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Motivation: Why Experiment?

Statistics is “learning from data.” We do statistics when we compare prices 
and specifications and perhaps Consumer Reports data in choosing a new cell 
phone, and we do it when we conduct large‐scale experiments pertaining to 
medications and treatments for debilitating diseases.

Much of the way we learn from data is observational. We collect data on 
people, products, and processes to learn how they work. We look for relation-
ships between variables that may provide clues on how to affect and improve 
those processes. Early studies on the association between smoking and various 
health problems are examples of the observational process—well organized 
and well executed.

The late Professor George Box (Box, Leonard, and Wu 1983; Box 2006; and 
in various conference presentations in the 1980s) depicted history as a series 
of events, some interesting, most mundane. Progress happens when there is 
an intelligent observer present who sees the interesting event and  reacts—
who capitalizes on what has been learned. Box cited the second fermentation 
of grapes, which produces champagne, as an especially serendipitous obser-
vation. (Legend has it that a French monk, Dom Pérignon, made the discovery: 
“Come quickly, I’m drinking the stars!” (Wikipedia 2015).)

Now clearly, as Professor Box argued, progress is speeded when interesting 
events happen more frequently and when there are more intelligent observers 
present at the event—“more” in the senses of both a greater number of intel-
ligent observers and observers who are more intelligent. Experimentation—
active, controlled intervention in a process, changing inputs and features of 
the process to see what happens to the outcome (rather than waiting for 
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nature to act and be caught in the act)—by people 
with insight and knowledge offers the opportunity 
and means to learn from data with greater quickness 
and depth than would otherwise be the case. For 
example, by observation our ancestors learned that 
friction between certain materials could cause fire. By 
experimentation, and engineering, their descendants 
learned to make fire starting fast, reliable, and cheap—
a mere flick of the  Bic®. Active experimentation is 
now very much  a  part of business, science, engi-
neering, education, government, and medicine. That 
role should grow.

For experimentation to be successful, experimental plans (“designs”) 
must be well conceived and faithfully executed. They must be capable of 
answering the questions that drive the research. Experimental designs 
need to be effective and efficient. Next, the experiment’s data need to 
be summarized and interpreted in a straightforward, informative way. The 
implications of the experiment’s results need to be clearly communicated. 
At the same time, limitations of what is learned need to be honestly 
acknowledged and clearly explained. Experiments yield limited, not infi-
nite, data, and so conclusions need to be tempered by this fact. That’s what 
statistics is all about. This chapter provides an overview of the experimental 
design and statistical data analysis process, and the subsequent chapters 
do the details.

Steps in an Experimental Program

Planning and analysis

Learning from data: To do this successfully, data must first contain information. 
The purpose of experimental design is to maximize, for a given amount of 
resources, the chance that information‐laden data will be generated and struc-
tured in such a way as to be conducive to extracting and communicating that 
information. More simply, we need data with a message, and we need that 
message to be apparent.

Figure 1.1 is a cartoon view of this process. There is a data cloud, from which 
information is precipitating. But this information may be fuzzy, indistinct, disor-
ganized, and incomplete. The purpose of statistical analysis is to collect that 
information and distill it into clear, well‐organized INFORMATION. But this 
process does not work on its own. Intervention is needed. First, if we do some 
cloud seeding at the start—planning studies and designing experiments—we 
should increase the amount and quality of precipitating information, and we 
should facilitate the distillation process. That is, with good planning, it should 
take less work to extract information from the data. Further, the distillation 
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process needs catalysts—subject‐matter knowledge, models, assumptions, 
and statistical methods. The aim of this text is to provide plans and analysis 
methods for turning ideas into experiments which yield data that yield 
information that translates into knowledge and actions based on our improved 
state of knowledge.

Good experimentation starts with subject‐matter knowledge and passion—
a strong desire to better understand natural and created phenomena. From 
this passion flow questions to be answered, questions that can best be posed 
from a foundation of subject‐matter understanding. Statistics provides the 
tools and framework (i) for translating these questions into experiments and 
(ii)  for interpreting the resulting data. We need to run experiments that are 
efficient and that are capable of answering questions; we need statistical 
methods to discover and characterize relationships in the experimental data 
and to answer whether apparent relationships are real or could easily be 
random. We need subject‐matter knowledge and context to interpret and act 
on the relationships that are found in the experiments. Subject‐matter 
knowledge and statistical methods need to be intertwined to be most effec-
tive in conducting experiments and learning 
from the resulting data.

Communication

Learning has to be communicated. As men-
tioned in the Preface, Archie Bunker, of the All 
in the Family TV show (check your cable TV 
listings for reruns), once told his son‐in‐law 
(approximately, and with typical inadvertent 
profundity), “Don’t give me no stastistics (sic), 
Meathead! I  want facts!” What he meant was: 
talk to me in terms of the subject‐matter, not in 
statistical jargon.

Statistics: the big picture

Planning

Information

Data cloud

Statistical analysis

Assumptions, models,
methods, subject-
matter knowledge

Figure 1.1  Statistics Schematic.
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Statistics is inherently collaborative—a team sport. Successful experiments 
require subject‐matter knowledge and passion and the statistical tools to trans-
late that knowledge and passion into useful information. Statisticians tend to be 
passionate about the methods they can use to extract information from data. 
That’s what they want to talk about. For the collaborative professional in another 
field, those methods are only a means to an end: revealing and understanding 
new facts pertinent to his or her area of interest/passion. The experiment and 
resulting data advance understanding in that field, so it is essential, as Archie 
said, that statistical results be communicated in this context, not as “statistics” 
per se.

Subject‐Matter Passion

An example that shows the importance of bringing subject‐matter passion to 
the appreciation and interpretation of data is a case study I call “Charlie Clark 
and the Car Charts.” The statistics group I managed at Sandia National 
Laboratories in Albuquerque had a small library, and when we got a new 
addition, I would route it around to the group so they would be aware of it. 
One new book I routed dealt with graphical methods. Charlie Clark was both 
thorough and a car nut. He did more than skim the table of contents—he read 
the book. One chart he came across was a scatter plot of automobile engine 
displacement versus body weight. This plot (approximately reproduced in 
Fig. 1.2) showed a slightly curved positive association—heavier cars have larger 
engines—and a couple of outlying points. The authors made the statistical 
points that you could not “see” the relationship between body size and engine 
size, or the outliers in a table of the data, whereas a plot shows these clearly. 
Then they commented that the outliers might be unusual cars or mistakes in 
the data and went on to other topics.

Charlie Clark and the Car Charts

Engine size

Body weight

Chevette

Opel

Figure 1.2  Car Data: Engine Size versus Body Weight.
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Well, the two outlying cars are more than just unusual to a car nut. They 
would be special: the outlying points are two cars with unusually large engines 
for their body weights. They would thus be high‐performance autos, so Charlie 
not only noticed the outliers, he got excited. He wanted one of those cars, 
so he looked up the source data (provided in the book’s appendices). Alas, 
they were the Opel and Chevette, which he knew were performance dogs—
“econoboxes.” He then went to the original Consumer Reports data source 
and found that transcription errors had been made between the source data 
and the text. Sorry, Charlie.

The moral of this story is that Charlie found the true “message” in the data 
(albeit only a transcription error), which is what statistical analysis is all about, 
not because he was a better statistician than the authors, but because he had 
a passionate interest in the subject matter. For more on this theme, see 
Easterling (2004, 2010). See also Box (1984).

Case Study

Integrated circuits (ICs), the guts of computing 
and communication technology, are circuits 
imprinted on tiny silicon chips. In a piece of 
electronic equipment, these ICs are attached to 
a board by teensy wires, soldered at each end. 
Those solder joints have to be strong enough to 
assure that the connection will not be broken 
if  the equipment is jostled or abused to some 
extent in use. In other words, the wire bonds 
have to be reliable.

To assure reliability, producers periodically sample from production and do 
pull‐tests on a chip’s bonds. (These tests are usually done on chips that have 
failed for other reasons—it’s not good business practice to destroy good prod-
uct.) The test consists of placing a hook under the wire and then pulling 
the hook until the wire or wire bond breaks. This test is instrumented so that 
the force required to break the bond is recorded. A manufacturer or the cus-
tomer will specify a lower limit on acceptable strength. If too many bonds 
break below this breaking‐strength limit, then that is a sign that the bonding 
process is not working as designed and adjustments are needed.

Well, a process engineer showed up at Ed Thomas’s office one day with a file 
of thousands of test results collected over some period of time. (Ed is a statis-
tician at Sandia National Laboratories, Albuquerque, NM.) The engineer 
wanted Ed to use the data to estimate wire‐bond reliability. This reliability 
would be the probability that a bond strength exceeds its acceptable lower 
limit. (Although we haven’t discussed “probability” yet, just think in terms of a 
more familiar situation, such as the SAT scores of high school seniors in 2014. 
These scores vary and a “probability distribution”—sometimes a “bell‐shaped 
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curve”—portrays this variability.) The initial plan was to use the data to estimate 
a “probability distribution” of bond strength and, from this distribution, 
estimate the percent of the distribution that exceeded the lower limit 
(see Fig. 1.3).

The bars are the percentages of bond‐strength measurements in specified, 
adjacent intervals. The blue curve is a “Normal Distribution” fitted to the 
bond‐strength data. The estimated reliability is the percent of the distribution 
above the lower limit.

But Ed was inquisitive—snoopy (and bright). He noticed that the data file did 
not just have bond‐strength data and chip identification data such as date and 
lot number. The file also had variables such as “bond technician” and “test 
operator” associated with each test result. He sorted and plotted the bond‐
strength data for different bond and test operators and found differences. 
Bond strength seemed to depend on who did the bonding operation and who 
did the test! This latter dependence is not a good characteristic of an industrial 
measurement process. You want measurement process components, both 
equipment and personnel, to be consistent no matter who is doing the work. If 
not, wrong decisions can be made that have a substantial economic impact. 
You also want a manufacturing process to be consistent across all the personnel 
involved. A problem with the available data, though, was that the person who 
did the bonding operation was often the same person who did the test opera-
tion. From these data, one could not tell what the source of the inconsistency 
was. It would not make sense to try to estimate reliability at this point: you 
would have to say (apparent) reliability depends on who did the test. That 
doesn’t make sense. What was needed was further investigation and process 
improvement to find the source of the inconsistencies in the data and to 
improve the production and test processes to eliminate these inconsistencies.

After a series of discussions, the process engineer and Ed came up with  
the following experiment. They would have three operators each use three 
different machines to make wire bonds. That is, chips would be bonded 

Bond strength

Lower limit

Figure 1.3  Bond‐Strength Distribution.
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to packages using all nine possible 
combinations of operator and 
machine. Then the boards for each of 
these combinations would be ran-
domly divided into three groups, 
each group then pull‐tested by a dif-
ferent test operator. This makes 27 
combinations of bond operator, 
machine, and test operator in the 
experiment. For each of these combi-
nations, there would be two chips, 
each with 48 bonds. Thus, the grand 
total of bond‐test results would be 
27 × 96 = 2592. This is a large experiment, but the time and cost involved were 
reasonable. These are the sorts of issues faced and resolved in a collaborative 
design of an experiment.

Statistical analysis of the data, by methods presented in later chapters, led 
to these findings:

●● There were no appreciable differences among bonding machines.
●● There were substantial differences among both bonding operators and test 

operators.

A couple of points before we look at the data: (i) It is not surprising to find 
that machines are more consistent than people. Look around. There’s a lot 
more variation among your fellow students than there is in the laptops or tab-
lets they use. (ii) Because the experiment was “balanced,” meaning that all 
combinations of bonding and test operators produced the same number of 
bond tests, it is now possible to separate the effects of bond operator and test 
operator in the experiment’s data.

Figure 1.4 shows the average pull strengths for each combination of bond 
and test operators. These averages are averages across machines, chips, and 
bonds—total of 288 test results in each average.

The results in Figure 1.4 have very consistent patterns:

●● Bond operator B produces consistently stronger bonds.
●● There are consistent differences among pull‐test operators—operator 

A consistently had the highest average pull strengths; operator B consistently 
had the lowest.

(Statistical number crunching showed that these patterns could not be 
attributed to the inherent variability of the production and testing processes; 
they were “real” differences, not random variation.)

Overall, in Figure 1.4, there is nearly a factor of two between the average pull 
strength for the best combination of operators and for the worst (9.0 vs. 5.1 g). 
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You do not want your production and measurement systems, machines and 
people, to be this inconsistent.

With this data‐based information in hand, the process engineer has a license 
to examine the production and testing procedures carefully, along with the 
technicians involved, and find ways to eliminate these inconsistencies.

(A friend of mine tells his audiences: “Without data you’re just another loud-
mouth with an opinion!” Another often‐used statistical funny: “In God we 
trust. All others bring data.”)

The focus for process improvement has to be on procedures—not peo-
ple. We’re not going to fire bond operator C because he produced the 
weakest bonds. We’re going to find out what these operators are doing 
differently to cause this disparity. It could be that they are interpreting or 
remembering possibly unclear process instructions in different ways. That 
can be fixed.

One specific subsequent finding was that it made a difference in pull‐testing 
if the hook was centered or offset toward one end of the wire or the other. 
Making the instructions and operation consistent on that part of the process 
greatly reduced the differences among test operators. (Knowing where to 
place the hook to best characterize a bond’s strength requires subject‐matter 
knowledge—physics, in this case.) Additional iterations of experimenting and 
process improvement led to much better consistency in the production and 
testing procedures.

Summary: The process engineer came to Ed wanting a number—a “reli-
ability.” Ed, ever alert, found evidence that the (observational) data would not 
support a credible reliability number. Well‐designed and well‐executed exper-
iments found evidence of production and testing problems, and the process 
engineer and technicians used these findings and their understanding of the 
processes to greatly improve those processes. Labor and management were 
both happy and heaped lavish praise on Ed.

Average pull strengths by bond operator and pull test
operator (averages of 288 pull tests)
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Figure 1.4  Average Bond Strengths by Bonding and Pull‐Test Operators.
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This picture is not Ed, but it could have 
been. The voice‐over of this celebratory scene 
in an old Microsoft Office commercial told us 
that “With time running out, he took an 
impossibly large amount of data and made 
something incredibly beautiful.” May every 
person who studies this book become a data 
hero such as this!

Overview of Text

Chapter 2 describes the basic elements of experimental design: experimental 
units, treatments, and blocks. (Briefly, “treatments” is statistical terminology 
for the interventions in a process.) Three principles that determine the preci-
sion with which treatment “effects” can be estimated—replication, randomiza-
tion, and blocking—are defined and discussed.

Chapter 3 addresses the fundamentals of statistical data analysis, starting 
with my recommended Analysis 1: Plot the Data. In particular, plot the data 
in a way that illuminates possible relations among the variables in the 
experiment.

Next come quantitative analyses—number crunching. In my view, the 
fundamental concept of statistical analysis is a comparison of “the data we 
got” to a probability distribution of “data we might have gotten” under spec-
ified “hypotheses” (generally assumptions about treatment effects). 
Significance tests and confidence intervals are statistical findings that emerge 
from these comparisons and help sort out and communicate the facts and the 
statistics, in Archie Bunker’s formulation. Two two‐treatment examples from 
Box, Hunter, and Hunter (1978, 2005) are the launching pads for a wide‐ranging 
discussion of statistical methods and issues in Chapter 3.

Chapter 4 introduces the family of completely randomized designs for the 
case of one treatment factor, either quantitative or qualitative. Chapter 5 is 
about completely randomized designs when the treatments are comprised of 
combinations of two or more treatment factors.

Chapter 6 introduces the family of randomized block designs and considers 
various treatment configurations. Chapter  7, titled Other Experimental 
Designs, addresses designs that are hybrids of completely randomized and 
randomized block designs or that require extending the principles of experi-
mental design beyond the scope of these design families.

And that’s it. This book is meant to be introductory, not comprehensive. At 
various points, I point to extensions and special cases of the basic experi-
mental designs and provide references. Formulas are minimized. They can be 
found in the references or online, if needed. I rely on software, primarily 
Minitab®, to produce data plots and to crunch the numbers. Other statistical 
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software is available. Microsoft Excel® can be coerced into most of the analyses 
in this text. I think choice of software now is equivalent to choice of desk cal-
culator 50 years ago: at this point in time, it does not matter that much. 
My focus is on the experimental design and data analysis processes, including 
the interplay between statistics and the application, between “friendly, local 
statisticians” and subject‐matter professionals. I try to illustrate data‐enhanced 
collaboration as a way to encourage such approaches to the large and small 
issues students will face when they leave the university and embark upon  
a career.

Assignment

Choose one of your areas of passionate interest. Find an article on that topic 
that illustrates the statistics schematic in Figure 1.1. To the extent possible, 
identify and discuss what that article tells you about the different elements in 
that process: data, assumptions, models, methods, subject‐matter knowledge, 
statistical analysis, and information generated and communicated. Evaluate 
how well you think the article succeeds in producing and communicating useful 
information. Suggest improvements.
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