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1
Vector Spaces, Subspaces,

and Linear Transformations

The study of matrices is based on the concept of linear transformations between two vector
spaces. It is therefore necessary to define what this concept means in order to understand
the setup of a matrix. In this chapter, as well as in the remainder of the book, the set of
all real numbers is denoted by R, and its elements are referred to as scalars. The set of all
n-tuples of real numbers will be denoted by Rn (n ≥ 1).

1.1 VECTOR SPACES

This section introduces the reader to ideas that are used extensively in many books on
linear and matrix algebra. They involve extensions of the Euclidean geometry which are
important in the current mathematical literature and are described here as a convenient
introductory reference for the reader. We confine ourselves to real numbers and to vectors
whose elements are real numbers.

1.1.1 Euclidean Space

A vector (x0, y0)′ of two elements can be thought of as representing a point in a two-
dimensional Euclidean space using the familiar Cartesian x, y coordinates, as in Fig-
ure 1.1. Similarly, a vector (x0, y0, z0)′ of three elements can represent a point in a three-
dimensional Euclidean space, also shown in Figure 1.1. In general, a vector of n elements
can be said to represent a point (an n-tuple) in what is called an n-dimensional Euclidean
space. This is a special case of a wider concept called a vector space, which we now
define.
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4 VECTOR SPACES, SUBSPACES, AND LINEAR TRANSFORMATIONS
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Figure 1.1 (a) Two-Dimensional and (b) Three-Dimensional Euclidean Spaces.

Definition 1.1 (Vector Spaces) A vector space over R is a set of elements, denoted by V,
which can be added or multiplied by scalars, in such a way that the sum of two elements
of V is an element of V, and the product of an element of V by a scalar is an element of V.
Furthermore, the following properties must be satisfied:

(1) u + v = v + u for all u, v in V.

(2) u + (v + w) = (u + v) + w for all u, v, w in V.

(3) There exists an element in V, called the zero element and is denoted by 0, such that
0 + u = u + 0 = u for every u in V.

(4) For each u in V, there exists a unique element −u in V such that u + (−u) = (−u) +
u = 0.

(5) For every u and v in V and any scalar 𝛼, 𝛼(u + v) = 𝛼u + 𝛼v.

(6) (𝛼 + 𝛽)u = 𝛼u + 𝛽u for any scalars 𝛼 and 𝛽 and any u in V.

(7) 𝛼(𝛽u) = (𝛼𝛽)u for any scalars 𝛼 and 𝛽 and any u in V.

(8) For every u in V, 1u = u, where 1 is the number one, and 0u = 0, where 0 is the
number zero.

Vector spaces were first defined by the Italian mathematician Giuseppe Peano in 1888.

Example 1.1 The Euclidean space Rn is a vector space whose elements are of the form
(x1, x2,… , xn), n ≥ 1. For every pair of elements in Rn their sum is in Rn, and so is the
product of a scalar and any elements that is in Rn. It is easy to verify that properties (1)
through (8) in Definition 1.1 are satisfied. The zero element is (0, 0,… , 0).

Example 1.2 The set of all polynomials in x of of degree n or less of the form
∑n

i=0 aix
i,

where the ai’s are scalars, is a vector space: the sum of any two such polynomials is a
polynomial of the same form, and so is the product of a scalar with a polynomial. For the
zero element, ai = 0 for ∀ i.

Example 1.3 The set of all positive functions defined on the closed interval [−2, 2] is not
a vector space since multiplying any such function by a negative scalar produces a function
that is not in that set.
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Definition 1.2 (Vector Subspace) Let V be a vector space over R, and let W be a subset
of V. Then W is said to be a vector subspace of V if it satisfies the following conditions:

(1) The sum of any two elements in W is an element of W.

(2) The product of any element in W by any scalar is an element in W.

(3) The zero element of V is also an element of W.

It follows that for W to be a vector subspace of V , it must itself be a vector space. A vector
subspace may consist of one element only, namely the zero element.

The set of all continuous functions defined on the closed interval [a, b] is a vector sub-
space of all functions defined on the same interval. Also, the set of all points on the straight
line 2x − 5y = 0 is a vector subspace of R2. However, the set of all points on any straight
line in R2 not going through the origin (0, 0) is not a vector subspace.

Example 1.4 Let V1, V2, and V3 be the sets of vectors having the forms x, y, and z,
respectively:

x =
⎡⎢⎢⎢⎣
𝛼

0

0

⎤⎥⎥⎥⎦ , y =
⎡⎢⎢⎢⎣

0

0

𝛽

⎤⎥⎥⎥⎦ , and z =
⎡⎢⎢⎢⎣
𝛾

0

𝛿

⎤⎥⎥⎥⎦ for real 𝛼, 𝛽, 𝛾 , and 𝛿.

Then V1, V2, and V3 each define a vector space, and they are all subspaces of R3. Further-
more, V1 and V2 are each a subspace of V3.

1.2 BASE OF A VECTOR SPACE

Suppose that every element in a vector space V can be expressed as a linear combination of
a number of elements in V . The set consisting of such elements is said to span or generate
the vector space V and is therefore called a spanning set for V .

Definition 1.3 Let u1, u2,… , un be elements in a vector space V. If there exist scalars
a1, a2,… , an, not all equal to zero, such that

∑n
i=1 aiui = 0, then u1, u2,… , un are said to

be linearly dependent. If, however,
∑n

i=1 aiui = 0 is true only if all the ai’s are zero, then
u1, u2,… , un are said to be linearly independent.

Note 1:
If u1, u2,… , un are linearly independent, then none of them can be zero. To see this, if,
for example, u1 = 0, then a1u1 + 0u2 +⋯ + 0un = 0 for any a1 ≠ 0, which implies that
u1, u2,… , un are linearly dependent, a contradiction. It follows that any set of elements of
V that contains the zero element 0 must be linearly dependent. Furthermore, if u1, u2,… , un
are linearly dependent, then at least one of them can be expressed as a linear combination
of the remaining elements.
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Example 1.5 Consider the vectors

x1 =
⎡⎢⎢⎢⎣

3

−6

9

⎤⎥⎥⎥⎦ , x2 =
⎡⎢⎢⎢⎣

0

5

−5

⎤⎥⎥⎥⎦ , x3 =
⎡⎢⎢⎢⎣

2

1

1

⎤⎥⎥⎥⎦ , x4 =
⎡⎢⎢⎢⎣

−6

12

−18

⎤⎥⎥⎥⎦ , and x5 =
⎡⎢⎢⎢⎣

2

−3

3

⎤⎥⎥⎥⎦ .
It is clear that

2x1 + x4 =
⎡⎢⎢⎢⎣

6

−12

18

⎤⎥⎥⎥⎦ +
⎡⎢⎢⎢⎣

−6

12

−18

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣

0

0

0

⎤⎥⎥⎥⎦ = 0, (1.1)

that is,

a1x1 + a2x4 = 0 for

[
a1

a2

]
=
[

2

1

]
,

which is not zero. Therefore, x1 and x4 are linearly dependent. So also are x1, x2, and x3
because

2x1 + 3x2 − 3x3 =
⎡⎢⎢⎢⎣

6

−12

18

⎤⎥⎥⎥⎦ +
⎡⎢⎢⎢⎣

0

15

−15

⎤⎥⎥⎥⎦ +
⎡⎢⎢⎢⎣
−6

−3

−3

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣

0

0

0

⎤⎥⎥⎥⎦ = 0. (1.2)

In contrast to (1.1) and (1.2), consider

a1x1 + a2x2 =
⎡⎢⎢⎢⎣

3a1

−6a1

9a1

⎤⎥⎥⎥⎦ +
⎡⎢⎢⎢⎣

0

5a2

−5a2

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣

3a1

−6a1 + 5a2

9a1 − 5a2

⎤⎥⎥⎥⎦ . (1.3)

There are no values a1 and a2 which make (1.3) a zero vector other than a1 = 0 = a2.

Therefore x1 and x2 are linearly independent.

Definition 1.4 If the elements of a spanning set for a vector space V are linearly indepen-
dent, then the set is said to be a basis for V. The number of elements in this basis is called
the dimension of V and is denoted by dim(V).

Note 2:
The reference in Definition 1.4 was to a basis and not the basis because for any vector space
there are many bases. All bases of a space V have the same number of elements which is
dim(V).
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Example 1.6 The vectors,

x1 =
⎡⎢⎢⎢⎣

1

2

0

⎤⎥⎥⎥⎦ , x2 =
⎡⎢⎢⎢⎣

1

−1

0

⎤⎥⎥⎥⎦ , and x3 =
⎡⎢⎢⎢⎣

3

0

0

⎤⎥⎥⎥⎦
are all in R3. Any two of them form a basis for the vector space whose typical vector is
(𝛼, 𝛽, 0)′ for 𝛼 and 𝛽 real. The dimension of the space is 2. (The space in this case is, of
course, a subspace of R3.)

Note 3:
If u1, u2,… , un form a basis for V , and if u is a given element in V , then there exists a
unique set of scalars, a1, a2,… , an, such that u =

∑n
i=1 aiui. (see Exercise 1.4).

1.3 LINEAR TRANSFORMATIONS

Linear transformations concerning two vector spaces are certain functions that map one
vector space, U, into another vector space, V . More specifically, we have the following
definition:

Definition 1.5 Let U and V be two vector spaces over R. Suppose that T is a function
defined on U whose values belong to V, that is, T maps U into V. Then, T is said to be a
linear transformation on U into V if

T(a1u1 + a2u2) = a1T(u1) + a2T(u2),

for all u1, u2 in U and any scalars a1, a2.

For example, let T be a function from R3 into R3 such that T(x1, x2, x3) = (x1 − x2, x1 +
x3, x3). It can be verified that T is a linear transformation.

Example 1.7 In genetics, the three possible genotypes concerning a single locus on a
chromosome at which there are only two alleles, G and g, are GG, Gg, and gg. Denoting
these by g1, g2, and g3, respectively, gene effects relative to these genotypes can be defined
(e.g., Anderson and Kempthorne, 1954) in terms of a mean 𝜇, a measure of gene substitution
𝛼, and a measure of dominance 𝛿, such that

𝜇 = 1
4

g1 +
1
2

g2 + 1
4

g3

𝛼 = 1
4

g1 − 1
4

g3

𝛿 = −1
4

g1 +
1
2

g2 − 1
4

g3
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These equations represent a linear transformation of the vector (g1, g2, g3)′ to (𝜇, 𝛼, 𝛿)′.
In Chapter 2, it will be seen that such a transformation is determined by an array of num-
bers consisting of the coefficients of the gi’s in the above equations. This array is called a
matrix.

1.3.1 The Range and Null Spaces of a Linear Transformation

Let T be a linear transformation that maps U into V , where U and V are two given vector
spaces. The image of U under T , also called the range of T and is denoted by ℜ(T), is the
set of all elements in V of the form T(u) for u in U. The null space, or the kernel, of T
consists of all elements u in U such that T(u) = 0v where 0v is the zero element in V . This
space is denoted by ℵ(T). It is easy to show that ℜ(T) is a vector subspace of V and ℵ(T)
is a vector subspace of U (see Exercise 1.7). For example, let T be a linear transformation
from R3 into R2 such that T(x1, x2, x3) = (x1 − x3, x2 − x1), then ℵ(T) consists of all points
in R3 such that x1 − x3 = 0 and x2 − x1 = 0, or equivalently, x1 = x2 = x3. These equations
represent a straight line in R3 passing through the origin.

Theorem 1.1 Let T be a linear transformation from the vector space U into the vector
space V. Let n = dim(U). Then, n = p + q, where p = dim[ℵ(T)] and q = dim[ℜ(T)].

Proof. Let u1, u2,… , up be a basis for ℵ(T) and v1, v2,… , vq be a basis for ℜ(T). Fur-
thermore, let w1, w2,… , wq be elements in U such that T(wi) = vi for i = 1, 2,… , q. Then,

1. u1, u2,… , up; w1, w2,… , wq are linearly independent.

2. The elements in (1) span U.

To show (1), suppose that u1, u2,… , up; w1, w2,… , wq are not linearly independent, then
there exist scalars 𝛼1, 𝛼2,… , 𝛼p; 𝛽1, 𝛽2,… , 𝛽q such that

p∑
i=1

𝛼iui +
q∑

i=1

𝛽iwi = 0u, (1.4)

where 0u is the zero element in U. Mapping both sides of (1.4) under T , we get

p∑
i=1

𝛼iT(ui) +
q∑

i=1

𝛽iT(wi) = 0v,

where 0v is the zero elements in V . Since the ui’s belong to the null space, then

q∑
i=1

𝛽iT(wi) =
q∑

i=1

𝛽ivi = 0v.

But, the vi’s are linearly independent, therefore, 𝛽i = 0 for i = 1, 2,… , q. From (1.4) it can
be concluded that 𝛼i = 0 for i = 1, 2,… , p since the ui’s are linearly independent. It follows
that u1, u2,… , up; w1, w2,… , wq are linearly independent.
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To show (2), let u be any element in U, and let T(u) = v. There exist scalars a1, a2,… , aq

such that v =
∑q

i=1 aivi. Hence,

T(u) =
q∑

i=1

aiT(wi)

= T

(
q∑

i=1

aiwi

)
.

It follows that

T

(
u −

q∑
i=1

aiwi

)
= 0v.

This indicates that u −
∑q

i=1 aiwi is an element in ℵ(T). We can therefore write

u −
q∑

i=1

aiwi =
p∑

i=1

biui, (1.5)

for some scalars b1, b2,… , bp. From (1.5) it follows that u can be written as a linear com-
bination of u1, u2,… , up; w1, w2,… , wq, which proves (2).

From (1) and (2) we conclude that u1, u2,… , up; w1, w2,… , wq form a basis for U.
Hence, n = p + q.
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EXERCISES

1.1 For x1 =
⎡⎢⎢⎢⎣

1

2

1

⎤⎥⎥⎥⎦ , x2 =
⎡⎢⎢⎢⎣
−1

3

2

⎤⎥⎥⎥⎦ , x3 =
⎡⎢⎢⎢⎣
−13

−1

2

⎤⎥⎥⎥⎦ , and x4 =
⎡⎢⎢⎢⎣

1

1

0

⎤⎥⎥⎥⎦ ,

show the following:

(a) x1, x2, and x3 are linearly dependent, and find a linear relationship among them.

(b) x1, x2, and x4 are linearly independent, and find the linear combination of them
that equals (a, b, c)′.

1.2 Let U and V be two vector spaces over R. The Cartesian product U × V is defined as
the set of all ordered pairs (u, v), where u and v are elements in U and V , respectively.
The sum of two elements, (u1, v1) and (u2, v2) in U × V is defined as (u1 + u2, v1 +
v2), and if 𝛼 is a scalar, then 𝛼(u, v) is defined as (𝛼u, 𝛼v), where (u, v) is an element
in U × V . Show that U × V is a vector space.
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1.3 Let V be a vector space spanned by the vectors,

v1 =
⎡⎢⎢⎢⎣

1

1

3

⎤⎥⎥⎥⎦ , v2 =
⎡⎢⎢⎢⎣

1

−1

0

⎤⎥⎥⎥⎦ , v3 =
⎡⎢⎢⎢⎣

0

4

6

⎤⎥⎥⎥⎦ , and v4 =
⎡⎢⎢⎢⎣

1

3

6

⎤⎥⎥⎥⎦.

(a) Show that v1 and v2 are linearly independent.

(b) Show that V has dimension 2.

1.4 Let u1, u2,… , un be a basis for a vector space U. Show that if u is any element in
U, then there exists a unique set of scalars, a1, a2,… , an, such that u =

∑n
i=1 aiui,

which proves the assertion in Note 3.

1.5 Let U be a vector subspace of V, U ≠ V. Show that dim(U) < dim(V).

1.6 Let u1, u2,… , um be elements in a vector space U. The collection of all lin-
ear combinations of the form

∑m
i=1 aiui, where a1, a2,… , am are scalars, is called

the linear span of u1, u2,… , um and is denoted by L(u1, u2,… , um). Show that
L(u1, u2,… , um) is a vector subspace of U.

1.7 Let U and V be vector spaces and let T be a linear transformation from U into V.

1. Show that ℵ(T), the null space of T , is a vector subspace of U.

2. Show that ℜ(T), the range of T , is a vector subspace of V.

1.8 Consider a vector subspace of R4 consisting of all x = (x1, x2, x3, x4)′ such that x1 +
3x2 = 0 and 2x3 − 7x4 = 0. What is the dimension of this vector subspace?

1.9 Suppose that T is a linear transformation from R3 onto R (the image of R3 under T is
all of R) given by T(x1, x2, x3) = 3x1 − 4x2 + 9x3. What is the dimension of its null
space?

1.10 Let T be a linear transformation from the vector space U into the vector space V .
Show that T is one-to-one if and only if whenever u1, u2,… , un are linearly inde-
pendent in U, then T(u1), T(u2),… , T(un) are linearly independent in V .

1.11 Let the functions x, ex be defined on the closed interval [0, 1]. Show that these func-
tions are linearly independent.


