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GENERALIZED INVERSE MATRICES

1. INTRODUCTION

Generalized inverse matrices are an important and useful mathematical tool for under-
standing certain aspects of the analysis procedures associated with linear models,
especially the analysis of unbalanced data for non-full rank models. The analysis of
unbalanced data and non-full rank models is of special importance and thus receives
considerable attention in this book. Therefore, it is appropriate that we summarize
the features of generalized inverses that are important to linear models. We will also
discuss other useful and interesting results in matrix algebra.

We will frequently need to solve systems of equations of the form Ax = y where
A is an m × n matrix. When m = n and A is nonsingular, the solution takes the form
x = A−1y.

For a consistent system of equations where m may not equal n, or for square sin-
gular matrices, there exist matrices G where x = Gy. These matrices are generalized
inverses.

Example 1 Need for Generalized Inverses
Consider the system of equations

5x1 + 3x2 + 2x3 = 50
3x1 + 3x2 = 30
2x1 + 2x3 = 20
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8 GENERALIZED INVERSE MATRICES

or in matrix format

⎡⎢⎢⎣
5 3 2
3 3 0
2 0 2

⎤⎥⎥⎦
⎡⎢⎢⎣

x1
x2
x3

⎤⎥⎥⎦ =
⎡⎢⎢⎣

50
30
20

⎤⎥⎥⎦
Notice that the coefficient matrix is not of full rank. Indeed, the second and third

rows add up to the first row. Solutions of this system include

⎡⎢⎢⎣
x1
x2
x3

⎤⎥⎥⎦ =
⎡⎢⎢⎢⎣

0 0 0
0 1

3
0

0 0 1
2

⎤⎥⎥⎥⎦
⎡⎢⎢⎣

50
30
20

⎤⎥⎥⎦ =
⎡⎢⎢⎣

0
10
10

⎤⎥⎥⎦ ,

⎡⎢⎢⎣
x1
x2
x3

⎤⎥⎥⎦ = 1
54

⎡⎢⎢⎣
5 1 4
1 11 −10
4 −10 14

⎤⎥⎥⎦
⎡⎢⎢⎣

50
30
20

⎤⎥⎥⎦ =
⎡⎢⎢⎢⎢⎣

20
3
10
3
10
3

⎤⎥⎥⎥⎥⎦
and infinitely many others. Each of the 3 × 3 matrices in the above solutions is
generalized inverses. □

a. Definition and Existence of a Generalized Inverse

In this book, we define a generalized inverse of a matrix A as any matrix G that
satisfies the equation

AGA = A. (1)

The reader may verify that the 3 × 3 matrices in the solutions to the system in
Example 1 satisfies (1) and are thus, generalized inverses.

The name “generalized inverse” for matrices G defined by (1) is unfortunately
not universally accepted. Names such as “conditional inverse,” “pseudo inverse,”
and “g-inverse” are also to be found in the literature. Sometimes, these names refer
to matrices defined as is G in (1) and sometimes to matrices defined as variants
of G. However, throughout this book, we use the name “generalized inverse” of A
exclusively for any matrix G satisfying (1).

Notice that (1) does not define G as “the” generalized inverse of A but as “a”
generalized inverse of A. This is because G, for a given matrix, A is not unique. As
we shall show below there is an infinite number of matrices G that satisfy (1). Thus,
we refer to the whole class of them as generalized inverses of A.

Notice that in Example 1, we gave two generalized inverses of the coefficient
matrix of the system of equations. Lots more could have been found.

There are many ways to find generalized inverses. We will give three here.
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The first starts with the equivalent diagonal form of A. If A has order p × q, the
reduction to this diagonal form can be written as

Pp×pAp×qQq×q = 𝚫p×q ≡

[
Dr×r 0r×(q−r)

0(p−r)×r 0(p−r)×(q−r)

]
or more simply as

PAQ = 𝚫 =
[

Dr 0
0 0

]
(2)

As usual, P and Q are products of elementary operators (see Searle, 1966, 2006,
or Gruber, 2014). The matrix A has rank r and Dr is a diagonal matrix of order r. In
general, if d1, d2,… , dr are the diagonal elements of any diagonal matrix D, we will
use the notation D{di}for Dr; that is,

Dr ≡

⎡⎢⎢⎢⎣
d1 0 ⋯ 0
0 d2 ⋯ 0

⋱ ⋮
0 ⋯ 0 dr

⎤⎥⎥⎥⎦ ≡ diag{di} = D{di} for i = 1,… , r. (3)

Furthermore, as in Δ, the symbol 0 will represent null matrices with order being
determined by the context on each occasion.

Derivation of G comes easily from Δ. Analogous to Δ, we define Δ− (to be read
Δ minus) as

𝚫− =
[

D−1
r 0
0 0

]
.

Then as shown below

G = Q𝚫−P (4)

satisfies (1) and is thus a generalized inverse. The generalized inverse G as given by
(4) is not unique, because neither P nor Q by their definition is unique, neither is Δ
or Δ−, and therefore G = QΔ−P is not unique.

Before showing that G does satisfy (1), note from the definitions of Δ and Δ−

given above that

𝚫𝚫−𝚫 = 𝚫. (5)

Hence, by the definition implied in (1), we can say that Δ− is a generalized inverse
of Δ. While this is an unimportant result in itself, it enables us to establish that G,
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as defined in (3), is indeed a generalized inverse of A. To show this, observe that
from (2),

A = P−1𝚫Q−1
. (6)

The inverses of P and Q exist because P and Q are products of elementary matrices
and are, as a result, nonsingular. Then from (4), (5), and (6), we have,

AGA = P−1𝚫Q−1Q𝚫−PP−1𝚫Q−1 = P−1𝚫𝚫−𝚫Q−1 = P−1𝚫Q−1 = A. (7)

Thus, (1) is satisfied and G is a generalized inverse of A.

Example 2 Obtaining a Generalized Inverse by Matrix Diagonalization
For

A =
⎡⎢⎢⎣

4 1 2
1 1 5
3 1 3

⎤⎥⎥⎦ ,

a diagonal form is obtained using

P =
⎡⎢⎢⎣

0 1 0
1 −4 0
− 2

3
− 1

3
1

⎤⎥⎥⎦ and Q =
⎡⎢⎢⎣

1 −1 1
0 1 −6
0 0 1

⎤⎥⎥⎦ .
Thus,

PAQ = 𝚫 =
⎡⎢⎢⎣

1 0 0
0 −3 0
0 0 0

⎤⎥⎥⎦ and 𝚫− =
⎡⎢⎢⎣

1 0 0
0 − 1

3
0

0 0 0

⎤⎥⎥⎦ .
As a result,

G = Q𝚫−P = 1
3

⎡⎢⎢⎣
1 −1 0
−1 4 0
0 0 0

⎤⎥⎥⎦ .
The reader may verify that AGA = A. □

It is to be emphasized that generalized inverses exist for rectangular matrices as
well as for square ones. This is evident from the formulation of 𝚫p×q. However, for
A of order p × q, we define 𝚫− as having order q × p, the null matrices therein being
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of appropriate order to make this so. As a result, the generalized inverse G has order
q × p.

Example 3 Generalized Inverse for a Matrix That Is Not Square
Consider

B =
⎡⎢⎢⎣

4 1 2 0
1 1 5 15
3 1 3 5

⎤⎥⎥⎦
the same A in the previous example with an additional column With P as given in
Example 2 and Q now taken as

Q =
⎡⎢⎢⎢⎣

1 −1 1 5
0 1 −6 −20
0 0 1 0
0 0 0 1

⎤⎥⎥⎥⎦ and PBQ = 𝚫 =
⎡⎢⎢⎣

1 0 0 0
0 −3 0 0
0 0 0 0

⎤⎥⎥⎦ .
We then have

𝚫− =

⎡⎢⎢⎢⎢⎣
1 0 0

0 − 1
3

0

0 0 0
0 0 0

⎤⎥⎥⎥⎥⎦
so that G = Q𝚫−P =

⎡⎢⎢⎢⎢⎣
1
3

− 1
3

0

− 1
3

4
3

0

0 0 0
0 0 0

⎤⎥⎥⎥⎥⎦
.

□

b. An Algorithm for Obtaining a Generalized Inverse

The algorithm is based on knowing or first finding the rank of the matrix. We present
the algorithm first and then give a rationale for why it works. The algorithm goes as
follows:

1. In A of rank r, find any non-singular minor of order r. Call it M.

2. Invert M and transpose the inverse to obtain (M−1)′.

3. In A, replace each element of M by the corresponding element of (M−1)′.

4. Replace all other elements of A by zero.

5. Transpose the resulting matrix.

The result is a generalized inverse of A. Observe that different choices of the minor
of rank r will give different generalized inverses of A.
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Example 4 Computing a Generalized Inverse using the Algorithm
Let

A =
⎡⎢⎢⎣

1 2 5 2
3 7 12 4
0 1 −3 −2

⎤⎥⎥⎦ .
The reader may verify that all of the 3 × 3 sub-matrices of A have determinant

zero while the 2 × 2 sub-matrices have non-zero determinants. Thus, A has rank 2.
Consider

M =
[

1 2
3 7

]
.

Then

M−1 =
[

7 −2
−3 1

]
and

(M−1)′ =
[

7 −3
−2 1

]
.

Now write the matrix

H =
⎡⎢⎢⎣

7 −3 0 0
−2 1 0 0
0 0 0 0

⎤⎥⎥⎦
Then the generalized inverse

G = H′ =
⎡⎢⎢⎢⎣

7 −2 0
−3 1 0
0 0 0
0 0 0

⎤⎥⎥⎥⎦ .
By a similar process, taking

M =
[

12 4
−3 −2

]
,
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another generalized inverse of A is

G̃ =

⎡⎢⎢⎢⎢⎣
0 0 0
0 0 0
0 1

6
1
3

0 − 1
4

−1

⎤⎥⎥⎥⎥⎦
.

The reader may, if he/she wishes, construct other generalized inverses using 2 × 2
sub-matrices with non-zero determinant. □

We now present the rationale for the algorithm. Suppose A can be partitioned in
such a way that its leading r × r minor is non-singular, that is,

Ap×q =
[

A11 A12
A21 A22

]
,

where A11 is r × r of rank r. Then a generalized inverse of A is

Gq×p =

[
A−1

11 0

0 0

]
,

where the null matrices are of appropriate order to make G a q × p matrix. To see
that G is a generalized inverse of A, note that

AGA =

[
A11 A12

A21 A21A−1
11 A12

]
.

Now since A is of rank r, the rows are linearly dependent. Thus, for some matrix
K [ A21 A22 ] = K[ A11 A12 ]. Specifically K = A21A−1

11 and so A22 = KA12 =
A21A−1

11 A12. Hence, AGA = A and G is a generalized inverse of A.
There is no need for the non-singular minor to be in the leading position. Let R

and S represent the elementary row and column operations, respectively, to bring it
to the leading position. Then R and S are products of elementary operators with

RAS = B =
[

B11 B12
B21 B22

]
(8)

where B11 is non-singular of order r. Then

F =

[
B−1

11 0

0 0

]
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is a generalized inverse of B and Gq×p = SFR is a generalized inverse of A.
From (8),

A = R−1BS−1
.

Then

AGA = R−1BS−1SFRR−1BS−1 = R−1BFBS−1 = R−1BS−1 = A.

Now R and S are products of elementary operators that exchange rows and
columns. Such matrices are identity matrices with rows and columns interchanged.
Such matrices are known as permutation matrices and are orthogonal. Thus, we have
that R = I with its rows in a different sequence, a permutation matrix and R′R = I.
The same is true for S and so from (8), we have that

A = R′BS′ = R′
[

B11 B12
B21 B22

]
S′
. (9)

As far as B11 is concerned, the product in (9) represents the operations of returning
the elements of B11 to their original position in A. Now consider G. We have

G = SFR = (R′F′S′)′ =

{
R′

[
(B−1

11 )′ 0

0 0

]
S′

}

In this, analogous to the form of A = R′BS′ the product involving R′ and S′ in G′

represents putting the elements of (B−1
11 )′ into the corresponding positions of G′ that

the elements of B11 occupied in A. This is what motivates the algorithm.

c. Obtaining Generalized Inverses Using the Singular Value
Decomposition (SVD)

Let A be a matrix of rank r. Let𝚲 be r × r the diagonal matrix of non-zero eigenvalues
of A′A and AA′ ordered from largest to smallest. The non-zero eigenvalues of
A′A and AA′ are the same (see p. 110 of Gruber (2014) for a proof). Then the
decomposition of

A =
[

S′ T′ ] [𝚲1∕2 0
0 0

] [
U′

V′

]
= S′𝚲1∕2U′, (10)

where [ S′ T′ ] and [ U V ] are orthogonal matrices, is the singular value decom-
position (SVD). The existence of this decomposition is established in Gruber (2014)
following Stewart (1963, p. 126). Observe that S′S + T′T = I, UU′ + VV′ = I, SS′ =
I, TT′ = I, S′T = 0, T′S = 0, UU′ = I, U′V = 0, and V′U = 0. Furthermore, A′A =
U𝚲U′ and AA′ = S′𝚲S. A generalized inverse of A then takes the form

G = U𝚲−1∕2S. (11)

Indeed, AGA = S′𝚲1∕2U′U𝚲−1∕2SS′𝚲1∕2U′ = S′𝚲1∕2U′ = A.
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Example 5 Finding a Generalized Inverse using the Singular Value Decomposition
Let

A =
⎡⎢⎢⎢⎣

1 1 0
1 1 0
1 0 1
1 0 1

⎤⎥⎥⎥⎦
Then,

A′A =
⎡⎢⎢⎣

4 2 2
2 2 0
2 0 2

⎤⎥⎥⎦ and AA′ =
⎡⎢⎢⎢⎣

2 2 1 1
2 2 1 1
1 1 2 2
1 1 2 2

⎤⎥⎥⎥⎦ .
To find the eigenvalues of A′A solve the equation

det
⎡⎢⎢⎣

4 − 𝜆 2 2
2 2 − 𝜆 0
2 0 2 − 𝜆

⎤⎥⎥⎦ = 0

or

𝜆
3 − 8𝜆2 + 12𝜆 = 𝜆(𝜆 − 6)(𝜆 − 2) = 0

to get the eigenvalues 𝜆 = 6, 2, 0. Finding the eigenvectors by solving the systems
of equations

−2x1 + 2x2 + 2x3 = 0
2x1 − 4x2 = 0
2x1 − 4x3 = 0

2x1 + 2x2 + 2x3 = 0
2x1 = 0

4x1 + 2x2 + 2x3 = 0
2x1 + 2x2 = 0
2x1 + 2x3 = 0

yields a matrix of normalized eigenvectors of A′A,

[ U V ] =

⎡⎢⎢⎢⎢⎢⎣

2√
6

0 − 1√
3

1√
6

− 1√
2

1√
3

1√
6

1√
2

1√
3

⎤⎥⎥⎥⎥⎥⎦
.
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By a similar process, the reader may show that the eigenvalues of AA′ are𝜆 = 6, 2, 0, 0
and that the matrix of eigenvectors is

[
S′ T′ ] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2

− 1
2

0 − 1√
2

1
2

− 1
2

0 1√
2

1
2

1
2

− 1√
2

0

1
2

1
2

1√
2

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Then the singular value decomposition of

A =

⎡⎢⎢⎢⎢⎢⎢⎣

1
2

− 1
2

0 − 1√
2

1
2

− 1
2

0 1√
2

1
2

1
2

− 1√
2

0

1
2

1
2

1√
2

0

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣

√
6 0 0

0
√

2 0
0 0 0
0 0 0

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

2√
6

1√
6

1√
6

0 − 1√
2

1√
2

− 1√
3

1√
3

1√
3

⎤⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎣

1
2

− 1
2

1
2

− 1
2

1
2

1
2

1
2

1
2

⎤⎥⎥⎥⎥⎥⎥⎦
[√

6 0

0
√

2

]⎡⎢⎢⎣
2√
6

1√
6

1√
6

0 − 1√
2

1√
2

⎤⎥⎥⎦
and, as a result, the generalized inverse

G =

⎡⎢⎢⎢⎢⎣
2√
6

0

1√
6

1√
2

1√
6

− 1√
2

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎣

1√
6

0

0 1√
2

⎤⎥⎥⎦
[ 1

2
1
2

1
2

1
2

− 1
2

− 1
2

1
2

1
2

]
=

⎡⎢⎢⎢⎢⎣
1
6

1
6

1
6

1
6

1
3

1
3

− 1
6

− 1
6

− 1
6

− 1
6

1
3

1
3

⎤⎥⎥⎥⎥⎦
.

□

These derivations of a generalized inverse matrix G are by no means the only
ways such a matrix can be computed. For matrices of small order, they can be
satisfactory, but for those of large order that might occur in the analysis of “big data,”
other methods might be preferred. Some of these are discussed subsequently. Most
methods involve, of course, the same kind of numerical problems as are incurred
in calculating the regular inverse A−1 of a non-singular matrix A. Despite this, the
generalized inverse has importance because of its general application to non-square
matrices and to square singular matrices. In the special case that A is non-singular,
G = A−1 as one would expect, and in this case, G is unique.



JWBS185-c01 JWBS185-Searle September 12, 2016 16:36 Printer Name: Trim: 6.125in × 9.25in

SOLVING LINEAR EQUATIONS 17

The fact that A has a generalized inverse even when it is singular or rectangular
has particular application in the problem of solving equations, for example, of solving
Ax = y for x when A is singular or rectangular. In situations of this nature, the use
of a generalized inverse G, as we shall see, leads very directly to a solution in the
form x = Gy. This is of great importance in the study of linear models where such
equations arise quite frequently. For example, when we can write a linear model as
y = Xb + e, finding the least square estimator for estimating b leads to equations
X′Xb̂ = X′y where the matrix X′X is singular. Hence, we cannot write the solution
as (X′X)−1X′y. However, using a generalized inverse G of X′X, we can obtain the
solution directly in the form GX′y and study its properties.

For linear models, the use of generalized inverse matrices in solving linear equa-
tions is the application of prime interest. We now outline the resulting procedures.
Following this, we discuss some general properties of generalized inverses.

2. SOLVING LINEAR EQUATIONS

a. Consistent Equations

A convenient starting point from which to develop the solution of linear equations
using a generalized inverse is the definition of consistent equations.

Definition 1 The linear equations Ax = y are defined as being consistent if
any linear relationships existing among the rows of A also exist among the cor-
responding elements of y. In other words, t′A = 0 if and only if t′y = 0 for any
vector t.

As a simple example, the equations[
1 2
3 6

] [
x1
x2

]
=
[

7
21

]
are consistent. The second row of the matrix on the left-hand side of the system is
the first row multiplied and on the right-hand side, of course 21 = 7(3). On the other
hand, the equations [

1 2
3 6

] [
x1
x2

]
=
[

7
24

]
are inconsistent. The linear relationship between the rows of the matrix on the left-
hand side of the system does not hold true between 7 and 24. Moreover, you can
write out the two equations and show that 3 = 0.

The formal definition of consistent equations does not demand that linear rela-
tionships exist among the rows of A. However, if they do, then the definition does
require that the same relationships also exist among the corresponding elements of y
for the equations to be consistent. For example, when A is non-singular, the equations
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Ax = y are always consistent. There are no linear relationships among the rows of A
and therefore none that the elements of y must satisfy.

The importance of consistency lies in the following theorem. Linear equations can
be solved only if they are consistent. See, for example, Section 6.2 of Searle (1966)
or Section 7.2 of Searle and Hausman (1970) for a proof. Since only consistent
equations can be solved, discussion of a procedure for solving linear equations is
hereafter confined to equations that are consistent. The procedure is described in
Theorems 1 and 2 in Section 2b. Theorems 3–6 in Section 2c deal with the properties
of these solutions.

b. Obtaining Solutions

The link between a generalized inverse of the matrix A and consistent equations
Ax = y is set out in the following theorem adapted from C. R. Rao (1962).

Theorem 1 Consistent equations Ax = y have a solution x = Gy if and only if
AGA = A.

Proof. If the equations Ax = y are consistent and have x = Gy as a solution, write aj
for the jth column of A and consider the equations Ax = aj. They have a solution. It is
the null vector with its jth element set equal to unity. Therefore, the equations Ax =
aj are consistent. Furthermore, since consistent equations Ax = y have a solution x =
Gy, it follows that consistent equations Ax = aj have a solution x = Gaj. Therefore,

AGaj = aj and this is true for all values of j, that is, for all columns of A. Hence,
AGA = A.

Conversely, if AGA = A then AGAx = Ax, and when Ax = y substitution gives
A(Gy) = y. Hence, x = Gy is a solution of Ax = y and the theorem is proved.

Theorem 1 indicates how a solution to consistent equations may be obtained. Find
any generalized inverse of A, G, and then Gy is a solution. However, this solution is
not unique. There are, indeed, many solutions whenever A is anything but a square,
non-singular matrix. These are characterized in Theorem 2 and 3.

Theorem 2 If A has q columns and G is a generalized inverse of A, then the
consistent equations Ax = y have the solution

x̃ = Gy + (GA − I)z (12)

where z is any arbitrary vector of order q.

Proof. Since AGA = A, Ax̃ = AGy + (AGA − A)z = AGy = y, by Theorem 1.

There are as many solutions to (12) as there are choices of z and G. Thus, the
equation Ax = y has infinitely many solutions of the form (12).
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Example 6 Different Solutions to Ax = y for a particular A
Consider the equations Ax = y as

⎡⎢⎢⎢⎣
5 3 1 −4
8 5 2 3

21 13 5 2
3 2 1 7

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

x1
x2
x3
x4

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣

6
8

22
2

⎤⎥⎥⎥⎦ , (13)

so defining A, x, and y. Using the algorithm developed in Section 1b with the 2 × 2
minor in the upper left-hand corner of A, it will be found that

G =
⎡⎢⎢⎢⎣

5 −3 0 0
−8 5 0 0
0 0 0 0
0 0 0 0

⎤⎥⎥⎥⎦
is a generalized inverse of A. The solution of the form (12) is

x̃ = Gy + (GA − I)z

=
⎡⎢⎢⎢⎣

6
−8
0
0

⎤⎥⎥⎥⎦ +
⎧⎪⎨⎪⎩
⎡⎢⎢⎢⎣

1 0 −1 −29
0 1 2 47
0 0 0 0
0 0 0 0

⎤⎥⎥⎥⎦ − I

⎫⎪⎬⎪⎭
⎡⎢⎢⎢⎣

z1
z2
z3
z4

⎤⎥⎥⎥⎦
=
⎡⎢⎢⎢⎣

6 − z3 − 29z4
−8 + 2z3 + 47z4

−z3
−z4

⎤⎥⎥⎥⎦ (14)

where z3 and z4 are arbitrary. This means that (13) is a solution to (12) no matter
what the given values of z3 and z4 are. For example putting z3 = z4 = 0 gives

x̃′1 =
[

6 −8 0 0
]

(15)

Setting z3 = –1 and z4 = 2 gives

x̃′2 =
[
−51 84 1 −2

]
. (16)

Both of the results in (15) and (16) can be shown to satisfy (13) by direct substi-
tution.

This is also true of the result in (14) for all z3 and z4.
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Again, using the algorithm in Section 1b, this time using the 2 × 2 minor in the
second and third row and column, we obtain the generalized inverse

Ġ =
⎡⎢⎢⎢⎣

0 0 0 0
0 −5 2 0
0 13 −5 0
0 0 0 0

⎤⎥⎥⎥⎦ .
Then (12) becomes

x = Gy + (GA − I)z

=
⎡⎢⎢⎢⎣

0
4
−6
0

⎤⎥⎥⎥⎦ +
⎧⎪⎨⎪⎩
⎡⎢⎢⎢⎣

0 0 0 0
2 1 0 −11
−1 0 1 29
0 0 0 0

⎤⎥⎥⎥⎦ − I

⎫⎪⎬⎪⎭
⎡⎢⎢⎢⎣

z1
z2
z3
z4

⎤⎥⎥⎥⎦
=
⎡⎢⎢⎢⎣

−ż1
4 + 2ż1 − 11ż4
−6 − ż1 + 29ż4

−ż4

⎤⎥⎥⎥⎦ (17)

for arbitrary values ż1 and ż4. The reader may show that this too satisfies (13). □

c. Properties of Solutions

One might ask about the relationship, if any, between the two solutions (14) and
(17) found by using the two generalized inverses G and Ġ. Both satisfy (13) for an
infinite number of sets of values of z3, z4 and ż1, ż4. The basic question is: do the two
solutions generate, though allocating different sets of values to the arbitrary values
z3 and z4 in x̃ and ż1 and ż4 in ẋ, the same series of vectors satisfying Ax = y? The
answer is “yes” because on substituting ż1 = −6 + z3 + 29z4 and ż4 = z4 into (17)
yields the solution in (14). Hence, (14) and (17) generate the same sets of solutions.

Likewise, the relationship between solutions using G and those using Ġ is that
on substituting z = (G − Ġ)y + (I − ̇GA)ż into (12) and noting by Theorem 1 that
GAGy = GAĠy x̃ reduces to ẋ.

A stronger result which concerns generation of all solutions from x̃ is contained
in the following theorem.

Theorem 3 For the consistent equations Ax = y, all solutions are, for any specific
G generated by x̃ = Gy + (GA − I)z for arbitrary z.

Proof. Let x∗ be any solution to Ax = y. Choose z = (GA − I)x∗. Then

x̃ = Gy + (GA − I)z = Gy + (GA − I)(GA − I)x∗

= Gy + (GAGA − GA − GA + I)x∗

= Gy + (I − GA)x∗ = Gy + x∗ − GAx∗

= Gy + x∗ − Gy = x∗

applying Theorem 1.
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The importance of this theorem is that we need to derive only one generalized
inverse of A to be able to generate all solutions to Ax = y. There are no solutions
other than those that can be generated from x̃.

Having established a method for solving linear equations and showing that they
can have an infinite number of solutions, we ask two questions:

(i) What relationships exist among the solutions?

(ii) To what extent are the solutions linearly independent (LIN)? (A discussion of
linear independence and dependence is available in Section 5 of Gruber (2014)
or any standard matrix or linear algebra textbook.)

Since each solution is a vector of order q, there can of course be no more than q
LIN solutions. In fact, there are fewer, as Theorem 4 shows.

Theorem 4 When A is a matrix of q columns and rank r, and when y is a non-null
vector, the number of LIN solutions to the consistent equations Ax = y is q – r + 1.

To establish this theorem we need the following Lemma.

Lemma 1 Let H = GA where the rank of A, denoted by r(A) is r, that is, r(A) = r;
and A has q columns. Then H is idempotent (meaning that H2 = H) with rank r and

r(I − H) = q − r.

Proof. To show that H is idempotent, notice that H2 = GAGA = GA = H. Further-
more, by the rule for the rank of a product matrix (See Section 6 of Gruber (2014)),
r(H) = r(GA) ≤ r(A). Similarly, because AH = AGA = A, r(H) ≥ r(AH) = r(A).
Therefore, r(H) = r(A) = r. Since H is idempotent, we have that (I – H)2 = I – 2H +
H2 = I – 2H + H = I – H. Thus, I – H is also idempotent of order q. The eigenvalues
of an idempotent matrix can be shown to be zero or one. The rank of a matrix cor-
responds to the number of non-zero eigenvalues. The trace of an idempotent matrix
is the number of non-zero eigenvalues. Thus, r(I – H) = tr(I – H) = q – tr(H) =
q – r.

Proof of Theorem 4. Writing H = GA, the solutions to Ax = y are from Theorem 2

x̃ = Gy + (GA − I)z.

From Lemma 1, r(I – H) = q – r. As a result, there are only (q – r) arbitrary
elements in (H – I)z. The other r elements are linear combinations of those q – r.
Therefore, there only (q – r) LIN vectors (H – I)z and using them in x̃ gives (q –
r) LIN solutions. For i = 1, 2,… , q − r let x̃i = Gy + (H − I)zi be these solutions.
Another solution is x̃ = Gy.
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Assume that this solution is linearly dependent on the x̃i. Then, for scalars 𝜆i, i =
1, 2,… , q − r, not all of which are zero,

Gy =
q−r∑
i=1

𝜆ix̃i =
q−r∑
i=1

𝜆i[Gy + (H − I)zi]

= Gy
q−r∑
i=1

𝜆i+
q−r∑
i=1

𝜆i[(H − I)zi]. (18)

The left-hand side of (18) contains no z’s. Therefore, for the last expression on
the right-hand side of (18), the second term is zero. However, since the (H – I)zi are
LIN, this can be true only if each of the 𝜆i is zero. This means that (18) is no longer
true for some 𝜆i non-zero. Therefore, Gy is independent of the x̃i so that Gy and x̃i
for i = 1, 2,… , q − r form a set of (q – r + 1) LIN solutions. When q = r, there
is but one solution corresponding to the existence of A−1, and that one solution is
x = A−1y.

Theorem 4 means that x̃ = Gy and x̃ = Gy + (H − I)z for (q – r) LIN vectors z
are LIN solutions to Ax = y. All other solutions will be linear combinations of these
(q – r + 1) solutions. Theorem 5 presents a way of constructing solutions in terms of
other solutions.

Theorem 5 If x̃1, x̃2,… , x̃s are any s solutions of the consistent equations Ax =
y for which y ≠ 0, then any linear combination of these equations x∗ =

∑s
i=1 𝜆ix̃i is

also a solution of the equations if and only if
∑s

i=1 𝜆i = 1.

Proof. Since

x∗ =
∑s

i=1
𝜆ix̃i,

it follows that

Ax∗ = A
s∑

i=1

𝝀ix̃i =
s∑

i=1

𝝀iAx̃i.

Since x̃i is a solution, for all i, Ax̃i = y. This yields

Ax∗ =
s∑

i=1

𝜆iy = y

(
s∑

i=1

𝜆i

)
. (19)

Now if x∗ is a solution of Ax = y, then Ax∗ = y and by comparison with (19), this
means, y being non-null, that

∑s
i=1 𝜆i = 1. Conversely, if

∑s
i=1 𝜆i = 1, equation (19)

implies that Ax∗ = y, meaning that x∗ is a solution. This establishes the theorem.
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Notice that Theorem 5 is in terms of any s solutions. Hence, for any number of
solutions whether LIN or not, any linear combination of them is itself a solution
provided that the coefficients in that combination sum to unity.

Corollary 5.1 When y = 0, Gy = 0 and there are only q – r LIN solutions to Ax
= 0. Furthermore, for any values of the 𝜆i’s,

∑s
i=1 𝝀ix̃i is a solution to Ax = 0.

Example 7 Continuation of Example 6
For A defined in Example 6, the rank r = 2. Therefore, there are q – r +

1 = 4 – 2 + 1 = 3 LIN solutions to (13). Two are shown in (14) and (15) with
(14) being the solution Gy when the value z = 0 is used. Another solution putting
z′ =

[
0 0 −1 0

]
into (14) is

x̃′3 =
[
−23 39 0 −1

]
.

Thus, x̃1, x̃2, and x̃3 are LIN solutions and any other solution will be a combina-
tion of these three. For example, with z′ =

[
−23 39 0 −1

]
, the solution (14)

becomes

x̃4 =
[

7 −10 1 0
]
.

It can be seen that

x̃4 = 2x̃1 + x̃2 − 2x̃3.

The coefficients on the right-hand side of the above linear combination sums to
unity in accordance with Theorem 5.

A final theorem is related to an invariance property of the elements of a solution.
It is important to the study of linear models because of its relationship with the
concept of estimability discussed in Chapter 5. Without worrying about the details of
estimability here, we give the theorem and refer to it later as needed. The theorem is
due to C. R. Rao (1962). It concerns linear combinations of the elements of a solution
vector. Certain combinations are invariant to whatever solution is used.

Theorem 6 The value of k′x̃ is invariant to whatever solution is of Ax = y is used
for x̃ if and only if k′H = k′(where H = GA and AGA = A).

Proof. For a solution x̃ given by Theorem 2

k′x̃ = k′Gy + k′(H − I)z.
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This is independent of the arbitrary z if k′H = k′. Since any solution can be put in
the form x̃ by the appropriate choice of z, the value of k′x̃ for any x̃ is k′Gy provided
that k′H = k′

.

It may not be entirely clear that when k′H = k′, the value of k′x̃ = k′Gy is
invariant to the choice of G. We therefore clarify this point. First, by Theorem 4,
there are (q – r + 1) LIN solutions of the form x̃ = Gy + (H − I)z. Let these solutions
be x̃i for i = 1, 2,… , q − r + 1. Suppose that for some other generalized inverse,
G∗ we have a solution

x∗ = G∗y + (H∗ − I)z∗.

Then, since the x̃i are a LIN set of (q – r + 1) solutions x∗ must be a linear
combination of them. This means that there is a set of scalars 𝜆i for i= 1, 2,…, q – r+ 1
such that

x∗ =
q−r+1∑

i=1

𝝀ix̃i

where not all of the 𝜆i s are zero. Furthermore, by Theorem 5,
∑q−r+1

i=1 𝜆i = 1.
Proving the sufficiency part of the theorem demands showing that k′x̃ is the same

for all solutions x̃ when k′H = k′. Note that when k′H = k′,

k′x̃ = k′Hx̃ = k′HGy + k′(H2 − H)z = k′HGy = k′Gy.

Therefore, k′x̃i = k′Gy for all i, and

k′x∗ = k′
q−r+1∑

i=1

𝝀ix̃i =
q−r+1∑

i=1

𝝀ikx̃i =
q−r+1∑

i=1

𝝀ikGy = k′Gy

(
q−r+1∑

i=1

𝝀i

)
= k′Gy = k′x̃i.

That means that for any solution at all k′x̃ = k′Gy if k′H = k′.
To prove the necessity part of the theorem, choose z∗ = 0 in x∗. Then

k′x∗ = k′Gy = k′
q−r+1∑

i=1

𝝀ix̃i = k′
q−r+1∑

i=1

𝝀i[Gy + (H − I)zi]

= k′Gy

(
q−r+1∑

i=1

𝝀i

)
+ k′

q−r+1∑
i=1

𝝀i(H − I)zi

= k′Gy + k′
q−r+1∑

i=1

𝝀i(H − I)zi.
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Hence, k′∑q−r+1
i=1 𝝀i(H − I)zi = 0.However, the 𝜆i are not all zero and the (H – I)zi

are LIN. Therefore, this last equation can be true only if k′(H − I) = 0, that is, k′H =
k′
. Hence, for any solution x∗, k′x∗ = k′Gy if and only if k′H = k′

. This proves the
theorem conclusively.

Example 8 Illustration of the Invariance Principle
In deriving (14) in Example 6, we have that

H = GA =
⎡⎢⎢⎢⎣

1 0 −1 −29
0 1 2 47
0 0 0 0
0 0 0 0

⎤⎥⎥⎥⎦
and for

k′ =
[

3 2 1 7
]

, (20)

it will be found that k′H = k′. Therefore, k′x̃ is invariant to whatever solution is used
for x̃. Thus, from (15) and (16)

k′x̃1 = 3(6) + 2(−8) + 1(0) + 7(0) = 2

and

k′x̃2 = 3(−51) + 2(84) + 1(1) + 7(−2) = 2.

In general, from (14)

k′x̃ = 3(6 − z3 − 29z4) + 2(−8 + 2z3 + 47z4) + 1(−z3) + 7(−z4) = 2.

Likewise, k′ẋ has the same value. From (17)

k′ẋ = 3(−ż1) + 2(4 + 2ż1 − 11ż4) + 1(−6 − ż1 + 29ż4) + 7(−ż4) = 2.

There are of course many values of k′ that satisfy k′H = k′. For each of these k′x̃
is invariant to the choice of x̃. For two such vectors k′

1 and k′
2 say k′

1x̃ and k′
2x̃ are

different but each has a value that is the same for all values of x̃. Thus, in the example
k′

1H = k′
1, where

k′
1 =

[
1 2 3 65

]
is different from (20) and

k′
1x̃1 = 1(6) + 2(−8) + 3(0) + 65(0) = −10

is different from k′x̃ for k′ of (20). However, for every x̃, k′
1x̃1 = −10. □
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It was shown in Theorem 6 that the invariance of k′x̃ to x̃ holds for any
k′ provided that k′H = k′

. Two corollaries of the theorem follow.

Corollary 6.1 The linear combination k′x̃ is invariant to x̃ for k′ of the form k′ =
w′H for arbitrary w′

.

Proof. We have that k′H = w′H2 = w′GAGA = w′GA = w′H = k′
.

Corollary 6.2 There are only r LIN vectors k′ for which k′x̃ is invariant to x̃.

Proof. Since r(H) = r, there are in k′ = w′H of order q exactly q – r elements that
are linear combinations of the other r. Therefore, for arbitrary vectors w′ there are
only r LIN vectors k′ = w′H.

We will return to this point in Chapter 5 when we discuss estimable functions.
The concept of generalized inverse has now been defined and its use in solving

linear equations explained. Next, we briefly discuss the generalized inverse itself,
its various definitions and some of its properties. Extensive review of generalized
inverses and their applications is to be found in Boullion and Odell (1968) and the
approximately 350 references there. A more recent reference on generalized inverses
is Ben-Israel and Greville (2003).

3. THE PENROSE INVERSE

Penrose (1955) in extending the work of Moore (1920), shows that for every matrix
A, there is a unique matrix K which satisfies the following conditions:

AKA = A (i)
KAK = K (ii)
(KA)′ = KA (iii)
(AK)′ = AK (iv)

(21)

Such generalized inverses K will be referred to as Moore–Penrose inverses. We
will show how to find them and prove that every matrix has a unique Moore–Penrose
inverse.

Condition (i) states that K is a generalized inverse of A. Condition (ii) states that
A is a generalized inverse of K. In Section 4, we will give an example to show that in
general, Condition (i) does not imply condition (ii). Conditions (iii) and (iv) state that
KA and AK, respectively, are symmetric matrices. There are generalized inverses
that satisfy one or more of conditions (ii), (iii), and (iv) but not all of them. We will
give examples of such generalized inverses in Section 4.
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In Section 2, we showed how to obtain a generalized inverse using the singular
value decomposition. These generalized inverses satisfy all four of the above condi-
tions and, as a result, are Moore–Penrose inverses. Although a matrix has infinitely
many generalized inverses it has only one Moore–Penrose inverse. We show this
below.

Theorem 7 Let A be a matrix with singular value decomposition S′Λ1∕2U′. Then
the generalized inverse K = U𝚲−1∕2S is the Moore–Penrose inverse.

Proof. We have already shown that K is in fact a generalized inverse. To establish
the second Penrose condition we have

KAK = U𝚲−1∕2SS′𝚲1∕2U′U𝚲−1∕2S = U𝚲−1∕2S = K.

Now

KA = UΛ−1∕2SS′Λ1∕2U′ = UU′
.

and

AK = S′𝚲1∕2U′U𝚲−1∕2S = S′S.

Since UU′ and SS′ are symmetric matrices, conditions (iii) and (iv) are
established.

The generalized inverse in Example 5 is the Moore–Penrose inverse of A there.
We have thus established the existence of the Moore–Penrose inverse. We now

show that it is unique.

Theorem 8 The Moore–Penrose inverse is unique.

Proof. The proof consists of showing that for a given matrix, there can be only one
matrix that satisfies the four conditions. First, from condition (i) and (iii)

A = AKA = A(KA)′ = AA′K′ and by transposition

KAA′ = A′
. (22)

Also if AA′K′ = A, then KAA′K′ = KA(KA)′ = KA so that KA is symmetric.
Also AKA = A(KA)′ = AA′K′ = A. Thus (22) is equivalent to (i) and (iii).
Likewise, from condition (ii) and (iv), we can show in a similar way that an

equivalent identity is

KK′A′ = K. (23)



JWBS185-c01 JWBS185-Searle September 12, 2016 16:36 Printer Name: Trim: 6.125in × 9.25in

28 GENERALIZED INVERSE MATRICES

Suppose that K is not unique. Assume some other matrix M satisfies the Penrose
conditions. From conditions (i) and (iv), we have

AA′M = A′ (24)

and from conditions (ii) and (iii)

A′M′M = M. (25)

We then have that using (22)–(25),

K = KK′A′ = KK′A′AM = KAM = KAA′M′M = A′MM′ = M.

This establishes uniqueness.

We now give another method for finding the Moore–Penrose inverse based on the
Cayley–Hamilton Theorem (see, for example, Searle (1966), C. R. Rao (1973), and
Gruber (2014)). The Cayley–Hamilton theorem states that a square matrix satisfies
its characteristic equation det(A − 𝝀I) = 0. To show this, we need two lemmas.

Lemma 2 If the matrix X′X = 0, then X = 0.

Proof. If the matrix X′X = 0, then the sums of squares of the elements of each row
are zero so that the elements themselves are zero.

Lemma 3 The identity PX′X = QX′X implies that PX′ = QX′.

Proof. Apply Lemma 2 to

(PX′X − QX′X)(P − Q) = (PX′ − QX′)(PX′ − QX′)′ = 0.

We will give an alternative proof that uses the singular value decomposition
of X = S′𝚲1∕2U′. We have that PX′X = QX′X implies that PUΛ1∕2SS′Λ1∕2U′ =
QUΛ1∕2SS′Λ1∕2U′.

Multiply both sides of this equation by U𝚲−1∕2S and obtain PUΛ1∕2SS′S =
QUΛ1∕2SS′S. Since SS′ = I, we have

PUΛ1∕2S = QUΛ1∕2S or PX′ = QX′
.

We now assume that

K = TA′ (26)
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for some matrix T. Then (22) is satisfied if T satisfies

TA′AA′ = A′; (27)

and since satisfaction of (22) implies satisfaction of conditions (i) and (iii). Thus,
AKA = A and A′K′A′ = A′. As a result, TA′K′A′ = TA′, or from (26), we

get (23).
However, (23) is equivalent to Penrose conditions (ii) and (iv) so K as defined in

(26) for T that satisfies (27).
We now derive a suitable T. Notice that the matrix A′A and all of its powers are

square. By the Cayley–Hamilton Theorem, for some integer t, there exists a series of
scalars 𝜆1, 𝜆2,… , 𝜆t not all zero, such that

𝜆1A′A + 𝜆2(A′A)2 +⋯ + 𝜆t(A
′A)t = 0.

If 𝜆r is the first 𝜆 in this identity that is non-zero then T is defined as

T = (−1∕𝜆r)[𝜆r+1I + 𝜆r+2(A′A) +⋯ + 𝜆t(A
′A)t−r−1]. (28)

To show that this satisfies (27) note that by direct multiplication

T(A′A)r+1 = (−1∕𝜆r)[𝜆r+1(A′A)r+1 + 𝜆r+2(A′A)r+2 +⋯ 𝜆t(A
′A)t]

= (−1∕𝜆r)[−𝜆1A′A − 𝜆2(A′A)2 −⋯ 𝜆r(A′A)r].

Since by definition 𝜆r is the first non-zero 𝜆 in the series 𝜆1, 𝜆2,…, the above
reduces to

T(A′A)r+1 = (A′A)r
. (29)

Repeated use of Lemma 3 reduces this to (27). Thus, K = TA′ with T as defined
in (28) satisfies (27) and hence is the unique generalized inverse satisfying all four of
the Penrose conditions.

Example 9 Finding a Moore–Penrose Inverse using the Cayley–Hamilton Theorem
For

A =
⎡⎢⎢⎢⎣

1 0 2
0 −1 1
−1 0 −2
1 2 0

⎤⎥⎥⎥⎦ , we have A′A =
⎡⎢⎢⎣

3 2 4
2 5 −1
4 −1 9

⎤⎥⎥⎦ .
Finding the characteristic equation 66𝜆 − 17𝜆2 + 𝜆

3 = 0 and employing the
Cayley–Hamilton theorem, we have

66(A′A) − 17(A′A)2 + (A′A)3 = 0.
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Then,

T = (−1∕66)(−17I + A′A) = (1∕66)
⎡⎢⎢⎣

14 −2 −4
−2 12 1
−4 1 8

⎤⎥⎥⎦
and K = TA′ = (1∕66)

⎡⎢⎢⎣
6 −2 −6 10
0 −11 0 22

12 7 −12 −2

⎤⎥⎥⎦ is the Penrose inverse of A satisfying

21. □

Graybill et al. (1966) suggests an alternative procedure for deriving K. Their
method is to find X and Y such that

AA′X′ = A and A′AY = A′ (30)

and then

K = XAY. (31)

Proof that K satisfies all four Penrose axioms depends on using (30) and Lemma
3 to show that AXA = A = AYA. (See Exercise 28.)

4. OTHER DEFINITIONS

It is clear that the Penrose inverse K is not easy to compute, especially when A
has many columns or irrational eigenvalues because either finding the singular value
decomposition or using the Cayley–Hamilton theorem can be quite tedious. As has
already been shown, only the first Penrose condition needs to be satisfied to have
a matrix useful for solving linear equations. Furthermore, in pursuing the topic of
linear models, this is the only condition that is really needed. For this reason, a
generalized inverse has been defined as any matrix that satisfies AGA = A. This
definition will be retained throughout the book. Nevertheless, a variety of names will
be found throughout the literature, both for G and for other matrices satisfying fewer
than all four of the Penrose conditions. There are five such possibilities as detailed in
Table 1.1.

In the notation of Table 1.1 A(g) = G, the generalized inverse already defined
and discussed, and A(p) = K, the Moore–Penrose inverse. This has also been called
the pseudo inverse and the p-inverse by various authors. The Software package
Mathematica computes the Moore–Penrose inverse of A in response to the input
PseudoInverse[A]. The suggested definition of normalized generalized inverse in
Table 1.1 is not universally accepted. As given there it is used by Urquhart (1968),
whereas Goldman and Zelen (1964), call it a “weak” generalized inverse. An example
of such a matrix is a left inverse L such that LA = I. Rohde (1966) has also used
the description “normalized” (we use reflexive least square) for a matrix satisfying
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TABLE 1.1 Suggested Names for Matrices Satisfying Some or All of the Penrose
Conditions

Conditions Satisfied (Eq. 21) Name of Matrix Symbol

i Generalized inverse A(g)

i and ii Reflexive generalized inverse A(r)

i and iii Mininum norm generalized inverse A(mn)

i and iv Least-square generalized inverse A(ls)

i, ii, and iii Normalized generalized inverse A(n)

i, ii, and iv Reflexive least square A(rls)

Generalized inverse
i, ii, iii, and iv Moore–Penrose inverse A(p)

conditions (i), (ii), and (iv). An example of this kind of matrix is a right inverse R for
which AR = I.

The generalized inverses obtained in Section 1 by diagonalization or the algorithm
are reflexive. See Exercise 27.

Let x = Gy be a solution to Ax = y. The minimum norm generalized inverse is
such that min

Ax=y
‖x‖ = ‖Gy‖. Such a generalized inverse satisfies Penrose conditions

(i) and (iii). The least-square generalized inverse is the one that yields the solution
x̃ such that ‖Ax̃ − y‖ = inf

x
‖Ax − y‖ . It satisfies Penrose conditions (i) and (iv).

Proofs of these results are available in Gruber (2014), and Rao and Mitra (1971).
The following relationships can be established between the generalized inverses.

A(r) = A(g)AA(g)

A(n) = A′(AA′)(g)

A(rls) = (A′A)(g)A′

A(p) = A(n)AA(rls)

(32)

Some general conditions for generalized inverses to be reflexive, minimum norm
or least square are developed in Gruber (2014).

Example 10 Finding Different Kinds of Generalized Inverses
As in Example 9,

A =
⎡⎢⎢⎢⎣

1 0 2
0 −1 1
−1 0 −2
1 2 0

⎤⎥⎥⎥⎦ , A′A =
⎡⎢⎢⎣

3 2 4
2 5 −1
4 −1 9

⎤⎥⎥⎦ , and AA′ =
⎡⎢⎢⎢⎣

5 2 −5 1
2 2 −2 −2
−5 −2 5 −1
1 −2 −1 5

⎤⎥⎥⎥⎦ .
These three matrices have rank 2. Using the algorithm in Part 1,

A(g) =
⎡⎢⎢⎣

1 0 0 0
0 −1 0 0
0 0 0 0

⎤⎥⎥⎦ .



JWBS185-c01 JWBS185-Searle September 12, 2016 16:36 Printer Name: Trim: 6.125in × 9.25in

32 GENERALIZED INVERSE MATRICES

Since this is a reflexive generalized inverse A(r) = A(g). Now,

(AA′)(g) =

⎡⎢⎢⎢⎢⎢⎣

1
3

− 1
3

0 0

− 1
3

5
6

0 0

0 0 0 0

0 0 0 0

⎤⎥⎥⎥⎥⎥⎦
and A(n) = A′(AA′)(g) =

⎡⎢⎢⎢⎢⎣
1
3

− 1
3

0 0

1
3

− 5
6

0 0

1
3

1
6

0 0

⎤⎥⎥⎥⎥⎦
.

Furthermore,

(A′A)(g) =
⎡⎢⎢⎢⎣

5
11

− 2
11

0

− 2
11

3
11

0

0 0 0

⎤⎥⎥⎥⎦ and A(rls) = (A′A)(g)A′ =
⎡⎢⎢⎢⎣

5
11

2
11

− 5
11

1
11

− 2
11

− 3
11

2
11

4
11

0 0 0 0

⎤⎥⎥⎥⎦ .

Then

A(p) = A(n)AA(rls) = (1∕66)
⎡⎢⎢⎣

6 −2 −6 10
0 −11 0 22
12 7 −12 −2

⎤⎥⎥⎦ .
□

5. SYMMETRIC MATRICES

The study of linear models frequently leads to equations of the form X′Xb̂ = X′y
that have to be solved for b̂. Special attention is given therefore to the properties of a
generalized inverse of the symmetric matrix X′X.

a. Properties of a Generalized Inverse

The facts summarized in Theorem 9 below will be useful. We will denote the Moore–
Penrose inverse by (X′X)+ and any generalized inverse by (X′X)−

Theorem 9 Assume that the singular value decomposition of X = S′𝚲1∕2U′. Then

(i) X′X = UΛU′ and (X′X)+ = U𝚲−1U′
.

(ii) For any generalized inverse of X′X, U′(X′X)−U = 𝚲−1 and therefore
(X′X)+ = UU′(X′X)−UU′.
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(iii) Any generalized inverse G of X′X may be written in terms of the Moore–
Penrose inverse as follows

G = (X′X)+ + VC1U′ + UC′
1V′ + VC2V′

=
[

U V
] [Λ−1 C1

C′
1 C2

] [
U
V

]
,

where C1 = V′GU and C2 = V′GV

Proof. For (i) X′X = UΛ1∕2SS′Λ1∕2U′ = UΛU′ because SS′ = I. The expression
U𝚲−1U′ can be shown to satisfy the Penrose conditions.

For (ii) we have that X′X(X′X)−X′X = X′X.

Then this implies that

U𝚲U′(X′X)−U𝚲U′ = U𝚲U′
. (33)

Multiply both sides of equation (33) on the left by 𝚲−1U′ and on the right by
U𝚲−1

. The result follows.
To establish (iii), notice that

G = (UU′ + VV′)G(UU′ + VV′)

= UU′GUU′ + VV′GUU′ + UU′GVV′ + VV′GVV′

= (X′X)+ + VC1U′ + UC′
1V′ + VC2V′

=
[

U V
] [𝚲−1 C1

C′
1 C2

] [
U
V

]
.

Theorem 10 below gives some more useful properties of generalized inverses
of X′X.

Theorem 10 When G is a generalized inverse of X′X then

(i) G′ is also a generalized inverse of X′X;

(ii) XGX′X = X; that is, GX′ is a generalized inverse of X;

(iii) XGX′ is invariant to G;

(iv) XGX′ is symmetric whether G is or not.

Proof.

(i) By definition, X′XGX′X = X′X. Transposition yields X′XG′X′X = X′X.

(ii) Observe that XGX′X = S′𝚲1∕2U′GU𝚲U′ = S′𝚲1∕2𝚲−1𝚲U′ = S′𝚲1∕2

U′ = X.

The result may also be obtained by application of Lemma 3.
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(iii) Notice that XGX′ = S′𝚲1∕2U′GU𝚲1∕2S = S′𝚲1∕2𝚲−1𝚲1∕2S = S′S.

(iv) If M is a symmetric generalized inverse of X′X then XMX′ is symmetric.
(For example, the Moore–Penrose inverse of X′X is symmetric.) From (iii)
XGX′ = XMX′ and is thus, symmetric whether or not G is.

Corollary 10.1 Applying part (i) of Theorem 10 to the other parts shows that

XGX′X = X, X′XGX′ = X′ and X′XG′X = X′
.

Furthermore,

XG′X′ = XGX′ and XG′X′ is symmetric.

It is to be emphasized that not all generalized inverses of a symmetric matrix are
symmetric. This is illustrated in Example 11 below.

Example 11 The Generalized Inverse of a Symmetric Matrix Need not be Sym-
metric

We can demonstrate this by applying the algorithm at the end of Section 1 to the
symmetric matrix using the sub-matrix from the first two columns of the first and
third rows

A2 =
⎡⎢⎢⎣

2 2 6
2 3 8
6 8 22

⎤⎥⎥⎦
to obtain the non-symmetric generalized inverse

G =
⎡⎢⎢⎣

2 − 3
2

0
0 0 0
− 1

2
1
2

0

⎤⎥⎥⎦ . □

Theorem 10 and Corollary 10.1 very largely enable us to avoid difficulties that this
lack of symmetry of generalized inverses of X′X might otherwise appear to involve.
For example, if G is a generalized inverse of X′X and P is some other matrix,

(PXGX′)′ = XG′X′P′ = XGX′P′

not because G is symmetric (which in general is not) but because XGX′ is symmetric.
□
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Example 12 Illustration of Symmetry of XGX′

If

X =
⎡⎢⎢⎣

1 1 3
1 1 3
0 1 2

⎤⎥⎥⎦ ,

then X′X = A2 from Example 11. Then

XGX′ =
⎡⎢⎢⎣

1 1 3
1 1 3
0 1 2

⎤⎥⎥⎦
⎡⎢⎢⎢⎣

2 − 3
2

0

0 0 0
− 1

2
1
2

0

⎤⎥⎥⎥⎦
⎡⎢⎢⎣

1 1 0
1 1 1
3 3 2

⎤⎥⎥⎦ = 1
2

⎡⎢⎢⎣
1 1 0
1 1 0
0 0 2

⎤⎥⎥⎦
and

XG′X′ =
⎡⎢⎢⎣

1 1 3
1 1 3
0 1 2

⎤⎥⎥⎦
⎡⎢⎢⎢⎣

2 0 − 1
2

− 3
2

0 1
2

0 0 0

⎤⎥⎥⎥⎦
⎡⎢⎢⎣

1 1 0
1 1 1
3 3 2

⎤⎥⎥⎦ = 1
2

⎡⎢⎢⎣
1 1 0
1 1 0
0 0 2

⎤⎥⎥⎦ .
□

b. Two More Generalized Inverses of X′X

In addition to the methods studied already, two other methods discussed by John
(1964) are sometimes pertinent to linear models. They depend on the ordinary inverse
of a non-singular matrix:

S−1 =
[

X′X H′

H 0

]
=
[

B11 B12
B21 B22 = 0

]
. (34)

The matrix H being used here is not the matrix H = GA used earlier. It is being
used to be consistent with John’s notation. The matrix X′X is of order p and rank p –
m. The matrix H is any matrix of order m × p. It is of full row rank and its rows also
LIN of those of X′X. In other words, the rows of H cannot be a linear combination
of rows of X′X. (The existence of such a matrix is assured by considering m vectors
of order p that are LIN of any set of p – m LIN rows of X′X. Furthermore, if these
rows constitute H in such a way that the m LIN rows of H correspond in S to the m
rows of X′X that are linear combinations of the set of p – m rows then S−1 of (34)
exists.) With (34) existing the two matrices

B11 and (X′X + H′H)−1 are generalized inverses of X′X. (35)

Three useful lemmas help in establishing these results.

Lemma 4 The matrix T =
[

Ir U
]

has rank r for any matrix U of r rows.
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Proof. Elementary operations carried out on T to find its rank will operate on Ir.
None of these rows or columns can be made null by such operations. Therefore, r(T)
is not less than r. Consequently r(T) = r.

Lemma 5 If XN×p has rank p – m for m > 0, then there exists a matrix Dp×m such
that XD = 0 and r(D) = m.

Proof. Let X =
[

X1 X2
]

where X1 is N × (p − m) of full column rank. Then the
columns of X2 are linear combinations of the columns of X1 and so for some matrix C,
of order (p − m) × m, the sub-matrices of X satisfy X2 = X1C. Let D′ =

[
−C′ Im

]
.

By Lemma 4 D′ has rank m. We then have XD = 0 and r(D) = m. The Lemma is thus
proved because a matrix D exists.

Lemma 6 For X and D of Lemma 5 and H of order m × p with full-row rank, HD
has full-row rank if and only if the rows of H are LIN of those of X.

Proof. (i) Given r(HD) = m, assume that the rows of H depend on those of X (are
not LIN of X). Then, H = KX for some K, and HD = KXD = 0. Therefore, the
assumption is false and the rows of H are LIN of those of X.

(ii) Given that the rows of H are LIN of those of X, the matrix

[
X
R

]
, of order

(N + m) × p has full column rank. Therefore, it has a left inverse
[

U V
]
, say

(Section 5.13 of Searle (1966)), and so UX + VH = I, that is, UXD + VHD = D; or
VHD = D using Lemma 5. However, r(Dp×m) = m and D has a left inverse, E, say,
and so EVHD = Im. Therefore, r(HD) ≥ m and so because HD is m × m, r(HD) =
m, and the lemma is proved.

Proof of (35). First it is necessary to show that in (34), B22 = 0. From (34), we have
that

X′XB11 + H′B21 = I and X′XB12 + H′B22 = 0 (36)

HB11 = 0 and HB12 = I. (37)

Pre-multiplying (36) by D′ and using Lemmas 5 and 6 leads to

B21 = (D′H′)−1D′ and B22 = 0. (38)

Then from (36) and (38),

X′XB11 = I − H′(D′H′)−1D′
. (39)
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Post-multiplication of (39) by X′X and application of Lemma 5 shows that B11
is a generalized inverse of X′X. Furthermore, using (37), (39), and Lemmas 5 and 6
gives

(X′X + H′H)[B11 + D(D′H′HD)−1D′] = I. (40)

From (40),

(X′X + H′H)−1 = B11 + D(D′H′HD)−1D′
. (41)

Since from Lemma 5, D is such that XD = 0 we have that

X′X(X′X + H′H)−1X′X = X′XB11X′X = X′X

since B11 is a generalized inverse of X′X and (X′X + H′H)−1 is a generalized inverse
of X′X. This completes the proof.

It can be shown that B11 satisfies the second of Penrose conditions and is thus
a reflexive generalized inverse of X′X. However, (X′X + H′H)−1 only satisfies the
first Penrose condition. Neither generalized inverse satisfies conditions (iii) or (iv).

John (1964) refers to Graybill (1961, p. 292) and to Kempthorne (1952, p. 79)
in discussing B11 and to Plackett (1960, p. 41) and Scheffe (1959, p. 19) in dis-
cussing (X′X + H′H)−1, in terms of defining generalized inverses of X′X as being
matrices G for which b = GX′y is a solution of X′Xb = X′y. By Theorem 1, they
then satisfy condition (i), as has just been shown. Rayner and Pringle (1967) also
discuss these results, indicating that D of the previous discussion may be taken as
(X′X + H′H)−1H′. This, as Chipman (1964) shows, means that HD = I and so (39)
becomes

X′XB11 = I − H′H(X′X + H′H)−1, (42)

a simplified form of Rayner and Pringle’s equation (7). The relationship between the
two generalized inverses of X′X shown in (35) is therefore that indicated in (42).
Also note that Lemma 6 is equivalent to Theorem 3 of Scheffe (1959, p. 17).

6. ARBITRARINESS IN A GENERALIZED INVERSE

The existence of many generalized inverses G that satisfy AGA = A has been
emphasized. We examine here the nature of the arbitrariness of such generalized
inverses as discussed in Urquhart (1969a). We need some results about the rank of
the matrix. These are contained in Lemmas 7–9.

Lemma 7 A matrix of full-row rank r can be written as the product of matrices,
one being of the form

[
Ir S

]
for some matrix S of r rows.
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Proof. Suppose Br×q has full-row rank r and contains an r × r non-singular minor,
M, say. Then, for some matrix L and some permutation matrix Q (see the paragraph
just before (9)), we have BQ =

[
M L

]
, so that

B = M
[

I M−1L
]

Q−1 = M
[

I S
]

Q−1 for S = M−1L.

Lemma 8 I + KK′ has full rank for any non-null matrix K.

Proof. Assume that I + KK′ does not have full rank. Then its columns are not LIN
and there exists a non-null vector u such that

(I + KK′)u = 0, so that u′(I + KK′)u = u′u + u′K(u′K)′ = 0.

However, u′u and u′K(u′K)′ are both sums of squares of real numbers. Hence,
their sum is zero only if their elements are zero, that is, only if u = 0. This contradicts
the assumption. Therefore, I + KK′ has full rank.

Lemma 9 When B has full row rank, BB′ is non-singular.

Proof. As in Lemma 7 write B = M
[

I S
]

Q−1 where M−1 exists. Then because
Q is a permutation matrix and thus orthogonal BB′ = M(I + SS′)M′. By virtue of
Lemma 8 and the existence of M−1, BB′ is non-singular.

Corollary 9.1 When B has full-column rank, BB′ is non-singular.

Proof. When B has full column rank B′ has full-row rank. Now

BB′ = (B′B)′ = (B′(B′)′)′

From Lemma 9, B′(B′)′ is non-singular and so is its transpose.

Consider now a matrix Ap×q of rank r, less than both p and q. The matrix A
contains at least one non-singular minor of order r. We will assume that this is the
leading minor. There is no loss of generality in this assumption because, if it is not
true, the algorithm of Section 1b will always yield a generalized inverse of A. This
generalized inverse will come from a generalized inverse of B = RAS where R and
S are permutation matrices so that B has a non-singular r × r leading minor. We
therefore confine the discussion of inverses of A to the case where its leading r × r
minor is non-singular. Accordingly, A is partitioned as

A =
[

(A11)r×r (A12)r×(q−r)
(A21)(p−r)×r (A22)(p−r)×(q−r)

]
. (43)
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Then since A−1
11 exists, A can be written as

A =
[

I
A21A−1

11

]
A11

[
I A−1

11 A12
]
= LA11M (44)

with L =
[

I
A21A−1

11

]
and M =

[
I A−1

11 A12
]
. From Lemma 4, L has full-column

rank and M has full-row rank. Lemma 9 shows that both (L′L)−1 and (M′M)−1 exist.
The arbitrariness in a generalized inverse of A is investigated by means of this

partitioning. Thus, on substituting (44) into AGA = A, we get

LA11MGLA11M = LA11M. (45)

Pre-multiplication by A−1
11 (L′L)−1L′ and post-multiplication by M′(M′M)−1A−1

11
then gives

MGL = A−1
11 . (46)

Whatever the generalized inverse is, suppose it is partitioned as

G =
[

(G11)r×r (G12)r×(p−r)
(G21)(q−r)×r (G22)(q−r)×(p−r)

]
(47)

of order q × p, conformable for multiplication with A. Then substituting (47) and
(44) into (46) gives

G11 + A−1
11 A12G21 + G12A21A−1

11 + A−1
11 A12G22A21A−1

11 = A−1
11 . (48)

This is true whatever the generalized inverse may be. Therefore, on substituting
from (48) for G11, we have

G =
⎡⎢⎢⎣

A−1
11 − A−1

11 A12G21 − G12A21A−1
11 − A−1

11 A12G22A21A−1
11 G12

G21 G22

⎤⎥⎥⎦ (49)

as a generalized inverse of A for any matrices G12, G21, and G22 of appropriate order.
Thus, the arbitrariness of a generalized inverse is characterized.

Example 13 Illustration of the Characterization in (49)

Let A =
⎡⎢⎢⎣

4 2 2
2 2 0
2 0 2

⎤⎥⎥⎦ and G =

⎡⎢⎢⎢⎢⎣
1
4

0 0

− 1
4

1
2

0

− 1
4

0 1
2

⎤⎥⎥⎥⎥⎦
. This generalized inverse only

satisfies Penrose condition (i). Partition A so that A11 =
[

4 2
2 2

]
, A12 =

[
2
0

]
,
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A21 =
[

2 0
]

, and A22 = [2] . Also G11 =

[ 1
4

0

− 1
4

1
2

]
, G12 =

[
0
0

]
, G21 =

[
− 1

4
0
]

, and G22 =
[

1
2

]
. Now A−1

11 =

[ 1
2

− 1
2

− 1
2

1

]
. Using Formula 49, we can

see that

G11 =

[ 1
2

− 1
2

− 1
2

1

]
−

[ 1
2

− 1
2

− 1
2

1

][
2
0

] [
− 1

4
0
]

−
[

0
0

] [
2 0

] [ 1
2

− 1
2

− 1
2

1

]
−

[ 1
2

− 1
2

− 1
2

1

][
2
0

] [
1
2

] [
2 0

] [ 1
2

− 1
2

− 1
2

1

]
□

Certain consequences of (49) can be noted.

1. By making G12, G21, and G22 null, G =
[

A−1
11 0
0 0

]
, a form discussed earlier.

2. When A is symmetric, G is not necessarily symmetric. Only when G12 =
G′

21 and G22 is symmetric will G be symmetric.

3. When p ≥ q, G can have full row rank q even if r < q. For example, if
G12 = −A−1

11 A12G22, G21 = 0 and G22 has full row rank the rank of G can
exceed the rank of A. In particular, this means that singular matrices can have
non-singular generalized inverses.

The arbitrariness evident in (49) prompts investigating the relationship of one
generalized inverse to another. It is simple. If G1 is a generalized inverse of A, then
so is

G = G1AG1 + (I − G1A)X + Y(I − AG1) (50)

for any X and Y. Pre- and post-multiplication of (50) by A shows that this is so.
The importance of (50) is that it provides a method of generating all generalized

inverses of A. They can all be put in the form of (50). To see this, we need only
show that for some other generalized inverse G2 that is different from G1, there exist
values of X and Y giving G = G2. Putting X = G2 and Y = G1AG2 achieves this.

The form of G in (50) is entirely compatible with the partitioned form given in

(49). For if we take G1 =
[

A−1
11 0
0 0

]
and partition X and Y in the same manner as

G, then (50) becomes

G =

[
A−1

11 − A−1
11 A12X21 − Y12A21A−1

11 −A−1
11 A12X22 + Y12

X21 − Y22A21A−1
11 X22 + Y22

]
. (51)



JWBS185-c01 JWBS185-Searle September 12, 2016 16:36 Printer Name: Trim: 6.125in × 9.25in

ARBITRARINESS IN A GENERALIZED INVERSE 41

This characterizes the arbitrariness even more specifically than does (49). Thus,
for the four sub-matrices of G shown in (47) we have

Sub-matrix Source of Arbitrariness

G11 X21 and Y12

G12 X22 and Y12

G21 X21 and Y22

G22 X22 and Y22

This means that in the partitioning of

X =
[

X11 X12
X21 X22

]
and Y =

[
Y11 Y12
Y21 Y22

]
implicit in (50), the first set of rows in the partitioning of X does not enter into G,
and neither does the first set of columns of Y.

It has been shown earlier (Theorem 3) that all solutions to Ax = y can be generated
from x̃ = Gy + (GA − I)z, where z is the infinite set of arbitrary vectors of order q.
We now show that all solutions can be generated from x̃ = Gy where G is the infinite
set of generalized inverses indicated in (50). First, a Lemma is needed.

Lemma 10 If zq×1 is arbitrary and yp×1 is known and non-null, there exists an
arbitrary matrix X such that z = Xy.

Proof. Since y ≠ 0 at least one element yk say, will be non-zero. Writing z = {zj}
and X = {xij} for i = 1,…, q and j = 1,…, p, let xij = zi/yk for j = k and xij = 0
otherwise. Then Xy = z and X is arbitrary.

We use this lemma to prove the theorem on generating solutions.

Theorem 11 For all possible generalized inverses G of A, x̃ = Gy generates all
solutions to the consistent equations Ax = y.

Proof. For the generalized inverse G1, solutions to Ax= y are x̃ = G1y + (G1A − I)z
where z is arbitrary. Let z = –Xy for some arbitrary X. Then

x̃ = G1y − (G1A − I)Xy

= G1y − G1AG1y + G1AG1y + (I − G1A)Xy

= [G1AG1 + (I − G1A)X + G1(I − AG1)y

= Gy,

where G is exactly the form given in (50) using G1 for Y.
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In Theorem 9 (iii), we showed how to represent any generalized inverse of X′X
in terms of the Moore–Penrose inverse. Theorem 12 shows how to do this for a
generalized inverse of any matrix A.

Theorem 12 Let G be any generalized inverse of A. Then

(i) UU′GS′S = A+.

(ii) G = X+ + UC1T + VC2S + VC3T =
[

U V
] [𝚲−1∕2 C1

C2 C3

] [
S
T

]
,

where C1 = V′GS′, C2 = U′GT′ and C3 = V′GT′.

Proof. (i) Since AGA = A, we have, using the singular value decomposition
of A,

S′𝚲1∕2U′GS′𝚲1∕2U′ = S′𝚲1∕2U′
. (52)

Pre-multiply (52) by 𝚲−1∕2S and post-multiply by U𝚲−1∕2. Then we get

U′GS′ = 𝚲−1∕2
. (53)

Pre-multiply (53) by U and post-multiply by S to obtain

UU′GS′S = A+
.

(ii) Notice that

G = (UU′ + VV′)G(S′S + T′T)

= UU′GS′S + VV′GS′S + UU′GT′T + VV′GT′T

= A+ + VC1S + UC2T + VC3T.

7. OTHER RESULTS

Procedures for inverting partitioned matrices are well-known (e.g., Section 8.7 of
Searle (1966), Section 3 of Gruber (2014)). In particular, the inverse of the partitioned
full-rank symmetric matrix

M =
[

X′

Z′

] [
X Z

]
=
[

X′X X′Z
Z′X Z′Z

]
=
[

A B
B′ D

]
, (54)

say, can for

W = (D − B′A−1B)−1 = [Z′Z − Z′X(X′X)−1X′Z],
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be written as

M−1 =
[

A−1 + A−1BWB′A−1 −A−1BW
−WB′A−1 W

]
=
[

A−1 0
0 0

]
+
[
−A−1B

I

]
W

[
−B′A−1 I

]
. (55)

The analogy for (55) for generalized inverses, when M is symmetric but singular,
has been derived by Rhode (1965). In defining A− and Q− as generalized inverses of
A and Q, respectively, where Q = D − B′A−B, then a generalized inverse of M is

M− =

[
A− + A−BQ−B′A− −A−BQ−

−Q−B′A− Q−

]
=
[

A− 0
0 0

]
+
[
−A−B

I

]
Q− [

−B′A− I
]
. (56)

It is to be emphasized that the generalized inverses referred to here are just as have
been defined throughout, namely satisfying only the first of Penrose’s four conditions.
(In showing that MM−M = M, considerable use is made of Theorem 7.)

Example 14 A Generalized Inverse of a Partitioned Matrix
Consider the matrix with the partitioning,

M =
⎡⎢⎢⎢⎣

2 2 1 1
2 2 1 1
1 1 2 2
1 1 2 3

⎤⎥⎥⎥⎦ , A =
[

2 2
2 2

]
= D,B = B′ =

[
1 1
1 1

]
.

A generalized inverse of A is

A− =

[
1
2

0

0 0

]
,

Q =
[

2 2
2 2

]
−
[

1 1
1 1

][ 1
2

0

0 0

][
1 1
1 1

]
=

[ 3
2

3
2

3
2

3
2

]
and

Q− =

[
2
3

0

0 0

]
.
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Then,

M− =

⎡⎢⎢⎢⎢⎣
1
2

0 0 0

0 0 0 0
0 0 0 0
0 0 0 0

⎤⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎣
− 1

2
− 1

2

0 0
1 0
0 1

⎤⎥⎥⎥⎥⎦
[ 2

3
0

0 0

][− 1
2

0 1 0

− 1
2

0 0 1

]

=

⎡⎢⎢⎢⎢⎢⎣

2
3

0 − 1
3

0

0 0 0 0

− 1
3

0 2
3

0

0 0 0 0

⎤⎥⎥⎥⎥⎥⎦
We could have used different generalized inverses for A and Q. If we had done

so, we would get a valid but different generalized inverse for M.

The regular inverse of the product AB is B−1A−1. However, there is no analogous
result for generalized inverses. When one matrix is non-singular, B, say, Rohde
(1964) indicates that B−1A− is a generalized inverse of AB. Greville (1966) considers
the situation for unique generalized inverses A(p) and B(p), and gives five separate
conditions under which (AB)(p) = B(p)A(p)

. However, one would hope for conditions
less complex that those of Greville for generalized inverses A−and B− satisfying just
the first of Penrose’s conditions. What can be shown is that B−A− is a generalized
inverse of AB if and only if A−ABB− is idempotent. Furthermore, when the product
AB is itself idempotent, it has AB, AA−, BB−, and B−BAA− as generalized inverses.
Other problems of interest are the generalized inverse of Ak in terms of that of A, for
integer k, and the generalized inverse of XX′ in terms of that of X′X.

8. EXERCISES

1 Reduce the matrices

A =
⎡⎢⎢⎣

2 3 1 −1
5 8 0 1
1 2 −2 3

⎤⎥⎥⎦ and B =
⎡⎢⎢⎢⎣

1 2 3 −1
4 5 6 2
7 8 10 7
2 1 1 6

⎤⎥⎥⎥⎦
to diagonal form and find a generalized inverse of each.

2 Find generalized inverses of A and B in Exercise 1 by inverting non-singular
minors.



JWBS185-c01 JWBS185-Searle September 12, 2016 16:36 Printer Name: Trim: 6.125in × 9.25in

EXERCISES 45

3 For A and B of Exercise 1, find general solutions to

(a) AX =
⎡⎢⎢⎣
−1
−13
11

⎤⎥⎥⎦
(b) Bx =

⎡⎢⎢⎢⎣
14
23
32
−5

⎤⎥⎥⎥⎦
4 Find the Penrose inverse of

⎡⎢⎢⎢⎣
1 0 2
2 −1 5
0 1 −1
1 3 −1

⎤⎥⎥⎥⎦.

5 Which of the remaining axioms for a Moore–Penrose inverse are satisfied by the
generalized inverse in Example 2?

6 (a) Using the Algorithm in Section 1b, find generalized inverses of

A1 =
⎡⎢⎢⎣

4 1 2 0
1 1 5 15
3 1 3 5

⎤⎥⎥⎦
derived from inverting the 2 × 2 minors

M1 =
[

1 5
1 3

]
, M2 =

[
1 15
1 5

]
, and M3 =

[
4 0
3 5

]
.

(b) Using the Algorithm in Section 1b find a generalized inverse of

A2 =
⎡⎢⎢⎣

2 2 6
2 3 8
6 8 22

⎤⎥⎥⎦
derived from inverting the minor

M =
[

3 8
8 22

]
.

7 Let

A =
[
−1 1
1 −1

]
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(a) Find the Moore–Penrose inverse of A.
(b) Classify the following generalized inverses of A as named in Table 1.1 by

determining which of the Penrose conditions are satisfied.

(i)

[ 3
4

9
4

1
4

3
4

]

(ii)

[ 5
4

3
4

7
4

1
4

]

(iii)

[ 1
4

3
4

1 1
2

]

(iv)

[ 3
4

5
4

5
4

3
4

]

8 Given X =

⎡⎢⎢⎢⎢⎢⎢⎣

1 1 0
1 1 0
1 1 0
1 0 1
1 0 1
1 0 1

⎤⎥⎥⎥⎥⎥⎥⎦
Find

(a) A minimum norm generalized inverse of X
(b) A least-square generalized inverse of X
(c) The Moore–Penrose inverse of X

9 Find a generalized inverse of each of the following matrices.

(a) PAQ, when P and Q are non-singular

(b) GA, when G is a generalized inverse of A
(c) kA, where k is a scalar

(d) ABA, when ABA is idempotent

(e) J, when J is square with every element unity

10 What kinds of matrices

(a) are their own generalized inverses?

(b) have transposes as a generalized inverse?

(c) have an identity matrix as a generalized inverse?

(d) have every matrix of order p × q for a generalized inverse?

(e) have only non-singular generalized inverses?

11 Explain why the equations (a) Ax = 0 and (b) X′Xb = X′y are always consistent.

12 If z = (G – F)y + (I – FA)w, where G and F are generalized inverses of A, show
that the solution x̃ = Gy + (GA − I)z to Ax = y reduces to x̃ = Fy + (FA − I)w.
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13 If Ax = y are consistent equations, and F and G are generalized inverses of A,
find in simplest form, a solution for w to the equations

(I − GA)w = (F − G)y + (FA − I)z.

14 (a) If A has full-column rank, show that its generalized inverses are also left
inverses satisfying the first three Penrose conditions.

(b) If A has full-row rank, show that its generalized inverses are also right inverses
satisfying the first, second, and fourth Penrose conditions.

15 Show that (29) reduces to (27).

16 Give an example of a singular matrix that has a non-singular generalized inverse.

17 Prove that B−A− is a generalized inverse of AB if and only if A−ABB− is
idempotent.

18 Show that the rank of a generalized inverse of A does not necessarily have the
same rank as A and that it is the same if and only if it has a reflexive generalized
inverse. See Rhode (1966), also see Ben-Israel and Greville (2003), and Harville
(2008).

19 When PAQ =
[

D 0
0 0

]
with P and Q non-singular show that G =

Q
[

D−1 X
Y Z

]
P is a generalized inverse of A. Under what conditions does

GAG = G? Use G to answer Exercise 15.

20 Using AGA = A
(a) Find a generalized inverse of AB where B is orthogonal.

(b) Find a generalized inverse of LA where A is non-singular.

21 What is the Penrose inverse of a symmetric idempotent matrix?

22 If G is a generalized inverse of Ap×q, show that G + Z – GAZAG generates

(a) all generalized inverses of A, and

(b) all solutions to consistent equations Ax = y as Z ranges over all matrices of
order q × p.

23 Show that the generalized inverse of X that was derived in Theorem 12

G = X+ + UC1T + VC2S + VC3T =
[

U V
] [Λ−1∕2 C1

C2 C3

] [
S
T

]

(a) Satisfies Penrose condition (ii)(is reflexive) when C3 = C2𝚲1∕2C1;

(b) Satisfies Penrose condition (iii)(is minimum norm) when C2 = 0;
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(c) Satisfies Penrose Condition (iv)(is a least-square generalized inverse when
C1 = 0.)

24 Show that M = (X′X)+X′ and W = X′(X′X)+ are expressions for the Moore–
Penrose inverse of X
(i) by direct verification of the four Penrose conditions.

(ii) using the singular value decomposition.

25 Show that if N is a non-singular matrix, then (UNU′)+ = UN−1U′.

26 Show that if P is an orthogonal matrix, (PAP′)+ = PA+P′.

27 Show that

(a) X+(X′)+ = (X′X)+;

(b) (X′)+X+ = (XX′)+.

28 Show that the generalized inverses that would be produced by the algorithms in
Sections 1a and 1b are reflexive.

29 Show that K as defined in equation (30) satisfies the four Penrose axioms.

30 Show that if X− satisfies Penrose’s condition (iv) then b = X−y is a solution to
X′Xb = X′y. [Hint: use Exercise 22 or Theorem 12.]

31 Show that M− of (56) is a generalized inverse of M in (54).

32 If Pm×q and Dm×m have rank m show that D−1 = P(P′DP)−P′
.

33 Show by direct multiplication that

M− =
[

0 0
0 (Z′Z)−

]
+
[

I
−(Z′Z)−Z′X

]
Q− [

I −X′Z(Z′Z)−
]

,

where Q = X′X − X′Z(Z′Z)−Z′X is a generalized inverse of

M =
[

X′X X′Z
Z′X Z′Z

]
.


