
c01.indd 05/20/2016 Page 1

Chapter

1
Java Building Blocks

OCA EXAM OBJECTIVES COVERED IN THIS

CHAPTER:

 ✓ Java Basics

 ■ Define the scope of variables

 ■ Define the structure of a Java class

 ■ Create executable Java applications with a main method; run

a Java program from the command line; including console

output

 ■ Import other Java packages to make them accessible in your

code

 ■ Compare and contrast the features and components of Java

such as platform independence, object orientation, encapsu-

lation, etc.

 ✓ Working with Java Data Types

 ■ Declare and initialize variables (including casting or primitive

types)

 ■ Differentiate between object reference variables and primi-

tive variables

 ■ Know how to read or write to object fields

 ■ Explain an Object’s Lifecycle (creation, “dereference by

reassignment” and garbage collection

CO
PYRIG

HTED
 M

ATERIA
L

c01.indd 05/20/2016 Page 2

Welcome to the beginning of your journey to become certifi ed
on Java. We assume this isn’t the fi rst Java programming book
you’ve read. Although we do talk about the basics, we do so

only because we want to make sure you have all the terminology and detail you’ll need for
the OCA exam. If you’ve never written a Java program before, we recommend you pick up
an introductory book on any version of Java—something like Head First Java, 2nd Edition
(O’Reilly Media, 2005); Java for Dummies (For Dummies, 2014), or Thinking in Java, 4th
Edition (Prentice Hall, 2006). (It’s okay if the book covers an older version of Java—even
Java 1.3 is fi ne.) Then come back to this certifi cation study guide.

This chapter covers the fundamentals of Java. You’ll see how to defi ne and run a Java
class, and learn about packages, variables, and the object life cycle.

Understanding the Java Class Structure

In Java programs, classes are the basic building blocks. When defi ning a class, you describe
all the parts and characteristics of one of those building blocks. To use most classes, you
have to create objects. An object is a runtime instance of a class in memory. All the various t
objects of all the different classes represent the state of your program.

In the following sections, we’ll look at fi elds, methods, and comments. We’ll also explore
the relationship between classes and fi les.

Fields and Methods
Java classes have two primary elements: methods, often called functions or procedures in
other languages, and fi elds, more generally known as variables. Together these are called the
members of the class. Variables hold the state of the program, and methods operate on that
state. If the change is important to remember, a variable stores that change. That’s all classes
really do. It’s the programmer who creates and arranges these elements in such a way that
the resulting code is useful and, ideally, easy for other programmers to understand.

Other building blocks include interfaces, which you’ll learn about in Chapter 5, “Class
Design,” and enums, which you’ll learn about when you start studying for the OCP exam.

Understanding the Java Class Structure 3

c01.indd 05/20/2016 Page 3

The simplest Java class you can write looks like this:

1: public class Animal {
2: }

Java calls a word with special meaning a keyword. The public keyword on line 1 means
the class can be used by other classes. The class keyword indicates you’re defi ning a class.
Animal gives the name of the class. Granted, this isn’t a very interesting class, so add your
fi rst fi eld:

1: public class Animal {
2: String name;
3: }

The line numbers aren’t part of the program; they’re just there to make the

code easier to talk about.

On line 2, we defi ne a variable named name. We also defi ne the type of that variable to
be a String. A String is a value that we can put text into, such as "this is a string".
String is also a class supplied with Java. Next you can add methods:

1: public class Animal {
2: String name;
3: public String getName() {
4: return name;
5: }
6: public void setName(String newName) {
7: name = newName;
8: }
9: }

On lines 3–5, you’ve defi ned your fi rst method. A method is an operation that can be
called. Again, public is used to signify that this method may be called from other classes.
Next comes the return type—in this case, the method returns a String. On lines 6–8 is
another method. This one has a special return type called void. void means that no value at
all is returned. This method requires information be supplied to it from the calling method;
this information is called a parameter. rr setName has one parameter named newName, and it
is of type String. This means the caller should pass in one String parameter and expect
nothing to be returned.

The full declaration of a method is called a method signature. In this example, can you
identify the return type and parameters?

public int numberVisitors(int month)

4 Chapter 1 ■ Java Building Blocks

c01.indd 05/20/2016 Page 4

The return type is int, which is a numeric type. There’s one parameter named month,
which is of type int as well.

Comments
Another common part of the code is called a comment. Because comments aren’t execut-
able code, you can place them anywhere. Comments make your code easier to read. You
won’t see many comments on the exam—the exam creators are trying to make the code
diffi cult to read—but you’ll see them in this book as we explain the code. And we hope you
use them in your own code. There are three types of comments in Java. The fi rst is called a
single-line comment:

// comment until end of line

A single-line comment begins with two slashes. Anything you type after that on the
same line is ignored by the compiler. Next comes the multiple-line comment:

/* Multiple
 * line comment
 */

A multiple-line comment (also known as a multiline comment) includes anything
starting from the symbol /* until the symbol */. People often type an asterisk (*) at the
beginning of each line of a multiline comment to make it easier to read, but you don’t have
to. Finally, we have a Javadoc comment:

 /**
 * Javadoc multiple-line comment
 * @author Jeanne and Scott
 */

This comment is similar to a multiline comment except it starts with /**. This special
syntax tells the Javadoc tool to pay attention to the comment. Javadoc comments have a
specifi c structure that the Javadoc tool knows how to read. You won’t see a Javadoc com-
ment on the exam—just remember it exists so you can read up on it online when you start
writing programs for others to use.

As a bit of practice, can you identify which type of comment each of these six words is
in? Is it a single-line or a multiline comment?

/*
 * // anteater
 */
// bear
// // cat

Understanding the Java Class Structure 5

c01.indd 05/20/2016 Page 5

// /* dog */
/* elephant */
/*
 * /* ferret */
 */

Did you look closely? Some of these are tricky. Even though comments technically aren’t
on the exam, it is good to practice to look at code carefully.

Okay, on to the answers. anteater is in a multiline comment. Everything between /*
and */ is part of a multiline comment—even if it includes a single-line comment within
it! bear is your basic single-line comment. cat and dog are also single-line comments.
Everything from // to the end of the line is part of the comment, even if it is another type
of comment. elephant is your basic multiline comment.

The line with ferret is interesting in that it doesn’t compile. Everything from the fi rst /*
to the fi rst */ is part of the comment, which means the compiler sees something like this:

/* */ */

We have a problem. There is an extra */. That’s not valid syntax—a fact the compiler is
happy to inform you about.

Classes vs. Files
Most of the time, each Java class is defi ned in its own *.java fi le. It is usually public,
which means any code can call it. Interestingly, Java does not require that the class be
public. For example, this class is just fi ne:

1: class Animal {
2: String name;
3: }

You can even put two classes in the same fi le. When you do so, at most one of the classes
in the fi le is allowed to be public. That means a fi le containing the following is also fi ne:

1: public class Animal {
2: private String name;
3: }
4: class Animal2 {
5: }

If you do have a public class, it needs to match the fi lename. public class Animal2
would not compile in a fi le named Animal.java. In Chapter 5, we will discuss what non-
public access means.

6 Chapter 1 ■ Java Building Blocks

c01.indd 05/20/2016 Page 6

Writing a main() Method)

A Java program begins execution with its main() method. A main() method is the
gateway between the startup of a Java process, which is managed by the Java Virtual
Machine (JVM), and the beginning of the programmer’s code. The JVM calls on the
underlying system to allocate memory and CPU time, access fi les, and so on.

The main() method lets us hook our code into this process, keeping it alive long enough
to do the work we’ve coded. The simplest possible class with a main() method looks like
this:

1: public class Zoo {
2: public static void main(String[] args) {
3:
4: }
5:}

This code doesn’t do anything useful (or harmful). It has no instructions other than
to declare the entry point. It does illustrate, in a sense, that what you can put in a main()
method is arbitrary. Any legal Java code will do. In fact, the only reason we even need a
class structure to start a Java program is because the language requires it. To compile and
execute this code, type it into a fi le called Zoo.java and execute the following:

$ javac Zoo.java
$ java Zoo

If you don’t get any error messages, you were successful. If you do get error messages, check
that you’ve installed a Java Development Kit (JDK) and not a Java Runtime Environment
(JRE), that you have added it to the PATH, and that you didn’t make any typos in the example.
If you have any of these problems and don’t know what to do, post a question with the error
message you received in the Beginning Java forum at CodeRanch (www.coderanch.com/
forums/f-33/java).

To compile Java code, the fi le must have the extension .java. The name of the fi le must
match the name of the class. The result is a fi le of bytecode by the same name, but with
a .class fi lename extension. Bytecode consists of instructions that the JVM knows how
to execute. Notice that we must omit the .class extension to run Zoo.java because the
period has a reserved meaning in the JVM.

The rules for what a Java code fi le contains, and in what order, are more detailed than
what we have explained so far (there is more on this topic later in the chapter). To keep
things simple for now, we’ll follow a subset of the rules:

■ Each file can contain only one class.

■ The filename must match the class name, including case, and have a .java extension.

Writing a main() Method 7

c01.indd 05/20/2016 Page 7

Suppose we replace line 3 in Zoo.java with System.out.println("Welcome!");. When
we compile and run the code again, we’ll get the line of output that matches what’s between
the quotes. In other words, the program will output Welcome!.

Let’s fi rst review the words in the main() method’s signature, one at a time. The key-
word public is what’s called an access modifi er. It declares this method’s level of exposure
to potential callers in the program. Naturally, public means anyplace in the program.
You’ll learn about access modifi ers in Chapter 4, “Methods and Encapsulation.”

The keyword static binds a method to its class so it can be called by just the class name,
as in, for example, Zoo.main(). Java doesn’t need to create an object to call the main()
method—which is good since you haven’t learned about creating objects yet! In fact, the
JVM does this, more or less, when loading the class name given to it. If a main() method
isn’t present in the class we name with the .java executable, the process will throw an error
and terminate. Even if a main() method is present, Java will throw an exception if it isn’t
static. A nonstatic main() method might as well be invisible from the point of view of the
JVM. We’ll see static again in Chapter 4.

The keyword void represents the return type. A method that returns no data returns
control to the caller silently. In general, it’s good practice to use void for methods that
change an object’s state. In that sense, the main() method changes the program state
from started to fi nished. We will explore return types in Chapter 4 as well. Excited for
Chapter 4 yet?

Finally we arrive at the main() method’s parameter list, represented as an array of java.
lang.String objects. In practice, you can write String[] args, String args[] or String...
args; the compiler accepts any of these. The variable name args hints that this list containss
values that were read in (arguments) when the JVM started. You can use any name you like,
though. The characters [] are brackets and represent an array. An array is a fi xed-size list of
items that are all of the same type. The characters ... are called varargs (variable argument
lists). You will learn about String in Chapter 2, “Operators and Statements.” Arrays and
varargs will follow in Chapter 3, “Core Java APIs.”

Let’s see how to use the args parameter. First we modify the Zoo program to print out s
the fi rst two arguments passed in:

public class Zoo {
 public static void main(String[] args) {
 System.out.println(args[0]);
 System.out.println(args[1]);
} }

args[0] accesses the fi rst element of the array. That’s right: array indexes begin with 0
in Java. To run it, type this:

$ javac Zoo.java
$ java Zoo Bronx Zoo

8 Chapter 1 ■ Java Building Blocks

c01.indd 05/20/2016 Page 8

The output is what you might expect:

Bronx
Zoo

The program correctly identifi es the fi rst two “words” as the arguments. Spaces are used
to separate the arguments. If you want spaces inside an argument, you need to use quotes
as in this example:

$ javac Zoo.java
$ java Zoo "San Diego" Zoo

Now we have a space in the output:

San Diego
Zoo

All command-line arguments are treated as String objects, even if they represent
another data type:

$ javac Zoo.java
$ java Zoo Zoo 2

No matter. You still get the values output as Strings. In Chapter 2, you’ll learn how to
convert Strings to numbers.

Zoo
2

Finally, what happens if you don’t pass in enough arguments?

$ javac Zoo.java
$ java Zoo Zoo

Reading args[0] goes fi ne and Zoo is printed out. Then Java panics. There’s no sec-
ond argument! What to do? Java prints out an exception telling you it has no idea what
to do with this argument at position 1. (You’ll learn about exceptions in Chapter 6,
“Exceptions.”)

ZooException in thread "main"
java.lang.ArrayIndexOutOfBoundsException: 1
 at Zoo.main(Zoo.java:4)

To review, you need to have a JDK to compile because it includes a compiler. You do not
need to have a JDK to run the code—a JRE is enough. Java class fi les run on the JVM and
therefore run on any machine with Java rather than just the machine or operating system
they happened to have been compiled on.

Understanding Package Declarations and Imports 9

c01.indd 05/20/2016 Page 9

Understanding Package Declarations

and Imports

Java comes with thousands of built-in classes, and there are countless more from developers
like you. With all those classes, Java needs a way to organize them. It handles this in a way
similar to a fi le cabinet. You put all your pieces of paper in folders. Java puts classes in
packages. These are logical groupings for classes.

We wouldn’t put you in front of a fi le cabinet and tell you to fi nd a specifi c paper.
Instead, we’d tell you which folder to look in. Java works the same way. It needs you to tell
it which packages to look in to fi nd code.

Suppose you try to compile this code:

public class ImportExample {
 public static void main(String[] args) {
 Random r = new Random(); // DOES NOT COMPILE
 System.out.println(r.nextInt(10));
 }
}

The Java compiler helpfully gives you an error that looks like this:

Random cannot be resolved to a type

This error could mean you made a typo in the name of the class. You double-check and
discover that you didn’t. The other cause of this error is omitting a needed import state-t
ment. Import statements tell Java which packages to look in for classes. Since you didn’t tell
Java where to look for Random, it has no clue.

Trying this again with the import allows you to compile:

import java.util.Random; // import tells us where to find Random
public class ImportExample {
 public static void main(String[] args) {
 Random r = new Random();
 System.out.println(r.nextInt(10)); // print a number between 0 and 9
 }
}

Now the code runs; it prints out a random number between 0 and 9. Just like arrays,
Java likes to begin counting with 0.

Java classes are grouped into packages. The import statement tells the compiler which
package to look in to fi nd a class. This is similar to how mailing a letter works.

10 Chapter 1 ■ Java Building Blocks

c01.indd 05/20/2016 Page 10

Imagine you are mailing a letter to 123 Main St., Apartment 9. The mail carrier fi rst brings
the letter to 123 Main St. Then she looks for the mailbox for apartment number 9. The
address is like the package name in Java. The apartment number is like the class name in
Java. Just as the mail carrier only looks at apartment numbers in the building, Java only
looks for class names in the package.

Package names are hierarchical like the mail as well. The postal service starts with the
top level, looking at your country fi rst. You start reading a package name at the begin-
ning too. If it begins with java or javax, this means it came with the JDK. If it starts with
something else, it likely shows where it came from using the website name in reverse. For
example, com.amazon.java8book tells us the code came from amazon.com. After the web-
site name, you can add whatever you want. For example, com.amazon.java8.my.name also
came from amazon.com. Java calls more detailed packages child packages. com.amazon
.java8book is a child package of com.amazon. You can tell because it’s longer and thus
more specifi c.

You’ll see package names on the exam that don’t follow this convention. Don’t be
surprised to see package names like a.b.c. The rule for package names is that they are
mostly letters or numbers separated by dots. Technically, you’re allowed a couple of other
characters between the dots. The rules are the same as for variable names, which you’ll see
later in the chapter. The exam may try to trick you with invalid variable names. Luckily, it
doesn’t try to trick you by giving invalid package names.

In the following sections, we’ll look at imports with wildcards, naming confl icts with
imports, how to create a package of your own, and how the exam formats code.

Wildcards
Classes in the same package are often imported together. You can use a shortcut to import
all the classes in a package:

import java.util.*; // imports java.util.Random among other things
public class ImportExample {
 public static void main(String[] args) {
 Random r = new Random();
 System.out.println(r.nextInt(10));
 }
}

In this example, we imported java.util.Random and a pile of other classes. The * is a
wildcard that matches all classes in the package. Every class in the java.util package is
available to this program when Java compiles it. It doesn’t import child packages, fi elds, or
methods; it imports only classes. (Okay, it’s only classes for now, but there’s a special type
of import called the “static import” that imports other types. You’ll learn more about that
in Chapter 4.)

You might think that including so many classes slows down your program, but it doesn’t. The
compiler fi gures out what’s actually needed. Which approach you choose is personal preference.

Understanding Package Declarations and Imports 11

c01.indd 05/20/2016 Page 11

Listing the classes used makes the code easier to read, especially for new programmers. Using the
wildcard can shorten the import list. You’ll see both approaches on the exam.

Redundant Imports
Wait a minute! We’ve been referring to System without an import and Java found it just
fi ne. There’s one special package in the Java world called java.lang. This package is
special in that it is automatically imported. You can still type this package in an import
statement, but you don’t have to. In the following code, how many of the imports do you
think are redundant?

1: import java.lang.System;
2: import java.lang.*;
3: import java.util.Random;
4: import java.util.*;
5: public class ImportExample {
6: public static void main(String[] args) {
7: Random r = new Random();
8: System.out.println(r.nextInt(10));
9: }
10: }

The answer is that three of the imports are redundant. Lines 1 and 2 are redundant
because everything in java.lang is automatically considered to be imported. Line 4 is also
redundant in this example because Random is already imported from java.util.Random.
If line 3 wasn’t present, java.util.* wouldn’t be redundant, though, since it would cover
importing Random.

Another case of redundancy involves importing a class that is in the same package as the
class importing it. Java automatically looks in the current package for other classes.

Let’s take a look at one more example to make sure you understand the edge cases for
imports. For this example, Files and Paths are both in the package java.nio.file. You
don’t need to memorize this package for the OCA exam (but you should know it for the
OCP exam). When testing your understanding of packages and imports, the OCA exam
will use packages you may never have seen before. The question will let you know which
package the class is in if you need to know that in order to answer the question.

What imports do you think would work to get this code to compile?

public class InputImports {
 public void read(Files files) {
 Paths.get("name");
 }
}

12 Chapter 1 ■ Java Building Blocks

c01.indd 05/20/2016 Page 12

There are two possible answers. The shorter one is to use a wildcard to import both at
the same time:

import java.nio.file.*;

The other answer is to import both classes explicitly:

import java.nio.file.Files;
import java.nio.file.Paths;

Now let’s consider some imports that don’t work:

import java.nio.*; // NO GOOD – a wildcard only matches
 //class names, not "file.*Files"
import java.nio.*.*; // NO GOOD – you can only have one wildcard
 //and it must be at the end
import java.nio.file.Paths.*; // NO GOOD – you cannot import methods
 //only class names

Naming Conflicts
One of the reasons for using packages is so that class names don’t have to be unique across
all of Java. This means you’ll sometimes want to import a class that can be found in mul-
tiple places. A common example of this is the Date class. Java provides implementations
of java.util.Date and java.sql.Date. This is another example where you don’t need to
know the package names for the OCA exam—they will be provided to you. What import
could we use if we want the java.util.Date version?

public class Conflicts {
 Date date;
 // some more code
}

The answer should be easy by now. You can write either import java.util.*; or
import java.util.Date;. The tricky cases come about when other imports are present:

import java.util.*;
import java.sql.*; // DOES NOT COMPILE

When the class is found in multiple packages, Java gives you the compiler error:

The type Date is ambiguous

In our example, the solution is easy—remove the java.sql.Date import that we don’t
need. But what do we do if we need a whole pile of other classes in the java.sql package?

import java.util.Date;
import java.sql.*;

Understanding Package Declarations and Imports 13

c01.indd 05/20/2016 Page 13

Ah, now it works. If you explicitly import a class name, it takes precedence over any
wildcards present. Java thinks, “Okay! The programmer really wants me to assume use of
the java.util.Date class.”

One more example. What does Java do with “ties” for precedence?

import java.util.Date;
import java.sql.Date;

Java is smart enough to detect that this code is no good. As a programmer, you’ve
claimed to explicitly want the default to be both the java.util.Date and java.sql.Date
implementations. Because there can’t be two defaults, the compiler tells you:

The import java.sql.Date collides with another import statement

If You Really Need to Use Two Classes with the Same Name…

Sometimes you really do want to use Date from two different packages. When this hap-

pens, you can pick one to use in the import and use the other’s fully qualifi ed class name

(the package name, a dot, and the class name) to specify that it’s special. For example:

import java.util.Date;

public class Conflicts {
 Date date;
 java.sql.Date sqlDate;

}

Or you could have neither with an import and always use the fully qualifi ed class name:

public class Conflicts {
 java.util.Date date;
 java.sql.Date sqlDate;

}

Creating a New Package
Up to now, all the code we’ve written in this chapter has been in the default package. This
is a special unnamed package that you should use only for throwaway code. You can tell
the code is in the default package, because there’s no package name. On the exam, you’ll
see the default package used a lot to save space in code listings. In real life, always name
your packages to avoid naming confl icts and to allow others to reuse your code.

14 Chapter 1 ■ Java Building Blocks

c01.indd 05/20/2016 Page 14

Now it’s time to create a new package. The directory structure on your computer is
related to the package name. Suppose we have these two classes:

C:\temp\packagea\ClassA.java

package packagea;
public class ClassA {
}

C:\temp\packageb\ClassB.java

package packageb;
import packagea.ClassA;
public class ClassB {
 public static void main(String[] args) {
 ClassA a;
 System.out.println("Got it");
 }
}

When you run a Java program, Java knows where to look for those package names. In this
case, running from C:\temp works because both packagea and packageb are underneath it.

Compiling Code with Packages

You’ll learn Java much more easily by using the command line to compile and test

your examples. Once you know the Java syntax well, you can switch to an integrated

development environment (IDE) like Eclipse. An IDE will save you time in coding. But

for the exam, your goal is to know details about the language and not have the IDE hide

them for you.

Follow this example to make sure you know how to use the command line. If you have

any problems following this procedure, post a question in the Beginning Java forum at

CodeRanch (www.coderanch.com/forums/f-33/java). Describe what you tried and what

the error said.

Windows Setup

Create the two fi les:

■ C:\temp\packagea\ClassA.java

■ C:\temp\packageb\ClassB.java

Then type this command:

cd C:\temp

Understanding Package Declarations and Imports 15

c01.indd 05/20/2016 Page 15

Mac/Linux Setup

Create the two fi les:

■ /tmp/packagea/ClassA.java

■ /tmp/packageb/ClassB.java

Then type this command:

cd /tmp

To Compile

Type this command:

javac packagea/ClassA.java packageb/ClassB.java

If this command doesn’t work, you’ll get an error message. Check your fi les carefully for

typos against the provided fi les. If the command does work, two new fi les will be created:

packagea/ClassA.class and packageb/ClassB.class.

To Run

Type this command:

java packageb.ClassB

If it works, you’ll see Got it printed. You might have noticed we typed ClassB rather than

ClassB.class. In Java you don’t pass the extension when running a program.

Class Paths and JARs

You can also specify the location of the other fi les explicitly using a class path. This tech-

nique is useful when the class fi les are located elsewhere or in special JAR fi les. A JAR

fi le is like a zip fi le of mainly Java class fi les. This goes beyond what you’ll need to do on

version 8 of the exam, although it appears on older versions.

On Windows, you type the following:

java -cp ".;C:\temp\someOtherLocation;c:\temp\myJar.jar" myPackage.MyClass

And on Mac OS/Linux, you type this:

java -cp ".:/tmp/someOtherLocation:/tmp/myJar.jar" myPackage.MyClass

The dot indicates you want to include the current directory in the class path. The rest of

the command says to look for loose class fi les (or packages) in someOtherLocation and

within myJar.jar. Windows uses semicolons to separate parts of the class path; other

operating systems use colons.

Finally, you can use a wildcard (*) to match all the JARs in a directory. Here’s an example:

java -cp "C:\temp\directoryWithJars*" myPackage.MyClass

This command will add all the JARs to the class path that are in directoryWithJars. It

won’t include any JARs in the class path that are in a subdirectory of directoryWithJars.

16 Chapter 1 ■ Java Building Blocks

c01.indd 05/20/2016 Page 16

Code Formatting on the Exam
Not all questions will include the imports. If the exam isn’t asking about imports in the
question, it will often omit the imports to save space. You’ll see examples with line numbers
that don’t begin with 1 in this case. The question is telling you, “Don’t worry—imagine
the code we omitted is correct; just focus on what I’m giving you.” This means when you
do see the line number 1 or no line numbers at all, you have to make sure imports aren’t
missing. Another thing the exam does to save space is to merge code on the same line. You
should expect to see code like the following and to be asked whether it compiles. (You’ll
learn about ArrayList in Chapter 3—assume that part is good for now.)

6: public void method(ArrayList list) {
7: if (list.isEmpty()) { System.out.println("e");
8: } else { System.out.println("n");
9: } }

The answer here is that it does compile because the code starts below the imports. Now,
what about this one? Does it compile?

1: public class LineNumbers {
2: public void method(ArrayList list) {
3: if (list.isEmpty()) { System.out.println("e");
4: } else { System.out.println("n");
5: } } }

For this one, you would answer “Does not compile.” Since the code begins with line 1,
you don’t get to assume that valid imports were provided earlier. The exam will let
you know what package classes are in unless they’re covered in the objectives. You’ll
be expected to know that ArrayList is in java.util—at least you will once you get to
Chapter 3 of this book!

You’ll also see code that doesn’t have a main() method. When this happens, assume
the main() method, class defi nition, and all necessary imports are present. You’re just
being asked if the part of the code you’re shown compiles when dropped into valid sur-
rounding code.

Creating Objects

Our programs wouldn’t be able to do anything useful if we didn’t have the ability to create
new objects. Remember that an object is an instance of a class. In the following sections,
we’ll look at constructors, object fi elds, instance initializers, and the order in which values
are initialized.

Creating Objects 17

c01.indd 05/20/2016 Page 17

Constructors
To create an instance of a class, all you have to do is write new before it. For example:

Random r = new Random();

First you declare the type that you’ll be creating (Random) and give the variable a name
(r). This gives Java a place to store a reference to the object. Then you write new Random()
to actually create the object.

Random() looks like a method since it is followed by parentheses. It’s called a construc-
tor, which is a special type of method that creates a new object. Now it’s time to defi ne a rr
constructor of your own:

public class Chick {
 public Chick() {
 System.out.println("in constructor");
 }
}

There are two key points to note about the constructor: the name of the constructor
matches the name of the class, and there’s no return type. You’ll likely see a method like
this on the exam:

public void Chick() { } // NOT A CONSTRUCTOR

When you see a method name beginning with a capital letter and having a return type,
pay special attention to it. It is not a constructor since there’s a return type. It’s a regular t
method that won’t be called when you write new Chick().

The purpose of a constructor is to initialize fi elds, although you can put any code in
there. Another way to initialize fi elds is to do so directly on the line on which they’re
declared. This example shows both approaches:

public class Chicken {
 int numEggs = 0;// initialize on line
 String name;
 public Chicken() {
 name = "Duke";// initialize in constructor
 } }

For most classes, you don’t have to code a constructor—the compiler will supply a “do
nothing” default constructor for you. There’s one scenario that requires you to declare a
constructor that you’ll learn about in Chapter 5.

18 Chapter 1 ■ Java Building Blocks

c01.indd 05/20/2016 Page 18

Reading and Writing Object Fields
It’s possible to read and write instance variables directly from the caller. In this example, a
mother swan lays eggs:

public class Swan {
 int numberEggs;// instance variable
 public static void main(String[] args) {
 Swan mother = new Swan();
 mother.numberEggs = 1; // set variable
 System.out.println(mother.numberEggs); // read variable
 }
}

Reading a variable is known as getting it. The class getsg numberEggs directly to print its
out. Writing to a variable is known as setting it. This class setsg numberEggs to 1.s

In Chapter 4, you’ll learn how to protect the Swan class from having someone set a nega-
tive number of eggs.

You can even read and write fi elds directly on the line declaring them:

1: public class Name {
2: String first = "Theodore";
3: String last = "Moose";
4: String full = first + last;
5: }

Lines 2 and 3 both write to fi elds. Line 4 does both. It reads the fi elds first and t last. It
then writes the fi eld full.

Instance Initializer Blocks
When you learned about methods, you saw braces ({}). The code between the braces is
called a code block. Sometimes this code is called being inside the braces. Anywhere you
see braces is a code block.

Sometimes code blocks are inside a method. These are run when the method is called.
Other times, code blocks appear outside a method. These are called instance initializers. In
Chapter 5, you’ll learn how to use a static initializer.

How many blocks do you see in this example? How many instance initializers do
you see?

3: public static void main(String[] args) {
4: { System.out.println("Feathers"); }
5: }
6: { System.out.println("Snowy"); }

Creating Objects 19

c01.indd 05/20/2016 Page 19

There are three code blocks and one instance initializer. Counting code blocks is easy:
you just count the number of pairs of braces. If there aren’t the same number of open ({)
and close (}) braces, the code doesn’t compile. It doesn’t matter that one set of braces is
inside the main() method—it still counts.

When counting instance initializers, keep in mind that it does matter whether the braces
are inside a method. There’s only one pair of braces outside a method. Line 6 is an instance
initializer.

Order of Initialization
When writing code that initializes fi elds in multiple places, you have to keep track of the
order of initialization. We’ll add some more rules to the order of initialization in Chapters 4
and 5. In the meantime, you need to remember:

■ Fields and instance initializer blocks are run in the order in which they appear in
the file.

■ The constructor runs after all fields and instance initializer blocks have run.

Let’s look at an example:

1: public class Chick {
2: private String name = "Fluffy";
3: { System.out.println("setting field"); }
4: public Chick() {
5: name = "Tiny";
6: System.out.println("setting constructor");
7: }
8: public static void main(String[] args) {
9: Chick chick = new Chick();
10: System.out.println(chick.name); } }

Running this example prints this:

setting field
setting constructor
Tiny

Let’s look at what’s happening here. We start with the main() method because that’s
where Java starts execution. On line 9, we call the constructor of Chick. Java creates a new
object. First it initializes name to "Fluffy" on line 2. Next it executes the print statement
in the instance initializer on line 3. Once all the fi elds and instance initializers have run,
Java returns to the constructor. Line 5 changes the value of name to "Tiny" and line 6 prints
another statement. At this point, the constructor is done executing and goes back to the
print statement on line 10.

20 Chapter 1 ■ Java Building Blocks

c01.indd 05/20/2016 Page 20

Order matters for the fi elds and blocks of code. You can’t refer to a variable before it has
been initialized:

{ System.out.println(name); } // DOES NOT COMPILE
private String name = "Fluffy";

You should expect to see a question about initialization on the exam. Let’s try one more.
What do you think this code prints out?

public class Egg {
 public Egg() {
 number = 5;
 }
 public static void main(String[] args) {
 Egg egg = new Egg();
 System.out.println(egg.number);
 }
 private int number = 3;
 { number = 4; } }

If you answered 5, you got it right. Fields and blocks are run fi rst in order, setting
number to 3 and then 4. Then the constructor runs, setting r number to 5.r

Distinguishing Between Object

References and Primitives

Java applications contain two types of data: primitive types and reference types. In this
section, we’ll discuss the differences between a primitive type and a reference type.

Primitive Types
Java has eight built-in data types, referred to as the Java primitive types. These eight data
types represent the building blocks for Java objects, because all Java objects are just a com-
plex collection of these primitive data types. The exam assumes you are well versed in the
eight primitive data types, their relative sizes, and what can be stored in them.

Distinguishing Between Object References and Primitives 21

c01.indd 05/20/2016 Page 21

Table 1.1 shows the Java primitive types together with their size in bytes and the range of
values that each holds.

TA B LE 1.1 Java primitive types

Keyword Type Example

boolean true or false true

byte 8-bit integral value 123

short 16-bit integral value 123

int 32-bit integral value 123

long 64-bit integral value 123

float 32-bit floating-point value 123.45f

double 64-bit floating-point value 123.456

char 16-bit Unicode value 'a'

There’s a lot of information in Table 1.1. Let’s look at some key points:

■ float and double are used for floating-point (decimal) values.

■ A float requires the letter f following the number so Java knows it is a float.

■ byte, short, int, and long are used for numbers without decimal points.

■ Each numeric type uses twice as many bits as the smaller similar type. For example,
short uses twice as many bits as byte does.

You won’t be asked about the exact sizes of most of these types. You should know that
a byte can hold a value from –128 to 127. So you aren’t stuck memorizing this, let’s look
at how Java gets that. A byte is 8 bits. A bit has two possible values. (These are basic com-
puter science defi nitions that you should memorize.) 28 is 2 × 2 = 4 × 2 = 8 × 2 = 16 × 2 =
32 × 2 = 64 × 2 = 128 × 2 = 256. Since 0 needs to be included in the range, Java takes it
away from the positive side. Or if you don’t like math, you can just memorize it.

The number of bits is used by Java when it fi gures out how much memory to reserve for
your variable. For example, Java allocates 32 bits if you write this:

int num;

22 Chapter 1 ■ Java Building Blocks

c01.indd 05/20/2016 Page 22

What Is the Largest int?

You do not have to know this for the exam, but the maximum number an int can hold is

2,147,483,647. How do we know this? One way is to have Java tell us:

System.out.println(Integer.MAX_VALUE);

The other way is with math. An int is 32 bits. 232 is 4,294,967,296. Divide that by 2 and

you get 2,147,483,648. Then subtract 1 as we did with bytes and you get 2,147,483,647. It’s

easier to just ask Java to print the value, isn’t it?

There are a few more things you should know about numeric primitives. When a number
is present in the code, it is called a literal. By default, Java assumes you are defi ning an int
value with a literal. In this example, the number listed is bigger than what fi ts in an int.
Remember, you aren’t expected to memorize the maximum value for an int. The exam will
include it in the question if it comes up.

long max = 3123456789; // DOES NOT COMPILE

Java complains the number is out of range. And it is—for an int. However, we don’t
have an int. The solution is to add the character L to the number:

long max = 3123456789L; // now Java knows it is a long

Alternatively, you could add a lowercase l to the number. But please use the uppercase L.
The lowercase l looks like the number 1.

Another way to specify numbers is to change the “base.” When you learned how to
count, you studied the digits 0–9. This numbering system is called base 10 since there are
10 numbers. It is also known as the decimal number system. Java allows you to specify dig-
its in several other formats:

■ octal (digits 0–7), which uses the number 0 as a prefix—for example, 017

■ hexadecimal (digits 0–9 and letters A–F), which uses the number 0 followed by x or X
as a prefix—for example, 0xFF

■ binary (digits 0–1), which uses the number 0 followed by b or B as a prefix—for exam-
ple, 0b10

You won’t need to convert between number systems on the exam. You’ll have to recog-
nize valid literal values that can be assigned to numbers.

Distinguishing Between Object References and Primitives 23

c01.indd 05/20/2016 Page 23

Converting Back to Binary

Although you don’t need to convert between number systems on the exam, we’ll look at

one example in case you’re curious:

System.out.println(56); // 56
System.out.println(0b11); // 3
System.out.println(017); // 15
System.out.println(0x1F); // 31

First we have our normal base 10 value. We know you already know how to read that, but

bear with us. The rightmost digit is 6, so it’s “worth” 6. The second-to-rightmost digit is

5, so it’s “worth” 50 (5 times 10.) Adding these together, we get 56.

Next we have binary, or base 2. The rightmost digit is 1 and is “worth” 1. The second-to-

rightmost digit is also 1. In this case, it’s “worth” 2 (1 times 2) because the base is 2. Add-

ing these gets us 3.

Then comes octal, or base 8. The rightmost digit is 7 and is “worth” 7. The second-to-

rightmost digit is 1. In this case, it’s “worth” 8 (1 times 8) because the base is 8. Adding

these gets us 15.

Finally, we have hexadecimal, or base 16, which is also known as hex. The rightmost

“digit” is F and it’s “worth” 15 (9 is “worth” 9, A is “worth” 10, B is “worth” 11, and so

forth). The second-to-rightmost digit is 1. In this case, it’s “worth” 16 (1 times 16) because

the base is 16. Adding these gets us 31.

The last thing you need to know about numeric literals is a feature added in Java 7. You
can have underscores in numbers to make them easier to read:

int million1 = 1000000;
int million2 = 1_000_000;

We’d rather be reading the latter one because the zeroes don’t run together. You can add
underscores anywhere except at the beginning of a literal, the end of a literal, right before a
decimal point, or right after a decimal point. Let’s look at a few examples:

double notAtStart = _1000.00; // DOES NOT COMPILE
double notAtEnd = 1000.00_; // DOES NOT COMPILE
double notByDecimal = 1000_.00; // DOES NOT COMPILE
double annoyingButLegal = 1_00_0.0_0; // this one compiles

24 Chapter 1 ■ Java Building Blocks

c01.indd 05/20/2016 Page 24

Reference Types
A reference type refers to an object (an instance of a class). Unlike primitive types that hold
their values in the memory where the variable is allocated, references do not hold the value
of the object they refer to. Instead, a reference “points” to an object by storing the memory
address where the object is located, a concept referred to as a pointer. Unlike otherrr
languages, Java does not allow you to learn what the physical memory address is. You can
only use the reference to refer to the object.

Let’s take a look at some examples that declare and initialize reference types. Suppose
we declare a reference of type java.util.Date and a reference of type String:

java.util.Date today;
String greeting;

The today variable is a reference of typey Date and can only point to a Date object. The
greeting variable is a reference that can only point to ag String object. A value is assigned
to a reference in one of two ways:

■ A reference can be assigned to another object of the same type.

■ A reference can be assigned to a new object using the new keyword.

For example, the following statements assign these references to new objects:

today = new java.util.Date();
greeting = "How are you?";

The today reference now points to a newy Date object in memory, and today can be usedy
to access the various fi elds and methods of this Date object. Similarly, the greeting refer-g
ence points to a new String object, "How are you?". The String and Date objects do not
have names and can be accessed only via their corresponding reference. Figure 1.1 shows
how the reference types appear in memory.

F I GU R E 1.1 An object in memory can be accessed only via a reference.

today

A Date reference
A Date object

day
29

month
7

year
2011

greeting

A String reference

A String object

How are you?

Declaring and Initializing Variables 25

c01.indd 05/20/2016 Page 25

Key Differences
There are a few important differences you should know between primitives and reference
types. First, reference types can be assigned null, which means they do not currently refer
to an object. Primitive types will give you a compiler error if you attempt to assign them
null. In this example, value cannot point toe null because it is of type int:

int value = null; // DOES NOT COMPILE
String s = null;

Next, reference types can be used to call methods when they do not point to null.
Primitives do not have methods declared on them. In this example, we can call a method on
reference since it is of a reference type. You can telle length is a method because it has ()
after it. The following line is gibberish. No methods exist on len because it is an n int primi-
tive. Primitives do not have methods.

String reference = "hello";
int len = reference.length();
int bad = len.length(); // DOES NOT COMPILE

Finally, notice that all the primitive types have lowercase type names. All classes that
come with Java begin with uppercase. You should follow this convention for classes you
create as well.

Declaring and Initializing Variables

We’ve seen some variables already. A variable is a name for a piece of memory that stores
data. When you declare a variable, you need to state the variable type along with giving it a
name. For example, the following code declares two variables. One is named zooName and e
is of type String. The other is named numberAnimals and is of type s int.

String zooName;
int numberAnimals;

Now that we’ve declared a variable, we can give it a value. This is called initializing a
variable. To initialize a variable, you just type the variable name followed by an equal sign,
followed by the desired value:

zooName = "The Best Zoo";
numberAnimals = 100;

Since you often want to initialize a variable right away, you can do so in the same state-
ment as the declaration. For example, here we merge the previous declarations and initial-
izations into more concise code:

String zooName = "The Best Zoo";
int numberAnimals = 100;

26 Chapter 1 ■ Java Building Blocks

c01.indd 05/20/2016 Page 26

In the following sections, we’ll look at how to declare multiple variables in one-line and
legal identifi ers.

Declaring Multiple Variables
You can also declare and initialize multiple variables in the same statement. How many
variables do you think are declared and initialized in the following two lines?

String s1, s2;
String s3 = "yes", s4 = "no";

Four String variables were declared: s1, s2, s3, and s4. You can declare many variables
in the same declaration as long as they are all of the same type. You can also initialize any
or all of those values inline. In the previous example, we have two initialized variables: s3
and s4. The other two variables remain declared but not yet initialized.

This is where it gets tricky. Pay attention to tricky things! The exam will attempt to trick
you. Again, how many variables do you think are declared and initialized in this code?

int i1, i2, i3 = 0;

As you should expect, three variables were declared: i1, i2, and i3. However, only one
of those values was initialized: i3. The other two remain declared but not yet initialized.
That’s the trick. Each snippet separated by a comma is a little declaration of its own. The
initialization of i3 only applies to 3 i3. It doesn’t have anything to do with i1 or 1 i2 despite2
being in the same statement.

Another way the exam could try to trick you is to show you code like this line:

int num, String value; // DOES NOT COMPILE

This code doesn’t compile because it tries to declare multiple variables of different typest
in the same statement. The shortcut to declare multiple variables in the same statement only
works when they share a type.

To make sure you understand this, see if you can fi gure out which of the following are
legal declarations. “Legal,” “valid,” and “compiles” are all synonyms in the Java exam
world. We try to use all the terminology you could encounter on the exam.

boolean b1, b2;
String s1 = "1", s2;
double d1, double d2;
int i1; int i2;
int i3; i4;

The fi rst statement is legal. It declares two variables without initializing them. The
second statement is also legal. It declares two variables and initializes only one of them.

The third statement is not legal. Java does not allow you to declare two different typest
in the same statement. Wait a minute! Variables d1 and1 d2 are the same type. They are both2

Declaring and Initializing Variables 27

c01.indd 05/20/2016 Page 27

of type double. Although that’s true, it still isn’t allowed. If you want to declare multiple
variables in the same statement, they must share the same type declaration and not repeat
it. double d1, d2; would have been legal.

The fourth statement is legal. Although int does appear twice, each one is in a separate
statement. A semicolon (;) separates statements in Java. It just so happens there are two
completely different statements on the same line. The fi fth statement is not legal. Again, t
we have two completely different statements on the same line. The second one is not a
valid declaration because it omits the type. When you see an oddly placed semicolon on the
exam, pretend the code is on separate lines and think about whether the code compiles that
way. In this case, we have the following:

int i1;
int i2;
int i3;
i4;// DOES NOT COMPILE

Looking at the last line on its own, you can easily see that the declaration is invalid.
And yes, the exam really does cram multiple statements onto the same line—partly to
try to trick you and partly to fi t more code on the screen. In the real world, please limit
yourself to one declaration per statement and line. Your teammates will thank you for the
readable code.

Identifiers
It probably comes as no surprise that Java has precise rules about identifi er names. Luckily,
the same rules for identifi ers apply to anything you are free to name, including variables,
methods, classes, and fi elds.

There are only three rules to remember for legal identifi ers:

■ The name must begin with a letter or the symbol $ or _.

■ Subsequent characters may also be numbers.

■ You cannot use the same name as a Java reserved word. As you might imagine, a
reserved word is a keyword that Java has reserved so that you are not allowed to use it.
Remember that Java is case sensitive, so you can use versions of the keywords that only
differ in case. Please don’t, though.

Don’t worry—you won’t need to memorize the full list of reserved words. The exam will
only ask you about ones you’ve already learned, such as class. The following is a list of all
the reserved words in Java. const and goto aren’t actually used in Java. They are reserved
so that people coming from other languages don’t use them by accident—and in theory, in
case Java wants to use them one day.

28 Chapter 1 ■ Java Building Blocks

c01.indd 05/20/2016 Page 28

abstract assert boolean break byte

case catch char class const*

continue default do double else

enum extends false final finally

float for goto* if implements

import instanceof int interface long

native new null package private

protected public return short static

strictfp super switch synchronized this

throw throws transient true try

void volatile while

Prepare to be tested on these rules. The following examples are legal:

okidentifier
$OK2Identifier
_alsoOK1d3ntifi3r
__SStillOkbutKnotsonice$

These examples are not legal:

3DPointClass // identifiers cannot begin with a number
hollywood@vine // @ is not a letter, digit, $ or _
*$coffee // * is not a letter, digit, $ or _
public // public is a reserved word

Although you can do crazy things with identifi er names, you shouldn’t. Java has con-
ventions so that code is readable and consistent. This consistency includes CamelCase. In
CamelCase, each word begins with an uppercase letter. This makes multiple-word variable
names easier to read. Which would you rather read: Thisismyclass name or e ThisIsMyClass
name? The exam will mostly use common conventions for identifi ers, but not always. When
you see a nonstandard identifi er, be sure to check if it is legal. If not, you get to mark the
answer “does not compile” and skip analyzing everything else in the question.

Understanding Default Initialization of Variables 29

c01.indd 05/20/2016 Page 29

Identifi ers in the Real World

Most Java developers follow these conventions for identifi er names:

■ Method and variables names begin with a lowercase letter followed by CamelCase.

■ Class names begin with an uppercase letter followed by CamelCase. Don’t start any

identifi ers with $. The compiler uses this symbol for some fi les.

Also, know that valid letters in Java are not just characters in the English alphabet. Java

supports the Unicode character set, so there are more than 45,000 characters that can

start a legal Java identifi er. A few hundred more are non-Arabic numerals that may

appear after the fi rst character in a legal identifi er. Luckily, you don’t have to worry about

memorizing those for the exam. If you are in a country that doesn’t use the English alpha-

bet, this is useful to know for a job.

Understanding Default Initialization of

Variables

Before you can use a variable, it needs a value. Some types of variables get this value
set automatically, and others require the programmer to specify it. In the following
sections, we’ll look at the differences between the defaults for local, instance, and
class variables.

Local Variables
A local variable is a variable defi ned within a method. Local variables must be initialized
before use. They do not have a default value and contain garbage data until initialized. The
compiler will not let you read an uninitialized value. For example, the following code
generates a compiler error:

4: public int notValid() {
5: int y = 10;
6: int x;
7: int reply = x + y; // DOES NOT COMPILE
8: return reply;
9: }

30 Chapter 1 ■ Java Building Blocks

c01.indd 05/20/2016 Page 30

y is initialized to 10. However, becausey x is not initialized before it is used in the expres-x
sion on line 7, the compiler generates the following error:

Test.java:7: variable x might not have been initialized
 int reply = x + y;
 ^

Until x is assigned a value, it cannot appear within an expression, and the compiler will x
gladly remind you of this rule. The compiler knows your code has control of what happens
inside the method and can be expected to initialize values.

The compiler is smart enough to recognize variables that have been initialized after their
declaration but before they are used. Here’s an example:

public int valid() {
 int y = 10;
 int x; // x is declared here
 x = 3; // and initialized here
 int reply = x + y;
 return reply;
}

The compiler is also smart enough to recognize initializations that are more complex.
In this example, there are two branches of code. answer is initialized in both of them sor
the compiler is perfectly happy. onlyOneBranch is only initialized if h check happens to be k
true. The compiler knows there is the possibility for check to be false, resulting in uninitial-k
ized code, and gives a compiler error. You’ll learn more about the if statement in the next
chapter.

public void findAnswer(boolean check) {
 int answer;
 int onlyOneBranch;
 if (check) {
 onlyOneBranch = 1;
 answer = 1;
 } else {
 answer = 2;
 }
 System.out.println(answer);
 System.out.println(onlyOneBranch); // DOES NOT COMPILE
}

Instance and Class Variables
Variables that are not local variables are known as instance variables or class variables.
Instance variables are also called fi elds. Class variables are shared across multiple objects.

Understanding Variable Scope 31

c01.indd 05/20/2016 Page 31

You can tell a variable is a class variable because it has the keyword static before it. You’ll
learn about this in Chapter 4. For now, just know that a variable is a class variable if it has
the static keyword in its declaration.

Instance and class variables do not require you to initialize them. As soon as you declare
these variables, they are given a default value. You’ll need to memorize everything in table
1.2 except the default value of char. To make this easier, remember that the compiler
doesn’t know what value to use and so wants the simplest value it can give the type: null
for an object and 0/false for a primitive.

TA B LE 1. 2 Default initialization values by type

Variable type Default initialization value

boolean false

byte, short, int, long 0 (in the type’s bit-length)

float, double 0.0 (in the type’s bit-length)

char '\u0000' (NUL)

All object references (everything else) null

Understanding Variable Scope

You’ve learned that local variables are declared within a method. How many local variables
do you see in this example?

public void eat(int piecesOfCheese) {
 int bitesOfCheese = 1;
}

There are two local variables in this method. bitesOfCheese is declared inside thee
method. piecesOfCheese is called a method parameter. It is also local to the method. Both e
of these variables are said to have a scope local to the method. This means they cannot be
used outside the method.

Local variables can never have a scope larger than the method they are defi ned in.
However, they can have a smaller scope. Consider this example:

3: public void eatIfHungry(boolean hungry) {
4: if (hungry) {
5: int bitesOfCheese = 1;

32 Chapter 1 ■ Java Building Blocks

c01.indd 05/20/2016 Page 32

6: } // bitesOfCheese goes out of scope here
7: System.out.println(bitesOfCheese);// DOES NOT COMPILE
8: }

hungry has a scope of the entire method. y bitesOfCheese has a smaller scope. It is onlye
available for use in the if statement because it is declared inside of it. When you see a set of
braces ({ }) in the code, it means you have entered a new block of code. Each block of code
has its own scope. When there are multiple blocks, you match them from the inside out.
In our case, the if statement block begins at line 4 and ends at line 6. The method’s block
begins at line 3 and ends at line 8.

Since bitesOfCheese is declared in such a block, the scope is limited to that block. When e
the compiler gets to line 7, it complains that it doesn’t know anything about this bitesOf-
Cheese thing and gives an error:e

bitesOfCheese cannot be resolved to a variable

Remember that blocks can contain other blocks. These smaller contained blocks can ref-
erence variables defi ned in the larger scoped blocks, but not vice versa. For example:

16: public void eatIfHungry(boolean hungry) {
17: if (hungry) {
18: int bitesOfCheese = 1;
19: {
20: boolean teenyBit = true;
21: System.out.println(bitesOfCheese);
22: }
23: }
24: System.out.println(teenyBit); // DOES NOT COMPILE
25: }

The variable defi ned on line 18 is in scope until the block ends on line 23. Using it in the
smaller block from lines 19 to 22 is fi ne. The variable defi ned on line 20 goes out of scope
on line 22. Using it on line 24 is not allowed.

The exam may attempt to trick you with questions on scope. You’ll probably see a ques-
tion that appears to be about something complex and fails to compile because one of the
variables is out of scope. Let’s try one. Don’t worry if you aren’t familiar with if state-
ments or while loops yet. It doesn’t matter what the code does since we are talking about
scope. See if you can fi gure out on which line each of the fi ve local variables goes into and
out of scope:

11: public void eatMore(boolean hungry, int amountOfFood) {
12: int roomInBelly = 5;
13: if (hungry) {
14: boolean timeToEat = true;
15: while (amountOfFood > 0) {
16: int amountEaten = 2;

Understanding Variable Scope 33

c01.indd 05/20/2016 Page 33

17: roomInBelly = roomInBelly - amountEaten;
18: amountOfFood = amountOfFood - amountEaten;
19: }
20: }
21: System.out.println(amountOfFood);
22: }

The fi rst step in fi guring out the scope is to identify the blocks of code. In this case, there
are three blocks. You can tell this because there are three sets of braces. Starting from the
innermost set, we can see where the while loop’s block starts and ends. Repeat this as we
go out for the if statement block and method block. Table 1.3 shows the line numbers that
each block starts and ends on.

TA B LE 1. 3 Blocks for scope

Line First line in block Last line in block

while 15 19

if 13 20

Method 11 22

You’ll want to practice this skill a lot. Identifying blocks needs to be second nature for
the exam. The good news is that there are lots of code examples to practice on. You can
look at any code example in this book on any topic and match up braces.

Now that we know where the blocks are, we can look at the scope of each variable.
hungry and y amountOfFood are method parameters, so they are available for the entire d
method. This means their scope is lines 11 to 22. roomInBelly goes into scope on line 12 y
because that is where it is declared. It stays in scope for the rest of the method and so goes
out of scope on line 22. timeToEat goes into scope on line 14 where it is declared. It goes t
out of scope on line 20 where the if block ends. amountEaten goes into scope on line 16 n
where it is declared. It goes out of scope on line 19 where the while block ends.

All that was for local variables. Luckily the rule for instance variables is easier: they are
available as soon as they are defi ned and last for the entire lifetime of the object itself. The
rule for class (static) variables is even easier: they go into scope when declared like the other
variables types. However, they stay in scope for the entire life of the program.

Let’s do one more example to make sure you have a handle on this. Again, try to fi gure
out the type of the four variables and when they go into and out of scope.

1: public class Mouse {
2: static int MAX_LENGTH = 5;H
3: int length;

34 Chapter 1 ■ Java Building Blocks

c01.indd 05/20/2016 Page 34

4: public void grow(int inches) {
5: if (length < MAX_LENGTH) {
6: int newSize = length + inches;
7: length = newSize;
8: }
9: }
10: }

In this class, we have one class variable (MAX_LENGTH), one instance variable (length),h
and two local variables (inches and s newSize.) MAX_LENGTH is a class variable because it hasH
the static keyword in its declaration. MAX_LENGTH goes into scope on line 2 where it is H
declared. It stays in scope until the program ends. length goes into scope on line 3 where h
it is declared. It stays in scope as long as this Mouse object exists. inches goes into scope s
where it is declared on line 4. It goes out of scope at the end of the method on line 9.
newSize goes into scope where it is declared on line 6. Since it is defi ned inside the e if state-
ment block, it goes out of scope when that block ends on line 8.

Got all that? Let’s review the rules on scope:

■ Local variables—in scope from declaration to end of block

■ Instance variables—in scope from declaration until object garbage collected

■ Class variables—in scope from declaration until program ends

Ordering Elements in a Class

Now that you’ve seen the most common parts of a class, let’s take a look at the correct
order to type them into a fi le. Comments can go anywhere in the code. Beyond that, you
need to memorize the rules in Table 1.4.

TA B LE 1. 4 Elements of a class

Element Example Required? Where does it go?

Package declaration package abc; No First line in the file

Import statements import java.util.*; No Immediately after the package

Class declaration public class C Yes Immediately after the import

Field declarations int value; No Anywhere inside a class

Method declarations void method() No Anywhere inside a class

Ordering Elements in a Class 35

c01.indd 05/20/2016 Page 35

Let’s look at a few examples to help you remember this. The fi rst example contains one
of each element:

package structure; // package must be first non-comment
import java.util.*; // import must come after package
public class Meerkat { // then comes the class
 double weight; // fields and methods can go in either order
 public double getWeight() {
 return weight; }
 double height; // another field – they don't need to be together
 }

So far so good. This is a common pattern that you should be familiar with. How about
this one?

/* header */
package structure;
// class Meerkat
public class Meerkat { }

Still good. We can put comments anywhere, and imports are optional. In the next
example, we have a problem:

import java.util.*;
package structure; // DOES NOT COMPILE
String name; // DOES NOT COMPILE
public class Meerkat { }

There are two problems here. One is that the package and import statements are
reversed. Though both are optional, package must come before import if present. The
other issue is that a fi eld attempts declaration outside a class. This is not allowed. Fields
and methods must be within a class.

Got all that? Think of the acronym PIC (picture): package, import, and class. Fields and
methods are easier to remember because they merely have to be inside of a class.

You need to know one more thing about class structure for the OCA exam: multiple
classes can be defi ned in the same fi le, but only one of them is allowed to be public. The
public class matches the name of the fi le. For example, these two classes must be in a fi le
named Meerkat.java:

1: public class Meerkat { }
2: class Paw { }

A fi le is also allowed to have neither class be public. As long as there isn’t more than
one public class in a fi le, it is okay. On the OCP exam, you’ll also need to understand inner
classes, which are classes within a class.

36 Chapter 1 ■ Java Building Blocks

c01.indd 05/20/2016 Page 36

Destroying Objects

Now that we’ve played with our objects, it is time to put them away. Luckily, Java auto-
matically takes care of that for you. Java provides a garbage collector to automatically look
for objects that aren’t needed anymore.

All Java objects are stored in your program memory’s heap. The heap, which is also
referred to as the free store, represents a large pool of unused memory allocated to your
Java application. The heap may be quite large, depending on your environment, but there is
always a limit to its size. If your program keeps instantiating objects and leaving them on
the heap, eventually it will run out of memory.

In the following sections, we’ll look at garbage collection and the finalize() method.

Garbage Collection
Garbage collection refers to the process of automatically freeing memory on the heap by
deleting objects that are no longer reachable in your program. There are many different
algorithms for garbage collection, but you don’t need to know any of them for the exam.
You do need to know that System.gc() is not guaranteed to run, and you should be able to
recognize when objects become eligible for garbage collection.

Let’s start with the fi rst one. Java provides a method called System.gc(). Now you
might think from the name that this tells Java to run garbage collection. Nope! It meekly
suggests that now might be a good time for Java to kick off a garbage collection run. Java is
free to ignore the request.

The more interesting part of garbage collection is when the memory belonging to an
object can be reclaimed. Java waits patiently until the code no longer needs that memory.
An object will remain on the heap until it is no longer reachable. An object is no longer
reachable when one of two situations occurs:

■ The object no longer has any references pointing to it.

■ All references to the object have gone out of scope.

Objects vs. References

Do not confuse a reference with the object that it refers to; they are two different enti-

ties. The reference is a variable that has a name and can be used to access the contents

of an object. A reference can be assigned to another reference, passed to a method, or

returned from a method. All references are the same size, no matter what their type is.

An object sits on the heap and does not have a name. Therefore, you have no way to

access an object except through a reference. Objects come in all different shapes and

sizes and consume varying amounts of memory. An object cannot be assigned to another

Destroying Objects 37

c01.indd 05/20/2016 Page 37

object, nor can an object be passed to a method or returned from a method. It is the

object that gets garbage collected, not its reference.

name

A Reference

A reference may or may
not be created on the heap.
All references are the same
size, no matter what their
data type is, and are accessed
by their variable name. Objects are always on the heap.

They have no name and can only be
accessed via a reference. Objects vary in
size depending on their class definition.

The Heap

An Object

Realizing the difference between a reference and an object goes a long way toward
understanding garbage collection, the new operator, and many other facets of the Java
language. Look at this code and see if you can fi gure out when each object fi rst becomes
eligible for garbage collection:

1: public class Scope {
2: public static void main(String[] args) {
3: String one, two;
4: one = new String("a");
5: two = new String("b");
6: one = two;
7: String three = one;
8: one = null;
9: } }

When you get asked a question about garbage collection on the exam, we recommend
you draw what’s going on. There’s a lot to keep track of in your head and it’s easy to make
a silly mistake trying to keep it all in your memory. Let’s try it together now. Really. Get a
pencil and paper. We’ll wait.

Got that paper? Okay, let’s get started. On line 3, we write one and e two. Just the words.
No need for boxes or arrows yet since no objects have gone on the heap yet. On line 4,
we have our fi rst object. Draw a box with the string "a" in it and draw an arrow from the
word one to that box. Line 5 is similar. Draw another box with the stringe "b" in it this time
and an arrow from the word two. At this point, your work should look like Figure 1.2.

38 Chapter 1 ■ Java Building Blocks

c01.indd 05/20/2016 Page 38

F I GU R E 1. 2 Your drawing after line 5

"a"

two

one

"b"

one changes to point toe "b". Either erase or cross out the arrow
from one and draw a new arrow from e one toe "b". On line 7, we have a new variable, so
write the word three and draw an arrow from e three to e "b". Notice that three points to e
what one is pointing to right now and not what it was pointing to at the beginning. This e
is why we are drawing pictures. It’s easy to forget something like that. At this point, your
work should look like Figure 1.3.

F I GU R E 1. 3 Your drawing after line 7

"a"

two

three

one

"b"

Finally, cross out the line between one ande "b" since line 8 sets this variable to null.
Now, we were trying to fi nd out when the objects were fi rst eligible for garbage collection.
On line 6, we got rid of the only arrow pointing to "a", making that object eligible for
garbage collection. "b" has arrows pointing to it until it goes out of scope. This means "b"
doesn’t go out of scope until the end of the method on line 9.

finalize()
Java allows objects to implement a method called finalize() that might get called. This
method gets called if the garbage collector tries to collect the object. If the garbage collector
doesn’t run, the method doesn’t get called. If the garbage collector fails to collect the object
and tries to run it again later, the method doesn’t get called a second time.

In practice, this means you are highly unlikely to use it in real projects. Luckily, there
isn’t much to remember about finalize() for the exam. Just keep in mind that it might not
get called and that it defi nitely won’t be called twice.

With that said, this call produces no output when we run it:

public class Finalizer {
 protected void finalize() {

Benefits of Java 39

c01.indd 05/20/2016 Page 39

 System.out.println("Calling finalize");
 }
 public static void main(String[] args) {
 Finalizer f = new Finalizer();
 } }

The reason is that the program exits before there is any need to run the garbage collec-
tor. While f is eligible for garbage collection, Java has better things to do than take out the f
trash constantly. For the exam, you need to know that this finalize() call could run zero
or one time. Now for a more interesting example:

public class Finalizer {
 private static List objects = new ArrayList();s
 protected void finalize() {

objects.add(this); // Don't do this
 } }

Remember, finalize() is only run when the object is eligible for garbage collection. The
problem here is that by the end of the method, the object is no longer eligible for garbage
collection because a static variable is referring to it and static variables stay in scope until
the program ends. Java is smart enough to realize this and aborts the attempt to throw out
the object. Now suppose later in the program objects is set to s null. Oh, good, we can
fi nally remove the object from memory. Java remembers already running finalize() on
this object and will not do so again. The lesson is that the finalize() call could run zero
or one time. This is the exact same lesson as the simple example—that’s why it’s so easy to
remember.

Benefits of Java

Java has some key benefi ts that you’ll need to k now for the exam:

Object Oriented Java is an object-oriented language, which means all code is defi ned in
classes and most of those classes can be instantiated into objects. We’ll discuss this more
throughout the book. Many languages before Java were procedural, which meant there were
routines or methods but no classes. Another common approach is functional programming.
Java allows for functional programming within a class, but object oriented is still the main
organization of code.

Encapsulation Java supports access modifi ers to protect data from unintended access
and modifi cation. Most people consider encapsulation to be an aspect of object-oriented
languages. Since the exam objectives call attention to it specifi cally, so do we.

Platform Independent Java is an interpreted language because it gets compiled to
bytecode. A key benefi t is that Java code gets compiled once rather than needing to be

40 Chapter 1 ■ Java Building Blocks

c01.indd 05/20/2016 Page 40

recompiled for different operating systems. This is known as “write once, run everywhere.”
On the OCP exam, you’ll learn that it is possible to write code that does not run every-
where. For example, you might refer to a fi le in a specifi c directory. If you get asked on the
OCA exam, the answer is that the same class fi les run everywhere.

Robust One of the major advantages of Java over C++ is that it prevents memory leaks.
Java manages memory on its own and does garbage collection automatically. Bad memory
management in C++ is a big source of errors in programs.

Simple Java was intended to be simpler than C++. In addition to eliminating pointers,
it got rid of operator overloading. In C++, you could write a + b and have it mean almost
anything.

Secure Java code runs inside the JVM. This creates a sandbox that makes it hard for Java
code to do evil things to the computer it is running on.

Summary

In this chapter, you saw that Java classes consist of members called fi elds and methods. An
object is an instance of a Java class. There are three styles of comment: a single-line com-
ment (//), a multiline comment (/* */), and a Javadoc comment (/** */).

Java begins program execution with a main() method. The most common signature for
this method run from the command line is public static void main(String[] args).
Arguments are passed in after the class name, as in java NameOfClass firstArgument.
Arguments are indexed starting with 0.

Java code is organized into folders called packages. To reference classes in other pack-
ages, you use an import statement. A wildcard ending an import statement means you want
to import all classes in that package. It does not include packages that are inside that one.
java.lang is a special package that does not need to be imported.

Constructors create Java objects. A constructor is a method matching the class name and
omitting the return type. When an object is instantiated, fi elds and blocks of code are
initialized fi rst. Then the constructor is run.

Primitive types are the basic building blocks of Java types. They are assembled into
reference types. Reference types can have methods and be assigned to null. In addition to
“normal” numbers, numeric literals are allowed to begin with 0 (octal), 0x (hex), 0X (hex),
0b (binary), or 0B (binary). Numeric literals are also allowed to contain underscores as long
as they are directly between two other numbers.

Declaring a variable involves stating the data type and giving the variable a name.
Variables that represent fi elds in a class are automatically initialized to their correspond-
ing “zero” or null value during object instantiation. Local variables must be specifi cally
initialized. Identifi ers may contain letters, numbers, $, or _. Identifi ers may not begin with
numbers.

Scope refers to that portion of code where a variable can be accessed. There are three
kinds of variables in Java, depending on their scope: instance variables, class variables, and

Exam Essentials 41

c01.indd 05/20/2016 Page 41

local variables. Instance variables are the nonstatic fi elds of your class. Class variables are
the static fi elds within a class. Local variables are declared within a method.

For some class elements, order matters within the fi le. The package statement comes fi rst
if present. Then comes the import statements if present. Then comes the class declaration.
Fields and methods are allowed to be in any order within the class.

Garbage collection is responsible for removing objects from memory when they can
never be used again. An object becomes eligible for garbage collection when there are no
more references to it or its references have all gone out of scope. The finalize() method
will run once for each object if/when it is fi rst garbage collected.

Java code is object oriented, meaning all code is defi ned in classes. Access modifi ers
allow classes to encapsulate data. Java is platform independent, compiling to bytecode. It is
robust and simple by not providing pointers or operator overloading. Finally, Java is secure
because it runs inside a virtual machine.

Exam Essentials

Be able to write code using a main() method. A main() method is usually written as public
static void main(String[] args). Arguments are referenced starting with args[0]. Accessing
an argument that wasn’t passed in will cause the code to throw an exception.

Understand the effect of using packages and imports. Packages contain Java classes.
Classes can be imported by class name or wildcard. Wildcards do not look at subdirecto-
ries. In the event of a confl ict, class name imports take precedence.

Be able to recognize a constructor. A constructor has the same name as the class. It looks
like a method without a return type.

Be able to identify legal and illegal declarations and initialization. Multiple variables can
be declared and initialized in the same statement when they share a type. Local variables
require an explicit initialization; others use the default value for that type. Identifi ers may
contain letters, numbers, $, or _. Identifi ers may not begin with numbers. Numeric literals
may contain underscores between two digits and begin with 1–9, 0, 0x, 0X, 0b, and 0B.

Be able to determine where variables go into and out of scope. All variables go into scope
when they are declared. Local variables go out of scope when the block they are declared
in ends. Instance variables go out of scope when the object is garbage collected. Class vari-
ables remain in scope as long as the program is running.

Be able to recognize misplaced statements in a class. Package and import statements are
optional. If present, both go before the class declaration in that order. Fields and methods
are also optional and are allowed in any order within the class declaration.

Know how to identify when an object is eligible for garbage collection. Draw a diagram
to keep track of references and objects as you trace the code. When no arrows point to a
box (object), it is eligible for garbage collection.

42 Chapter 1 ■ Java Building Blocks

c01.indd 05/20/2016 Page 42

Review Questions

1. Which of the following are valid Java identifiers? (Choose all that apply)

A. A$B

B. _helloWorld

C. true

D. java.lang

E. Public

F. 1980_s

2. What is the output of the following program?

1: public class WaterBottle {
2: private String brand;
3: private boolean empty;
4: public static void main(String[] args) {
5: WaterBottle wb = new WaterBottle();
6: System.out.print("Empty = " + wb.empty);
7: System.out.print(", Brand = " + wb.brand);
8: } }

A. Line 6 generates a compiler error.

B. Line 7 generates a compiler error.

C. There is no output.

D. Empty = false, Brand = null

E. Empty = false, Brand =

F. Empty = null, Brand = null

3. Which of the following are true? (Choose all that apply)
4: short numPets = 5;
5: int numGrains = 5.6;
6: String name = "Scruffy";
7: numPets.length();
8: numGrains.length();
9: name.length();

A. Line 4 generates a compiler error.

B. Line 5 generates a compiler error.

C. Line 6 generates a compiler error.

D. Line 7 generates a compiler error.

E. Line 8 generates a compiler error.

Review Questions 43

c01.indd 05/20/2016 Page 43

F. Line 9 generates a compiler error.

G. The code compiles as is.

4. Given the following class, which of the following is true? (Choose all that apply)
 1: public class Snake {
 2:
 3: public void shed(boolean time) {
 4:
 5: if (time) {
 6:
 7: }
 8: System.out.println(result);
 9:
10: }
11: }

A. If String result = "done"; is inserted on line 2, the code will compile.

B. If String result = "done"; is inserted on line 4, the code will compile.

C. If String result = "done"; is inserted on line 6, the code will compile.

D. If String result = "done"; is inserted on line 9, the code will compile.

E. None of the above changes will make the code compile.

5. Given the following classes, which of the following can independently replace INSERT
IMPORTS HERE to make the code compile? (Choose all that apply)

package aquarium;
public class Tank { }

package aquarium.jellies;
public class Jelly { }

package visitor;
INSERT IMPORTS HERE
public class AquariumVisitor {
 public void admire(Jelly jelly) { } }

A. import aquarium.*;

B. import aquarium.*.Jelly;

C. import aquarium.jellies.Jelly;

D. import aquarium.jellies.*;

E. import aquarium.jellies.Jelly.*;

F. None of these can make the code compile.

44 Chapter 1 ■ Java Building Blocks

c01.indd 05/20/2016 Page 44

6. Given the following classes, what is the maximum number of imports that can be removed
and have the code still compile?
package aquarium; public class Water { }

package aquarium;
import java.lang.*;
import java.lang.System;
import aquarium.Water;
import aquarium.*;
public class Tank {
 public void print(Water water) {
 System.out.println(water); } }

A. 0

B. 1

C. 2

D. 3

E. 4

F. Does not compile.

7. Given the following classes, which of the following snippets can be inserted in place of
INSERT IMPORTS HERE and have the code compile? (Choose all that apply)
package aquarium;
public class Water {
 boolean salty = false;
}
package aquarium.jellies;
public class Water {
 boolean salty = true;
}
package employee;
 INSERT IMPORTS HERE
public class WaterFiller {
 Water water;
}

A. import aquarium.*;

B. import aquarium.Water;
import aquarium.jellies.*;

C. import aquarium.*;
import aquarium.jellies.Water;

Review Questions 45

c01.indd 05/20/2016 Page 45

D. import aquarium.*;
import aquarium.jellies.*;

E. import aquarium.Water;
import aquarium.jellies.Water;

F. None of these imports can make the code compile.

8. Given the following class, which of the following calls print out Blue Jay? (Choose all that
apply)
public class BirdDisplay {
 public static void main(String[] name) {
 System.out.println(name[1]);
} }

A. java BirdDisplay Sparrow Blue Jay

B. java BirdDisplay Sparrow "Blue Jay"

C. java BirdDisplay Blue Jay Sparrow

D. java BirdDisplay "Blue Jay" Sparrow

E. java BirdDisplay.class Sparrow "Blue Jay"

F. java BirdDisplay.class "Blue Jay" Sparrow

G. Does not compile.

9. Which of the following legally fill in the blank so you can run the main() method from the
command line? (Choose all that apply)
public static void main()

A. String[] _names

B. String[] 123

C. String abc[]

D. String _Names[]

E. String... $n

F. String names

G. None of the above.

10. Which of the following are legal entry point methods that can be run from the command
line? (Choose all that apply)

A. private static void main(String[] args)

B. public static final main(String[] args)

C. public void main(String[] args)

D. public static void test(String[] args)

E. public static void main(String[] args)

F. public static main(String[] args)

G. None of the above.

46 Chapter 1 ■ Java Building Blocks

c01.indd 05/20/2016 Page 46

11. Which of the following are true? (Choose all that apply)

A. An instance variable of type double defaults to null.

B. An instance variable of type int defaults to null.

C. An instance variable of type String defaults to null.

D. An instance variable of type double defaults to 0.0.

E. An instance variable of type int defaults to 0.0.

F. An instance variable of type String defaults to 0.0.

G. None of the above.

12. Which of the following are true? (Choose all that apply)

A. A local variable of type boolean defaults to null.

B. A local variable of type float defaults to 0.

C. A local variable of type Object defaults to null.

D. A local variable of type boolean defaults to false.

E. A local variable of type boolean defaults to true.

F. A local variable of type float defaults to 0.0.

G. None of the above.

13. Which of the following are true? (Choose all that apply)

A. An instance variable of type boolean defaults to false.

B. An instance variable of type boolean defaults to true.

C. An instance variable of type boolean defaults to null.

D. An instance variable of type int defaults to 0.

E. An instance variable of type int defaults to 0.0.

F. An instance variable of type int defaults to null.

G. None of the above.

14. Given the following class in the file /my/directory/named/A/Bird.java:
INSERT CODE HERE
public class Bird { }

Which of the following replaces INSERT CODE HERE if we compile from /my/directory?
(Choose all that apply)

A. package my.directory.named.a;

B. package my.directory.named.A;

C. package named.a;

D. package named.A;

E. package a;

F. package A;

G. Does not compile.

Review Questions 47

c01.indd 05/20/2016 Page 47

15. Which of the following lines of code compile? (Choose all that apply)

A. int i1 = 1_234;

B. double d1 = 1_234_.0;

C. double d2 = 1_234._0;

D. double d3 = 1_234.0_;

E. double d4 = 1_234.0;

F. None of the above.

16. Given the following class, which of the following lines of code can replace INSERT CODE
HERE to make the code compile? (Choose all that apply)
public class Price {
 public void admission() {
 INSERT CODE HERE
 System.out.println(amount);
 } }

A. int amount = 9L;

B. int amount = 0b101;

C. int amount = 0xE;

D. double amount = 0xE;

E. double amount = 1_2_.0_0;

F. int amount = 1_2_;

G. None of the above.

17. Which of the following are true? (Choose all that apply)
public class Bunny {
 public static void main(String[] args) {
 Bunny bun = new Bunny();
} }

A. Bunny is a class.

B. bun is a class.

C. main is a class.

D. Bunny is a reference to an object.

E. bun is a reference to an object.

F. main is a reference to an object.

G. None of the above.

18. Which represent the order in which the following statements can be assembled into a pro-
gram that will compile successfully? (Choose all that apply)
A: class Rabbit {}
B: import java.util.*;
C: package animals;

48 Chapter 1 ■ Java Building Blocks

c01.indd 05/20/2016 Page 48

A. A, B, C

B. B, C, A

C. C, B, A

D. B, A

E. C, A

F. A, C

G. A, B

19. Suppose we have a class named Rabbit. Which of the following statements are true?
(Choose all that apply)
1: public class Rabbit {
2: public static void main(String[] args) {
3: Rabbit one = new Rabbit();
4: Rabbit two = new Rabbit();
5: Rabbit three = one;
6: one = null;
7: Rabbit four = one;
8: three = null;
9: two = null;
10: two = new Rabbit();
11: System.gc();
12: } }

A. The Rabbit object from line 3 is first eligible for garbage collection immediately
following line 6.

B. The Rabbit object from line 3 is first eligible for garbage collection immediately
following line 8.

C. The Rabbit object from line 3 is first eligible for garbage collection immediately
following line 12.

D. The Rabbit object from line 4 is first eligible for garbage collection immediately
following line 9.

E. The Rabbit object from line 4 is first eligible for garbage collection immediately
following line 11.

F. The Rabbit object from line 4 is first eligible for garbage collection immediately
following line 12.

20. What is true about the following code? (Choose all that apply)
public class Bear {
 protected void finalize() {
 System.out.println("Roar!");
}

Review Questions 49

c01.indd 05/20/2016 Page 49

public static void main(String[] args) {
 Bear bear = new Bear();
 bear = null;
 System.gc();
} }

A. finalize() is guaranteed to be called.

B. finalize() might or might not be called

C. finalize() is guaranteed not to be called.

D. Garbage collection is guaranteed to run.

E. Garbage collection might or might not run.

F. Garbage collection is guaranteed not to run.

G. The code does not compile.

21. What does the following code output?
1: public class Salmon {
2: int count;
3: public void Salmon() {
4: count = 4;
5: }
6: public static void main(String[] args) {
7: Salmon s = new Salmon();
8: System.out.println(s.count);
9: } }

A. 0

B. 4

C. Compilation fails on line 3.

D. Compilation fails on line 4.

E. Compilation fails on line 7.

F. Compilation fails on line 8.

22. Which of the following are true statements? (Choose all that apply)

A. Java allows operator overloading.

B. Java code compiled on Windows can run on Linux.

C. Java has pointers to specific locations in memory.

D. Java is a procedural language.

E. Java is an object-oriented language.

F. Java is a functional programming language.

50 Chapter 1 ■ Java Building Blocks

c01.indd 05/20/2016 Page 50

23. Which of the following are true? (Choose all that apply)

A. javac compiles a .class file into a .java file.

B. javac compiles a .java file into a .bytecode file.

C. javac compiles a .java file into a .class file.

D. Java takes the name of the class as a parameter.

E. Java takes the name of the .bytecode file as a parameter.

F. Java takes the name of the .class file as a parameter.

