
CHAPTER1
CONTINUOUS-TIME AVERAGED
MODELING OF DC–DC
CONVERTERS

Converter systems rely on feedback loops to achieve the desired regulation
performance. For example, in a typical dc–dc converter application, the objective is
to maintain tight regulation of the output voltage in the presence of input voltage
or load current variations. An accurate small-signal description of the converter
control-to-output dynamics is the starting point for feedback loop design techniques
based on frequency-domain concepts of loop gain, crossover frequency, phase
margin, and gain margin.

The most successful and widespread modeling technique for switched-mode
converters is based on averaged small-signal modeling [1, 118–120]. This technique
is based on first averaging the converter behavior over a switching period with the
purpose of smoothing the discontinuous, time-varying nature of the converter into a
continuous, time-invariant nonlinear system model. A successive linearization step
yields a linear, time-invariant model that can be treated using standard tools of linear
system theory. The converter is described by a continuous-time linear system, often
presented in the form of a linear equivalent circuit model, a natural representation in
the context of analog control design.

The averaging approach is currently the most widely accepted way of under-
standing dynamics of switched-mode power converters. In addition to the relative
simplicity and straightforwardness, popularity of the averaging approach has been
reinforced by the success of innumerable practical designs supported by robust and
easy-to-use integrated circuits for analog converter control.

The main purpose of this chapter is to revisit the main aspects of analysis and
modeling techniques for switched-mode power converters. Averaged small-signal
modeling, in particular, is reviewed in detail, highlighting the main assumptions
behind the approach. This prepares the background necessary to understand the
limitations of the averaged small-signal modeling in the context of digital control
design and to allow subsequent developments of discrete-time models where these
limitations are removed.
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14 CHAPTER 1 CONTINUOUS-TIME AVERAGED MODELING OF DC–DC CONVERTERS

A brief review of pulse width modulated (PWM) dc–dc converters is pre-
sented in Section 1.1, followed by a summary of steady-state analysis and modeling
techniques in Section 1.2. Section 1.3 explains the need for dynamic modeling in
the design of control loops around switched-mode power converters and introduces
the small-signal averaged modeling approach. The method of state-space averaging
[119, 120], a general approach to modeling switched-mode power converters, is sum-
marized in Section 1.4. Analog control design examples are presented in Section 1.5.
In the subsequent chapters, these examples are revisited to illustrate modeling and
digital control design principles. To complete the background necessary to engage
in developments of analysis, modeling and control techniques in the context of digi-
tally controlled PWM converters, a discussion related to the nature of duty cycle, the
control variable in PWM converters, is presented in Section 1.6. The key points are
summarized in Section 1.7.

1.1 PULSE WIDTH MODULATED CONVERTERS

The focus of this book is on PWM converters, which are operated so as to alternate
between two or more distinct subtopologies in a periodic fashion, with a fundamental
switching period Ts. The Boost converter depicted in Fig. 1.1, for instance, operates
with the switch in position 1 for a fraction DTs of the switching period and with
the switch in position 0 for the remaining fraction D′Ts � (1 − D)Ts. The quantity
0 ≤ D ≤ 1 is the duty cycle, which determines the fraction of a switching period the
switch is kept in position 1. In PWM converters,D is the control input for the system,
which is adjusted by a controller in order to regulate a converter voltage or current.

Typical waveforms of a PWM converter are shown in Fig. 1.2, which exem-
plifies the gate driving signal c(t) and one of the converter state variables, such
as the output voltage vo(t). Assuming that the converter duty cycle is sinusoidally
modulated at a frequency fm � fs, the output voltage consists of a low-frequency
component vo(t), plus a high-frequency switching ripple. The low-frequency com-
ponent of vo(t) contains a dc term Vo and a spectral component at the modulation
frequency fm. Using the terminology of modulation theory, vo(t) is the baseband
component of vo(t). The high-frequency content, on the other hand, contains the
switching frequency fs and its harmonics, as well as all the modulation sidebands
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Figure 1.1 Pulse width modulated Boost converter.
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Figure 1.2 (a) Converter waveforms with duty cycle modulation and (b) qualitative
spectrum of a pulse width modulated signal.

originating from nonlinear interactions between fm and fs components occurring as
a result of the modulation process.

In the context of the averaged modeling approach, the separation between
low-frequency and high-frequency portions of the converter signals is of central
importance. To be more precise, the moving average operator 〈 . 〉T is introduced,

〈x(t)〉T � 1
T

∫ t+T/2

t−T/2
x(τ) dτ , (1.1)

which averages signal x(t) over a period T . With this definition, the low-frequency
component vo(t) of vo(t) illustrated in Fig. 1.2 is defined as its moving average over
the switching period Ts,

vo(t) � 〈vo(t)〉Ts
. (1.2)

The fundamental simplification at the basis of the averaging method consists
of describing the small-signal dynamics of vo(t) rather than vo(t), therefore neglect-
ing high-frequency components of the converter waveforms. Both the power and the
limitations of the method reside in the averaging approximation.
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1.2 CONVERTERS IN STEADY STATE

When a converter is operating in steady state, every converter state variable—and
therefore every voltage and current—is periodic in time, with a period equal to
the converter switching period Ts. Steady-state operation is reached when all the
converter inputs are constant—including the duty cycle—and after all transients are
extinguished. In the following text, the basic ideas behind steady-state analysis of
PWM converters are summarized. More extensive and detailed treatments can be
found in power electronics textbooks [1–5].

Steady-state analysis of switched-mode power converters consists of express-
ing the dc values of all the voltages and currents in terms of the converter inputs.
The analysis is founded on two basic principles, which are direct consequences of
the periodicity of the system waveforms:

• Inductor volt-second balance. As all the inductor currents are periodic, no net
flux variation can occur in any inductor over a switching period,

L(iL(Ts) − iL(0)) =
∫ Ts

0
vL(τ) dτ = 0. (1.3)

This is equivalent to stating that the average inductor voltage over a switching
interval is zero,

vL(t) = 0 . (1.4)

• Capacitor charge (ampere-second) balance. By a dual argument, as all the
capacitor voltages are periodic, no net charge can be absorbed or delivered by
any capacitor over a switching period,

C(vC(Ts) − vC(0)) =
∫ Ts

0
iC(τ) dτ = 0. (1.5)

This is equivalent to stating that the average capacitor current over a switching
interval is zero,

iC(t) = 0 . (1.6)

The two above-mentioned conditions, combined with conventional circuit anal-
ysis, are sufficient to solve the steady-state problem. In practice, the calculations are
greatly simplified by introducing the small-ripple approximation. By switching rip-
ple, one refers to the ac component of a converter voltage or current. In steady state,
the switching ripple is a periodic function with a fundamental frequency equal to the
converter switching rate. The ripple peak-to-peak amplitudes of a capacitor voltage
vC(t) and an inductor current iL(t) are denoted as ΔvC and ΔiL, respectively.

The small-ripple approximation states that the dc converter quantities can be
approximately determined by neglecting both capacitors voltage ripples and inductors
current ripples. This corresponds to considering every capacitor C as an ideal dc
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voltage source of unknown magnitude VC and every inductor as a dc current source
of unknown magnitude IL,

ΔvC

vC

� 1 ⇔ vC(t) = VC = constant ,

ΔiL
iL

� 1 ⇔ iL(t) = IL = constant .

(1.7)

Contrary to the volt-second balance and the ampere-second balance, which fol-
low directly from the characteristics of inductive and capacitive components and the
periodicity of the steady-state operation, the small-ripple approximation is simply a
convenient assumption that simplifies the steady-state solution and which is often sat-
isfied in practical converter systems. A relaxed version of the small-ripple approxima-
tion, known as linear-ripple approximation, is also often employed. According to the
linear-ripple approximation, ripple components of the vC(t)’s and iL(t)’s are allowed
to be triangular waveshapes. It can be shown that the steady-state analysis proceeds as
stated earlier for the small-ripple approximation. In practice, the linear-ripple approx-
imation is easier to meet, especially when considering inductor current waveforms.
As long as the small-ripple approximation is satisfied for capacitor voltages, in fact,
inductor currents retain triangular waveforms even when the peak-to-peak ripple is
not negligibly small compared with the dc component.

It is worth mentioning, at this point, that the above discussion is implicitly
focused on the converters operating in continuous conduction mode (CCM), where
the use of the small-ripple or linear-ripple approximation is well justified for all the
converter state variables. As for converters operating in discontinuous conduction
mode (DCM), on the other hand, the above-mentioned assumption does not hold and
the analysis becomes somewhat more involved. Further details on DCM modeling
can be found in [1, 121–123].

1.2.1 Boost Converter Example

As an example, consider the Boost converter depicted in Fig. 1.3. The physical induc-
tor is represented by a series combination of an ideal inductor L and a resistive
element rL, modeling the inductor copper losses. Other converter components are
assumed to be ideal.

With the switch in position 1 for an interval DTs, the voltage across the ideal
inductor L is

vL(t) = Vg − rLIL, (1.8)

where the small-ripple approximation iL(t) ≈ IL has been employed. In the same
topological state and under the small-ripple approximation vC(t) ≈ VC , the output
capacitor current is

iC(t) = −VC

Ro

. (1.9)
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Figure 1.3 Boost converter example.

Similarly, with the switch in position 0 for an interval D′Ts = (1 − D)Ts, one has

vL(t) = Vg − rLIL − VC ,

iC(t) = IL − VC

Ro

.
(1.10)

Waveforms vL(t) and iC(t), including the small-ripple approximation, are
shown in Fig. 1.4. Imposing the volt-second balance (1.4) and the charge balance
(1.6), one obtains

vL(t) = D
(
Vg − rLIL

)
+ D′(Vg − rLIL − VC

)
= 0,

iC(t) = D

(
−VC

Ro

)
+ D′

(
IL − VC

Ro

)
= 0,

(1.11)

the solution of which is

IL =
Vg

D′2Ro

1
1 + rL

D′2Ro

,

VC =
Vg

D′
1

1 + rL

D′2Ro

.

(1.12)
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Figure 1.4 Boost converter example:
waveforms based on the small-ripple
approximation.
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The converter voltage conversion ratio can be evaluated from the
above-mentioned equations as

M(D) � Vo

Vg

=
VC

Vg

=
1
D′

1
1 + rL

D′2Ro

, (1.13)

which reduces to the familiar Boost M(D) = 1/D′ for a lossless converter (rL = 0).

1.2.2 Estimation of the Switching Ripple

Once the dc converter quantities are determined, one can go back to the converter
topology and estimate both the waveshapes and the amplitudes of the steady-state
inductor current and capacitor voltage ripples.

In the Boost converter example, as shown in Fig. 1.4, the inductor voltage
waveform vL(t) is approximately a piecewise-constant signal. The inductor current
ripple is therefore a triangular waveform with slopes determined by vL(t). Neglect-
ing, for simplicity, the inductor series resistance rL, the peak-to-peak current ripple
ΔiL can be determined by integrating vL(t)/L over either one of the two switching
subintervals,

ΔiL =
1
L

∫ DTs

0
vL(τ) dτ =

Vg

L
DTs =

Ts

L
Vg

(
1 −

Vg

Vo

)
. (1.14)

Similarly, one can reconstruct the capacitor voltage ripple waveshape by inte-
gration of iC(t) shown in Fig. 1.4. More accurate results can be obtained by removing
the small-ripple approximation and by deriving iC(t) using, this time, the triangular
waveshape iL(t) determined earlier. The corresponding waveforms are depicted in
Fig. 1.5.
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estimation of the ripple waveshapes.
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To determine the peak-to-peak output voltage ripple, similar to finding ΔiL,
one can directly integrate iC(t)/C over either one of the two switching subintervals,

ΔvC =
1
C

∫ DTs

0
|iC(τ)| dτ =

Vo

RoC
DTs =

Ts

RoC

(
Vo − Vg

)
. (1.15)

1.2.3 Voltage Conversion Ratios of Basic Converters

Systematic application of the volt-second and charge balance equations, along with
the small-ripple approximation, allows straightforward steady-state analysis of any
PWM converter. Table 1.1 reports the CCM conversion ratios of the three basic con-
verter topologies in the ideal (lossless) case.

TABLE 1.1 Ideal Voltage Conversion Ratios of Basic Converters in CCM

Converter Conversion Ratio
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Figure 1.6 Analog voltage-mode control of a synchronous Buck converter.

1.3 CONVERTER DYNAMICS AND CONTROL

The main topic of this chapter—converter averaged small-signal modeling—is now
discussed. Consider voltage-mode control of a synchronous Buck converter as a sim-
ple case study to review the basic concepts of the approach. A block diagram of the
system is illustrated in Fig. 1.6. The term synchronous referred to the Buck converter
is associated with the implementation of the rectifying, or secondary, switch: instead
of the usual free-wheeling diode used as a passive rectifier, the Buck converter of
Fig. 1.6 makes use of a controlled switch that is driven by the complementary version
c′(t) of the PWM signal,

c′(t) � 1 − c(t). (1.16)

A primary advantage of synchronous rectification is the smaller voltage drop across
the rectifier switch during conduction, as opposed to the diode rectifier, an essential
requirement when regulating low output voltages. Furthermore, the rectifier switch
becomes current bidirectional, therefore guaranteeing CCM operation and converter
controllability even at no load.

In Fig. 1.6, the load is represented by an independent current source rather
than a resistance. This is an appropriate modeling choice for many digital loads in
point-of-load applications, in which the converter output current depends on the load
internal activity and is independent of the output voltage.

The converter is feedback-controlled in order to achieve regulation of the output
voltage vo(t) at a constant reference value Vref . To this end, a control error e(t) is
found as the difference between the analog setpoint Vref and the sensed signal vs(t),
where vs(t) is a scaled, filtered version of vo(t). In Fig. 1.6, sensing, scaling, and
analog filtering of vo(t) are modeled by the transfer function H(s).

The analog continuous-time compensator processes the error signal and out-
puts a control command u(t). As exemplified in Fig. 1.7, u(t) is then compared with
the carrier r(t) of a trailing-edge pulse width modulator, which in turn produces the
modulated gate drive signal c(t).
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Figure 1.7 Typical analog
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The end goal of the modeling step is the derivation of an equivalent small-signal
model of the control loop. The process involves, as anticipated, averaging and lin-
earizing the converter behavior around the above steady-state operating point. In the
following, notation (1.2) is employed to denote converter quantities averaged over a
switching period.

1.3.1 Converter Averaging and Linearization

Referring to the Buck converter shown in Fig. 1.8(a) and applying themoving average
operator (1.1) to voltage vx at the switching node, one has

vx(t) ≈ d(t)vg(t), (1.17)

while the averaged converter input current ig is

ig(t) ≈ d(t)iL(t). (1.18)

These results1 allow construction of an averaged equivalent circuit, as shown in
Fig. 1.8(b) [1], which is now time-invariant but still nonlinear.

Perturbation of the circuit equations around the steady-state operating point and
successive linearization yields

v̂x(t) ≈ Dv̂g(t) + Vgd̂(t),

îg(t) ≈ DîL(t) + ILd̂(t),
(1.19)

1Approximation 〈c(t)x(t)〉Ts
≈ d(t)〈x(t)〉Ts

is justified, in general, whenever x(t) has negligible
switching content, that is, when it can be regarded as an essentially baseband signal. One exception to this
occurs when x(t) has a triangular switching ripple, in which case the approximation is justified even in the
presence of a large ripple component. In conclusion, one can safely assume 〈c(t)x(t)〉Ts

≈ d(t)〈x(t)〉Ts

under the small-ripple or linear-ripple approximations already discussed in Section 1.2.
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Figure 1.8 (a) Buck converter and its (b) averaged and (c) small-signal models.

where x̂(t) = x(t) − X denotes the small-signal component of x(t) with respect to
the dc component X . Figure 1.8(c) illustrates the averaged, small-signal equivalent
circuit of the Buck converter obtained after the linearization process. From the equiva-
lent circuit model, evaluation of the control-to-output transfer function Gvd(s) yields

Gvd(s) � v̂o(s)

d̂(s)

∣∣∣∣∣
v̂g=0,îo=0

= Vg

1 + srCC

1 + s(rC + rL)C + s2LC

= Gvd0

1 + s
ωESR

1 + s
Qω0

+ s2

ω0
2

, (1.20)
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with
Gvd0 � Vg,

ωESR � 1
rCC

,

ω0 � 1√
LC

,

Q � 1
rC + rL

√
L

C
.

(1.21)

The converter small-signal behavior is therefore that of a second-order system with
resonant frequency and Q-factor (ω0, Q), and with a real left half-plane (LHP) zero
located at s = −ωESR . The zero originates from the equivalent series resistance (ESR)
rC of the output capacitor.

1.3.2 Modeling of the Pulse Width Modulator

A small-signal model of the pulse width modulator is necessary in order to develop a
complete small-signal model of a converter system. This topic is particularly impor-
tant as there are significant differences in the PWM small-signal dynamics between
analog and digital control.

There are two main families of pulse width modulators:

• Naturally sampled pulse width modulators (NSPWMs) process a continuous-
time modulating signal u(t). They are commonly employed in analog con-
trollers.

• Uniformly sampled pulse width modulators (USPWMs) are characterized by
a discrete-time modulating signal u[k], which is updated once every switch-
ing period and held constant throughout the entire switching interval during its
comparison with the PWM carrier. USPWMs are most commonly employed
in digital control loops, where the control signal is inherently discrete in time,
as detailed further in the following chapters. It is worth mentioning, however,
that it is possible to apply uniformly sampled modulation in analog control:
the continuous-time control command u(t) is in this case subject to a sample
& hold operation, the output of which is then compared with the PWM carrier
using an analog comparator.

Consider a naturally sampled PWM employed in analog, continuous-time con-
trol loop around a switched-mode converter. As illustrated in Fig. 1.7, the duty cycle
d[k] applied to the power converter during the kth switching cycle is equal to

d[k] =
u(tk)
Vr

, (1.22)

where tk represents the instant at which u(t) intersects the PWM carrier r(t) dur-
ing the kth switching cycle, while Vr is the PWM carrier amplitude. Duty cycle d[k]
during the kth switching cycle therefore corresponds to a sampled version of the
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modulating signal u(t). Sampling occurs as a result of the intersection between u
and r and is inherent to the PWM process–this is the main reason why these types
of modulator are designated as naturally sampled. For small perturbations û around
a steady-state value U , every sampling instant occurs at the same position in the
switching interval, and the equivalent sampling performed by the PWM becomes
uniform.

From (1.22), one also has that d[k] is determined by the instantaneous value of
u(t) at its intersection with the PWM carrier. The absence of any delay between the
natural sampling of u(t) operated by the modulator and the generation of the PWM
modulated edge justifies, at least on an intuitive level, the common practice in analog
control modeling to treat the PWM as a simple gain block. Denoting with û and d̂
the control command and duty cycle small-signal components with respect to their
steady-state values, the PWM transfer function is therefore

GPWM (s) � d̂

û
=

1
Vr

. (1.23)

It should be noted that (1.23) neglects propagation delays in the PWM com-
parator and in the gate driving circuitry between the pulse width modulator and the
power switch. Such delays, however, are usually much shorter than the switching
period Ts. It follows that:

Naturally sampled PWMs do not contribute to the small-signal dynamics of the
control loop, except for a constant gain factor.

In contrast to the naturally sampled modulators, the uniformly sampled mod-
ulators do introduce dynamics in the loop in the form of an equivalent small-signal
delay. This important distinction is further justified and explained in Chapter 2.

1.3.3 The System Loop Gain

Figure 1.9 shows a block diagram of the complete small-signalmodel of a closed-loop
regulated converter. In the diagram, Gc(s) represents the compensator transfer func-
tion to be designed.

From the block diagram, the system loop gain T (s) can be defined by opening
the feedback loop as suggested in Fig. 1.10 and by evaluating the resulting transfer

Gc(s) GPWM (s) Gvd(s)

H(s)

v̂ref (t)

ˆ̄vo(t)d̂(t)û(t)

ˆ̄vs(t)
+
−

Figure 1.9 Small-signal block diagram of the analog voltage-mode control.
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T (s) − ûy(s)

ûx(s)

Gc(s) GPWM (s) Gvd(s)

H(s)

v̂ref (t)

ˆ̄vo(t)d̂(t)ûx(t)

ˆ̄vs(t)

ûy(t)

+
−

≜

Figure 1.10 Definition of the system loop gain T (s).

function between ûx and ûy ,

T (s) � −
ûy(s)
ûx(s)

∣∣∣∣
v̂ref =0

= Gc(s)GPWM (s)Gvd(s)H(s) . (1.24)

The uncompensated loop gain Tu(s), on the other hand, is defined as the system
loop gain when a unity compensation is employed, that is, when Gc(s) = 1,

Tu(s) � GPWM (s)Gvd(s)H(s) . (1.25)

From (1.20), (1.23), and (1.24), one has

Tu(s) =
Gvd0

Vr

1 + s
ωESR

1 + s
Qω0

+ s2

ω0
2

H(s). (1.26)

Result (1.26) represents the starting point for commonly applied
frequency-domain compensator design techniques. Analog compensator design
proceeds with usual techniques of linear continuous-time control, with the main
goals of ensuring sufficient stability margins for the closed-loop system and a control
bandwidth adequate for the application.

1.3.4 Averaged Small-Signal Models of Basic Converters

The averaging and linearization steps carried out in Section 1.3.1 can be applied
to any converter topology, resulting in a corresponding small-signal equivalent cir-
cuit. Figure 1.11 shows the averaged small-signal equivalent circuits of the Buck,
Boost, and Buck–Boost converters. In themodels, v̂g(t) and îo(t) are the small-signal
components of the input voltage and output current, respectively, which act as distur-
bances for the control system. The control input, on the other hand, is represented by
the small-signal component of the duty cycle command d̂, which acts on the circuit
via current and voltage generators having operating point dependent gains. Derivation
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Figure 1.11 Averaged small-signal models of the (a) Buck, (b) Boost, and (c) Buck–Boost
converters.

of the control-to-output transfer function, or any other input-output transfer function,
can be accomplished via straightforward linear circuit analysis. The results and fur-
ther details can be found in [1]. If needed, dynamic effects of the output capacitor
ESR can be included as well, following [124].

Note that the above-mentioned small-signal models depend on the average con-
verter operating point

(
Vg, Io,D

)
. This fact is compatible with the basic idea behind

the averaged modeling approach that low-frequency dynamics are described accu-
rately, while approximations inherent to the method are tolerated in the proximity and
above theNyquist rate. In contrast, as discussed further in Chapter 3, the discrete-time
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small-signal models depend on the converter waveforms at a specific point in
time.

1.4 STATE-SPACE AVERAGING

State-space averaging [119, 120] presents a general mathematical formulation for
the averaged small-signal modeling approach summarized in Section 1.3.1. In this
formulation, the averaged model is derived in a state-space representation form.

Consider the converter operation as alternating between two topological states
S0 and S1, each described by a linear set of state-space equations,

dx

dt
= Acx(t) + Bcv(t),

y(t) = Ccx(t) + Ecv(t),
(1.27)

wherex, v, and y represent the state, input, and output vectors, respectively. Matrices
Ac, Bc, Cc, and Ec define the state-space model of the converter for each subtopol-
ogy, with c ∈ {0, 1} being the PWM signal denoting the topological state.

In general, the converter state-space equations can be written, using the PWM
signal c(t) and its complement c′(t) = 1 − c(t), as

dx

dt
= c(t) [A1x(t) + B1v(t)] + c′(t) [A0x(t) + B0v(t)],

y(t) = c(t) [C1x(t) + E1v(t)] + c′(t) [C0x(t) + E0v(t)].
(1.28)

It is possible now to apply the moving average operator 〈 . 〉Ts
to both sides

of the foregoing equations. Under the small-ripple or linear-ripple approximations
already introduced in Section 1.2, an averaged, large-signal state-space model is
obtained,

dx

dt
= [d(t)A1 + d′(t)A0]x(t) + [d(t)B1 + d′(t)B0]v(t),

y(t) = [d(t)C1 + d′(t)C0]x(t) + [d(t)E1 + d′(t)E0]v(t).
(1.29)

As expected, the moving average operator smooths out the time-varying
nature of the system, and the system is modeled by a time-invariant, nonlinear set of
state-space equations. From this point on, one proceeds with the evaluation of the
converter steady-state operating point and with the perturbation/linearization step to
obtain the small-signal model.

1.4.1 Converter Steady-State Operating Point

The average steady-state operating point is found from (1.29) by imposing constant
inputs d = D and v(t) = V and corresponding constant averaged state and output
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vectors x(t) = X and y(t) = Y ,

0 = [DA1 + D′A0] X + [DB1 + D′B0]V ,

Y = [DC1 + D′C0] X + [DE1 + D′E0]V .
(1.30)

The first equation, in particular, expresses in a general form the inductor volt-second
and capacitor charge balance principles. It corresponds to solving the converter
network under the assumptions that iL(t) and vC(t) are constants of unknown
magnitudes.

With the definitions
A � DA1 + D′A0,

B � DB1 + D′B0,

C � DC1 + D′C0,

E � DE1 + D′E0,

(1.31)

one finds the steady-state solution for the states and the outputs,

X = −A−1BV ,

Y =
[
−CA−1B + E

]
V .

(1.32)

1.4.2 Averaged Small-Signal State-Space Model

One is now in the position to linearize (1.29) around the converter steady-state oper-
ating point (V ,D). As usual, all the relevant quantities are expressed in terms of their
steady-state value and small-signal ac component as

x̂(t) � x(t) − X,

d̂(t) � d(t) − D,

v̂(t) � v(t) − V .

(1.33)

The state-space averaged, small-signal model of the converter is then

dx̂

dt
= Ax̂(t) + F d̂(t) + Bv̂(t),

ŷ(t) = Cx̂(t) + Gd̂(t) + Ev̂(t),

(1.34)

with
F � (A1X + B1V ) − (A0X + B0V ),

G � (C1X + E1V ) − (C0X + E0V ).
(1.35)
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Assume now an initial unperturbed condition x̂(0) = 0 and derive the system’s
forced response via Laplace transformation of (1.34),

sx̂(s) = Ax̂(s) + F d̂(s) + Bv̂(s)

ŷ(s) = Cx̂(s) + Gd̂(s) + Ev̂(s)

⇒ ŷ(s) =
(
C (sI − A)−1 F + G

)
d̂(s) +

(
C (sI − A)−1 B + E

)
v̂(s).

(1.36)
From this result, one can derive transfer functions needed for control design pur-
poses. For instance, the control transfer matrix, which relates the effect of the control
command on the converter outputs, is

W (s) � ŷ(s)

d̂(s)

∣∣∣∣∣
v̂=0

= C (sI − A)−1 F + G , (1.37)

whereas the disturbance transfer matrix is

W D(s) � ŷ(s)
v̂(s)

∣∣∣∣∣
d̂=0

= C (sI − A)−1 B + E . (1.38)

1.4.3 Boost Converter Example

As an example, the state-space averaged small-signal model of the nonideal Boost
converter illustrated in Fig. 1.3 is derived in this section.

With the switch in position 1, one has

diL
dt

=
vg(t) − rLiL(t)

L
(1.39)

for the inductor loop equation and

dvC

dt
=

dvo

dt
= −vC(t)

RoC
(1.40)

for the capacitor node equation. Observe that, in this example, vo(t) = vC(t) as zero
ESR is assumed for the output capacitor.

Having defined the state vector as x � [iL vC ]T = [iL vo]
T , the state

equation of subtopology 1 is

dx

dt
=

⎡
⎢⎢⎣

−rL

L
0

0 − 1
RoC

⎤
⎥⎥⎦

︸ ︷︷ ︸
A1

x(t) +

⎡
⎢⎣

1
L

0

⎤
⎥⎦

︸ ︷︷ ︸
B1

vg(t). (1.41)
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With the switch in position 0, on the other hand, one has

diL
dt

=
vg(t) − rLiL(t) − vo(t)

L
(1.42)

and
dvo

dt
=

iL(t)
C

− vo(t)
RoC

. (1.43)

The state equation relative to subtopology 0 is then

dx

dt
=

⎡
⎢⎢⎢⎣

−rL

L
− 1

L

1
C

− 1
RoC

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
A0

x(t) +

⎡
⎢⎣

1
L

0

⎤
⎥⎦

︸ ︷︷ ︸
B0

vg(t). (1.44)

Define now the system output to coincide with the state vector, that is, y(t) =
x(t), and therefore C1 = C0 = I and E1 = E0 = 0. Matrices A, B, and C of the
averaged model can then be evaluated. The result is

A � DA1 + D′A0 =

⎡
⎢⎢⎢⎣

−rL

L
−D′

L

D′

C
− 1

RoC

⎤
⎥⎥⎥⎦ ,

B � DB1 + D′B0 =

⎡
⎢⎣

1
L

0

⎤
⎥⎦ ,

C � DC1 + D′C0 =

⎡
⎣ 1 0

0 1

⎤
⎦ .

(1.45)

Solving for the converter operating point according to (1.32) yields

X =

⎡
⎣ IL

Vo

⎤
⎦ =

⎡
⎢⎢⎢⎢⎣

1
rL + D′2Ro

1
D′

1
1 + rL

D′2Ro

⎤
⎥⎥⎥⎥⎦Vg. (1.46)

As expected, this is the same result as (1.12).
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As for the small-signal model, as B1 = B0, matrix F evaluates as

F = (A1 − A0)X =

⎡
⎢⎢⎣

Vo

L

−IL

C

⎤
⎥⎥⎦ , (1.47)

whereas G = 0 as C1 = C0. The control transfer matrix is

W (s) = C (sI − A)−1 F + G =

⎡
⎢⎢⎢⎢⎢⎣

Gid(s) � îL(s)

d̂(s)

Gvd(s) � v̂o(s)

d̂(s)

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

2Vo

rL + D′2Ro

1 + sRoC
2

Δ(s)

Vo

D′

1 − rL

D′2Ro

1 + rL

D′2Ro

1 − s L
D′2Ro−rL

Δ(s)

⎤
⎥⎥⎥⎥⎥⎦ , (1.48)

with

Δ(s) � 1 + s
rL

D′2Ro

(
RoC + L

rL

1 + rL

D′2Ro

)
+ s2 LC

D′2
1

1 + rL

D′2Ro

. (1.49)

1.5 DESIGN EXAMPLES

This section presents some examples of analog control designs based on the
converter small-signal models developed in Sections 1.3.1 and 1.4 and standard
frequency-domain-based compensator design techniques.

1.5.1 Voltage-Mode Control of a Synchronous Buck
Converter

Figure 1.12 illustrates an implementation example for an analog voltage-mode con-
troller in the system of Fig. 1.6. The system makes use of an analog integrated circuit
containing an error amplifier and an analog pulse width modulator. The control com-
pensation is implemented via an external passive network, which shapes the response
of the error amplifier.
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Figure 1.12 Synchronous Buck example: analog voltage-mode control scheme.

TABLE 1.2 Synchronous Buck Example Parameters

Parameter Value

Input voltage Vg 5 V
Output voltage Vo 1.8 V
Load current Io,max 5 A
Switching frequency fs 1 MHz
Filter inductance L 1 μH
Inductor series resistance rL 30 mΩ
Filter capacitance C 200 μF
Capacitor equivalent series resistance rC 0.8 mΩ
PWM carrier amplitude Vr 1 V
Voltage sensing gain H 1 V/V

Design specifications and power stage parameters are summarized in Table 1.2.
As reported in the table, the power stage nonidealities include a nonzero inductor
series resistance rL and a nonzero capacitor ESR rC .

The small-signal model of the system is presented in Section 1.3, and the
uncompensated loop gain expression is given in (1.26). The magnitude and phase
Bode plots of Tu(s) are shown in Fig. 1.13. The dc value of the uncompensated loop
gain is

Tu0 � Tu(s = 0) =
Gvd0

Vr

H =
Vg

Vr

= 5 ⇒ 14 dB. (1.50)
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Figure 1.13 Synchronous Buck example: Bode plots of the uncompensated loop gain Tu(s).

The system resonance occurs at

ω0 =
1√
LC

≈ 2π . (11 kHz) , (1.51)

while the rC-related zero is located at

ωESR =
1

rCC
≈ 2π . (1 MHz). (1.52)

As a design goal, the target crossover frequency is set at fc = 100 kHz, that
is, 1/10 of the converter switching frequency, and a phase margin target is set at
ϕm = 55◦. At f = fc, the uncompensated loop gain exhibits a phase of about−171◦,
implying that a lead type of compensation is required in the neighborhood of fc to
boost the phase margin by θ = 46◦. Such compensation is obtained by forming a
pole-zero pair

GPD (s) � GPD0

1 + s
ωz

1 + s
ωp

. (1.53)

Subscript PD stands for proportional-derivative, which is a term commonly used for
the lead compensation.
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The maximum phase boost generated by the PD pole-zero pair occurs at

ωmax =
√

ωzωp (1.54)

and that it equals

∠GPD(jωmax ) = arctan
(√

ωp

ωz

)
− arctan

(√
ωz

ωp

)
=

π

2
− 2 arctan

(√
ωz

ωp

)
.

(1.55)

As the phase lead provided by the compensator should be equal to θ = 46◦, the
required ωz/ωp ratio can be found from (1.55) which, using ωc = ωmax = √

ωzωp,
yields the values of both ωz and ωp,

ωz = ωc

√
1 − sin θ

1 + sin θ
= 2π . (40 kHz),

ωp = ωc

√
1 + sin θ

1 − sin θ
= 2π . (250 kHz).

(1.56)

The dc gain GPD0 of the lead action is determined by imposing unity loop gain
at the desired crossover frequency fc,

|T (jωc)| = |Tu(jωc)|GPD0

√√√√√√1 +
(

ωc

ωz

)2
1 +
(

ωc

ωp

)2 = 1, (1.57)

which yields

GPD0 =
1

|Tu(jωc)|

√√√√√√ 1 +
(

ωc

ωp

)2
1 +
(

ωc

ωz

)2 ≈ 6.2 ⇒ 15.8 dB. (1.58)

Figure 1.14 illustrates the magnitude and phase Bode plots of the lead
compensation.

As a last design step, adding an integral action, that is, a compensation pole at dc
nulls the steady-state regulation error and, more generally, improves the regulation by
increasing the low-frequency loop gainmagnitude. This is accomplished by including
a lag term of the type

GPI (s) � GPI∞

(
1 +

ωl

s

)
. (1.59)

Such term is also known as proportional–integral (PI) compensation.
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Figure 1.14 Synchronous Buck example: Bode plots of the lead (PD) compensation transfer
function.

As a general rule, the PI term should not significantly affect either the system
crossover frequency or its phase margin. Therefore, the high-frequency gain GPI∞ is
set to one, and the zero corner frequency ωl is selected such that ωl � ωc. A good
choice is to let ωl < ωc/10 = 2π . (10 kHz). In this design example, choose

ωl = 2π . (8 kHz) . (1.60)

The complete proportional-integral-derivative (PID) compensator transfer
function is therefore

GPID(s) =
(
1 +

ωl

s

)
︸ ︷︷ ︸

PI

. GPD0

1 + s
ωz

1 + s
ωp︸ ︷︷ ︸

PD

, (1.61)

where all the corner frequencies and gains are now determined. Figure 1.15 shows
Bode plots of the designed PID compensator transfer function.
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Figure 1.15 Synchronous Buck converter example: Bode plots of the lead (PD) and PID
compensation transfer functions.

Going back to the external compensation network depicted in Figure 1.12,
assuming C3 � C2 the corresponding transfer function is

Gc(s) � − û(s)
v̂o(s)

=
(

1 +
1

sR3C3

)
︸ ︷︷ ︸

PI

. R3

R2

1 + s (R1 + R2) C1

1 + sR1C1︸ ︷︷ ︸
PD

. 1
1 + sR3C2︸ ︷︷ ︸

HF Pole

,

(1.62)
where the different portions of the control action have been highlighted. Circuit-level
design of the compensation network can now be performed by equating (1.61) and
(1.62). Note that (1.62) allows for an additional high-frequency pole to be placed at

ωp2
� 1

R3C2
. (1.63)

Such pole is commonly used to attenuate the gain of the compensator at high frequen-
cies and prevent the propagation of switching harmonics produced by the converter
through the feedback loop—a circumstance that can otherwise result in undesired
effects. A good choice for ωp2

is

ωp2
= 10ωc = 2π . (1 MHz) , (1.64)



38 CHAPTER 1 CONTINUOUS-TIME AVERAGED MODELING OF DC–DC CONVERTERS

1k 10k 100k 500k 1M
10

20

30

40

Frequency (Hz)

M
ag

ni
tu

de
 (

dB
)

|Gc(s)|

|GPID(s)|

|GPD(s)|

1k 10k 100k 500k 1M
−90

−45

0

45

90

Frequency (Hz)

P
ha

se
 (
°)

Gc(s)

GPD(s)

GPID(s)

Figure 1.16 Synchronous Buck example: Bode plots of the lead (PD), PID, and overall
compensation transfer functions.

which ensures that the added pole has limited impact on the designed phase mar-
gin. Figure 1.16 compares the Bode plots of GPD(s), GPID(s), and Gc(s), while
the magnitude and phase responses of the system loop gain are shown in Fig. 1.17.
The combined effects of the low-frequency PI term and the high-frequency pole
on the overall compensator transfer function lead to ≈ 10◦ phase margin loss with
respect to the target ϕm = 55◦. Such phase margin loss could be easily considered
by imposing a correspondingly higher value on ϕm in the above-mentioned design
procedure.

The above-mentioned compensator design can now be validated—and
refined, if needed—via computer simulations. To this end, a Matlab® model of the
voltage-controlled Buck converter pictured in Fig. 1.12 has been set up. The scheme
depicted in Fig. 1.18 employs Middlebrook’s approach [1, 78] to obtain T (s) by
simulation and to validate the averaged small-signal models employed in the design
phase [1]. The closed-loop system is excited by a sinusoidal perturbation upert(t)
of small amplitude at frequency ωpert . Signals ux(t) and uy(t) are acquired over a
number of oscillation periods, and their Fourier components ux(ωpert ) and uy(ωpert )
at ωpert are determined via an FFT-based postprocessing. The procedure is repeated
for a number of perturbation frequencies, in order to extract the simulated loop gain
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Figure 1.17 Synchronous Buck example: Bode plots of the theoretical and simulated
system loop gain.

c(t)

c′(t)

Error amplifier

Analog PWM

Dead time
generation

r(t)

vo(t)

Vg

io(t)

Vrefuy(t) Analog
control
IC

L

C

R2R3

R1 C1C2

C3

ux(t)

upert(t)

T (s) − ûy(s)
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Figure 1.18 Synchronous Buck example: simulation of the system loop gain T (s).
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Figure 1.19 Synchronous Buck example: 1.79 V↔ 1.8 V step reference responses.

Tsim(jωpert ) as

Tsim(jωpert ) = −
uy(ωpert )
ux(ωpert )

. (1.65)

Simulation points thus determined are superimposed to the theoretical loop gain Bode
plots in Fig. 1.17.

Figure 1.19 illustrates the simulated response of the closed-loop system to a
10 mV step of the reference voltage, from 1.79 to 1.8 V and then back to 1.79 V,
while Fig. 1.20 reports the simulated response of the system to an abrupt step in
the load current, from 2.5 to 5 A and then back to 2.5 A. The observed closed-loop
transient responses correlate well with the expectations based on the values of the
crossover frequency and phase margin in this design example.

Regarding the step load response, one important quantity to be evaluated at
design stage is the closed-loop output impedance Zo,cl(s), defined as the converter
small-signal output impedance evaluated with the control loop closed,

Zo,cl(s) � − v̂o(s)

îo(s)

∣∣∣∣∣
v̂ref =0,v̂g=0

. (1.66)



1.5 DESIGN EXAMPLES 41

−100 0 100 200 300 400
1.78

1.79

1.8

1.81

1.82

Time (μs)

(V
)

−100 0 100 200 300 400
1
2
3
4
5
6
7

Time (μs)

(A
)

−100 0 100 200 300 400
0

0.2

0.4

0.6

0.8

1

Time (μs)

(V
)

iL(t)

vo(t)

u(t)

Figure 1.20 Synchronous Buck example: 2.5 A↔ 5 A step load responses.

The closed-loop output impedanceZo,cl(s) can be expressed in terms of the converter
open-loop output impedance Zo(s) and the system loop gain as [1]

Zo,cl(s) =
Zo(s)

1 + T (s)
, (1.67)

with

Zo(s) � − v̂o(s)

îo(s)

∣∣∣∣∣
û=0,v̂g=0

. (1.68)

The open-loop output impedance is readily evaluated from the averaged small-signal
equivalent circuit of the Buck converter (Fig. 1.11),

Zo(s) = rL

(1 + srCC)
(
1 + s L

rL

)
1 + s(rC + rL)C + s2LC

. (1.69)

Bode plots of both Zo,cl(s) and Zo(s) for the voltage-mode control loop under con-
sideration are shown in Fig. 1.21. Below the control bandwidth, the output impedance
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Figure 1.21 Synchronous Buck example: Bode plots of the open-loop and closed-loop
output impedances.

is reduced by the feedback loop because of the large loop gain. At higher frequencies,
on the other hand, Zo,cl(s) and Zo(s) practically coincide.

1.5.2 Average Current-Mode Control of a Boost Converter

As a second example, consider average current-mode control of a Boost converter
depicted in Fig. 1.22. The converter parameters are listed in Table 1.3.

The Boost converter operates from a dc input voltage Vg = 120 V and delivers
500 W maximum power to a resistive load Ro. At the maximum power, the output
voltage equals 380 V, so

Po =
Vo

2

Ro

=
(380 V)2

Ro

= 500 W ⇒ Ro ≈ 289 Ω. (1.70)

The Boost inductor current iL(t) is converted into a voltage vs(t) by a 0.1 Ω
shunt resistorRsense and compared with the control setpoint Vref . The regulation error
is processed by an analog compensator implemented by an op-amp-based circuit. A
symmetrical (triangle-wave) analog pulse width modulator converts the output u(t)
of the error amplifier into the logic gate-drive control c(t).
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Figure 1.22 Average current-mode control of a Boost converter.

TABLE 1.3 Boost Converter Example
Parameters

Parameter Value

Input voltage Vg 120 V
Output voltage Vo 380 V
Power rating Po 500 W
Switching frequency fs 100 kHz
Filter inductance L 500 μH
Inductor series resistance rL 20 mΩ
Filter capacitance C 220 μF
PWM carrier amplitude Vr 1 V
Current sensing gain Rsense 0.1 Ω

Atmaximumoutput power and neglecting parasitics, the steady-state duty cycle
is determined from

M(D) =
Vo

Vg

=
380 V
120 V

=
1

1 − D

⇒ D ≈ 0.68. (1.71)

The averaged small-signal model of the Boost converter has been derived
in Section 1.4.3. Accounting for the additional sensing resistance Rsense is simply
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accomplished by substituting rL with rL + Rsense ,

rL → rL + Rsense . (1.72)

From (1.48), the control-to-inductor current dynamics, described by the transfer func-
tion Gid(s), has the form

Gid(s) = Gid0

1 + s
ωz

1 + s
ω0Q

+ s2

ω0
2

, (1.73)

with
Gid0 = 26.3 A ⇒ 28.4 dB,

ωz = 2π . (5 Hz) ,

ω0 = 2π . (152 Hz) ,

Q = 3.7.

(1.74)

The uncompensated current loop gain is proportional to Gid(s) and equals

Tu(s) =
Rsense

Vr

Gid(s). (1.75)

Bode plots of Gid(s) are illustrated in Fig. 1.23. Thanks to the LHP zero located
at s = −ωz , the transfer function retains a −20 dB /decade slope above the system
resonance, allowing for a high-bandwidth control to be designed using a simple PI
compensation law,

GPI (s) = GPI∞

(
1 +

ωPI

s

)
. (1.76)

As discussed in the Buck voltage-mode control example, a high-frequency pole can be
included in the compensator transfer function in order to provide some filtering action
on the harmonic content of the sensed signal. For instance, set such high-frequency
pole at half the switching rate, that is, at 50 kHz. With this choice, the compensator
transfer function to be designed is

Gc(s) = GPI∞

(
1 +

ωPI

s

)
︸ ︷︷ ︸

PI

. 1
1 + s

ωHF︸ ︷︷ ︸
HF Pole

, (1.77)

ωHF = 2π . (50 kHz) . (1.78)

On the basis of the transfer function template, the objective is to design a
ωc = 2π . (10 kHz) bandwidth compensation with a ϕm = 50◦ phase margin. The
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Figure 1.23 Boost converter example: Bode plots of the control-to-inductor current transfer
function.

high-frequency pole located at 50 kHz introduces, at the desired control bandwidth,
an additional phase lag equal to

arctan
(

10 kHz
50 kHz

)
≈ 11◦, (1.79)

and therefore the PI portion of the compensation must be designed for a target phase
margin of ϕ′

m = 50◦ + 11◦. Having clarified this point, calculation of the unknown
PI coefficients GPI∞ and ωPI is straightforward once the magnitude and the phase of
the system uncompensated loop gain are evaluated at the target control bandwidth,
that is, at the target crossover frequency,

|Tu(jωc)| ≈ 1.2 ⇒ 1.6 dB,

∠Tu(jωc) ≈ −90◦.
(1.80)

An alternative, quicker approach to estimate Tu(s) is to employ a high-frequency
approximation of Gid(s). From (1.48), it is easy to see that, as long as ω � ω0, one
has

Gid(s) ≈
Vo

sL
(ω � ω0), (1.81)
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and therefore the inductor current dynamics behaves almost ideally around the target
control bandwidth. This approximation is illustrated in Fig. 1.23 as well. One can
verify that (1.81) very accurately predicts the values reported in (1.80).

Derivation of ωPI is based on the required phase margin,

−π

2
+ arctan

(
ωc

ωPI

)
+ ∠Tu(jωc) = −π + ϕ′

m, (1.82)

whereas the value of GPI∞ is imposed by the desired crossover frequency ωc,

GPI ∞

√
1 +
(

ωc

ωPI

)2

|Tu(jωc)| = 1. (1.83)

Solving the above-mentioned equations yields

GPI∞ = 0.73 ⇒ −2.7 dB,

ωPI = 2π . (5.5 kHz) .
(1.84)

Bode plots of the compensator transfer function are shown in Fig. 1.24. Both the
uncompensated and compensated current loop gains Tu(s) and T (s) are shown in
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Figure 1.24 Boost converter example: Bode plots of the compensator transfer function.
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current loop gains Tu(s) and T (s).
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Figure 1.26 Boost converter example: 500 W→250 W step-reference response.

Fig. 1.25. Figure 1.26 illustrates the simulated closed-loop response to a step varia-
tion in the current setpoint corresponding to a 500 to 250 W reduction in the input
power.

With the compensator transfer function so determined, one is in position
to carry out the circuit-level design of the external compensation network
(R1, R2, C2, C

′
2) illustrated in Fig. 1.22. Within the finite gain-bandwidth product
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limitation of the error amplifier, the compensator transfer function is

Gc(s) � − û(s)
v̂o(s)

=
R2

R1

(
1 +

1
sR2C2

)
︸ ︷︷ ︸

PI

. 1
1 + sR2C

′
2︸ ︷︷ ︸

HF Pole

(C2 � C ′
2), (1.85)

and determination of the compensation network parameters starts by equating (1.85)
to (1.77).

1.6 DUTY RATIO d[k] VERSUS d(t)

In the foregoing discussions, the cycle-by-cycle duty ratio d[k], intended as a
discrete-time signal, and d(t), that is, a continuous-time signal that acts as the
control input for the converter in the context of averaged models, have intentionally
been conflated. Before closing the review of analog (continuous-time) modeling and
control in this chapter, it is useful to highlight a few aspects regarding the physical
meaning of the duty cycle d as the control input, as well as relationships between
d[k] and d(t).

Given the nature of the switched-mode power converter controlled by a PWM
waveform, it is clear that a physical meaning can be attributed only to d[k]: the con-
verter responds to d[k], not to d(t). Conceptually, the duty cycle is a property of a
switching interval and not of a specific instant in time. Consequently:

The duty ratio is an inherently discrete-time signal, even in analog control.

Nonetheless, d(t) as a continuous-time control signal has been employed in
the context of averaged models and analog control of switched-mode converters.
One interpretation of d(t) is provided by [125]: d(t) can be described as a baseband
continuous-time signal interpolating d[k] at the pulse width modulated switching
events Tk = DTs + kTs,

d(t = Tk = kTs + DTs) = d[k]. (1.86)

More formally, one could intend d(t) as the baseband portion of the PWM output
c(t),

d(ω) � R(ω)c(ω), (1.87)

where R(ω) is the frequency response of the ideal brick-wall filter,

R(ω) =

⎧⎨
⎩ 1, −ωs

2
< ω <

ωs

2
,

0 otherwise.
(1.88)

This interpretation of d(t) highlights an advantage as well as a limitation of the
averaged modeling approach: the converter behavior is studied at frequencies well
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below the Nyquist rate fs/2, where it behaves as if continuously responding to the
low-frequency portion of the PWM spectrum. The difference between d(t) and the
true converter control input d[k] only becomes important in the proximity and above
the Nyquist rate fs/2.

For analog pulse width modulators, it can be shown that d(t) coincides with
u(t) itself apart from a scaling factor equal to 1/Vr [126]. The control signal then
appears unaltered in the baseband of c(t), and the fact that d(t) = u(t)/Vr is in agree-
ment with (1.23). This justifies the common practice in analog modeling to treat d(t)
as a scaled version of the analog control command u(t).

The situation is depicted by the qualitative spectra reported in Fig. 1.27.
The comparison between analog control signal u(t) and the carrier operated by
the comparator produces the sequence d[k] driving the converter. A certain PWM
spectrum c(t) and a certain converter response vs(t) can be associated with d[k].
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Figure 1.27 Qualitative
signal spectra in analog
control.
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Averaged small-signal modeling, on the other hand, focuses on the baseband portion
of c(t) – that is, d(t) – and puts it in relation with the baseband portion of vs(t), that
is, with vs(t).

The assumption that u(t)—and therefore d(t)—is a baseband signal is never
strictly satisfied in practice, as u(t) always includes some amount of switching con-
tent as a result of the switching harmonics not entirely filtered by the sensing path or
the compensator. Differences between u(t) and d(t) arise when such switching fre-
quency content is significant and make the PWM small-signal gain differ from 1/Vr.
One may note that the effect, usually undesired in PWM converters, is intentionally
employed in analog peak current-mode controllers, where adding the compensation
ramp to the modulating signal alters the small-signal gain of the modulator [1].

1.7 SUMMARY OF KEY POINTS

• PWM switched-mode power converters alternate between two or more
subtopologies in a regular manner. In general, a switched-mode power
converter is a time-varying nonlinear system.

• Steady-state analysis of switched-mode power converters is founded upon the
volt-second and charge balance equations. Coupled with the small-ripple or
linear-ripple approximations, averaged steady-state currents and voltages of the
converter can be determined for any given operating point.

• Analysis of converter dynamics is founded upon applying an averaging oper-
ator to all converter waveforms. The resulting model is time-invariant but still
nonlinear. Perturbation and linearization of the averaged model yields a linear
small-signal model, which can be used to obtain all transfer functions relevant
for the control design process. The averaged small-signal modeling framework
formulates the above-mentioned concepts in terms of equivalent circuits that
can be analyzed using conventional circuit analysis techniques. In general, the
averaged models are intended to predict converter dynamics at frequencies well
below the switching frequency.

• State-space averaging is a general formulation for the averaging/linearization
process.

• The duty ratio d(t) used in the continuous-time modeling is intended to repre-
sent the baseband component of the PWM signal c(t). The difference between
such control input and the true cycle-by-cycle duty ratio d[k] can be neglected
in the context of the averaged converter dynamics.




