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CHAPTER 1
The Volatility Problem

Suppose we use the standard deviation of possible future returns
on a stock as a measure of its volatility. Is it reasonable to take
that volatility as a constant over time? I think not.

—Fischer Black

INTRODUCTION

It is widely accepted today that an assumption of a constant volatility fails
to explain the existence of the volatility smile as well as the leptokurtic char-
acter (fat tails) of the stock distribution. The Fischer Black quote, made
shortly after the famous constant-volatility Black-Scholes model was devel-
oped, proves the point.

In this chapter, we will start by describing the concept of Brownian
Motion for the Stock Price Return, as well as the concept of historic
volatility.

We will then discuss the derivatives market and the ideas of hedging and
risk neutrality. We will briefly describe the Black-Scholes Partial Derivatives
Equation (PDE) in this section.

Next, we will talk about jumps and level-dependent volatility models.
We will first mention the jump-diffusion process and introduce the concept
of leverage. We will then refer to two popular level-dependent approaches:
the Constant Elasticity Variance (CEV) model and the Bensoussan-Crouhy-
Galai (BCG) model.

At this point, we will mention local volatility models developed in the
recent past by Dupire and Derman-Kani and we will discuss their stability.
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2 INSIDE VOLATILITY FILTERING

Following this, we will tackle the subject of stochastic volatility where
we will mention a few popular models such as the Square-Root model and
GARCH.

We will then talk about the Pricing PDE under stochastic volatility and
the risk-neutral version of it. For this we will need to introduce the concept
of Market Price of Risk.

The Generalized Fourier Transform is the subject of the following
section. This technique was used by Alan Lewis extensively for solving
stochastic volatility problems.

Next, we will discuss the Mixing Solution, both in a correlated and non-
correlated case. We will mention its link to the Fundamental Transform and
its usefulness for Monte-Carlo-based methods.

We will then describe the Long-Term Asymptotic case, where we
get closed-form approximations for many popular methods such as the
Square-Root model.

We will finally talk about pure-jump models such as Variance Gamma
and VGSA.

THE STOCK MARKET

The Stock Price Process
The relationship between the stock market and the mathematical concept
of Brownian Motion goes back to Bachelier [19]. A Brownian Motion cor-
responds to a process the increments of which are independent stationary
normal random variables. Given that a Brownian Motion can take negative
values, it cannot be used for the stock price. Instead, Samuelson [222] sug-
gested to use this process to represent the return of the stock price, which
will make the stock price a Geometric (or exponential) Brownian Motion.

In other words, the stock price S follows a log-normal process1

dSt = 𝜇Stdt + 𝜎StdBt (1.1)

where dBt is a BrownianMotion process, 𝜇 the instantaneous expected total
return of the stock (possibly adjusted by a dividend yield), and 𝜎 the instan-
taneous standard deviation of stock price returns, called the volatility in
financial markets.

Using Ito’s lemma,2 we also have

d ln(St) =
(
𝜇 − 1

2
𝜎2

)
dt + 𝜎dBt. (1.2)

1For an introduction to Stochastic Processes see Karatzas [175] or Oksendal [207].
2See for example Hull [153].
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The stock return 𝜇 could easily become time dependent without changing
any of our arguments. For simplicity, we will often refer to it as 𝜇 even if we
mean 𝜇t. This remark holds for other quantities such as rt the interest-rate,
or qt the dividend-yield.

The equation (1.1) represents a continuous process. We can either take
this as an approximation to the real discrete tick by tick stock movements, or
consider it the real unobservable dynamics of the stock price, in which case
the discrete prices constitute a sample from this continuous ideal process.
Either way, the use of a continuous equation makes the pricing of financial
instruments more analytically tractable.

The discrete equivalent of (1.2) is

ln St+Δt = ln St +
(
𝜇 − 1

2
𝜎2

)
Δt + 𝜎

√
ΔtBt (1.3)

where Bt is a sequence of independent normal random variables with zero
mean and variance of 1.

Historic Volatility

This suggests a first simple way to estimate the volatility 𝜎, namely the
historic volatility. Considering S1, . . . , SN a sequence of known historic daily
stock close prices and callingRn = ln(Sn+1∕Sn) the stock price return between
two days andR = 1

N

∑N−1
n=0 Rn the mean return, the historic volatility would

be the annualized standard deviation of the returns, namely

𝜎hist =

√√√√ 252
N − 1

N−1∑
n=0

(Rn −R)2. (1.4)

Because we work with annualized quantities, and we are using daily stock
close prices, we needed the factor 252, supposing that there are approxi-
mately 252 business days in a year.3

Note that N, the number of observations, can be more or less than one
year; hence when talking about a historic volatility, it is important to know
what time horizon we are considering. We can indeed have three-month his-
toric volatility or three-year historic volatility. Needless to say, taking too
few prices would give an inaccurate estimation. Similarly, the begin and end
date of the observations matter. It is preferable to take the end date as close
as possible to today, so that we include more recent observations.

3Clearly the observation frequency does not have to be daily.



Trim Size: 6in x 9in Javaheri c01.tex V2 - 07/01/2015 7:57pm Page 4

4 INSIDE VOLATILITY FILTERING

An alternative was suggested by Parkinson [210] where instead of daily
close prices, we use the high and the low prices of the stock on that day, and
Rn = ln(Shighn ∕Slown ).

The volatility would then be

𝜎parkinson =

√√√√ 252
N − 1

1
4 ln(2)

N−1∑
n=0

(Rn −R)2.

This second moment estimation derived by Parkinson is based on the
fact that the range Rn of the asset follows a Feller distribution.

Plotting for instance the one-year rolling4 historic volatility (1.4) of
S&P 500 Stock Index, it is easily seen that this quantity is not constant over
time. This observation was made as early as the 1960s by many financial
mathematicians and followers of the Chaos Theory. We therefore need
time-varying volatility models.

One natural extension of the constant volatility approach is to make 𝜎t
a deterministic function of time. This is equivalent to giving the volatility a
term structure, by analogy with interest rates.
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SPX Historic Rolling Volatility from January 3, 2000, to December 31,
2001. As we can see, the volatility is clearly non-constant.

4By rolling we mean that the one-year interval slides within the total observation
period.
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THE DERIVATIVES MARKET

Until nowwe onlymentioned the stock price movements independently from
the derivatives market. We now are going to include the financial derivatives
(specialty options) prices as well. These instruments became very popular
and as liquid as the stocks themselves after Balck and Scholes introduced
their risk-neutral pricing formula in [40].

The Black-Scholes Approach

The Black-Scholes approach makes a number of reasonable assumptions
about markets being frictionless and uses the log-normal model for the stock
price movements. It also supposes a constant or deterministically time depen-
dent stock drift and volatility. Under these conditions they prove that it is
possible to hedge a position in a contingent claim dynamically by taking
an offsetting position in the underlying stock and hence become immune to
the stock movements. This risk neutrality is possible because, as they show,
we can replicate the financial derivative (for instance an option) by taking
positions in cash and the underlying security. This condition of possibility
of replication is called market completeness.

In this situation everything happens as if we were replacing the stock
drift 𝜇t with the risk-free rate of interest rt in (1.1), or rt − qt if there is a
dividend-yield qt. The contingent claim f (S, t) having a payoff G(ST) will
satisfy the famous Black-Scholes equation

rf = 𝜕f
𝜕t

+ (r − q)S𝜕f
𝜕S

+ 1
2
𝜎2S2

𝜕2f
𝜕S2

. (1.5)

Indeed, the Hedged Portfolio Π = f − 𝜕f
𝜕S
S is immune to the stock ran-

dom movements and according to Ito’s lemma verifies

dΠ =
(
𝜕f
𝜕t

+ 1
2
𝜎2S2

𝜕2f
𝜕S2

)
dt

whichmust also be equal to rΠdt or else there would be possibility of Riskless
Arbitrage.5

Note that this equation is closely related to the Feynman-Kac equation
satisfied by F(S, t) = Et(h(ST)) for any function h under the risk-neutral

5For a detailed discussion see Hull [153].
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measure. F(S, t) must be a martingale6 under this measure and therefore
must be driftless, which implies dF = 𝜎S 𝜕F

𝜕S
dBt and

0 = 𝜕F
𝜕t

+ (r − q)S𝜕F
𝜕S

+ 1
2
𝜎2S2

𝜕2F
𝜕S2

.

This would indeed be a different way to reach the same Black-Scholes
equation, by using f (S, t) = exp(−rt)F(S, t), as was done for instance in
Shreve [229].

Let us insist again on the fact that the real drift of the stock price does
not appear in the previous equation, which makes the volatility 𝜎t the only
unobservable quantity.

As we said, the volatility could be a deterministic function of time with-
out changing the earlier argument, in which case all we need to do is to
replace 𝜎2 with 1

t
∫ t
0 𝜎

2
s ds and keep everything else the same.

For calls and puts, where the payoffs G(ST) are respectively
MAX(0, ST − K) and MAX(0,K − ST) where K is the strike price and
T the maturity of the option, the Black Scholes Partial Derivatives Equation
is solvable and gives the celebrated Black Scholes formula

callt = Ste
−q(T−t)Φ(d1) − Ke−r(T−t)Φ(d2) (1.6)

and
putt = −Ste−q(T−t)Φ(−d1) + Ke−r(T−t)Φ(−d2) (1.7)

where Φ(x) = 1√
2𝜋

∫ x
−∞ e−

u2

2 du is the Cumulative Standard Normal function

and d1 = d2 + 𝜎
√
T − t and d2 =

ln
(
St
K

)
+
(
r−q− 1

2 𝜎
2
)
(T−t)

𝜎
√
T−t

.

Note that using the well-known symmetry property for normal distribu-
tions Φ(−x) = 1 − Φ(x) in the above formulae, we could reach the Put-Call
Parity relationship

callt − putt = Ste
−q(T−t) − Ke−r(T−t) (1.8)

that we can also rearrange as

Ste
−q(T−t) − callt = Ke−r(T−t) − putt.

The left-hand side of the last equation is called a covered call and is equiva-
lent to a short position in a put combined with a bond.

6For an explanation see Shreve [229] or Karatzas [175].
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The Cox Ross Rubinstein Approach

Later, Cox, Ross, and Rubinstein [71] developed a simplified approach using
the Binomial Law to reach the same pricing formulae. The approach com-
monly referred to as the Binomial Tree uses a tree of recombining spot prices
where at a given time-step n we have n + 1 possible S[n][j] spot prices, with
0 ≤ j ≤ n.

Calling p the upward transition probability and 1 − p the downward
transition probability, S the stock price today, and Su = uS and Sd = dS
upper and lower possible future spot prices, we can write the expectation
equation7

E[S] = puS + (1 − p)dS = erΔtS

which immediately gives us

p = a − d
u − d

with a = exp(rΔt).
We can also write the variance equation

Var[S] = pu2S2 + (1 − p)d2S2 − e2rΔtS2 ≈ 𝜎2S2Δt

which after choosing a centering condition such as ud = 1, will provide us
with u = exp(𝜎

√
Δt) and d = exp(−𝜎

√
Δt).

Using these values for u, d, and p, we can build the tree; and using the
final payoff, we can calculate the option price by backward induction.8 We
can also build this tree by applying an Explicit Finite Difference scheme to
the PDE (1.5) as was done in Wilmott [250]. An important advantage of
the tree method is that it can be applied to American Options (with early
exercise) as well.

It is possible to deduce the implied volatility of call and put options
by solving a reverse Black-Scholes equation: that is, find the volatility that
would equate the Black-Scholes price to the market price of the option.

This is a good way to see how derivatives markets perceive the underly-
ing volatility. It is easy to see that if we change the maturity and strike prices
of options (and keep everything else fixed), the implied volatility will not be
constant. It will have a linear skew and a convex form as the strike price

7The expectation equation is written under the risk-neutral probability.
8For an in-depth discussion on Binomial Trees see Cox [72].
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changes. This famous “smile” cannot be explained by simple time depen-
dence, hence the necessity of introducing new models.9
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SPX volatility smile on February 12, 2002, with Index = 1107.5 USD,
one month and seven months to maturity. The negative skewness is clearly
visible. Note how the smile becomes flatter as time to maturity increases.

JUMP DIFFUSION AND LEVEL-DEPENDENT VOLATILITY

In addition to the volatility smile observable from the implied volatilities of
the options, there is evidence that the assumption of a pure normal distribu-
tion (also called pure diffusion) for the stock return is not accurate. Indeed
“fat tails” have been observed away from the mean of the stock return.
This phenomenon is called leptokurticity and could be explained in many
different ways.

Jump Diffusion

Some try to explain the smile and the leptokurticity by changing the underly-
ing stock distribution from a diffusion process to a jump-diffusion process.

9It is interesting to note that this smile phenomenon was practically nonexistent prior
to the 1987 stock market crash. Many researchers therefore believe that the markets
have learned to factor in a crash possibility, which creates the volatility smile.
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A jump diffusion is not a level-dependent volatility process. However, we are
mentioning it in this section to demonstrate the importance of the leverage
effect.

Merton [200] was first to actually introduce jumps in the stock distri-
bution. Kou [180] recently used the same idea to explain both the existence
of fat tails and the volatility smile.

The stock price will follow a modified stochastic process under this
assumption. If we add to the Brownian Motion dBt a Poisson (jump) pro-
cess10 dq with an intensity11 𝜆, then calling k = E(Y − 1) with Y − 1 the
random variable percentage change in the stock price, we will have

dSt = (𝜇 − 𝜆k)Stdt + 𝜎StdBt + Stdq (1.9)

or equivalently

St = S0 exp
[(
𝜇 − 𝜎2

2
− 𝜆k

)
t + 𝜎Bt

]
Yn

where Y0 = 1 and Yn =
∏n

j=1 Yj with Yj’s independently identically dis-
tributed random variables and n a Poisson random variable with a
parameter 𝜆t.

It is worth noting that for the special case where the jump corresponds
to total ruin or default, we have k = −1, which will give us

dSt = (𝜇 + 𝜆)Stdt + 𝜎StdBt + Stdq (1.10)

and

St = S0 exp
[(
𝜇 + 𝜆 − 𝜎2

2

)
t + 𝜎Bt

]
Yn.

Given that in this case E(Yn) = E(Y2
n ) = e−𝜆t it is fairly easy to see that

in the risk-neutral world
E(St) = S0e

rt

exactly as in the pure diffusion case, but

Var(St) = S20e
2rt(e(𝜎2+𝜆)t − 1) ≈ S20(𝜎

2 + 𝜆)t (1.11)

unlike the pure diffusion case where Var(St) ≈ S20𝜎
2t.

10See for instance Karatzas [175].
11The intensity could be interpreted as the mean number of jumps per time unit.
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Proof

Indeed

E(St) = S0 exp((r + 𝜆)t) exp
(
−𝜎

2

2
t
)
E[exp(𝜎Bt)]E(Yn)

= S0 exp((r + 𝜆)t) exp
(
−𝜎

2

2
t
)
exp

(
𝜎2

2
t
)
exp(−𝜆t) = S0 exp(rt)

and

E(S2t ) = S20 exp(2(r + 𝜆)t) exp(−𝜎
2t)E[exp(2𝜎Bt)]E(Y2

n )

= S20 exp(2(r + 𝜆)t) exp(−𝜎
2t) exp

(
(2𝜎)2
2

)
exp(−𝜆t)

= S20 exp((2r + 𝜆)t) exp(𝜎
2t)

and as usual
Var(St) = E(S2t ) − E2(St)

(QED)

Link to Credit Spread Note that for a zero-coupon risky bond Z with no
recovery, a credit spread C and a face value X paid at time t we have

Z = e−(r+C)tX = e−𝜆t(e−rtX) + (1 − e−𝜆t)(0);

consequently, 𝜆 = C, and using (1.8) we can write

𝜎̃2(C) = 𝜎2 + C

where 𝜎 is the fixed (pure diffusion) volatility and 𝜎̃ is the modified jump dif-
fusion volatility. This equation relates the volatility and leverage, a concept
we will see later in level-dependent models as well.

Also, we could see that everything happens as if we were using the
Black-Scholes pricing equation but with a modified “interest rate,” which
is r + C. Indeed, the Hedged Portfolio Π = f − 𝜕f

𝜕S
S now satisfies

dΠ =
(
𝜕f
𝜕t

+ 1
2
𝜎2S2

𝜕2f
𝜕S2

)
dt

under the no-default case, which occurs with a probability of e−𝜆dt ≈ 1 − 𝜆dt
and

dΠ = −Π

under the default case, which occurs with a probability of 1 − e−𝜆dt ≈ 𝜆dt.



Trim Size: 6in x 9in Javaheri c01.tex V2 - 07/01/2015 7:57pm Page 11

The Volatility Problem 11

We therefore have

E(dΠ) =
(
𝜕f
𝜕t

+ 1
2
𝜎2S2

𝜕2f
𝜕S2

− 𝜆Π
)
dt

and using a diversification argument we can always say that E(dΠ) = rΠdt,
which provides us with

(r + 𝜆)f = 𝜕f
𝜕t

+ (r + 𝜆)S𝜕f
𝜕S

+ 1
2
𝜎2S2

𝜕2f
𝜕S2

(1.12)

which again is the Black-Scholes PDE with a “risky rate.”
A generalization of the jump-diffusion process would be the use of the

Levy process, a stochastic process with independent and stationary incre-
ments. Both the Brownian Motion and the Poisson process are included in
this category. For a description, see Matacz [196].

Level-Dependent Volatility

Many assume that the smile and the fat tails are due to the level dependence
of the volatility. The idea would be to make 𝜎t level dependent or a function
of the spot itself; we would therefore have

dSt = 𝜇tStdt + 𝜎(S, t)StdBt. (1.13)

Note that to be exact, a level-dependent volatility is a function of the spot
price alone. When the volatility is a function of the spot price and time, it is
referred to as local volatility, which we shall discuss further.

The Constant Elasticity Variance Approach One of the very first attempts to
use this approach was the Constant Elasticity Variance (CEV) method real-
ized by Cox [69] and [70]. In this method, we would suppose an equation
of the type

𝜎(S, t) = CS𝛾t (1.14)

where C and 𝛾 are parameters to be calibrated either from the stock price
returns themselves or from the option prices and their implied volatilities.
The CEV method was recently analyzed by Jones [173] in a paper where he
uses two 𝛾 exponents.

This level-dependent volatility represents an important feature that is
observed in options markets as well as in the underlying prices: the negative
correlation between the stock price and the volatility, also called the leverage
effect.
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The Bensoussan Crouhy Galai Approach Bensoussan, Crouhy, and Galai
(BCG) [34] try to find the level dependence of the volatility differently from
Cox and Ross. Indeed, in the CEV model, Cox and Ross first suppose that
𝜎(S, t) has a certain exponential form and only then try to calibrate the
model parameters to the market. BCG, on the other hand, try to deduce the
functional form of 𝜎(S, t) by using a firm structure model.

The idea of firm structure is not new and goes back to Merton [199]
where he considers that the Firm Assets follow a log-normal process

dV = 𝜇VVdt + 𝜎VVdBt (1.15)

where 𝜇V and 𝜎V are the assets return and volatility. One important point is
that 𝜎V is considered constant.

Merton then argues that the equity S of the firm could be considered a
call option on the assets of the firm with a strike price K equal to the face
value of the firm liabilities and an expiration T equal to the average liability
maturity.

Using Ito’s lemma, it is fairly easy to see that

dS = 𝜇Sdt + 𝜎(S, t)SdBt =
(
𝜕S
𝜕t

+ 𝜇VV
𝜕S
𝜕V

+ 1
2
𝜎2VV

2 𝜕
2S
𝜕V2

)
dt + 𝜎VV

𝜕S
𝜕V

dBt

(1.16)
which immediately provides us with

𝜎(S, t) = 𝜎V
V
S
𝜕S
𝜕V

(1.17)

which is an implicit functional form for 𝜎(S, t).
BCG then eliminate the asset term in the above functional form and end

up with a nonlinear PDE

𝜕𝜎

𝜕t
+ 1
2
𝜎2S2

𝜕2𝜎

𝜕S2
+ (r + 𝜎2)S𝜕𝜎

𝜕S
= 0. (1.18)

This PDE gives the dependence of 𝜎 on S and t.

Proof

A quick sketch of the proof is as follows: S being a contingent-claim on
V we have the risk-neutral Black-Scholes PDE

𝜕S
𝜕t

+ rV
𝜕S
𝜕V

+ 1
2
𝜎2VV

2 𝜕
2S
𝜕V2 = rS

and using 𝜕S
𝜕V

= 1∕ 𝜕V
𝜕S

as well as 𝜕S
𝜕t

= − 𝜕S
𝜕V

𝜕V
𝜕t

and 𝜕2S
𝜕V2 = − 𝜕2V

𝜕S2

/(
𝜕V
𝜕S

)3
we

have the reciprocal Black-Scholes equation

𝜕V
𝜕t

+ rS
𝜕V
𝜕S

+ 1
2
𝜎2S2

𝜕2V
𝜕S2

= rV.
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Now posing Ψ(S, t) = lnV(S, t), we have 𝜕V
𝜕t

= V 𝜕Ψ
𝜕t

as well as 𝜕V
𝜕S

= V 𝜕Ψ
𝜕S

and 𝜕2V
𝜕S2

= V
(
𝜕2Ψ
𝜕S2

+
(
𝜕Ψ
𝜕S

)2)
and will have the new PDE

r = 𝜕Ψ
𝜕t

+ rS
𝜕Ψ
𝜕S

+ 1
2
𝜎2S2

(
𝜕2Ψ
𝜕S2

+
(
𝜕Ψ
𝜕S

)2)
and the equation

𝜎 = 𝜎V

/(
S
𝜕Ψ
𝜕S

)
.

This last identity implies 𝜕Ψ
𝜕S

= 𝜎V
S𝜎

as well as 𝜕2Ψ
𝜕S2

=
−𝜎V

(
𝜎+S 𝜕𝜎

𝜕S

)
S2𝜎2

and therefore
the PDE becomes

r = 𝜕Ψ
𝜕t

+ r𝜎V∕𝜎 + 1
2

(
𝜎2V − 𝜎V

(
𝜎 + S

𝜕𝜎

𝜕S

))
.

Taking the derivative with respect to S and using 𝜕2Ψ
𝜕S𝜕t

= − 𝜎V
S𝜎2

𝜕𝜎

𝜕t
, we get

the final PDE
𝜕𝜎

𝜕t
+ 1
2
𝜎2S2

𝜕2𝜎

𝜕S2
+ (r + 𝜎2)S𝜕𝜎

𝜕S
= 0

as previously stated. (QED)

We therefore have an implicit functional form for 𝜎(S, t) and just like for
the CEV case, we need to calibrate the parameters to the market data.
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LOCAL VOLATILITY

In the early 1990s, Dupire [94] on the one hand, and Derman & Kani [79]
on the other, developed a concept called local volatility where the volatility
smile was retrieved from the option prices.

The Dupire Approach
The Breeden & Litzenberger Identity This approach uses the options prices
to get the implied distribution for the underlying stock. To do this we can
write

V(S0,K,T) = call(S0,K,T) = e−rT ∫
+∞

0
(S − K)+p(S0, S,T)dS (1.19)

where S0 is the stock price at time t = 0 and K the strike price of the call,
and p(S0, S,T) the unknown transition density for the stock price. As usual,
x+ = MAX(x,0).

Using the equation (1.19) and differentiating with respect to K twice,
we get the Breeden & Litzenberger [47] implied distribution

p(S0,K,T) = erT
𝜕2V
𝜕K2 (1.20)
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Proof

The proof is straightforward if we write

erTV(S0,K,T) = ∫
+∞

K
Sp(S0, S,T)dS − K∫

+∞

K
p(S0, S,T)dS

and take the first derivative

erT
𝜕V
𝜕K

= −Kp(S0,K,T) + Kp(S0,K,T) − ∫
+∞

K
p(S0, S,T)dS

and the second derivative in the same manner. (QED)

The Dupire Identity Now according to the Fokker-Planck (or forward
Kolmogorov) equation12 for this density, we have

𝜕p
𝜕T

= 1
2
𝜕2(𝜎2(S, t)S2p)

𝜕S2
− r

𝜕(Sp)
𝜕S

and therefore after a little rearrangement

𝜕V
𝜕T

= 1
2
𝜎2K2 𝜕

2V
𝜕K2 − rK

𝜕V
𝜕K

which provides us with the local volatility formula

𝜎2(K,T) =
𝜕V
𝜕T

+ rK 𝜕V
𝜕K

1
2
K2 𝜕2V

𝜕K2

. (1.21)

Proof

For a quick proof of this, let us use the zero interest rates case (the gen-
eral case could be done similarly). We would then have

p(S0,K,T) =
𝜕2V
𝜕K2

as well as Fokker-Planck

𝜕p
𝜕T

= 1
2
𝜕2(𝜎2(S, t)S2p)

𝜕S2
.

12See for example Wilmott [249] for an explanation on Fokker-Planck equation.
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Now

𝜕V
𝜕T

= ∫
+∞

0
(ST − K)+ 𝜕p

𝜕T
dST

= ∫
+∞

0
(ST − K)+ 1

2
𝜕2(𝜎2(S,T)S2p)

𝜕S2
dST

and integrating by parts twice and using the fact that

𝜕2(ST − K)+

𝜕K2 = 𝛿(ST − K)

with 𝛿(.) the Dirac function, we will have

𝜕V
𝜕T

= 1
2
𝜎2(K,T)K2p(S0,K,T) =

1
2
K2𝜎2(K,T)𝜕

2V
𝜕K2

as stated. (QED)

It is also possible to use the implied volatility 𝜎BS from the Black-Scholes
formula (1.5) and express the above local volatility in terms of 𝜎BS instead
of V. For a detailed discussion, we could refer to Wilmott [249].

Local Volatility vs. Instantaneous Volatility Clearly the local volatility is
related to the instantaneous variance vt, as Gatheral [118] shows. The
relationship could be written as

𝜎2(K,T) = E[vT|ST = K] (1.22)

That is, local variance is the risk-neutral expectation of the instantaneous
variance conditional on the final stock price being equal to the strike price.13

Proof

Let us show the above identity for the case of zero interest rates.14

As mentioned above, we have

𝜎2(K,T) =
𝜕V
𝜕T

1
2
K2 𝜕2V

𝜕K2

.

13Note that this is independent from the process for vt, meaning that any stochastic
volatility model satisfies this property, which is an attractive feature of local volatility
models.
14For the case of non-zero rates we need to work with the forward price instead of
the stock price.
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On the other hand using the call payoff V(S0,K, t = T) = E[(ST − K)+],
we have

𝜕V
𝜕K

= E[H(ST − K)]

with H(.) the Heaviside function and

𝜕2V
𝜕K2 = E[𝛿(ST − K)]

with 𝛿(.) the Dirac function.
Therefore, the Ito lemma at t = T would provide

d(ST − K)+ = H(ST − K)dST + 1
2
vTS

2
T𝛿(ST − K)dT.

Using the fact that the forward price (here with zero interest rates, the
stock price) is a martingale under the risk-neutral measure

dV = dE[(ST − K)+] = 1
2
E[vTS2T𝛿(ST − K)]dT,

now we have

E[vTS2T𝛿(ST − K)] = E[vT|ST = K]K2E[𝛿(ST − K)]

= E[vT|ST = K]K2 𝜕
2V
𝜕K2 .

Putting all this together

𝜕V
𝜕T

= 1
2
K2 𝜕

2V
𝜕K2

E[vT|ST = K]

and by the above expression of 𝜎2(K,T), we will have

𝜎2(K,T) = E[vT|ST = K]

as claimed. (QED)

The Derman Kani Approach

The Derman Kani technique is very similar to the Dupire approach, except
it uses the Binomial (or Trinomial) Tree framework instead of the continu-
ous one.
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Using the Binomial Tree notations, their upward transition probability
pi from the spot si at time tn to the upper node Si+1 at the following time-step
tn+1 is obtained from the usual

pi =
Fi − Si
Si+1 − Si

(1.23)

where Fi is the stock forward price known from the market, and Si the lower
spot at the step tn+1.

In addition, we have for a call expiring at time-step tn+1

C(K, tn+1) = e−rΔt
n∑
j=1

[𝜆jpj + 𝜆j+1(1 − pj+1)]MAX(Sj+1 − K,0)

where 𝜆j’s are the known Arrow-Debreu prices corresponding to the dis-
counted probability of getting to the point sj at time tn from S0, the initial
stock price. These probabilities could easily be derived iteratively.

This allows us after some calculation to obtain Si+1 as a function of si
and Si, namely

Si+1 = Si[erΔtC(si,K, tn+1) − Σ] − 𝜆isi(Fi − Si)
[erΔtC(si,K, tn+1) − Σ] − 𝜆i(Fi − Si)

where the term Σ represents the sum
∑n

j=i+1 𝜆j(Fj − si). This means that after
choosing the usual centering condition for the Binomial Tree

s2i = SiSi+1,

we have all the elements to build the tree and deduce the implied distribution
from the Arrow-Debreu prices.

Stability Issues

The local volatility models are very elegant and theoretically sound; however,
they present in practice many stability issues. They are Ill-Posed Inversion
problems and are extremely sensitive to the input data.15 This might intro-
duce arbitrage opportunities and in some cases negative probabilities or
variances. Derman and Kani suggest overwriting techniques to avoid such
problems.

15See Tavella [237] or Avellaneda [17].
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Andersen [14] tries to improve this issue by using an Implicit Finite Dif-
ference method. However, he recognizes that the negative variance problem
could still happen.

One way to make the results smoother is to use a constrained
optimization.

In other words, when trying to fit theoretical results Ctheo to the market
prices Cmrkt, instead of minimizing

N∑
j=1

(Ctheo(Kj) − Cmrkt(Kj))2

we could minimize

𝜆
𝜕𝜎

𝜕t
+

N∑
j=1

(Ctheo(Kj) − Cmrkt(Kj))2

where 𝜆 is a constraint parameter, which could also be interpreted as a
Lagrange multiplier.

However, this is an artificial way to smoothen the results and the real
issue remains that once again, we have an inversion problem that is inher-
ently unstable.

What is more, local volatility models imply that future implied volatil-
ity smiles will be flat relative to today’s, which is another limitation.16 As
we will see in the following section, stochastic volatility models offer more
time-homogeneous volatility smiles.

An alternative approach suggested in [17] would be to choose a prior
risk-neutral distribution for the asset (based on a subjective view) and then
minimize the relative Entropy distance between the desired surface and this
prior distribution. This approach uses the Kullback-Leibler distance (which
we will discuss in the context of MLE) and performs the minimization via
Dynamic Programming [37] on a tree.

Calibration Frequency

One of the most attractive features of local-vol models is their ability to
match plain-vanilla puts and calls exactly. This will avoid arbitrage situ-
ations, or worse, market manipulations by traders to create “phantom”
profits.

16See Gatheral [119].
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As explained in Hull [154], these arbitrage-free models were developed
by researchers with a Single Calibration (SC) methodology assumption.
However, traders use them with a Continual Recalibration (CR) strategy in
practice. Indeed, if they used the SC version of the model, significant errors
would be introduced from one week to the following, as shown by Dumas
et al. [93].

However, once this CR version is used, there is no guarantee that the
no-arbitrage property of the original SC model is preserved. Indeed, the
Dupire equation determines the marginal stock distribution at different
points in time, but not the joint distribution of these stock prices. Therefore,
a path-dependent option could very well be mispriced, and the more
path-dependent this option, the greater the mispricing.

Hull [154] takes the example of a Bet Option, a Compound Option,
and a Barrier Option. The Bet Option depends on the distribution of the
stock at one point in time and therefore is correctly priced with a Continu-
ally Recalibrated Local-Vol model. The Compound Option has some path
dependency, hence a certain amount of mispricing compared to a stochastic
volatility (SV) model. Finally, the Barrier Option has a strong degree of path
dependency and will introduce large errors.

Note that this is due to the discrete nature of the data. Indeed, the matu-
rities we have are limited. If we had all possible maturities in a continuous
way, the joint distribution would be determined completely.

Also, when interpolating in time, it is customary to interpolate upon the
true variance t𝜎2t rather than the volatility 𝜎t given the equation

T2𝜎
2(T2) = T1𝜎

2(T1) + (T2 − T1)𝜎2(T1,T2).

Interpolating upon the true variance will provide smoother results as
shown by Jackel [159].

Proof

Indeed, calling for 0 ≤ T1 ≤ T2 the spot return variances

Var(0,T2) = T2𝜎
2(T2)

Var(0,T1) = T1𝜎
2(T1)

for a Brownian Motion, we have independent increments and therefore a
forward variance Var(T1,T2) such that

Var(0,T1) + Var(T1,T2) = Var(0,T2)

which demonstrates the point. (QED)
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STOCHASTIC VOLATILITY

Unlike non-parametric local volatility models, parametric stochastic volatil-
ity (SV) models define a specific stochastic differential equation for the unob-
servable instantaneous variance. As we shall see, the previously defined CEV
model could be considered a special case of these models.

Stochastic Volatility Processes
The idea would be to use a different stochastic process for 𝜎 altogether. Mak-
ing the volatility a deterministic function of the spot is a special “degenerate”
two-factor, a natural generalization of which would precisely be to have two
stochastic processes with a non-perfect correlation.17

Several different stochastic processes have been suggested for the volatil-
ity. One popular one is the Ornstein-Uhlenbeck (OU) process:

d𝜎t = −𝛼𝜎tdt + 𝛽dZt (1.24)

where 𝛼 and 𝛽 are two parameters; remembering the stock equation

dSt = 𝜇tStdt + 𝜎tStdBt,

there is a (usually negative) correlation 𝜌 between dZt and dBt which can in
turn be time or level dependent.

Heston [141] and Stein [234] were among those who suggested the use
of this process. Using Ito’s lemma, we can see that the stock-return variance
vt = 𝜎2t satisfies a Square-Root or Cox-Ingersoll-Ross (CIR) process

dvt = (𝜔 − 𝜃vt)dt + 𝜉
√
vtdZt (1.25)

with 𝜔 = 𝛽2, 𝜃 = 2𝛼 and 𝜉 = 2𝛽.
Note that the OU process has a closed-form solution

𝜎t = 𝜎0e
−𝛼t + 𝛽 ∫

t

0
e−𝛼(t−s)dZs

which means that 𝜎t follows in lawΦ(𝜎0e−𝛼t,
𝛽2

2𝛼
(1 − e−2𝛼t)), withΦ again the

normal distribution. This was discussed in Fouque [109] and Shreve [229].

17Note that here, the instantaneous volatility is stochastic. Recent work by
researchers such as Schonbucher supposes a Stochastic Implied-Volatility process,
which is a completely different approach. See for instance [224].

On the other hand, Avellaneda et al. [18] use the concept of uncertain volatility
for pricing and hedging derivative securities. They make the volatility switch between
two extreme values based on the convexity of the derivative contract and obtain a
nonlinear Black-Scholes-Barenblatt equation, which they solve on a grid.
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Heston and Nandi [144] show that this process corresponds to a
special case of the General Auto-Regressive Conditional Heteroskedasticity
(GARCH) model that we will discuss further in the next section.

Another popular process is the GARCH(1,1) process, where we would
have

dvt = (𝜔 − 𝜃vt)dt + 𝜉vtdZt. (1.26)

GARCH and Diffusion Limits

The most elementary GARCH process called GARCH(1,1) was developed
originally in the field of econometrics by Engle [99] and Bollerslev [42] in a
discrete framework. The stock discrete equation (1.3) could be rewritten by
taking Δt = 1 and vn = 𝜎2n as

ln Sn+1 = ln Sn +
(
𝜇 − 1

2
vn+1

)
+
√
vn+1Bn+1 (1.27)

and calling the mean adjusted return

un = ln
(

Sn
Sn−1

)
−
(
𝜇 − 1

2
vn

)
=
√
vnBn. (1.28)

The variance process in GARCH(1,1) is supposed to be

vn+1 = 𝜔0 + 𝛽vn + 𝛼u2n = 𝜔0 + 𝛽vn + 𝛼vnB2
n (1.29)

where 𝛼 and 𝛽 are weight parameters and 𝜔0 a parameter related to the
long-term variance.18

Nelson [204] shows that as the time interval length decreases and
becomes infinitesimal, equation (1.29) becomes precisely the previously
cited equation (1.26). To be more accurate, there is a weak convergence
of the discrete GARCH process to the continuous diffusion limit.19 For a
GARCH(1,1) continuous diffusion, the correlation between dZt and dBt
is zero.

18It is worth mentioning that as explained in [105] a GARCH(1,1) model could be
rewritten as an Auto-Regressive Moving Average model of first order ARMA(1,1)
and therefore an Auto-Regressive model of infinite order AR(+∞).

GARCH is therefore a parsimonious model that can fit the data with only a few
parameters. Fitting the same data with an ARCH or ARmodel would require a much
larger number of parameters. This feature makes the GARCH model very attractive.
19For an explanation on weak convergence see for example Varadhan [241].
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It might appear surprising that even if the GARCH(1,1) process has
only one source of randomness, namely Bn, the continuous version has two
independent Brownian Motions. This is understandable if we consider Bn a
standard normal random variable and An = B2

n − 1 another random vari-
able. It is fairly easy to see that An and Bn are uncorrelated even if An
is a function of Bn. As we go toward the continuous version, we can use
Donsker’s theorem,20 by letting the time interval Δt → 0, to prove that we
end upwith two uncorrelated and therefore independent BrownianMotions.
This is a limitation of the GARCH(1,1) model, hence the introduction of the
Nonlinear Asymmetric GARCH (NGARCH) model.

Duan [88] attempts to explain the volatility smile by using theNGARCH
process expressed by

vn+1 = 𝜔0 + 𝛽vn + 𝛼(un − c
√
vn)2 (1.30)

where c is a parameter to be determined.
The NGARCH process was first introduced by Engle [102]. The contin-

uous counterpart of NGARCH is the same equation (1.26), except unlike
the equation resulting from GARCH(1,1) there is a non-zero correlation
between the stock process and the volatility process. This correlation is cre-
ated precisely because of the parameter c that was introduced, and is once
again called the leverage effect. The parameter c is sometimes referred to as
the leverage parameter.

We can find the following relationships between the discrete process and
the continuous diffusion limit parameters by letting the time interval become
infinitesimal

𝜔 = 𝜔0

dt2

𝜃 = 1 − 𝛼(1 + c2) − 𝛽
dt

𝜉 = 𝛼

√
𝜅 − 1 + 4c2

dt

and the correlation between dBt and dZt

𝜌 = −2c√
𝜅 − 1 + 4c2

20For a discussion on Donsker’s theorem, similar to the central limit theorem, see for
instance Whitt [247].
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where 𝜅 represents the Pearson kurtosis21 of the mean adjusted returns (un).
As we can see, the sign of the correlation 𝜌 is determined by the parameter c.

Proof

A quick proof of the convergence to diffusion limit could be outlined
as follows. Let us assume that c = 0 for simplicity, we therefore are dealing
with the GARCH(1,1) case.

As we saw
vn+1 = 𝜔0 + 𝛽vn + 𝛼vnB2

n

therefore
vn+1 − vn = 𝜔0 + 𝛽vn − vn + 𝛼vn − 𝛼vn + 𝛼vnB2

n

or
vn+1 − vn = 𝜔0 − (1 − 𝛼 − 𝛽)vn + 𝛼vn(B2

n − 1).

Now, allowing the time-step Δt to become variable and posing Zn =
(B2

n − 1)∕
√
𝜅 − 1

vn+Δt − vn = 𝜔Δt2 − 𝜃Δtvn + 𝜉vn
√
ΔtZn

and annualizing vn by posing vt = vn∕Δt we shall have

vt+Δt − vt = 𝜔Δt − 𝜃Δtvt + 𝜉vt
√
ΔtZn

and as Δt → 0 we get

dvt = (𝜔 − 𝜃vt)dt + 𝜉vtdZt

as claimed. (QED)

Note that the discrete GARCH version of the Square-Root process (1.15) is

vn+1 = 𝜔0 + 𝛽vn + 𝛼(Bn − c
√
vn)2 (1.31)

as Heston and Nandi show22 in [144].
Also, note that having a diffusion process dvt = b(vt)dt + a(vt)dZt we

can apply an Euler approximation23 to discretize and obtain a Monte-Carlo
process such as vn+1 − vn = b(vn)Δt + a(vn)

√
ΔtZn. It is important to note

that if we use a GARCHprocess and go to the continuous diffusion limit, and

21The kurtosis corresponds to the fourth moment. The Pearson kurtosis for a normal
distribution is equal to 3.
22For a detailed discussion on the convergence of different GARCH models toward
their diffusion limits, also see Duan [90].
23See for instance Jones [173].
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then apply an Euler Approximation, we will not necessarily find the original
GARCH process again. Indeed, there are many different ways to discretize
the continuous diffusion limit and the GARCH process corresponds to one
special way.

In particular, if we use (1.31) and allow Δt → 0 to get to the continuous
diffusion limit, we shall obtain (1.25). As we will see later in the section
on Mixing Solutions, we can then apply a discretization to this process and
obtain a Monte-Carlo simulation

vn+1 = vn + (𝜔 − 𝜃vn)Δt + 𝜉
√
vn
√
ΔtZn

which is again different from (1.31) but obviously has to be consistent in
terms of pricing. However, we should know which method we are working
with from the very beginning to perform our calibration on the correspond-
ing specific process.

Corradi [66] explains this in the followingmanner: The discrete GARCH
model could converge either toward a two-factor continuous limit if one
chooses the Nelson parameterization, or could very well converge to a
one-factor diffusion limit if one chooses another parameterization. What
is more, an appropriate Euler discretization of the one-factor continuous
modelwill provide aGARCHdiscrete process, while as previouslymentioned
the discretization of the two-factor diffusion model provides a two-factor
discrete process. This distinction is fundamental and could explain why
GARCH and SV behave differently in terms of parameter estimation.
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THE PRICING PDE UNDER STOCHASTIC VOLATILITY

A very important issue to underline here is that, because of the unhedgeable
second source of randomness, the concept of Market Completeness is lost.
We can no longer have a straightforward risk neutral pricing. This is where
the market price of risk will come into consideration.

The Market Price of Volatility Risk

Indeed, taking a more general form for the variance process

dvt = b(vt)dt + a(vt)dZt (1.32)

as we previously said, using the Black-Scholes risk-neutrality argument, the
equation (1.1) could be replaced with

dSt = (rt − qt)Stdt + 𝜎tStdBt. (1.33)

This is equivalent to changing the probability measure from the real one to
the risk-neutral one.24 We therefore need to use (1.33) together with the risk
adjusted volatility process

dvt = b̃(vt)dt + a(vt)dZt (1.34)

where
b̃(vt) = b(vt) − 𝜆a(vt)

with 𝜆 the market price of volatility risk. This quantity is closely related
to the market price of risk for the stock 𝜆e = (𝜇 − r)∕𝜎. Indeed, as Hobson
[147] and Lewis [185] both show, we have

𝜆 = 𝜌𝜆e +
√
1 − 𝜌2𝜆∗ (1.35)

where 𝜆∗ is the market price of risk associated with dBt − 𝜌dZt, which can
also be regarded as the market price of risk for the hedged portfolio.

The passage from equation (1.32) to (1.34) and the introduction of
the market price of volatility risk could also be explained by the Girsanov
theorem as was done for instance in Fouque [109].

24See Hull [153] or Shreve [229] for more detail.
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It is important to underline the difference between the real and the
risk-neutral measures here. If we use historic stock prices together with
the real stock-return drift 𝜇 to estimate the process parameters, we will
obtain the real volatility drift b(v). An alternative method would be to
estimate b̃(v) by using current option prices and performing a least square
estimation. These calibration methods will be discussed in more detail in
the following chapters.

The risk-neutral version for a discrete NGARCH model would also
involve the market price of risk and instead of the usual

ln Sn+1 = ln Sn +
(
𝜇 − 1

2
vn+1

)
+
√
vn+1Bn+1

vn+1 = 𝜔0 + 𝛽vn + 𝛼vn(Bn − c)2,

we would have

ln Sn+1 = ln Sn +
(
r − 1

2
vn+1

)
+
√
vn+1B̃n+1 (1.36)

vn+1 = 𝜔0 + 𝛽vn + 𝛼vn(B̃n − c − 𝜆e)2

where B̃n = Bn + 𝜆e which could be regarded as the discrete version of the
Girsanov theorem. Note that the market price of risk for the stock 𝜆e is not
separable from the leverage parameter c in this formulation.

Duan shows in [89] and [91] that the risk-neutral GARCH system (1.36)
will indeed converge toward the continuous risk-neutral GARCH

dSt = Strdt + St
√
vtdBt

dvt = (𝜔 − 𝜃vt)dt + 𝜉vtdZt

as we expected.

The Two-Factor PDE
From here, writing a two-factor PDE for a derivative security f becomes a
simple application of the two-dimensional Ito’s lemma. The PDE will be25

rf = 𝜕f
𝜕t

+ (r − q)S𝜕f
𝜕S

+ 1
2
vS2

𝜕2f
𝜕S2

+ b̃(v)𝜕f
𝜕v

+ 1
2
a2(v)𝜕

2f
𝜕v2

+ 𝜌a(v)
√
vS

𝜕2f
𝜕S𝜕v

(1.37)

25For a proof of the derivation see Wilmott [249] or Lewis [185].
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Therefore, it is possible, after calibration, to apply a Finite Difference
method26 to the above PDE to price the derivative f (S, t, v). An alterna-
tive would be to use directly the stochastic processes for dSt and dvt and
apply a two-factorMonte-Carlo simulation. Later in the chapter we will also
mention other possible methods such as the Mixing Solution or Asymptotic
Approximations.

Other possible approaches for incomplete markets and stochas-
tic volatility assumption include Super-Replication and Local Risk
Minimization.27

The Super-Replication strategy is the cheapest self-financing strategy
with a terminal value no less than the payoff of the derivative contract. This
technique was primarily developed by El-Karoui and Quenez in [96].

Local Risk Minimization involves a partial hedging of the risk. The risk
is reduced to an “intrinsic component” by taking an offsetting position in
the underlying security as usual. This method was developed by Follmer and
Sondermann in [107].

THE GENERALIZED FOURIER TRANSFORM

The Transform Technique

One useful technique to apply to the PDE (1.37) is the Generalized Fourier
Transform.28 First, we can use the variable x = ln S in which case, using Ito’s
lemma, (1.37) could be rewritten as

rf = 𝜕f
𝜕t

+
(
r − q − 1

2
v
)
𝜕f
𝜕x

+ 1
2
v
𝜕2f
𝜕x2

+ b̃(v)𝜕f
𝜕v

+ 1
2
a2(v)𝜕

2f
𝜕v2

+ 𝜌a(v)
√
v
𝜕2f
𝜕x𝜕v

(1.38)

Calling

f̂ (k, v, t) = ∫
+∞

−∞
eikxf (x, v, t)dx (1.39)

where k is a complex number,29 f̂ will be defined in a complex strip where
the imaginary part of k is between two real numbers 𝛼 and 𝛽.

26See for instance Tavella [238] orWilmott [249] for a discussion on Finite Difference
Methods.
27For a discussion on both these techniques see Frey [112].
28See Lewis [185] for a detailed discussion on this technique.
29As usual we note i =

√
−1.
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Once f̂ is suitably defined, meaning that ki = (k) (the imaginary part
of k) is within the appropriate strip, we can write the Inverse Fourier
Transform

f (x, v, t) = 1
2𝜋 ∫

iki+∞

iki−∞
e−ikxf̂ (k, v, t)dk (1.40)

where we are integrating for a fixed ki parallel to the real axis.
Each derivative satisfying (1.37) or equivalently (1.38) has a known pay-

off G(ST) at maturity. For instance, as we said before, a call option has
a payoff MAX(0, ST − K) where K is the call strike price. It is easy to see
that for ki > 1 the Fourier Transform of a call option exists and the payoff
transform is

− Kik+1

k2 − ik
(1.41)

Proof

Indeed, we can write

∫
+∞

−∞
eikx(ex − K)+dx = ∫

+∞

lnK
eikx(ex − K)dx

= 0 −
(
Kik+1

ik + 1
− K

Kik

ik

)
= −Kik+1

(
1

ik + 1
− 1
ik

)
= −Kik+1 1

k2 − ik

as stated. (QED)

The same could be applied to a put option or other derivative securities. In
particular, a covered call (stock minus call) having a payoffMIN(ST ,K) will
have a transform for 0 < ki < 1 equal to

Kik+1

k2 − ik
(1.42)

Applying the transform to the PDE (1.38) and introducing 𝜏 = T − t and

ĥ(k, v, 𝜏) = e(r+ik(r−q))𝜏 f̂ (k, v, 𝜏) (1.43)

and posing30 c(k) = 1
2
(k2 − ik), we get the new PDE equation

𝜕ĥ
𝜕𝜏

= 1
2
a2(v)𝜕

2ĥ
𝜕v2

+ (b̃(v) − ik𝜌(v)a(v)
√
v)𝜕ĥ
𝜕v

− c(k)vĥ. (1.44)

30We are following Lewis [185] notations.
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Lewis calls the Fundamental Transform a function Ĥ(k, v, 𝜏) satisfying
the PDE (1.44) and satisfying the initial condition Ĥ(k, v, 𝜏 = 0) = 1.

If we know this Fundamental Transform, we can then multiply it by the
derivative security’s payoff transform and then divide it by e(r+ik(r−q))𝜏 and
apply the inverse Fourier technique by keeping ki in an appropriate strip and
finally get the derivative as a function of x = ln S.

Special Cases

There are cases where the Fundamental Transform is known. The case of
a constant (or deterministic) volatility is the most elementary one. Indeed,
using (1.44) together with dvt = 0 we can easily find

Ĥ(k, v, 𝜏) = e−c(k)v𝜏

which is analytic in k over the entire complex plane. Using the call pay-
off transform (1.41), we can rederive the Black-Scholes equation. The same
can be done if we have a deterministic volatility dvt = b(vt)dt by using the
function Y(v, t) where dY = b(Y)dt.

The Square-Root model (1.25) is another important case where
Ĥ(k, v, 𝜏) is known and analytic. We have for this process

dvt = (𝜔 − 𝜃vt)dt + 𝜉
√
vtdZt

or under the risk-neutral measure

dvt = (𝜔 − 𝜃vt)dt + 𝜉
√
vtdZt

with 𝜃 = (1 − 𝛾)𝜌𝜉 +
√
𝜃2 − 𝛾(1 − 𝛾)𝜉2 where 𝛾 ≤ 1 represents the risk-

aversion factor.
For the Fundamental Transform, we get

Ĥ(k, v, 𝜏) = exp[f1(t) + f2(t)v] (1.45)

with

t = 1
2
𝜉2𝜏 𝜔̃ = 2

𝜉2
𝜔 c̃ = 2

𝜉2
c(k) and

f1(t) =
[
tg − ln

(
1 − hetd

1 − h

)]
𝜔̃

f2(t) =
[
1 − etd

1 − hetd

]
g
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where

d =
√
𝜃
2 + 4c̃ g = 1

2
(𝜃 + d) h = 𝜃 + d

𝜃 − d
and

𝜃 = 2
𝜉2

[(1 − 𝛾 + ik)𝜌𝜉 +
√
𝜃2 − 𝛾(1 − 𝛾)𝜉2]

This transform has a cumbersome expression, but it can be seen
that it is analytic in k and therefore always exists. For a proof refer to
Lewis [185].

The Inversion of the Fourier Transform for the Square-Root (Heston)
model is a very popular and powerful approach. It is appealing due to its
robustness and speed.

The following example is based on SPX options as of March 9, 2004,
expiring in one to eight years from the calibration date.

SPX implied surface as of 03/09/2004. T is the maturity and M = K∕S the
inverse of the moneyness.

T / M 0.70 0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20 1.30

1.000 24.61 21.29 19.73 18.21 16.81 15.51 14.43 13.61 13.12 12.94 13.23
2.000 21.94 18.73 18.68 17.65 16.69 15.79 14.98 14.26 13.67 13.22 12.75
3.000 20.16 18.69 17.96 17.28 16.61 15.97 15.39 14.86 14.38 13.96 13.30
4.000 19.64 18.48 17.87 17.33 16.78 16.26 15.78 15.33 14.92 14.53 13.93
5.000 18.89 18.12 17.70 17.29 16.88 16.50 16.13 15.77 15.42 15.11 14.54
6.000 18.46 17.90 17.56 17.23 16.90 16.57 16.25 15.94 15.64 15.35 14.83
7.000 18.32 17.86 17.59 17.30 17.00 16.71 16.43 16.15 15.88 15.62 15.15
8.000 17.73 17.54 17.37 17.17 16.95 16.72 16.50 16.27 16.04 15.82 15.40

Heston prices fitted to the March 9, 2004, surface.

T / M 0.70 0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20 1.30

1.000 30.67 21.44 17.09 13.01 9.33 6.18 3.72 2.03 1.03 0.50 0.13
2.000 31.60 22.98 18.98 15.25 11.87 8.89 6.37 4.35 2.83 1.78 0.66
3.000 32.31 24.18 20.44 16.98 13.82 11.00 8.55 6.47 4.77 3.43 1.66
4.000 33.21 25.48 21.93 18.66 15.63 12.91 10.50 8.39 6.61 5.10 2.93
5.000 33.87 26.54 23.20 20.09 17.22 14.63 12.30 10.21 8.39 6.82 4.36
6.000 34.56 27.55 24.34 21.36 18.60 16.08 13.79 11.73 9.89 8.26 5.64
7.000 35.35 28.61 25.52 22.64 19.96 17.49 15.24 13.19 11.35 9.70 6.97
8.000 35.77 29.34 26.39 23.64 21.07 18.69 16.51 14.51 12.68 11.04 8.24
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As we shall see further, the optimal Heston parameter-set to fit this sur-
face could be found via a Least Square Estimation approach, and for the
index at S = 1156.86 USD we find the optimal parameters v̂0 = 0.1940 and

Ψ̂ = (𝜔̂, 𝜃̂, 𝜉, 𝜌̂) = (0.052042332,1.8408,0.4710,−0.4677).
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SPX implied surface as ofMarch 9, 2004. We can observe the negative skew-
ness as well as the flattening of the slope with maturity.

THE MIXING SOLUTION

The Romano Touzi Approach

The idea of Mixing Solutions was probably presented for the first time by
Hull and White [156] for a zero correlation case. Later, Romano and Touzi
[220] generalized this approach for a correlated case.

The basic idea is to separate the random processes of the stock and the
volatility, integrate the stock process conditionally on a given volatility, and
finally end up with a one-factor problem.

Let us recall the two processes we had:

dSt = (rt − qt)Stdt + 𝜎tStdBt

and
dvt = b̃(vt)dt + a(vt)dZt

under a risk-neutral measure.
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Given a correlation 𝜌t between dBt and dZt, we can introduce the
Brownian Motion dWt independent of dZt and write the usual Cholesky31

factorization:

dBt = 𝜌tdZt +
√
1 − 𝜌2t dWt

We can then introduce the same Xt = ln St and write the new system of
equations:

dXt = (r − q)dt + dYt −
1
2
(1 − 𝜌2t )𝜎2t dt +

√
1 − 𝜌2t 𝜎tdWt (1.46)

dYt = −1
2
𝜌2t 𝜎

2
t dt + 𝜌t𝜎tdZt

dvt = b̃tdt + atdZt

where once again, the two Brownian Motions are independent.
It is now possible to integrate the stock process for a given volatility and

end up with an expectation on the volatility process only. We can think of
(1.46) as the limit of a discrete process, while the time step Δt → 0.

For a derivative security f (S0, v0,T) with a payoff32 G(ST), using the
bivariate normal density for two uncorrelated variables, we can write

f (S0, v0,T) = e−rTE0[G(ST)] (1.47)

= e−rT lim
Δt→0∫

∞

−∞
. . . ∫

∞

−∞
G(ST)

×
T−Δt∏
t=0

exp
[
−1
2
(Z2

t +W2
t )
]
dZtdWt

2𝜋
.

Now if we know how to integrate this over dWt for a given volatility and
we know the result f ∗(S, v,T) (for instance, for a European call option, we
know the Black-Scholes formula (1.6), there are many other cases where we
have closed-form solutions), then we can introduce the auxiliary variables33

Seff = S0e
YT = S0 exp

(
−1
2 ∫

T

0
𝜌2t 𝜎

2
t dt + ∫

T

0
𝜌t𝜎tdZt

)
(1.48)

31See for example Press [214].
32The payoff should not depend on the volatility process.
33Again, all notations are taken from Lewis [185].
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and

veff = 1
T ∫

T

0
(1 − 𝜌2t )𝜎2t dt (1.49)

and as Romano and Touzi prove in [220] we will have

f (S0, v0,T) = E0[f ∗(Seff , veff ,T)] (1.50)

where this last expectation is being taken on dZt only.
Note that in the zero correlation case discussed by Hull andWhite [156]

we have Seff = S0 and veff = vT = 1
T
∫ T
0 𝜎2t dt, which makes the expression

(1.50) a natural weighted average.

A One-Factor Monte-Carlo Technique

As Lewis suggests, this will enable us to run a single-factor Monte-Carlo
simulation on the dZt and apply the known closed-form for each simulated
path. The method does suppose however that the payoff G(ST) does not
depend on the volatility.

Indeed, going back to (1.46) we can do a simulation on Yt and vt using
the random sequence of (Zt), then after one path is generated, we can cal-
culate Seff = S0 exp(YT) and veff = 1

T

∑T−Δt
t=0 (1 − 𝜌2t )vtΔt and then apply the

known closed-form (e.g., Black-Scholes for a call or put) with Seff and veff .
Repeating this procedure for a large number of times and averaging over the
paths, as we usually do in Monte-Carlo methods, we will have f (S0, v0,T).

This will give us a way to calibrate the model parameters to the market
data. For instance using the Square-Root model

dvt = (𝜔 − 𝜃vt)dt + 𝜉
√
vtdZt,

we can estimate 𝜔, 𝜃, 𝜉, and 𝜌 from the market prices via a least-square esti-
mation applied to theoretical prices obtained from the above Monte-Carlo
method. We can either use a single calibration and suppose we have
time-independent parameters, or perform one calibration per maturity.
The single calibration method is known to provide a bad fit, hence the
idea of adding jumps to the stochastic volatility process as described by
Matytsin [197]. However, this method will introduce new parameters for
calibration.34

34Eraker et al. [103] claim that a model containing jumps in the return and the
volatility process will fit the options and the underlying data well, and will have
no misspecification left.
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Mixing Monte-Carlo simulation with the Square-Root model for SPX on
February 12, 2002, with Index = 1107.5 USD, one month and seven months
to maturity. Powell Optimization method was used for Least-Square Cali-
bration. As we can see, both maturities are fitted fairly well.

THE LONG-TERM ASYMPTOTIC CASE

In this section, we will discuss the case where the contract time to maturity is
very large, that is, t → ∞. We will focus on the special case of a Square-Root
process, since this is the model we will use in many cases.

The Deterministic Case
We shall start with the case of deterministic volatility and use that for the
more general case of the stochastic volatility.

We know that under the Square-Root model the variance follows

dvt = (𝜔 − 𝜃vt)dt + 𝜉
√
vtdZt.

As an approximation, we can drop the stochastic term and obtain

dvt
dt

= 𝜔 − 𝜃vt

which is an ordinary differential equation providing us immediately with

vt =
𝜔

𝜃
+
(
v − 𝜔

𝜃

)
e−𝜃t (1.51)

where v is the initial variance for t = 0.
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Using the results from the Fundamental Transform for a covered call
option and put-call parity, we have for 0 < ki < 1

call(S, v, 𝜏) = Se−q𝜏 − Ke−r𝜏
1
2𝜋 ∫

iki+∞

iki−∞
e−ikX

Ĥ(k, v, 𝜏)
k2 − ik

dk (1.52)

where 𝜏 = T − t, and X = ln( Se
−q𝜏

Ke−r𝜏
) represents the adjusted moneyness of the

option. For the special “At the Money”35 case where X = 0 we have

call(S, v, 𝜏) = Ke−r𝜏
[
1 − 1

2𝜋 ∫
iki+∞

iki−∞

Ĥ(k, v, 𝜏)
k2 − ik

dk

]
. (1.53)

As we previously said for a deterministic volatility case, we know the Fun-
damental Transform

Ĥ(k, v, 𝜏) = exp[−c(k)U(v, 𝜏)]

with U(v, 𝜏) = ∫ 𝜏

0 v(t)dt and as before c(k) = 1
2
(k2 − ik), which in the special

case of the Square-Root model (1.51), will provide us with

U(v, 𝜏) = 𝜔

𝜃
𝜏 +

(
v − 𝜔

𝜃

)(
1 − e−𝜃𝜏

𝜃

)
.

This shows once again that Ĥ(k) is analytic in k over the entire complex
plane.

Now if we let 𝜏 → ∞ we can write the approximation

call(S, v, 𝜏)
Ke−r𝜏

≈ 1 − 1
2𝜋 ∫

iki+∞

iki−∞
exp

[
−c(k)𝜔

𝜃
𝜏 − c(k)1

𝜃

(
v − 𝜔

𝜃

)] dk
k2 − ik

.

(1.54)
We can either calculate this integral exactly using the Black-

Scholes theory, or take the minimum where c′(k0) = 0, meaning k0 = i
2
, and

perform a Taylor approximation parallel to the real axis around the point
k = kr +

i
2
, which will give us

call(S, v, 𝜏)
Ke−r𝜏

≈ 1 − 2
𝜋
exp

(
− 𝜔

8𝜃
𝜏

)
exp

[
− 1
8𝜃

(
v − 𝜔

𝜃

)]
× ∫

∞

−∞
exp

(
−k2r

𝜔

2𝜃
𝜏

)
dkr

35This is different from the usual definition of At the Money calls where S = K. This
vocabulary is borrowed from Alan Lewis.
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The integral being a Gaussian, we will get the result

call(S, v, 𝜏)
Ke−r𝜏

≈ 1 −
√

8𝜃
𝜋𝜔𝜏

exp
[
− 1
8𝜃

(
v − 𝜔

𝜃

)]
exp

(
− 𝜔

8𝜃
𝜏

)
(1.55)

which finishes our deterministic approximation case.

The Stochastic Case

For the stochastic volatility (SV) case, Lewis uses the same Taylor expansion.
He notices that for the deterministic case we had

Ĥ(k, v, 𝜏) = exp[−c(k)U(v, 𝜏)] ≈ exp[−𝜆(k)𝜏]u(k, v)

for 𝜏 → ∞ where
𝜆(k) = c(k)𝜔

𝜃

and

u(k, v) = exp
[
−c(k)1

𝜃

(
v − 𝜔

𝜃

)]
.

If we suppose that this identity holds for the SV case as well, we can use
the PDE (1.44) and interpret the result as an eigenvalue-eigenfunction iden-
tity with the eigenvalue 𝜆(k) and the eigenfunction u(k, v). This assumption
is reasonable since the first Taylor approximation term for the stochastic
process is deterministic.

Indeed, introducing the operator

Λ(u) = −1
2
a2(v)d

2u
dv2

− [b̃(v) − ik𝜌(v)a(v)
√
v]du
dv

+ c(k)vu

we have
Λ(u) = 𝜆(k)u. (1.56)

Now the idea would be to perform a Taylor expansion around the
minimum k0 where 𝜆′(k0) = 0. Lewis shows that such k0 is always sit-
uated on the imaginary axis. This property is referred to as the “ridge”
property.

The Taylor expansion along the real axis could be written as

𝜆(k) = 𝜆(k0 + kr) ≈ 𝜆(k0) +
1
2
k2r 𝜆

′′(k0).
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Note that we are dealing with a minimum and therefore 𝜆′′(k0) > 0.
Using the previous second-order approximation for 𝜆(k) we get

call(S, v, 𝜏)
Ke−r𝜏

≈ 1 − u(k0, v)
k20 − ik0

1√
2𝜋𝜆′′(k0)𝜏

exp[−𝜆(k0)𝜏].

We can then move from the special “At the Money” case to the general
case by reintroducing X = ln( Se

−q𝜏

Ke−r𝜏
) and we will finally obtain

call(S, v, 𝜏)
Ke−r𝜏

≈ eX − u(k0, v)
k20 − ik0

1√
2𝜋𝜆′′(k0)𝜏

exp[−𝜆(k0)𝜏 − ik0X] (1.57)

which completes our determination of the asymptotic closed-form in the
general case.

For the special case of the Square-Root model, taking the risk-neutral
case 𝛾 = 1, we have36

𝜆(k) = −𝜔g∗(k) = 𝜔

𝜉2
[
√
(𝜃 + ik𝜌𝜉)2 + (k2 − ik)𝜉2 − (𝜃 + ik𝜌𝜉)]

which also allows us to calculate 𝜆′′(k). Also

u(k, v) = exp[g∗(k)v]

where we use the notations from (1.45) and we pose

g∗ = g − d.

The k0 such that 𝜆
′(k0) = 0 is

k0 = i
1 − 𝜌2

(
1
2
− 𝜌

𝜉

[
𝜃 − 1

2

√
4𝜃2 + 𝜉2 − 4𝜌𝜃𝜉

])
which together with (1.57) provides us with the result for call(S, v, 𝜏) in the
asymptotic case under the Square-Root stochastic volatility model.

Note that for 𝜉 → 0 and 𝜌→ 0 we find again the deterministic result
k0 → i

2
.

36We can go back to the general case 𝛾 ≤ 1 by replacing 𝜃 with
√
𝜃2 − 𝛾(1 − 𝛾)𝜉2 +

(1 − 𝛾)𝜌𝜉 since this transformation is independent from k altogether.
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A Series Expansion on Volatility-of-Volatility

Another asymptotic approach for the stochastic volatility model suggested
by Lewis [185] is a Taylor expansion on the volatility-of-volatility. There are
two possibilities for this; we can perform the expansion either for the option
price or for the implied-volatility directly.

In what follows, we consider the former approach. Once again, we use
the fundamental transform H(k,V, 𝜏) with H(k,V,0) = 1 and

𝜕H
𝜕𝜏

= 1
2
a2(v)𝜕

2H
𝜕v2

+ (b̃(v) − ik𝜌(v)a(v)
√
v)𝜕H
𝜕v

− c(k)vH

and c(k) = 1
2
(k2 − ik).

We then pose a(v) = 𝜉𝜂(v) and expand H(k,V, 𝜏) on powers of 𝜉 and
finally apply the inverse Fourier Transform to obtain an expansion on the
call price.

With our usual notations 𝜏 = T − t, X = ln
(
S
K

)
+ (r − q)𝜏 and Z(V) =

V𝜏, the series will be

C(S,V, 𝜏) = cBS(S, v, 𝜏) + 𝜉𝜏−1J1R̃11
𝜕cBS(S, v, 𝜏)

𝜕V

+ 𝜉2
[
𝜏−2J3R̃20 + 𝜏−1J4R̃12 +

1
2
𝜏−2J21R̃22

]
𝜕cBS(S, v, 𝜏)

𝜕V
+O(𝜉3)

where v(V, 𝜏) is the deterministic variance

v(V, 𝜏) = 𝜔

𝜃
+
(
V − 𝜔

𝜃

)(
1 − e−𝜃𝜏

𝜃𝜏

)
,

and R̃pq = Rpq(X, v(V, 𝜏), 𝜏) with Rpq given polynomials of (X,Z) of degree
four at most, and Jn’s known functions of (V, 𝜏).

The explicit expressions for all these functions are given in the third
chapter of the Lewis book [185].

The obvious advantage of this approach is its speed and stability. The
issue of lack of time-homogeneity of the parameters Ψ = (𝜔, 𝜃, 𝜉, 𝜌) could
be addressed by performing one calibration per time-interval. In this case,
for each time-interval [tn, tn+1] we will have one set of parameters Ψn =
(𝜔n, 𝜃n, 𝜉n, 𝜌n) and depending on what maturity T we are dealing with, we
will use one or the other parameter-set.

We compare the values obtained from this series-based approach with
those from a mixing Monte-Carlo method in Figure 1.1. We are taking
the example that Heston studied in [141]. The graph shows the difference
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FIGURE 1.1 Comparing the volatility-of-volatility series expansion with the
Monte-Carlo mixing model. The graph shows the price difference C(S,V, 𝜏) −
cBS(S,V, 𝜏). We are taking 𝜉 = 0.10 and 𝜌 = −0.50. This example was used in the
original Heston paper.

C(S,V, 𝜏) − cBS(S,V, 𝜏) for a fixed K = 100 USD and 𝜏 = 0.50 years. The
other inputs are 𝜔 = 0.02, 𝜃 = 2.00, 𝜉 = 0.10, 𝜌 = −0.50, V = 0.01, and
r = q = 0.

As we can see, the true value of the call is lower than the Black-Scholes
value for the OTM region. The higher 𝜉 and |𝜌| are, the larger this difference
will be.

In Figures 1.2 and 1.3 we reset the correlation 𝜌 to zero to have a
symmetric distribution, but we use a volatility-of-volatility of 𝜉 = 0.10 and
𝜉 = 0.20 respectively. As discussed, the parameter 𝜉 is the one creating the
leptokurticity phenomenon. A higher volatility-of-volatility causes higher
valuation for Far-from-the-Money options.37

Unfortunately, the series approximation in Figure 1.1 becomes poor as
soon as the volatility of volatility becomes larger than 0.40 and the maturity
becomes of the order of one year. This case is not unusual at all and therefore
makes the use of this method limited. This is why the method of choice
remains the Inversion of the Fourier Transform, as previously described.

37Also note that the gap between the closed-form series and the Monte-Carlo model
increases with 𝜉. Indeed the accuracy of the expansion decreases as 𝜉 becomes
larger.
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FIGURE 1.2 Comparing the volatility-of-volatility series expansion with the
Monte-Carlo mixing model. The graph shows the price difference C(S,V, 𝜏) −
cBS(S,V, 𝜏). We are taking 𝜉 = 0.10 and 𝜌 = 0. This example was used in the
original Heston paper.
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FIGURE 1.3 Comparing the volatility-of-volatility series expansion with the
Monte-Carlo mixing model. The graph shows the price difference C(S,V, 𝜏) −
cBS(S,V, 𝜏). We are taking 𝜉 = 0.20 and 𝜌 = 0. This example was used in the
original Heston paper.
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LOCAL VOLATILITY STOCHASTIC VOLATILITY MODELS

As previously mentioned, one known issue with SV models such as Heston
(or other) is that given their parametric form they typically cannot match
options markets exactly, which would create residual PNL. LV, on the other
hand, matches options market prices exactly by construction, however does
not have the proper dynamics for many cases such as forward skew or. . .

One possible compromise as suggested by [216] is to have a stochastic
volatility model with a superimposed local volatility component. We will use
the same notations as [216] here.

In general, having a stock process

dS = (r − q)dt + 𝜎(S, t)Z(t)SdWS(t)

with, for example

d lnZ = 𝜅(𝜃(t) − lnZ)dt + 𝜆dWZ(t),

we can view the Z(t) term as the stochastic volatility piece giving the desired
dynamics albeit partially, the 𝜎(S, t)Z(t) term, the local volatility (without
the expectations as per below), and the 𝜎(S, t) term the residual.

More precisely, as we had already seen, the local variance is

𝜎2LV(K,T) = 𝜎2(K,T)E[Z2(T)|S(T) = K]

and separately we know that

𝜎2LV(K,T) =
𝜕C
𝜕T

+ (r − q) 𝜕C
𝜕K

+ qC
1
2
𝜕2C
𝜕K2

;

therefore, having the local volatility we can get our residual piece via

𝜎2(K,T) =
𝜎2LV(K,T)

E[Z2(T)|S(T) = K]
.

And writing this E[Z2(T)|S(T) = K] = Ψ(K,T) we can calculate it as

Ψ(K,T) =
∫ ∞
0 Z2p(K,Z,T)dZ
∫ ∞
0 p(K,Z,T)dZ

with p(S,V,T), the forward joint transition density of S and Z.
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This density can then be determined via the forward Kolmogorov
equation sequentially as the authors suggest or alternatively via a particle
filter algorithm in a Monte-Carlo simulation.

The calibration of the model therefore includes the usual off-line SV part
to estimate 𝜅, 𝜆, 𝜃(t) via least-squares and the on-line part via the aforemen-
tioned sequence for the local volatility piece.

STOCHASTIC IMPLIED VOLATILITY

As we have already mentioned, a few authors [45, 59, 224] try to model the
Black-Scholes implied volatility (instead of the instantaneous variance) as a
stochastic variable. In what follows in this section, we will use the notations
of [45].

Assuming zero rates, borrow, and dividends, we can write for the spot
process

dSt = St𝜃tdWt

where 𝜃t is the instantaneous volatility
38 and is stochastic.

Calling 𝜎t the stochastic implied volatility for strike K and maturity T
we have the price of a call option at time t as

Ct = C(t,T,K) = 𝜙(St, 𝜎t(T,K),T − t,K)

where 𝜙 is the usual Black Scholes pricing function

𝜙(S, 𝜎, 𝜏,K) = S (h1) − K (h2)

with the usual

h1 =
log S

K
+ 1

2
𝜎2𝜏

𝜎
√
𝜏

h2 =
log S

K
− 1

2
𝜎2𝜏

𝜎
√
𝜏

,

and we assume the implied volatility satisfies the SDE

d𝜎t = mt(T,K, St, 𝜃t, 𝜎t)dt + vt(T,K, St, 𝜃t, 𝜎t)dZt

wheremt and vt are the drift and volatility process for the implied volatility.

38The square-root of our usual instantaneous variance.
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Other than the usual boundedness and positivity constraints, we have
the key constraint reducing the degrees of freedom

𝜎t(t, St) = 𝜃t.

Indeed, for a zero time to maturity, the implied volatility process should
converge toward the instantaneous volatility.

As shown in [45] one can see that the call option Ct follows the SDE

dCt =  (h1)St𝜃tdWt +
√
T − t ′ (h1)vtdZt

+
√
T − t ′ (h1)

[
mt +

𝜃2t

2𝜎t(T − t)

− 𝜎t

2(T − t)
+ h1h2|vt|2

2𝜎t
− h2𝜃tvt
𝜎t

√
T − t

]
.

The traded option price (under zero rates) should be a martingale, giving
the condition

mt =
1

2𝜎t(T − t)
[𝜎2t − 𝜃2t − (T − t)h1h2|vt|2 + 2

√
T − th2𝜃tvt]

which will lead to

dCt =  (h1)St𝜃tdWt +
√
T − tSt ′ (h1)vtdZt.

Now assuming
vt = 𝜎tut,

we effectively have

d𝜎t =
1

2𝜎t(T − t)

(
𝜎2t + 1∕4𝜎4t (T − t)2|ut|2 − 𝜎2t (T − t)𝜃tut

−
||||𝜃t + ut log

K
St

||||
2)

dt + 𝜎tutdZt

Based on an alternate formulation, [45] shows there is existence and
uniqueness of the solution to this system of equations.
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The SDE for the implied volatility is

d𝜎t = h(𝜎t, vt,ut)dt + 𝜎tutdZt

with the constraint: √
vt = 𝜎(t; t, St)

and dynamics

d𝜎t =
1

2(T − t)𝜎t

[
𝜎2t −

(√
vt + ut ln

K
St

)2
]
dt

+ 1
8
(T − t)𝜎3t u2t dt + 𝜎tutdZt

and for example the vol of implied vol ut follows some SDE such as

dut = f (ut)dt + ΥdZ⊥t

where Υ is a model parameter.
We will use this model later to estimate the dynamics of the instanta-

neous volatility from historic option prices. As we will see, the quality of
observations for historic option prices (or equivalently implied volatilities)
are superior to the ones for the stock prices.

JOINT SPX AND VIX DYNAMICS

In order to have an SV model representing not only SPX but also the VIX
dynamics, we need more than one factor of stochasticity. VIX index was
created by CBOE and futures and options on VIX have increased in trading
volume over the past ten years tremendously. The actual definition of VIX
is based on SPX puts and calls as explained in

http://www.cboe.com/micro/VIX/vixintro.aspx

but one can represent the (nontraded) VIX spot in an abstract way by

Vt =

√
EQ
t

[
∫

t+𝜏

t
vudu

]
where 𝜏 always corresponds to 30 calendar days, and vt is the instantaneous
variance of SPX.



Trim Size: 6in x 9in Javaheri c01.tex V2 - 07/01/2015 7:57pm Page 46

46 INSIDE VOLATILITY FILTERING

Following the same notations, we can write VIX futures (with matu-
rity T) as

FTt = EQ
t [VT],

and in the samemanner they define options on futures with samematurity T.
There have been several models suggested in literature. A popular one

is the Bergomi [35] model. We are using the same notations as the author in
this section.

The idea is to have a two-factor SV model with abstract OU processes

dXt = k1Xtdt + dWX
t

dYt = k1Ytdt + dWY
t

with ⟨dWX,dWY⟩ = 𝜌dt, ⟨dWX,dW⟩ = 𝜌SXdt, ⟨dWY ,dW⟩ = 𝜌SYdt where
dW is the Wiener process for the equity (SPX).

We then take the linear combination

xTt = 𝛼𝜃[(1 − 𝜃)e−k1(T−t)Xt + 𝜃e−k2(T−t)Yt]

with 𝛼𝜃 a normalization factor equal to 1∕
√
(1 − 𝜃)2 + 𝜃2 + 2𝜌𝜃(1 − 𝜃).

Defining the forward variance as the stochastic variable

𝜉Tt = E

[
∫

T

t
vudu|t

]
,

we set
𝜉Tt = 𝜉T0 f

T(xTt , t)

where 𝜉T0 is the variance swap level to maturity T, and f T is a function to be
determined parametrized for each maturity T.

Note that Xt, Yt, and therefore xTt are by construction drift-less.39

The local martingale condition (zero drift) on 𝜉Tt provides the
Feynman-Kac PDE

𝜕f T

𝜕t
+ 𝜎2(T − t)

2
𝜕2f T

𝜕x2
= 0

39It is important (as the author mentions) to note that unlike in interest rates markets,
in equities one cannot take one function for St = f (Wt, t) since we typically have
multiple expirations Ti for contracts on the same traded asset S.
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with

𝜎2(𝜏) = 𝛼2𝜃 [(1 − 𝜃)2e−2k1𝜏 + 𝜃2e−2k2𝜏 + 2𝜌𝜃(1 − 𝜃)e−(k1+k2)𝜏 ].

In practice, we would choose one f T per VIX future maturity interval
[Ti,Ti+1].

The author then suggests a weighted exponential form for f T such as

f T(x,T) = (1 − 𝛾T)e𝜔Txe
−
𝜔2
T
h(t,T)
2 + 𝛾Te𝛽T𝜔Txe

−
𝛽2
T
𝜔2
T
h(t,T)
2

with h(t,T) = ∫ T
T−t 𝜎

2(𝜏)d𝜏.
Note that the instantaneous variance of the equity spot is simply 𝜉tt , so

the risk-neutral dynamics are

dS = (r − q)Sdt + S
√
𝜉ttdWt.

Note that in practice, working with discrete maturities Ti for VIX
futures, we can define a function 𝜎i(S, t) with

dS = (r − q)Sdt + S𝜎i

(
S
STi

,
1

Ti+1 − Ti ∫
Ti+1

Ti

𝜉TTi
dT

)
dWt

which will make the calculations less cumbersome.

PURE-JUMP MODELS

Variance Gamma

An alternative point of view is to drop the diffusion assumption altogether
and replace it with a pure-jump process. Note that this is different from
the jump-diffusion process previously discussed. Madan et al. suggested the
following framework called Variance-Gamma (VG) in [192].

We would have the log-normal-like stock process

d ln St = (𝜇S + 𝜔)dt +X(dt; 𝜎, 𝜈, 𝜃)

where, as before, 𝜇S is the real-world statistical drift of the stock log-return
and 𝜔 = 1

𝜈
ln(1 − 𝜃𝜈 − 𝜎2𝜈∕2).



Trim Size: 6in x 9in Javaheri c01.tex V2 - 07/01/2015 7:57pm Page 48

48 INSIDE VOLATILITY FILTERING

As for X(dt; 𝜎, 𝜈, 𝜃) it has the following meaning:

X(dt; 𝜎, 𝜈, 𝜃) = B(𝛾(dt,1, 𝜈); 𝜃, 𝜎)

where B(dt; 𝜃, 𝜎) would be a Brownian Motion with drift 𝜃 and volatility 𝜎.
In other words

B(dt; 𝜃, 𝜎) = 𝜃dt + 𝜎
√
dtN(0,1),

and N(0,1) is a standard Gaussian realization.
The time-interval at which the Brownian Motion is considered is not dt

but 𝛾(dt,1, 𝜈), which is a random realization following aGamma distribution
with a mean 1 and variance-rate 𝜈.

The corresponding probability density function is

f𝜈(dt, 𝜏) =
𝜏
dt
𝜈
−1e−

𝜏

𝜈

𝜈
dt
𝜈 Γ

(
dt
𝜈

)
where Γ(x) is the usual Gamma function.

Note that the stock log-return density could actually be integrated for
the VG model, and the density of ln(St∕S0) is known and could be imple-
mented via K𝛼(x) the modified Bessel function of the second kind.

Indeed, calling z = ln(Sk∕Sk−1) and h = tk − tk−1 and posing xh = z −
𝜇Sh − h

𝜈
ln(1 − 𝜃𝜈 − 𝜎2𝜈∕2) we have

p(z|h) = 2 exp(𝜃xh∕𝜎2)

𝜈
h
𝜈

√
2𝜋𝜎Γ

(
h
𝜈

)( x2h
2𝜎2∕𝜈 + 𝜃2

) h
2𝜈 −

1
4

× Kh
𝜈
− 1
2

(
1
𝜎2

√
x2h(2𝜎2∕𝜈 + 𝜃2)

)
.

What is more, as Madan et al. show, the option valuation under VG
is fairly straightforward and admits an analytically tractable closed-form
which can be implemented via the above modified Bessel function of sec-
ond kind and a degenerate hypergeometric function. All details are available
in [192].

Remark on the Gamma Distribution The Gamma Cumulative Distribution
Function (CDF) could be defined as

P(a,x) = 1
Γ(a) ∫

x

0
e−tta−1dt.
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Note that with our notations

F𝜈(h,x) = F(h,x, 𝜇 = 1, 𝜈)

with

F(h,x, 𝜇, 𝜈) = 1

Γ
(
𝜇2h
𝜈

)(𝜇
𝜈

) 𝜇2h
𝜈

∫
x

0
e−

𝜇t
𝜈 t

𝜇2h
𝜈

−1dt.

In other words

F(h,x, 𝜇, 𝜈) = P
(
𝜇2h
𝜈
,
𝜇x
𝜈

)
.

The behavior if this CDF is displayed in Figure 1.4 for different values
of the parameter a > 0 and for 0 < x < +∞.

Using the inverse of this CDF we can have a simulated data-set for the
Gamma law:

x(i) = F−1𝜈 (h,U (i)[0,1])

with 1 ≤ i ≤ Nsims and U (i)[0,1] a uniform random realization between zero
and one.
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FIGURE 1.4 The Gamma Cumulative Distribution Function P(a,x) for various
values of the parameter a. The implementation is based on code available in
“Numerical Recipes in C.”
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Stochastic Volatility vs. Time-Changed Processes As mentioned in [24],
this alternative formulation leading to time-changed processes, is closely
related to the previously discussed stochastic volatility approach in the
following way:

Taking the above VG stochastic differential equation

d ln St = (𝜇S + 𝜔)dt + 𝜃𝛾(dt,1, 𝜈) + 𝜎
√
𝛾(dt,1, 𝜈)N(0,1),

one could consider 𝜎2𝛾(t,1, 𝜈) as the integrated-variance and define vt(𝜈) the
instantaneous-variance as

𝜎2𝛾(dt,1, 𝜈) = vt(𝜈)dt

in which case, we would have

d ln St = (𝜇S + 𝜔)dt + (𝜃∕𝜎2)vt(𝜈)dt +
√
vt(𝜈)dtN(0,1)

= (𝜇S + 𝜔 + (𝜃∕𝜎2)vt(𝜈))dt +
√
vt(𝜈)dZt

where dZt is a Brownian Motion.
This last equation is a traditional stochastic volatility one.
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The Modified Bessel Function of Second Kind for a given parameter.
The implementation is based on code available in “Numerical Recipes
in C.”
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Modified Bessel Function of Second Kind

K (x = 0.5, nu )

TheModified Bessel Function of Second Kind as a function of the parameter.
The implementation is based on code available in “Numerical Recipes in C.”

Variance Gamma with Stochastic Arrival

An extension to the VG model would be a Variance Gamma model with
Stochastic Arrival (VGSA), which would include the volatility clustering
effect. This phenomenon (also represented by GARCH) means that a high
(low) volatility will be followed by a series of high (low) volatilities.

In this approach, we replace the dt in the previously defined f𝜈(dt, 𝜏)
with ytdt where yt follows a Square-Root (CIR) process

dyt = 𝜅(𝜂 − yt)dt + 𝜆
√
ytdWt

where the Brownian Motion dWt is independent from other processes in the
model.

This is therefore a VG process where the arrival time itself is stochastic.
The mean-reversion of the Square-Root process will cause the volatility per-
sistence effect that is empirically observed. Note that (not counting 𝜇S) the
new model parameter-set is Ψ = (𝜅, 𝜂, 𝜆, 𝜈, 𝜃, 𝜎).

Option Pricing under VGSA The option pricing could be carried out via a
Monte-Carlo simulation algorithm under the risk-neutral measure, where,
as before, 𝜇S is replaced with r − q. We first would simulate the path of yt
by writing

yk = yk−1 + 𝜅(𝜂 − yk−1)Δt + 𝜆
√
yk−1

√
ΔtZk
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then calculate

YT =
N−1∑
k=0

ykΔt

and finally apply one-step simulations

T∗ = F−1𝜈 (YT ,U[0,1])

and40

ln ST = ln S0 + (r − q + 𝜔)T + 𝜃T∗ + 𝜎
√
T∗Bk.

Note that we have two normal random-variables Bk, Zk as well as a
Gamma-distributed random variable T∗, and that they are all uncorrelated.

Once the stock price ST is properly simulated, we can calculate the
option price as usual.

The Characteristic Function As previously discussed, another way to tackle
the option-pricing issue would be to use the characteristic functions.

For VG, the characteristic function is

Ψ(u, t) = E[eiuX(t)] =

(
1

1 − i 𝜈
𝜇
u

) 𝜇2
𝜈
t

.

Therefore, the log-characteristic function could be written as

𝜓(u, t) = ln(Ψ(u, t)) = t𝜓(u,1).

In other words,

E[eiuX(t)] = Ψ(u, t) = exp(t𝜓(u,1)).

Using which, the VGSA characteristic function becomes

E[eiuX(Y(t))] = E[exp(Y(t)𝜓(u,1))] = 𝜙(−i𝜓(u,1))

with 𝜙() the CIR characteristic function, namely

𝜙(ut) = E[exp(iuYt)] = A(t,u) exp(B(t,u)y0)

40This means that T in VG, is replaced with YT . The rest remains identical.
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where

A(t,u) = exp(𝜅2𝜂t∕𝜆2)

[cosh(𝛾t∕2) + 𝜅∕𝛾 sinh(𝛾t∕2)]
2𝜅𝜂
𝜆2

B(t,u) = 2iu
𝜅 + 𝛾 coth(𝛾t∕2)

and
𝛾 =

√
𝜅2 − 2𝜆2iu.

This allows us to determine the VGSA characteristic function, which we
can use to calculate options prices via numeric Fourier inversion as described
in [52] and [55].

Variance Gamma with Gamma Arrival Rate

For the Variance Gamma with Gamma Arrival Rate (VGG), as before, the
stock process under the risk-neutral framework is

d ln St = (r − q + 𝜔)dt +X(h(dt); 𝜎, 𝜈, 𝜃)

with 𝜔 = 1
𝜈
ln(1 − 𝜃𝜈 − 𝜎2𝜈∕2) and

X(h(dt); 𝜎, 𝜈, 𝜃) = B(𝛾(h(dt),1, 𝜈); 𝜃, 𝜎)

and the general Gamma Cumulative Distribution Function for 𝛾(h, 𝜇, 𝜈) is

F(𝜇, 𝜈;h,x) = 1

Γ
(
𝜇2h
𝜈

)(𝜇
𝜈

) 𝜇2h
𝜈

∫
x

0
e−

𝜇t
𝜈 t

𝜇2h
𝜈

−1dt

and here h(dt) = dYt with Yt is also Gamma-distributed

dYt = 𝛾(dt, 𝜇a, 𝜈a).

The parameter-set is therefore Ψ = (𝜇a, 𝜈a, 𝜈, 𝜃, 𝜎).
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