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CHAPTER 1

Principles of food engineering

1.1 Introduction

1.1.1 The Peculiarities of food engineering
Food engineering is based to a great extent on the results of chemical engineer-

ing. However, the differences in overall structure between chemicals and foods,

that is, the fact that the majority of foods are of cellular structure, result in at least

three important differences in the operations of food engineering – the same is

valid for biochemical engineering.

1 Chemical engineering applies the Gibbs theory of multicomponent chemical

systems, the principal relationships of which are based on chemical equilib-

rium, for example, the Gibbs phase rule. Although the supposition of equilib-

rium is only an approximation, it frequently works and provides good results.

In the case of cellular substances, however, the conditions of equilibrium do not

apply in general, because the cell walls function as semipermeable membranes,

which make equilibrium practically possible only in aqueous media and for

long-lasting processes. Consequently, the Gibbs phase rule cannot be a basis

for determining the degrees of freedom of food engineering systems in gen-

eral. For further details, see Section 1.3.2.

2 Another problem is that cellular substances prove to be chemically very com-

plex after their cellular structure has been destroyed. In the Gibbs theory,

the number of components in a multicomponent system is limited and well

defined, not infinite. The number of components in a food system can be practically

infinite or hard to define; in addition, this number depends on the operational condi-

tions. Certainly, we can choose a limited set of components for the purpose of

a study – and this is the usual way – but this choice will not guarantee that

exclusively those components will participate in the operation considered.

Therefore, interpretation of the degrees of freedom in food engineering

systems causes difficulties and is often impossible, because the number and

types of participants (chemical compounds, cell fragments, crystalline sub-

stances, etc.) in food operations are hard to estimate: many chemical and

physical changes may take place simultaneously, and a small change in the

conditions (temperature, pH, etc.) may generate other types of chemical or

physical changes. If we compare this situation with a complicated heteroge-

neous catalytic chemical process with many components, it is evident that
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4 Confectionery and chocolate engineering: principles and applications

in food engineering we struggle with complex tasks that are not easier, only

different.

Evidently, comminution plays a decisive role in connection with these

peculiarities. However, in the absence of comminution, these two pecu-

liarities – the existence of intact cell wall as barriers to equilibrium and the

very high number of operational participants – may appear together as well;

for example, in the roasting of cocoa beans, the development of flavours

takes place inside unbroken cells. In such cases, cytological aspects (depot fat,

mitochondria, etc.) become dominant because the cell itself works as a small

chemical plant, the heat and mass transfer of which cannot be influenced by

traditional (e.g. fluid-mechanical) means. This problem is characteristic of

biochemical engineering.

3 The third peculiarity, which is a consequence of the cellular structure, is that

the operational participants in food engineering may be not only chemical

compounds, chemical radicals and other molecular groups but also fragments

of comminuted cells.

In the case of chemical compounds/radicals, although the set of these par-

ticipants can be infinitely diverse, the blocks from which they are built are

well defined (atoms), the set of atoms is limited and the rules according to

the participants are built are clear and well defined.

In the case of cellular fragments, none of this can be said. They can, admit-

tedly, be classified; however, any such classification must be fitted to a given

task without any possibility of application to a broader range of technolog-

ical problems. This is a natural consequence of the fact that the fragments

generated by comminution, in their infinite diversity, do not manifest such

conspicuous qualitative characteristics as chemicals; nevertheless, they can

be distinguished because slight differences in their properties, which occur by

accident because of their microstructure, may become important.

This situation may be understood as the difference between discrete and

continuous properties of substances: while chemical systems consist of atoms

and combinations of them, to which stoichiometry can be applied, the systems

of food engineering cannot be built up from such well-defined elements. This

stoichiometry means that well-defined amounts by mass (atomic masses or

molecular masses) may be multiplied by integers in order to get the mass

fluxes in a reaction. However, in the recipes that are used for describing the

compositions of foods, the mass fluxes are treated as continuous variables,

contrary to the idea of stoichiometry.

1.1.2 The hierarchical and semi-hierarchical structure
of materials

Although foods also consist of atoms in the final analysis, it is characteristic of

food engineering that it does not go to an elementary decomposition of the entire

raw material; however, a certain part of the raw material will be chemically
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modified, and another part will be modified at the level of cells (by comminu-

tion). The structures of materials are hierarchical, where the levels of the hier-

archy are joined by the containing relation, which is reflexive, associative and

transitive (but not commutative): A→B means that B contains A, that is, → is

the symbol for the containing relation. The meaning of the reflexive, associative

and transitive properties is:

• Reflexive: A contains itself.

• Associative: if A→ (B→C), then (A→B)→C.

• Transitive: if A→B→C, then A→C (the property is inheritable).

The transitive property is particularly important: if A= atom, B= organelle

and C= cell (considered as levels), then the transitive relation means that if an

organelle (at level B) contains an atom (at level A) and if a cell (at level C) con-

tains this organelle (at level B), then that cell (at level C) contains the atom in

question (at level A) as well.

The hierarchical structure of materials is illustrated in Figure 1.1. For the sake

of completeness, Figure 1.1 includes the hierarchical levels of tissue, organs and

organisms, which are of interest when one is choosing ripened fruit, meat from

a carcass and so on. In a sense, the level of the organism is the boundary of the

field of food (and biochemical) engineering.

This hierarchical structure is characteristic of cellular materials only when

they are in an intact, unbroken state. Comminution may disrupt this structure;

for example, if cellular fragments are dispersed in an aqueous solution and these

fragments may themselves contain aqueous solutions as natural ingredients,

Atom

Group of atoms

Chemical
compound

Cellular organelle

Cell

Tissue, organ,
organism

Food
engineering

and
biochemical
engineering

Chemical
engineering

Figure 1.1 Hierarchical structure of materials.
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6 Confectionery and chocolate engineering: principles and applications

then these relations can be represented by

A1 → C → A2

where A1 represents the natural ingredients of a cell (an aqueous solution), C

represents the cellular material and A2 represents the aqueous solution in which

the cellular material is dispersed. Evidently, in this case, the hierarchical levels

are mixed, although they still exist to some extent. Therefore, for such cases of

bulk materials, the term semi-hierarchical structure seems more appropriate.

If we allow that the degrees of freedom cannot be regarded as the primary

point of view, a more important, in fact crucial, question is whether the set of

chemical and/or physical changes that occur in an operation can be defined at

all. The answer is difficult, and one must take into consideration the fact that an

exact determination of this set is not possible in the majority of cases. Instead, an

approximate procedure must be followed that defines the decisive changes and,

moreover, the number and types of participants. In the most favourable cases,

this procedure provides the result (i.e. product) needed.

1.2 The Damköhler equations

1.2.1 The application of the Damköhler equations in food
engineering: conservative substantial fragments

In spite of the differences discussed earlier, the Damköhler equations, which

describe the conservation of the fluxes of mass, component, heat and momen-

tum, can provide a mathematical framework from the field of chemical engi-

neering that can be applied to the tasks in food engineering (and biochemical

engineering), with a limitation referring to the flux of component.

The essence of this limitation is that the entire set of components cannot be

defined in any given cases. This limitation has to be taken into account by defin-

ing both the chemical components studied and their important reactions. The

conservation law of component fluxes does hold approximately for this partial

system. The correctness of the approximation may be improved if this partial set

approaches the entire set of components. For example, if we consider the back-

ing of biscuit dough, it is impossible to define all the chemical reactions taking

place and all the components participating in them; therefore, the conservation

equations for the components cannot be exact, because of the disturbing effect

of by-reactions. However, what counts as a by-reaction? This uncertainty is the

source of inaccuracy.

The conservation equations for mass, heat and momentum flux can be used

without any restriction for studying the physical (and mechanical) operations

since their concern is bulk materials. In Appendix 5, the concepts conservative

elements and conservative substantial fragments are discussed in detail. In food
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engineering, the concept conservative substantial fragment can substitute the

concept of conservative elements (Mohos, 1982) which latter are essential in the

chemistry. The epithet conservative practically means here that the Damköhler

conservation equations hold also for these fragments. For example, diffusion of

humidity (water) in cellular substances can be regarded if the other fraction of

the substances were unchanged, that is, for the water content the Fick equation

[see the Damköhler equation (1.4)] were exactly hold. However, it has to be

mentioned that the conservation of these fragments are determined by the

technological (physical and chemical) conditions. The situation is the same as in

the case of atoms: in certain conditions also the atoms are splitting.

1.2.2 The Damköhler equations in chemical engineering
This chapter principally follows the ideas of Benedek and László (1964).

Some further important publications (although not a comprehensive list)

that are relevant are Charm (1971), Pawlowski (1971), Schümmer (1972),

Meenakshi Sundaram and Nath (1974), Loncin andMerson (1979), Stephan and

Mitrovic (1984), Zlokarnik (1985), Mahiout and Vogelpohl (1986), Hallström

et al. (1988), Stichlmair (1991), VDI-Wärmeatlas (1991), Zogg (1993), Chopey

(1994), Stiess (1995), Perry (1998), Hall (1999), Sandler (1999), McCabe et al.

(2001), Zlokarnik (2006) and Dobre and Marcano (2007).

According to Damköhler, chemical–technological systems can be described by

equations of the following type:

convection + conduction + transfer + source = local change (1.1)

In detail,

div[Γv] − div[𝛿 grad Γ] + 𝜔𝜀 ΔΓ + G = −𝜕Γ
𝜕t

(1.2)

where v is the linear velocity (in units of m/s); Γ is a symbol for mass, a compo-

nent, heat or momentum; 𝛿 is the generalized coefficient of convection (m2/s);

𝜔 is the transfer surface area per unit volume (m2/m3); 𝜀 is the generalized coef-

ficient of transfer; G is the flux of source and t is the time (s). Such equations can

be set up for fluxes of mass, components, heat and momentum.

The Damköhler equations play a role in chemical and food engineering simi-

lar to that of the Maxwell equations in electrodynamics. The application of the

Damköhler equations to food-technological systems is presented in Chapter 2.

Let us consider these equations one by one.

Flux of mass:

div[𝜌v] − [Dgrad𝜌] + 𝜔𝛽′Δ𝜌 + G = −𝜕𝜌

𝜕t
(1.3)

where v is the linear velocity (m/s), 𝜌 is the density (kg/m3), 𝛽′ is the mass trans-

fer coefficient (m/s), D is the self-diffusion coefficient (m2/s) and G is the source

of mass flux (kg/m3 s).
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Flux of a component:

div[civ] – div[D grad ci] + ωβΔci + vir = –𝜕ci / 𝜕t

Fick’s 2nd law (1.4)

where ci is the concentration of the ith component (mol/m3), D is the diffusion

coefficient (m2/s), 𝛽 is the component transfer coefficient (m/s), 𝜈i is the degree

of reaction for the ith component and r is the velocity of reaction [(mol/(m3 s)].

Flux of heat:

div[ρcpTv] – div[λ grad T] + ωα ΔT + vir ΔH = –𝜕(ρcpT) / 𝜕t

Fourier’s 2nd law Newton’s law of cooling (1.5)

where cp is the specific heat (p is constant) [J/(kgK)], T is the temperature (K),

𝜆 is the thermal conductivity (W/mK), ΔH is the heat of reaction (J/mol) and 𝛼

is the heat transfer coefficient [J/(m2 sK)].

The flux of momentum is described by the Navier–Stokes law,

Div{𝜌v ⋅ v} − Div{𝜂 Grad v} + 𝜔𝛾 Δv + grad p = −𝜕[𝜌v]
𝜕t

(1.6)

where Div is tensor divergence, Grad is tensor gradient, ⋅ is the symbol for a

dyadic product, 𝜂 is dynamic viscosity [kg/(m s)], 𝛾 = (f′𝜌v/2) is coefficient of
momentum transfer [kg/(m2 s)], f ′ is frictional (or Darcy -) coefficient [dimen-

sionless], and p is pressure [kg/(m s2)].

Equations (1.3)–(1.6) are called the Damköhler equation system.

In general, the Damköhler equations cannot be solved by analytical means.

In some simpler cases, described later, however, there are analytical solutions.

For further details, see Grassmann (1967), Charm (1971), Loncin and Merson

(1979), Hallström et al. (1988) and Banks (1994).

1.3 Investigation of the Damköhler equations by
means of similarity theory

1.3.1 Dimensionless numbers
Let us suppose that a set of Damköhler equations called Form 1 are valid for

a technological system called System 1, and a set of equations Form 2 are valid

for System 2. It is known from experience that if similar phenomena take place

in the two systems, then this similarity of phenomena can be expressed by a

relationship denoted by ∼, as in Form 1∼Form 2. Similarity theory deals with the

description of this relationship.

The simplest characteristics of this similarity are the ratios of two geometric

sizes, two concentrations and so on. These are called simplex values.
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1.3.1.1 Complex values
The first perception of such a relationship is probably connected with the name

of Reynolds, who made the observation, in relation to the flow of fluids, that

System 1 and System 2 are similar if the ratios of momentum convection to momentum

conduction in these systems are equal to each other.

Let us consider Eqn (1.1),

convection + conduction + transfer + source = local change (1.1)

for momentum flux. Since the terms for convection, conduction and so forth on

the left-hand side evidently have the same dimensions in the equation, their

ratios are dimensionless. One of the most important dimensionless quantities is

the ratio of momentum convection to momentum conduction, which is called

the Reynolds number, denoted by Re. Re=Dv𝜌/𝜂, where D is a geometric quantity

characteristic of the system and v is a linear velocity,

v = Q
R2𝜋

(1.7)

where Q is volumetric flow rate (m3/s) and R is radius of tube (m).

For conduits of non-circular cross section, the definition of the equivalent diam-

eter De is

De =
area of stream cross section

wetted perimeter
(1.8)

The value of De for a tube is 4D
2𝜋/4D𝜋 =D (the inner diameter of the tube), and

for a conduit of square section, it is 4a2/4a= a (the side of the square). For heat

transfer, the total length of the heat-transferring perimeter is calculated instead

of the wetted perimeter (e.g. in the case of part of a tube).

It has been shown that several different types of flow can be characterized by

their Reynolds numbers:

Re< about 2300: laminar flow

Re> 2300 to Re< 10000: transient flow

Re> 10000: turbulent flow

This means, for example, that if for System 1 the Reynolds number Re(1) is

1000 and for System 2 the Reynolds number Re(2) is 1000, then the flow shows

the same (laminar) properties in both systems. Moreover, all systems in which the

Reynolds numbers are the same show the same flow properties.

In order to understand the role of the Reynolds number, let us interpret the

form of Eqn (1.6) as

momentum convection +momentum conduction = local change of momentum

If Re= 1, this means for the momentum part that convection= 50% and con-

duction= 50%; if Re= 3, then convection= 75% and conduction= 25%; and if

Re= 99, then convection=99% and conduction=1%.

It is difficult to overestimate the importance of Reynolds’ idea of similarity,

because this has become the basis of modelling. One can investigate the
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phenomena first with a small model, which is relatively cheap and can be made

quickly, and then the size of the model can be increased on the basis of the

results. Modelling and increasing the size (scaling-up) are everyday practice in

shipbuilding, in the design of chemical and food machinery, and so on.

If, for a given system, D, 𝜌 and 𝜂 are constant, the type of flow depends on the

linear velocity (v) if only convection and conduction take place.

Using similar considerations, many other dimensionless numbers can be

derived from the Damköhler equations; some of these are presented in

Tables 1.1 and 1.2. From Table 1.1, we have the following, for example:

• In Eqn (1.4), the ratio of convection to conduction is the Peclet number for

component transfer (Pe′),

Pe′ =
div[civ]

div[Dgrad ci]
= vd

D

• In Eqn (1.6), the ratio of the momentum source to the momentum convection

is the Euler number (Eu),

Eu =
gradp

Div{𝜌v ⋅ v}
=

Δp
𝜌v2

Another way of deriving dimensionless numbers is illustrated in Table 1.2. In

the third column of this table, the ratio of transfer to conduction is represented

instead of the ratio of transfer to convection, and in this way another system of

dimensionless numbers (i.e. variables) is derived.

Note that:

• If the source is a force due to a stress, equal to Δp d2, then the Euler number is

obtained.

• If the source is a gravitational force, equal to 𝜌gd3, then the Fanning number is

obtained.

Table 1.1 Derivation of dimensionless numbers.

Flux Convection/conduction Transfer/convection Source/convection

Component (Eqn 1.4) Pe′ St′ Da(I)

Heat (Eqn 1.5) Pe St Da(III)

Momentum (Eqn 1.6) Re f′/2 Eu or Fa

Table 1.2 Another way of deriving dimensionless numbers.

Flux Convection/conduction Transfer/conduction Source/convection

Component (Eqn 1.4) Pe′ Nu′ Da(I)

Heat (Eqn 1.5) Pe Nu Da(III)

Momentum (Eqn 1.6) Re A (no name) Eu or Fa
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The dimensionless numbers in Tables 1.1 and 1.2 are as follows:

Pe′ = vd/D, the Peclet number for component transfer.

Pe= vd/a, the Peclet number for heat transfer (a= temperature conduction coeffi-

cient or heat diffusion coefficient).

St′ = 𝛽/v, the Stanton number for component transfer (𝛽 = component transfer coef-

ficient).

St= 𝛼/𝜌cpv, the Stanton number for heat transfer (𝛼 =heat transfer coefficient).

𝛾 = f′𝜌v/2, the momentum transfer coefficient (f′/2= 𝛾/𝜌v).

Da(I)= 𝜈ird/civ, the first Damköhler number; this is the component flux produced

by chemical reaction divided by the convective component flux.

Da(III)= 𝜈i ΔH rd/𝜌cpvΔT, the third Damköhler number; this is the heat flux pro-

duced by chemical reaction divided by the convective heat flux.

Eu=Δp/𝜌v2, the Euler number; this is the stress force divided by the inertial force.

Fa= gd/v2, the Fanning number; this is the gravitational force divided by the iner-

tial force.

Nu′ = 𝛽𝛽d/D, the Nusselt number for component transfer (D= diffusion coefficient).

Nu= 𝛼d/𝜆, the Nusselt number for heat transfer (𝜆= thermal conductivity).

Following van Krevelen’s treatment (1956), 3×3= 9 independent dimension-

less numbers can be derived in this way from three equations (rows) and four

types of phenomena (columns, namely, convection, conduction, transfer and

sources), and three rates can be produced from these numbers. With the help

of such matrices of nine elements (see Tables 1.1 and 1.2), other dimensionless

numbers can also be obtained, which play an important role in chemical and

food engineering. For example, values of efficiency can be derived in this way:

Pr= Pe/Re= 𝜈/a, the Prandtl number

Sc= Pe′/Re= 𝜈/D, the Schmidt number

Le= Sc/Pr= a/D, the Lewis number

1.3.2 Degrees of freedom of an operational unit
The number of degrees of freedom of an operational unit is a generalization of

corresponding concept in the Gibbs phase rule. The question of how to deter-

mine the number of degrees of freedom of an operational unit was first put by

Gilliland and Reed (1942); further references are Morse (1951), Benedek (1960)

and Szolcsányi (1960).

For multiphase systems, the Gibbs classical theory, as is well known, prescribes

the equality of the chemical potentials for each component in each phase in

equilibrium. If 𝜇k
f (where k= 1, 2, … ,K, and f= 1, 2, … , F) denotes the chemical

potential of the kth component in the fth phase, then the following holds in

equilibrium:

• For the fth phase, when there are K components,

𝜇
f
1 = 𝜇

f
2 = · · · = 𝜇

f
K

that is, F(K− 1) equations.
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• For the kth component, when there are F phases,

𝜇1k = 𝜇2k = · · · = 𝜇F
k

that is, K(F− 1) equations.

In equilibrium, the additional variables which are to be fixed are T and p.

Consequently, in equilibrium, the number of variables (𝜑) which can be freely

chosen is

𝜑 = F(K − 1) − K(F − 1) + 2 = K − F + 2 (1.9)

This is the Gibbs phase rule, which is essential for studying multiphase systems.

Even in the extreme case where the solubility of a component in a solvent is

practically zero, the phase rule can nevertheless be applied by considering the

fact that the chemical potential of this component is sufficient for equilibrium in

spite of its very small concentration.

The generalization that we need in order to obtain 𝜑 for an operational unit is

given by

𝜑 = L −M (1.10)

where 𝜑 is the number of degrees of freedom, L is the total number of variables

describing the system and M is the number of independent relations between

variables.

In the simplest case, that of a simple stationary operational unit with an iso-

lated wall, if the number of input phases is F and the number of output phases

is F′, then the total number of variables is

L = (F + F′)(K + 2)

where K is the number of components. (To describe a homogeneous phase,

(K+2) data points are needed.)

Let us now consider the constraints. There are constraints derived from the

conservation laws for every component and also for energy and momentum,

which means (K+ 2) constraints for every phase.

The number of constraints for equilibrium between two phases is (K+ 2),

which means (F′ − 1)(K+ 2) constraints for the output phases. Consequently,

the total number of constraints is

M = (K + 2) + (F′ − 1)(K + 2)

and, finally,

𝜑 = F(K + 2) (1.11)

However, in the case of cellular substances, the conditions of equilibrium

typically do not apply; moreover, the number of components can usually

not be determined. Therefore, the Gibbs phase rule cannot be used for

food-technological systems except in special cases where exclusively chemical

changes are taking place in the system studied. This uncertainty relating to the

degrees of freedom is an essential characteristic of food engineering.
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1.3.3 Polynomials as solutions of the Damköhler equations
The solution of the Damköhler equation system can be approximated by the

product:

Π1
a can be obtained in the form

∏b

2

×
∏c

3

× · · · ×
∏d

i

× · · · (1.12)

whereΠi is dimensionless numbers created from the terms of the Damköhler

equations and a, b, c, d, … are exponents which can be positive/negative integers

or fractions.

First of all, it is to be remarked that Eqn (1.12) supposes that the solution

is provided by the so-called monom (not by binom as, e.g. Π1
a can be obtained

in the form Π2
b ×Π3

c × · · · ×Πi
d×· · ·, i.e. monom does not contain addition but

multiplication operation only) – this supposition is not fulfilled in each case!

While derivation of dimensionless numbers from the Damköhler equations

refers to a special circle of phenomena of transfer, which is crucial from our point

of view, dimensional analysis is a general method that is not limited to chemi-

cal engineering. The principle of dimensional analysis has been first expressed

likely by Buckingham, therefore, it is known as Buckingham’s Π-theorem. This

theorem is the base of Eqn (1.12) as well. According to the formulation of Loncin

and Merson (1979), ‘if n independent variables occur in a phenomenon and

if n′ fundamental units are necessary to express these variables, every relation

between these n variables can be reduced to a relation between n–n′ dimension-

less variables.’

The principal idea represented by Eqn (1.12) is that convergent polynomial

series, for example, a Taylor series, can approximate well almost any algebraic

expression and thus also a solution of the Damköhler equations. But it is not

unimportant how many terms are taken into account. There are algebraic

expressions that cannot be approximated by a monomial, because they are not

a product of terms but a sum of terms.

However, the general idea is correct, and formulae created from the dimen-

sionless numbers Πi according to Eqn (1.12) provide good approximations of

monomial or binomial form. (Trinomials are practically never used.)

How can this practical tool be used? Let us consider a simple example. A warm

fluid flows in a tube, which heats the environment; for example, thismight be the

heating system of a house. If heat radiation is negligible, the Nusselt, Reynolds

and Peclet numbers for the simultaneous transfer of momentum and heat should

be taken into account (see Table 1.2). Since the appropriate dimensionless num-

bers created from the terms of the Damköhler equations are:

Nu for heat (convection/conduction)

Re for momentum (convection/conduction)

Pe for heat (convection/conduction) or Pr=Pe/Re, therefore, neglecting the grav-

itational force
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We obtain the following function f:

Nu = f (Re, Pr) (1.13)

which is an expression of Eqn (1.12) for the aforementioned case.

Equation (1.12) is one of the most often applied relationships in chemical and

food engineering. Its usual form is

Nu = CRea × Prb (1.14)

which has the same monomial form as Eqn (1.12).

Many handbooks give instructions for determining the values of the exponents

a and b and the constant C, depending upon the boundary conditions. Let us

consider the physical ideas on which this approach is based.

1.4 Analogies

1.4.1 The Reynolds analogy
An analogy can be set up between mechanisms as follows:

Momentum transfer↔heat transfer

Momentum transfer↔ component transfer

Component transfer↔heat transfer

This analogy can be translated into the mathematical formalism of the transfer

processes.

From physical considerations, Reynolds expected that themomentumflux (Jp)

and the heat flux (Jq) would be related to each other, that is, if

Jq =
𝛼

cp𝜌
× AΔ(𝜌cpT) (1.15)

then

Jq =
𝛾

𝜌
× AΔ(𝜌v) (1.16)

In other words, the moving particles transport their heat content also. Then he sup-

posed that
𝛼

cp𝜌
= 𝛾

𝜌
(1.17)

or, in another form,
f ′

2
= 𝛼

cp𝜌
= St (1.18)

If the flux of a component is

Ji = 𝛽FΔci (1.19)

then Reynolds’ supposition can be extended to this third kind of flux as follows:

St = St′ =
f ′

2
(1.20)
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where St is the Stanton number for heat transfer (St= 𝛼/cp𝜌), St
′ is the Stanton

number for component transfer (St′ = 𝛽/v), f′/2= 𝛾/𝜌v and 𝛾 is the momentum

transfer coefficient.

If the Reynolds analogy formulated in Eqn (1.20) is valid, then if we know

one of the three coefficients 𝛼, 𝛽 or 𝛾, the other two can be calculated from

this equation. This fact would very much facilitate practical work, since much

experimental work would be unnecessary.

But proof of the validity of the Reynolds analogy is limited to the case of strong

turbulence. In contrast to the Reynolds analogy,

a ≠ v ≠ D (1.21)

that is,

Pr ≠ Sc ≠ Le (1.22)

Equation (1.17) is valid only for turbulent flow of gases. In the case of gases,

Pr ≈ 0.7–1 (1.23)

is always valid.

1.4.2 The Colburn analogy
Colburn introduced a new complex dimensionless number, and this made it pos-

sible to maintain the form of the Reynolds analogy:

Jq = St Pr2∕3 (1.24)

Ji = St′ Sc2∕3 (1.25)

and

Jp =
f ′

2
(1.26)

Finally, formally similarly to the Reynolds analogy,

St Pr2∕3 = St′ Sc2∕3 =
f ′

2
(1.27)

The Colburn analogy formulated in Eqn (1.27) essentially keeps Reynolds’ prin-

cipal idea about the coupling of the momentum (mass) and thermal flows and

gives an expression that describes the processes better. Equation (1.27) is the basis

of the majority of calculations in chemical engineering.

In view of the essential role of Eqn (1.27), it is worth looking at its structure:

St = Nu
RePr

= 𝛼

𝜌cpv

St′ = Nu′

ReSc
= 𝛽

v

f ′

2
= 𝛾

𝜌v
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The numbers Pr and Sc are parameters of the fluid:

Pr = v
a

Sc = v
D

Additional material parameters are needed for calculations, namely, 𝛼, 𝜌 and cp.

If v is known, f′ and 𝛽 can be calculated.

This theoretical framework (see Eqns 1.13, 1.14 and 1.27) can be modified

if, for example, a buoyancy force plays an important role – in such a case, the

Grashof number, which is the ratio of the buoyancy force to the viscous force,

appears in the calculation. A detailed discussion of such cases would, however,

be beyond the scope of this book. A similar limitation applies to cases where the

source term is related to a chemical reaction: chemical operations in general are

not the subject of this book.

A more detailed discussion of these topics can be found in the references given

in Section 1.2.

1.4.3 Similarity and analogy
Similarity and analogy are quite different concepts in chemical and food engi-

neering, although they are more or less synonyms in common usage. Therefore,

it is necessary to give definitions of these concepts, which emphasize the differ-

ences in our understanding of them in the present context.

Similarity refers to the properties of machines or media. Similarity means that

the geometric and/or mechanical properties of twomachines or streaming media

can be described by the same mathematical formulae (i.e. by the same dimen-

sionless numbers) that our picture of the flux (e.g. laminar or turbulent) is similar

in two media. Similarity is the basis of scaling-up.

Analogy refers to transfer mechanisms. Analogy means that the mechanisms

of momentum, heat and component transfer are related to each other by the

way that components are transferred bymomentum and,moreover, components

transfer heat energy (except in the case of heat radiation). This fact explains the

important role of the Reynolds number, which refers to momentum transfer.

1.5 Dimensional analysis

This is a simplemathematical tool for creating relationship between physical vari-

ables, keeping the rule that the physical expressions shall be homogeneous from the

viewpoint of dimension: both sides of the equations must have the same dimension.

Homogeneity also means that the equation remains unchanged if the system

of the fundamental units changes (e.g. SI ↔Anglo-Saxon system). Dimensional

analysis can be very fruitful for solving complicated problems easily in various

fields of physics, biology, economics and others.
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Dimensional analysis contracts physical variables into dimensionless groups,

which will be the new variables; by so doing, the number of variables will be

decreased. The lesser the number of variables, the greater the advantage: for

example, if instead of 6 variables only 3 variables are to be studied experimen-

tally, supposed that 5 points of every variable are to be measured, then instead of

56 =15625 only 53 =125 points are to be measured in the labour experiments.

There is a developed theory of dimensional analysis which abundantly applies

the results of linear algebra and computerization (see Barenblatt, 1987; Hunt-

ley, 1952; Zlokarnik, 1991). Instead of discussing these classical methods based

on solutions of linear equation system, we represent here the Szirtes method

(Szirtes, 1998; 2006) by examples in a rather simplified and slightly modified

form, which is very easy and can be generally used.

Szirtes exhaustively details the cases as well for which the approaches of

dimensional analysis must be cautiously used. Two considerations of him are

mentioned here:

1 The Buckingham Π-theorem relates to products of dimensionless 𝜋-numbers,

that is, monoms, which do not contain the algebraic operation addition (+).
If a formula contains addition (i.e. it is binom, trinom, etc.), its transforma-

tion into a dimensionless formula by dimensional analysis either needs some

special considerations or impossible.

2 The obtained dimensionless formula needs experimental checking in every case,

since the dimensional correctness is only a necessary but not a sufficient

condition.

Example 1.1 Heat transfer by fluid in tube
The choice of variables is done according to physical considerations:

𝛼 : heat transfer coefficient (kg s−3)

w : velocity of fluid (m s−1)

q : heat capacity (kgm−1 s−2)

𝜈 : kinematic viscosity of fluid (m2 s−1)

d: diameter of tube (m)

𝜆 : coefficient of thermal conductivity (kgm s−3)

Δt : temperature different between the fluid and the tube wall (K)

Variables

Units 𝜶 w q 𝝂 d 𝝀 𝚫t

M (kg) 1 0 1 0 0 1 0
L (m) 0 1 −1 2 1 1 0
T (s) −3 −1 −2 −1 0 −3 0
t (K) −1 0 −1 0 0 −1 1

We obtained the so-called dimension matrix of (4×7) size. In dimension matrix,

a non-singular quadratic matrix has to be chosen (i.e. its determinant is not zero),
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which is shown by bold numbers here, denoted by A. The sequence of variables
has to be written in such a way that this quadratic matrix should be on the right

side. The residue of the dimension matrix on the left side is denoted by B. That

is, the dimension matrix has B A the following form:

In the next step, this dimension matrix of (4×7) size has to be completed to a

quadratic matrix as follows.

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

1 0 1 0 0 1 0

0 1 −1 −2 1 1 0

−3 −1 −2 −1 0 −3 0

−1 0 −1 0 0 −1 1

The completed quadratic matrix has the following form (I: unit matrix; 0: zero

matrix):

The next step is to calculate

I 0
B A the inverse of the completed quadratic

matrix.

Variables 𝝅1 𝝅2 𝝅3

𝛼 1 0 0 0 0 0 0

w 0 1 0 0 0 0 0

q 0 0 1 0 0 0 0

𝜈 0 −1 1 −3 0 −1 0

d 1 1 0 5 1 2 0

𝜆 −1 0 −1 1 0 0 0

Δt 0 0 0 1 0 0 1

The structure of the inversed matrix is as follows:

From the inverse matrix

I 0
–A–1×B A–1

, the values of the dimen-

sionless numbers can be directly obtained:

𝜋1 = 𝛼d𝜆−1 =Nusselt number

𝜋2 =wd𝜈−1 =Reynolds number

𝜋3 = q𝜈𝜆−1 =Prandtl number

That is, the classical formula is obtained: Nu= constant×Rea Prb
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Evidently, the choice of variables is contingent: in this case, the temperature

difference (Δt) turned out to be a surplus! This uncertainty can be, on the one

hand, an inadequacy of dimensional analysis but sometimes also an advantage

as the aforementioned example shows, since it can be seen from the calcula-

tion – before any experiment! – that Δt can be neglected. The lesson of this

example is that only six variables have to be accounted instead of seven; in addi-

tion, the experiments need only three variables (No, Re, Pr), and the constants

can be determined by linearization.

Example 1.2 By the Szirtes method, let us calculate the flow rate (V)
in a tube of D diameter if the pressure difference is Δp and the viscosity
of fluid is 𝜂 (the solution is the well-known Hagen–Poiseuille
equation). This example is derived from Szirtes (1998, 2006).
The completed dimension matrix and its inverse.

V 𝚫p 𝜼 D

1 0 0 0
M(kg) 0 1 1 0

L (m) 3 −2 −1 1

T (s) −1 −2 −1 0

𝝅1

V 1 0 0 0

Δp −1 −1 0 −1
𝜂 1 2 0 1

D −4 0 1 −1

Solution: 𝜋1 = (V𝜂/ΔpD4), that is, V= constants×ΔpD4/𝜂

Remark: In case of more or other variables (e.g. the length or/and cross section

of tube), the solution is too complicated. Also this example demonstrates that

albeit dimensional analysis is very many-sided but not omnipotent.

1.6 System theoretical approaches to food engineering

A strong tendency in food process engineering is the growing attention paid to

the relations between processes, products, emerging technologies, heat treat-

ments and food safety. Research tools like mathematical modelling, especially
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computer fluid dynamics, and sophisticated methods of product characterization

are the most intensively developing fields (see Bimbenet et al., 2007).

The models currently used in food process engineering simplify too much

both the food system description and the mechanisms and rate equations of

changes: The food system is supposed to be homogeneous and continuous.

In this way, thermodynamic and kinetic equations deduced for ideal gas or

liquids, in conditions close to equilibrium are applied to cellular solid foods, in

conditions far away from the equilibrium. However, it is necessary to develop

advanced concepts and methodologies in food process engineering. The new

models for food and processes development must incorporate information

about all these aspects (thermodynamic, structural, chemist and biochemist and

even mechanics). Only in this way, they would be able to calculate and predict

the real changes in the whole quality of food product in line with the process

progression.

In the spirit of such ideas the system theory of chemical engineering developed

by Blickle and Seitz (1975), Blickle (1978) was adapted to food engineering by

Mohos (1982). For the mathematical details and examples, see Appendix 5.

Fito et al. (2007) present a comprehensive model of food engineering called

systematic approach to food process engineering (SAFES) in the sense of food

process engineering for product quality. The SAFES methodology (Fito et al.,

2007) recognizes the complexity of food system and allows coordinating the

information about food structure, composition, quality, thermodynamic and so

on in adequate tools to develop real food and processes models. This brief review

is not capable of replacing the original article, which can be found in the Internet;

therefore, it is limited to itemize the main ideas of it.

• Food product engineering: modelling of food and biological systems by studying

the structure of food system as the structure–properties ensemble (e.g. levels

of complexity in matter condensation).

• The SAFES defines a simplified space of the structured phases and components, more-

over, of aggregation states in order to describe the material structure.

• It defines the descriptive matrix, a mathematical tool to describe the food system by

the help of:

– The state variables: the share-out of matter among components and struc-

tured phases

– Mass and volume balances inside the product

– The energy inside the system: the Gibbs free energy

– Equilibrium and driving forces

– Transport mechanisms and rate equations

• Food process engineering consists of modelling of food operations and pro-

cesses:

– Definition of unit operation and stage of change

– Mass balances and transformed matrices: matrix of changes

– To construct the process matrix
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1.7 Food safety and quality assurance

When studying the principles of food engineering, the concepts food safety and

quality assurance (QA) must not be omitted although a detailed discussion of

them exceeds the possibilities of this work. Therefore, this presentation is limited

to a sketch and provides the appropriate essential references, which can be found

in the Internet.

In the food industry, QA systems such as the Hygiene Code (FAO/WHO, 2009;

Codex Alimentarius Committee, 1969), the Hazard Analysis Critical Control

Points (HACCP) and the International Organization for Standardization (ISO)

9000 series are applied to ensure food safety and food quality to prevent liability

claims and to build and maintain the trust of consumers.

Quality is defined by the ISO as ‘the totality of features and characteristics of

a product that bear on its ability to satisfy stated or implied needs.’ Safety differs

from many other quality attributes since it is a quality attribute that is difficult

to observe. A product can appear to be of high quality, that is, well coloured,

appetizing, flavourful and so on, and yet be unsafe because it is contaminated

with undetected pathogenic organisms, toxic chemicals or physical hazards. On

the other hand, a product that seems to lack many of the visible quality attributes

can be safe.

Safety or QA program should focus on the prevention of problems, not simply

curing them. Safety and QA should be ongoing processes incorporating activi-

ties beginning with selecting and preparing the soil and proceeding through to

consumption of the product. Both safety and QA should focus on the prevention

of problems, not simply curing them since, once safety or quality is reduced,

it is virtually impossible to go back and improve it for that item. It is possi-

ble, however, to assure that the same problem does not affect future products

(Silva et al., 2002).

HACCP aims to assure the production of safe food products by using a system-

atic approach (i.e. a plan of steps) to the identification, evaluation and control

of the steps in food manufacturing that are critical to food safety (Leaper, 1997).

HACCP focuses on technological aspects of the primary process.

CAOBISCO (2011) provides a Guide of Good Hygiene Practices that can be

regarded a competent document in this field.

The ISO 9000 series aims to achieve uniformity in products and/or services,

preventing technical barriers to free trade throughout the world. ISO consists of

a checklist to assure managerial aspects. It requires the establishment of proce-

dures for all activities and handling, which must be followed by ensuring clear

assignment of responsibilities and authority (Hoogland et al., 1998). See further

ISO (1984, 1990, 1994) documents.

For studying further references concerning food safety, QA and food quality,

see Lásztity (2008), Carpenter et al. (2000), Defence Fuel & Food Services (2013),

Food Safety Authority of Ireland (2011) and Martin (1997). References to the
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confectioneries: de Zaan (2009), Minifie (1989a,b, 1999; pp. 663–670) and Bhat

and Gómez-López (2014).
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