + m i3

]
[
e1
e2

]
= 1√

1 + m2 + n2

[
g1
g2

]
n = 1√

1 + m2 + n2
(−n i1 − m i2 + i3)

(1.34)

A1 = |g1| ≈ 1, A2 = |g2| ≈ 1 (1.35)

g𝛼𝛽 =
[

g11 g12
g21 g22

]
=
[

1 + n2 mn
mn 1 + m2

]
(1.36)

Figure 1.8 Hyperbolic paraboloid

x2 = y

x1 = x
b

b

f

a x3 = z

e1

n

P
i2 e2

i1
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1.4 Definitions and Assumptions for 2D Formulation

1.4.1 Generalized Displacements and Strains Consistent with the Kinematic
Hypothesis of Three-Parameter Kirchhoff–Love Shell Theory

The Kirchhoff–Love (K–L) kinematic hypothesis, adopted for thin shell structures, can
be formulated in the following manner:

A straight fibre, located at the intersection of two cross-sectional planes, normal
to the undeformed (initial) middle surface of a shell, after application of external
actions remains straight and normal to the deformed (current) middle surface and
has an unchanged length.

To describe the fields of generalized displacements and strains it is necessary to use
two surfaces Π, Π(z) in the initial configuration, as well as two analogous surfaces Π∗,
Π∗(z), marked by ∗ and related to the current configuration (after deformation).
In the description of kinematics two middle surfaces Π and Π∗ (in initial and current

configurations, respectively) are used (see Figure 1.9).
In the analysis of the current configuration the following vectors are distinguished:

position vector r, displacement (translation) vector u and rotation vector𝛝, whose com-
ponents are related to the local base (e𝛼,n) from the initial middle surface Π:

r∗ = r + u (1.37)
u = u1e1 + u2e2 + wn (1.38)
𝛝 = −𝜗2e1 + 𝜗1e2 + 𝜗nn = 𝜑1e1 + 𝜑2e2 + 𝜑nn (1.39)

For the rotation vector we can use two types of components: 𝜗𝛼 , 𝜗n or 𝜑𝛼 , 𝜑n (see
Figure 1.10).

Π

e2

u

P*

e1

n

P

e2
*n*

e1
*

Π*

r r*

(a)

P

uxz

ϑx

P*(z)

P*
z

w
(z

)

w

P(z)

u(z)

(b)

ξ1 = x

z

x

Figure 1.9 (a) Middle surfaces Π and Π∗ (before and after deformation), (b) graphical interpretation of
kinematic K–L hypothesis for the special case of a flat shell (plate) on plane (𝜉1, z); analogical section
can be shown for plane (𝜉2, z). Source: Waszczyszyn and Radwańska (1995). Reproduced with
permission of Waszczyszyn.
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Figure 1.10 Description of rotations of vector n normal
to middle surface. Source: Waszczyszyn and Radwańska
(1995). Reproduced with permission of Waszczyszyn.

e2

n

n*
ϑ1

φ1

ϑ2
φ2

e1 ξ2

ξ1

During deformation of the middle surface the orthogonal unit base (e𝛼,n) changes
into a different base (e∗𝛼,n∗), in general nonorthogonal:

e∗𝛼 =
1

A∗
𝛼

r∗,𝛼 ≈ e𝛼 + 𝛿e𝛼

= e𝛼 +
1

A𝛼

(
u𝛽,𝛼 −

A𝛼,𝛽

A𝛽

u𝛼

)
e𝛽 +

1
A𝛼

(
w,𝛼 −

A𝛼

R𝛼

u𝛼

)
n (1.40)

n∗ = e∗1 × e∗2 = n + 𝛿n = n − 𝜗2e1 + 𝜗1e2 (1.41)

The formula (1.41) expresses the change of normal vector n into new vector n∗ by
means of two rotations 𝜗𝛼 (see Figure 1.10).
The displacements at point P(z) on surfaceΠ(z), equidistant from themiddle surfaceΠ,

are calculated on the basis of translations u𝛼,w and rotations 𝜗𝛼 , defined at point P on
the middle surface Π:

u(z)
1 = u1 + z 𝜗1, u(z)

2 = u2 + z 𝜗2, w(z) = w (1.42)

The K–L kinematic constraints imply the following relations between two rotations
𝜗𝛼 and three translations u𝛼,w:

𝜗1 = − 1
A1

𝜕w
𝜕𝜉1

+
u1

R1
, 𝜗2 = − 1

A2

𝜕w
𝜕𝜉2

+
u2

R2

𝜗𝛼 = − 1
A𝛼

𝜕w
𝜕𝜉𝛼

+
u𝛼

R𝛼

, 𝛼 = 1, 2
(1.43)

Equations (1.43) show the possibility of using a shortened notation of two analogous
formulae to describe two-dimensional shell structures.
The third rotation 𝜗n, around the normal, is related to the translations by the following

equation

𝜗n = 1
2

[(
1

A2

𝜕u1

𝜕𝜉2
− 1

A1

𝜕u2

𝜕𝜉1

)
−
(A1,2u1

A1A2
−

A2,1u2

A1A2

)]
(1.44)

The name three-parameter theory of shell structures originates from the fact that only
three translations of points from the middle surface, written in a vector

u = [u1,u2,w]T (1.45)

and treated as independent components, suffice to describe generalized displacements
of the shell (three translations and three rotations).
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Further equations, related to the unchanging length of the straight fibre and its per-
pendicularity to the current middle surface, express the information concerning zero
values of normal strains along the thickness and transverse shear strains:

𝜀
(z)
zz = 𝜕w(z)

𝜕z
= 0, 𝛾𝛼z = 𝜗𝛼 +

[
1

A𝛼

𝜕w
𝜕𝜉𝛼

−
u𝛼

R𝛼

]
= 0, 𝛼 = 1, 2 (1.46)

Subsequently, the definitions of generalized strains and resultant forces referred to
the middle surface are presented. It should be emphasized here that transverse shear
forces t𝛼 are treated as passive forces as a consequence of the constraints in K–L theory,
in which transverse shear strains 𝛾𝛼z equal zero.

1.4.2 Generalized Displacements and Strains Consistent with the Kinematic
Hypothesis of Five-Parameter Mindlin–Reissner Shell Theory

Unlike the three-parameter K–L theory, in five-parameter Mindlin–Reissner (M–R)
theory orthogonality of the straight fibre to the deformedmiddle surface is not imposed
(see Figure 1.11) and a vector of five independent generalized displacements, three
translations u1,u2,w and two rotations 𝜗1, 𝜗2, is introduced

u = [u1,u2,w, 𝜗1, 𝜗2]T (1.47)
In the kinematic equations for moderately thick plates and shells, three translations and
two rotations appear as independent variables. In this approach, next to membrane and
bending strains, nonzero averaged transverse shear strains are taken into account. In
the M–R theory the transverse shear forces are included, they appear in constitutive
relations that are written in terms of appropriate strains, forces and the local stiffness
operator. The equations of the M–R theory for plates will be given in Section 8.5.

1.4.3 Force andMoment Resultants Related toMiddle Surface

In the K–L theory, beside the kinematic hypothesis, a static hypothesis is introduced,
which simplifies the continuum equations:

In comparison with the other stress tensor components stress 𝜎z is so small that for
all points of a thin shell it can be ignored in the constitutive relations, so that

𝜎z(𝜉1, 𝜉2, z) ≡ 0 (1.48)

P

uxz w

P(z)z

P*

P*(z)

−w,x

ξ1 = x

βx = γxz

ϑx = −w,x + βx

Figure 1.11 Position of a straight fibre before and
after deformation of a plate according to the
kinematic M–R hypothesis; analogical section can be
shown for plane (𝜉2, z)
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As a consequence of the static K–L hypothesis further simplifications are made in the
description of thin shell structures.
At any point on themiddle surfaceΠ, one of two sections obtained using planeΠ𝛼 with

the normal versor e𝛼 is shown in Figure 1.12, and the following stress vector is revealed
at the intersection

𝝈𝛼(𝜉1, 𝜉2, z) = 𝜎𝛼1e1 + 𝜎𝛼2e2 + 𝜎𝛼nn, 𝛼 = 1, 2 (1.49)

Next, integrating along the thickness, the intensities of resultant forces f𝛼 [kN∕m] and
moments m𝛼 [kNm∕m] with adequate components, visible in section with normal e𝛼 ,
are first calculated for 𝛼 = 1:

f1 = f11e1 + f12e2 + f1nn, m1 = m11e2 − m12e1 (1.50)

where:

f11 = n11 = ∫
+h∕2

−h∕2
𝜎11

(
1 + z

R2

)
dz, f12 = n12 = ∫

+h∕2

−h∕2
𝜎12

(
1 + z

R2

)
dz

f1n = t1 = ∫
+h∕2

−h∕2
𝜎1z

(
1 + z

R2

)
dz

m11 = ∫
+h∕2

−h∕2
𝜎11z

(
1 + z

R2

)
dz, m12 = ∫

+h∕2

−h∕2
𝜎12z

(
1 + z

R2

)
dz

(1.51)

f11 = n11

f1n = t1

f2n = t2
f12 = n12

f21 = n21

m22

(b)

n

n

eα mα

fα

eβ

(a)

z

Rβ
dsβ

ξβ

ξβ
(z)

dsβ
(z)

(c)

n

e1

e2 e2

e1f22 = n22

m21

m11

m12

σαn

σαα

σαβ

σα

Figure 1.12 (a) Section of a shell with characteristic stresses and vectors of: force f𝛼 and moment m𝛼 ,
(b) and (c) elementary surface segments with all resultant forces revealed on section lines in the
membrane-bending state. Source: Waszczyszyn and Radwańska (1995). Reproduced with permission
of Waszczyszyn.
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The derivations are repeated for 𝛼 = 2:

f2 = f21e1 + f22e2 + f2nn, m2 = −m22e1 + m21e2 (1.52)

where:

f22 = n22 = ∫
+h∕2

−h∕2
𝜎22

(
1 + z

R1

)
dz, f21 = n21 = ∫

+h∕2

−h∕2
𝜎21

(
1 + z

R1

)
dz

f2n = t2 = ∫
+h∕2

−h∕2
𝜎2z

(
1 + z

R1

)
dz

m22 = ∫
+h∕2

−h∕2
𝜎22z

(
1 + z

R1

)
dz, m21 = ∫

+h∕2

−h∕2
𝜎21z

(
1 + z

R1

)
dz

(1.53)

In these equations a set of quantities are defined for shells. They are membrane
forces: normal n11, n22 and tangential n12, n21, moments: bending m11,m22 and twisting
m12,m21, as well as transverse shear forces t1, t2. In the definitions a factor (1 + z∕R𝛼)
appears, resulting from the relation between the lengths of arc segments from the
middle and equidistant surfaces

ds(z)𝛼 = ds𝛼(1 + z∕R𝛼) (1.54)

In the case of thin shell structures or weakly curved shells (R𝛼 → ∞), when z∕R𝛼 ≪ 1,
these definitions can be reduced, omitting the factor (1 + z∕R𝛼) ≈ 1 and then the fol-
lowing equalities are valid n12 = n21, m12 = m21.

1.4.4 Generalized Strains in Middle Surface

In the current configuration (see Figure 1.13) Lame parameters A∗(z)
𝛼 and base versors

e∗(z)𝛼 are calculated for surface Π∗(z) equidistant from the middle surface Π∗. The normal

Π

e2

u

r

z

P*

e1

n

P

e2
*n*

e1
*

Π*(z)

Π*

P*(z)

Figure 1.13 Surfaces Π, Π∗, Π∗(z) defined for
description of deformation. Source:
Waszczyszyn and Radwańska (1995).
Reproduced with permission of Waszczyszyn.
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and shear strains are expressed in terms of the generalized strains from the middle sur-
face using the linear function of coordinate z:

𝜀
(z)
𝛼𝛼 =

A∗(z)
𝛼

A(z)
𝛼

− 1 ≈ 𝜀𝛼𝛼 + 𝜅𝛼𝛼 z, 𝛾
(z)
12 = e∗(z)1 ⋅ e∗(z)1 ≈ 𝛾12 + 𝜒12 z (1.55)

The symbol ≈means that necessary simplifications were made when the relations were
formulated, resulting from the assumption (1 + z∕R𝛼)−1 ≈ 1 − z∕R𝛼 and the omission of
higher order terms.
Further, we quote, without derivation, the kinematic equations proposed by Sanders

for the three-parameter thin shell theory of Sanders (1959):

𝜀11 =
1

A1

𝜕u1

𝜕𝜉1
+ 1

A1A2

𝜕A1

𝜕𝜉2
u2 +

w
R1

𝜀22 =
1

A2

𝜕u2

𝜕𝜉2
+ 1

A1A2

𝜕A2

𝜕𝜉1
u1 +

w
R2

𝛾12 =
A2

A1

𝜕

𝜕𝜉1

( u2

A2

)
+

A1

A2

𝜕

𝜕𝜉2

( u1

A1

)
𝜅11 = − 1

A1

𝜕

𝜕𝜉1

(
1

A1

𝜕w
𝜕𝜉1

−
u1

R1

)
− 1

A1A2

(
1

A2

𝜕w
𝜕𝜉2

−
u2

R2

)
𝜕A1

𝜕𝜉2

𝜅22 = − 1
A2

𝜕

𝜕𝜉2

(
1

A2

𝜕w
𝜕𝜉2

−
u2

R2

)
− 1

A1A2

(
1

A1

𝜕w
𝜕𝜉1

−
u1

R1

)
𝜕A2

𝜕𝜉1

𝜒12 = −
A2

A1

𝜕

𝜕𝜉1

[
1

A2

(
1

A2

𝜕w
𝜕𝜉2

−
u2

R2

)]
−

A1

A2

𝜕

𝜕𝜉2

[
1

A1

(
1

A1

𝜕w
𝜕𝜉1

−
u1

R1

)]
+ 1

2A1A2

(
1

R2
− 1

R1

)[
𝜕(A2u2)
𝜕𝜉1

−
𝜕(A1u1)
𝜕𝜉2

]

(1.56)

They are general equations, which after the introduction of specified coordinates 𝜉𝛼 ,
Lame parametersA𝛼 and principal curvature radiiR𝛼 (𝛼 = 1, 2), can be suitablymodified
in order to describe selected types of shells.

1.5 Classification of Shell Structures

To propose a classification of shells the two geometrical parameters are used:

• h – thickness of plate or shell
• L – characteristic dimension of plate or shell L = min(Lmin,Rmin), where Lmin – the

smallest dimension in the middle plane of a plate, Rmin – smaller of two principal
radii of curvature of the middle surface in a shell

In next subsections the following properties of shell structures are discussed:

• geometry (shape)
• measure of slenderness h∕L
• types of stress state
• magnitude of considered displacements

The classification is summarized in Box 1.1.
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1.5.1 Curved, Shallow and Flat Shell Structures

Shell structures, represented by two-dimensional middle surfaces, are divided into
curved, shallow and flat, see Figure 1.14.
When the middle surface is curved, we deal with thin-walled curved shell structures

and the following cases are possible:

• shells curved in one direction, for example cylindrical or conical shells, for which
Gaussian curvature K = 1∕(R1R2) = 0

• doubly curved shells, for example a spherical shell withK > 0 or rotational hyperbolic
shell with K < 0

• shells with a ruled surface, for example a hyperbolic paraboloid shell
• shells of completely arbitrary shapes

Flat structures represented by a two-dimensional middle plane have two subclasses
with respect to load type:

• flat membranes, that is plates with load (and deformation) in the middle plane, with
no transverse displacements

• plates with transverse load, that is load normal to the middle plane, exhibiting trans-
verse displacements (deflections)

Shallow shells are characterized by rise f , in other words by the surface deviation from
its projection on the horizontal plane. The shell is considered shallow when f

L
<

1
5
and

then the Cartesian set of coordinates can be used for the approximate description of
geometry, but in the corresponding equations curvature radii Rx and Ry, resulting from
the surface definition z(x, y), are taken into account.

1.5.2 Thin, Moderately Thick, Thick Structures

The structure can be treated as thin-walled if h
L
≪ 1. As regards the thickness the fol-

lowing limitations are adopted:

• thin flat structures (plates and membranes) h
Lmin

<
1
10

• moderately thick flat structures 1
10

≤ h
Lmin

• thin curved structures (shells and membranes) h
Rmin

≤ 1
20

• moderately thick curved structures 1
20

<
h

Rmin
≤ 1

6

• thick shells 1
6
<

h
Rmin

R2

R1

z

x

z
y

x

z

y Lx

Ly

(a) (b) (c)

ξ2
ξ1

Figure 1.14 Middle surfaces of structures with different shapes: (a) curved, (b) shallow and (c) flat
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1.5.3 Plates and Shells with Different Stress Distributions Along Thickness

If normal and shear stress distributions are uniform in the thickness direction, it is a state
without bending and shear effects, understood as themembrane state in flatmembranes
and curved membrane shells.
If normal and in-plane shear stresses change linearly along the thickness, then we deal

with a plate or shell in the bending state.
In thin plates and shells the effects related to transverse shear are insignificant and

disregarded. Non-deformability of the thin structures in the thickness direction is addi-
tionally assumed.
In the case of moderately thick plates and shells, the effects related to transverse shear

stresses (varying quadratically along the thickness) are taken into account next to the
bending effects.

1.5.4 Range of Validity of Geometrically Linear and Nonlinear Theories for Plates
and Shells

While defining the generalized strains in the middle surface and formulating the kine-
matic equations some simplifications are made, resulting from the approximation

(1 + z∕R𝛼)−1 ≈ 1 − z∕R𝛼 (1.57)

The reader looking for a deeper knowledge of the theories of plates and shells can find
a classification of geometrically nonlinear theories for elastic thin shell structures, for
example in Pietraszkiewicz (1979). Taking as a starting point for analysis general non-
linear equilibrium and kinematic equations, many steps of simplification are proposed
depending on the expected magnitudes of strains, translations and rotations. In a geo-
metrically nonlinear theory of shells (or plates) the following components are present
in the kinematic equations: (i) linear components related to three displacements u𝛼(𝛼 =
1, 2) and w, (ii) nonlinear components dependent only on normal displacement w and
(iii) nonlinear components related to three displacements u𝛼,w.
The geometrically linear theory for bending plates (with linear kinematic equations)

is applied when deflections (translations normal to the middle plane) are expected of
the order |w| < h∕5. In the case of deflections of the order of the thickness |w| ≈ h,
the previously mentioned kinematic equations must be extended by components non-
linear only with respect to w. The behaviour of a plate in membrane-bending state is
described by the equations from the von Kármán theory of plates with moderately large
deflections. Expecting deflections of the order |w| > 5h, the kinematic equations are
augmented by additional nonlinear terms dependent on u𝛼 next to deflection w. These
ranges of applicability of respective plate theories are listed in the second part of Box 1.1.
In the works devoted to geometrically nonlinear theories of shells, among others

Pietraszkiewicz (1979), the classification of particular cases is presented taking into
account the estimation of rotation angles, which provides the theories of: (i) small
rotations, (ii) moderate rotations and (iii) large rotations, (iv) finite rotations and
strains.
The considerations and examples connected with geometrically as well as physically

nonlinear theories are beyond the scope of this book. Summarizing, the information
contained in Subsections 1.5.1–1.5.4 allows one to apply an appropriate theory for a
considered problem and to choose a suitable solution method.
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