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Elements of Mathematical
Calculation

This chapter is an introduction presenting the elements of mathematical calculation
that will be used in the book.

1.1 Vectors: Vector Operations

A vector (denoted by a) is defined by its numerical magnitude or modulus a , by the
directionΔ, and by sense. The vector is represented (Fig. 1.1) by an orientated segment
of straight line.
The sum of two vectors a, b is the vector c (Fig. 1.2) represented by the diagonal of

the parallelogram constructed on the two vectors; it reads

c= a+ b 1 1

The unit vector u of the vector a (or of the direction Δ) is defined by the relation

u=
a
a

1 2

If one denotes by i, j, k the unit vectors of the axes of dextrorsum orthogonal ref-
erence systemOxyz, and by ax, ay, az the projections of vector a onto the axes, then one
may write the analytical expression

a= axi+ ayj+ azk 1 3
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The scalar (dot) product of two vectors is defined by the expression

a b= a b cosα, 1 4

where α is the angle between the two vectors.
We obtain the equalities

i j= j k =k i= 0, i2 = j2 =k2 = 1 1 5

and, consequently, one deduces the analytical expressions

a b = axbx + ayby + azbz, 1 6

a = a2x + a
2
y + a

2
z , b = b2x + b

2
y + b

2
z , 1 7

cosα=
axbx + ayby + azbz

a2x + a
2
y + a

2
z b2x + b

2
y + b

2
z

1 8

The vector (cross) product of two vectors, denoted by c,

c= a ×b, 1 9

is the vector perpendicular onto the plan of the vectors a and b, while the sense is given
by the rule of the right screw when the vector a rotates over the vector b (making the
smallest angle); the modulus has the expression

c = a b sinα, 1 10
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Figure 1.1 Representation of a vector.
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Figure 1.2 The sum of two vectors.
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α being the smallest angle between the vectors a and b.
One obtains the equalities

i× j= k, j×k = i, k× i= j, 1 11

and the analytical expression

a× b= aybz−azby i+ azbx−axbz j+ axby−aybx k 1 12

The mixed product of three vectors, defined by the relation a b × c and denoted by
(a, b, c), leads to the successive equalities

a,b,c = a b× c =b c × a = c a×b =
ax ay az
bx by bz
cx cy cz

1 13

The mixed product (a, b, c) is equal to the volume with sign of the parallelepiped
constructed having the three vectors as edges (Fig. 1.3). It is equal to zero if and only
if the three vectors are coplanar.
The double vector product a× b× c satisfies the equality

a× b × c = a c b− a b c 1 14

The reciprocal vectors of the (non-coplanar) vectors a, b, c are defined by the
expressions

a∗ =
b× c
a,b,c

, b∗ =
c× a
a,b,c

, c∗ =
a×b
a,b,c

, 1 15

and satisfy the equality

a∗,b∗,c∗ =
1

a,b,c
1 16
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Figure 1.3 The geometric interpretation of the mixed product of three vectors.
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An arbitrary vector v may be written in the form

v= v a∗ a + v b∗ b+ v c∗ c, 1 17

or as

v = v a a∗ + v b b∗ + v c c∗ 1 18

1.2 Real Rectangular Matrix

By real rectangular matrix we understand a table with m rows and n columns (m n)

A =

a11 a12 … a1n
a21 a22 … a2n
… … … …

am1 am2 … amn

, 1 19

where the elements aij are real numbers.
Sometimes, we use the abridged notation

A = aij or A = aij 1 ≤ i ≤m
1 ≤ j ≤ n

1 20

The multiplication between a matrix and a scalar λ R is defined by the relation

λ A = λaij , 1 21

while the sum of two matrices of the same type (with the same number of rows and the
same number of columns) is defined by

A + B = aij + bij 1 22

The zero matrix or the null matrix is the matrix denoted by [0], which has all its
elements equal to zero.
The zero matrix verifies the relations

A + 0 = 0 + A = A 1 23
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The transpose matrix [A]T is the matrix obtained transforming the rows of the matrix
[A] into columns, that is

A T = aji 1 24

The transposing operation has the following properties

A T
T
= A , A + B T = A T + B T, 1 25

where we assumed that the sum can be performed.
The matrix with one column bears the name columnmatrix or column vector and it is

denoted by {A}, that is

A = a11 a21 … am1
T, 1 26

while the matrix with one row is called row matrix or row vector and is denoted as

A = a11 a12 … a1n , 1 27

or

A = A T, 1 28

where

A = a11 a12 … a1n
T 1 29

If the matrix [A] has m rows and n columns, and the matrix [B] has n rows and
p columns, then the two matrices can be multiplied and the result is a matrix [C] with
m rows and p columns

C = A B , 1 30

where the elements cij, 1 ≤ i ≤m, 1 ≤ j ≤ p, of the matrix [C] satisfy the equality

cij =
n

k = 1

aikbkj, 1 31

that is, the elements of the product matrix are obtained by multiplying the rows of
matrix [A] by the columns of matrix [B].
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The transpose of the product matrix is given by the relation

A B T = B T A T 1 32

In some cases, there may exist matrices of matrices and the multiplication is per-
formed as in the following example

A1 A2

A3 A4

A5 A6

B1 B2

B3 B4
=

A1 B1 + A2 B3 A1 B2 + A2 B4

A3 B1 + A4 B3 A3 B2 + A4 B4

A5 B1 + A6 B3 A5 B2 + A6 B4

, 1 33

where we assumed that the operations of multiplication and addition of matrices can be
performed for each separate case.

1.3 Square Matrix

The matrix [A] is a square matrix if the number of rows is equal to the number of
columns; hence

A =

a11 a12 … a1n
a21 a22 … a2n
… … … …

an1 an2 … ann

, 1 34

where the number n is the dimension or the order of the matrix.
The determinant associated to the matrix [A] is denoted by det[A].
If [Aij] is the matrix obtained from the matrix [A] by the suppression of the row i and

the column j, then the algebraic complement a∗ij is given by the expression

a∗ij = −1 i+ jdet Aij ,1 ≤ i, j ≤ n, 1 35

and the following relation holds true

n

k = 1

aika
∗
jk =

n

k = 1

akja
∗
ki =

0 for i j
det A for i= j

1 36

The determinants of the matrices satisfy the equalities

det A = det A T, 1 37

det A B = det A det B , 1 38
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where we assumed that the matrices [A] and [B] have the same order.
In general, the multiplication of matrices is not commutative,

A B B A , 1 39

but it is associative and distributive, that is

A B C = A B C = A B C , 1 40

A B + C = A B + A C , 1 41

where the matrices [A], [B] and [C] have the same order.
The trace of a matrix, denoted by Tr[A] is equal to the sum of the elements situated

on the principal diagonal

Tr A =
n

i = 1

aii 1 42

The diagonal matrix is the matrix with all the elements equal to zero, except some
elements situated on the principal diagonal.
The unity matrix, generally denoted by [I], is the diagonal matrix that has all the

elements of the principal diagonal equal to unity,

I =

1 0 0 … 0

0 1 0 … 0

… … … … …

0 0 0 … 1

1 43

The unity matrix verifies the relations

A I = I A = A 1 44

The adjunct matrix A∗ is defined by the relation

A∗ = a∗ij 1 45

The matrix [A] is called singular if det A = 0; it is called a non-singular one
if det A 0.
The non-singular matrices [A] admit inverse matrices A −1; the inverse matrices

fulfill the conditions
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A −1 =
1

det A
A∗ , 1 46

A A −1 = A −1 A = I , 1 47

A T
−1

= A −1
T

1 48

The matrix [A] is called symmetric if

A = A T; 1 49

it is called anti-symmetric or skew if

A = − A T 1 50

The matrix [A] is called orthogonal if it fulfills the condition

A A T = I 1 51

The orthogonal matrix [A] satisfies the equalities

A T = A −1, det A = ±1 1 52

The equation of nth degree

det λ I − A = 0 1 53

is the characteristic equation of the matrix [A]; its roots λ1, λ2, …, λn are called the
eigenvalues of the matrix [A].
The vectors v mi which are obtained from the equality

A v mi = λm v mi ,1 ≤m ≤ k, 1 54

are called eigenvectors and, if the matrix [A] is a symmetric one, then its eigenvectors
are orthogonal

v r
T

v s = 0, if s r 1 55

Using the notation

bj =Tr A j , 1 56
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one obtains the characteristic equation

n

j= 0

cn− jλ
j = 0, 1 57

where the coefficients cj are given by the iterative relations

c0 = 0, cj = −
1
j

j−1

k = 0

ckbj−k 1 58

Observation 1.3.1.

i. The eigenvalues of the matrix [A] of order n can be real or complex, distinct or not.
ii. One or more eigenvectors correspond to an eigenvalue λm, depending on the order

of multiplicity for that eigenvalue.
iii. No matter if the eigenvalue is real or not, keeping into account that the matrix [A]

has real components, the eigenvectors associated to that eigenvalue are matrices
with n rows and one column, with real elements.

Observation 1.3.2. Let us consider that the matrix [A] is a square one, of order 3.

i. If the eigenvalues are real and distinct λi R, λi λj, i, j 1, 2, 3 , i j, then the
eigenvalues are obtained by solving three matrix equations of the form

A vi = λi vi , i= 1, 2, 3 1 59

ii. If the eigenvalues are real, but two of them are equal, λi R, i= 1, 2, 3, λ1 = λ2,
λ3 λ1, then the eigenvalues result by solving the matrix equations

A v1 = λ1 v1 , A −λ1 I v2 = v1 , A v3 = λ3 v3 1 60

iii. If the eigenvalues are real and equal, λi = λ, i= 1, 2, 3, then the eigenvector are
obtained by solving the matrix equations

A v1 = λ v1 , A −λ I v2 = v1 , A −λ I v3 = v2 1 61

iv. If the eigenvalues are one real, λ1 R, and two complex conjugate, λ2 = α+ iβ,
λ3 = α− iβ, α, β R, i2 = −1, then the eigenvectors result by solving the matrix
equations

A v2 + i v3 = α+ iβ v2 + i v3 ; 1 62
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1.4 Skew Matrix of Third Order

Starting from the relation of definition (1.49), it results that a third order skew matrix
may be written in the form

B =

0 −b3 b2
b3 0 −b1
−b2 b1 0

1 63

One associates to the skew matrix [B] the column matrix (vector)

b = b1 b2 b3
T 1 64

and the vector

b= b1i+ b2j+ b3k 1 65

It results the equality

B b = 0 1 66

Being given the skew matrices [A], [B], and the eigenvectors associated to these
matrices, then the vector equality

a× b= −b× a 1 67

may be put in the matrix expression

A b = − B a 1 68

For the skew matrix [B] one may write the following relations (obtained by elemen-
tary calculation)

det B = 0, 1 69

B 2 = − b21 + b
2
2 + b

2
3 I + b b T, 1 70

B 3 = − b21 + b
2
2 + b

2
3 B 1 71

For the skew matrices [A], [B] and the associated vectors a, b, denoting the
vector product by c, c= a ×b, and by [C] the associated skew matrix, one obtains
the relations

A B = − a1b1 + a2b2 + a3b3 I + b a T, 1 72
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B A = − a1b1 + a2b2 + a3b3 I + a b T, 1 73

C = A B − B A = b a T− a b T, 1 74

C 2 = a1b1 + a2b2 + a3b3 a b T− b a T −

b21 + b
2
2 + b

2
3 a a T− a21 + a

2
2 + a

2
3 b b T

1 75

If the matrix [A] is an arbitrary third order one, and the matrices [B], [C] are skew
ones, then the matrix

D = A T B A 1 76

is a skew matrix, and the associated column matrices {b}, {c}, {d} satisfy the
equalities

d = A∗ b , 1 77

A T B A c = − C A∗ b , 1 78

where A∗ is the adjunct matrix of the matrix [A].
When the matrix [A] is orthogonal, one obtains the equalities

d = A T b , A T B A c = − C A T b 1 79

More general, if the matrix [A] has k rows and 3 columns, then it results that the kth
order square matrix

D = A T B A 1 80

is a skew matrix; moreover, it results that if k = 1, then the matrix [D] is the zero matrix
with only one element.
Sometimes, in the analytical calculations, it is useful to use the skew matrices

associated to the unit vectors i, j, k,

U1 =

0 0 0

0 0 −1

0 1 0

, U2 =

0 0 1

0 0 0

−1 0 0

, U3 =

0 −1 0

1 0 0

0 0 0

, 1 81
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and the column matrices

u1 =

1

0

0

, u2 =

0

1

0

, u3 =

0

0

1

, 1 82

respectively.
One obtains the expressions

B =
3

i= 1

bi Ui , b =
3

i = 1

bi ui , 1 83

Ui Uj Ui = 0 , i j, 1 84

U1 = U2 U3 − U3 U2 1 85

and the analogous,

U1 U2 U3 + U3 U2 U1 = 0 1 86

and the analogous.
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