
c01.indd 1 11/02/2015 1:50 PM

 PART I

Step‐by‐Step y

▸ CHAPTER 1 : Software Engineering from 20,000 Feet

▸ CHAPTER 2 : Before the Beginning

▸ CHAPTER 3 : Project Management

▸ CHAPTER 4 : Requirement Gathering

▸▸ CHAPTER 5 CHAPTER 5 : Hi h L l D i High‐Level Design

▸ CHAPTER 6 : Low‐Level Design

▸ CHAPTER 7 : Development

▸ CHAPTER 8 : Testing

▸ CHAPTER 9 : Deployment

▸ CHAPTER 10: Metrics

▸ CHAPTER 11: Maintenance

CO
PYRIG

HTED
 M

ATERIA
L

c01.indd 2 11/02/2015 1:50 PM

 The chapters in the fi rst part of this book describe those basic tasks that any successful software
project must handle in some way. They explain the main steps in software development and describe
some of the myriad ways a project can fail to handle those tasks. (The second part of the book
explains how different approaches such as waterfall and agile handle those tasks.)

 The fi rst chapter in this part of the book provides an overview of software development from a high
level. The subsequent chapters explain the pieces of the development process in greater detail.

 Software and cathedrals are much the same. First we build them, then we pray.

 —Samuel Redwine

 In principle, software engineering is a simple two‐step process: (1) Write a best‐selling program,
and then (2) buy expensive toys with the profi ts. Unfortunately, the fi rst step can be rather diffi cult.
Saying “write a best‐selling program” is a bit like telling an author, “Write a best‐selling book,” or
telling a baseball player “triple to left.” It’s a great idea, but knowing the goal doesn’t actually help
you achieve it.

 To produce great software, you need to handle a huge number of complicated tasks, any one of
which can fail and sink the entire project. Over the years people have developed a multitude of
methodologies and techniques to help keep software projects on track. Some of these, such as the
waterfall and l V‐model approaches, use detailed requirement specifi cations to exactly defi ne the l
wanted results before development begins. Others, such as Scrum and agile techniques , rely on
fast‐paced incremental development with frequent feedback to keep a project on track. (Still others
techniques, such as cowboy coding and g extreme programming, sound more like action adventure g
fi lms than software development techniques.)

 Different development methodologies use different approaches, but they all perform roughly the
same tasks. They all determine what the software should do and how it should do it. They generate
the software, remove bugs from the code (some of the bugs, at least), make sure the software does
more or less what it should, and deploy the fi nished result.

 NOTE I call these basic items “tasks” and not “stages” or “steps” because
different software engineering approaches tackle them in different ways and at
different times. Calling them “stages” or “steps” would probably be misleading
because it would imply that all projects move through the stages in the same
predictable order.

2 ❘ CHAPTER 3 SOFTWARE ENGINEERING STEP-BY-STEP

c01.indd 3 11/02/2015 1:50 PM

 There are two ways of constructing a software design. One way is to make
it so simple that there are obviously no defi ciencies. The other way is to
make it so complicated that there are no obvious defi ciencies. The fi rst
method is far more diffi cult.

 —C.A.R. Hoare

 WHAT YOU WILL LEARN IN THIS CHAPTER:

➤ The basic steps required for successful software engineering

➤ Ways in which software engineering differs from other kinds of
engineering

➤ How fi xing one bug can lead to others

➤ Why it is important to detect mistakes as early as possible

 In many ways, software engineering is a lot like other kinds of engineering. Whether you’re
building a bridge, an airplane, a nuclear power plant, or a new and improved version of
Sudoku, you need to accomplish certain tasks. For example, you need to make a plan, follow
that plan, heroically overcome unexpected obstacles, and hire a great band to play at the
ribbon‐cutting ceremony.

 The following sections describe the steps you need to take to keep a software engineering
project on track. These are more or less the same for any large project although there are
some important differences. Later chapters in this book provide a lot more detail about
these tasks.

 1

4 ❘ CHAPTER 1 SOFTWARE ENGINEERING FROM 20,000 FEET

c01.indd 4 11/02/2015 1:50 PM

REQUIREMENTS GATHERING

No big project can succeed without a plan. Sometimes a project doesn’t follow the plan closely, but
every big project must have a plan. The plan tells project members what they should be doing, when
and how long they should be doing it, and most important what the project’s goals are. They give
the project direction.

One of the fi rst steps in a software project is fi guring out the requirements. You need to fi nd out
what the customers want and what the customers need. Depending on how well defi ned the user’s
needs are, this can be time‐consuming.

 WHO’S THE CUSTOMER?

 Sometimes, it’s easy to tell who the customer is. If you’re writing software for
another part of your own company, it may be obvious who the customers are. In
that case, you can sit down with them and talk about what the software should do.

 In other cases, you may have only a vague notion of who will use the fi nished
software. For example, if you’re creating a new online card game, it may be hard to
identify the customers until after you start marketing the game.

 Sometimes, you may even be the customer. I write software for myself all the time.
This has a lot of advantages. For example, I know exactly what I want and I know
more or less how hard it will be to provide different features. (Unfortunately, I also
sometimes have a hard time saying “no” to myself, so projects can drag on for a lot
longer than they should.)

 In any project, you should try to identify your customers and interact with them as
much as possible so that you can design the most useful application possible.

After you determine the customers’ wants and needs (which are not always the same), you can turn
them into requirements documents. Those documents tell the customers what they will be getting,
and they tell the project members what they will be building.

Throughout the project, both customers and team members can refer to the requirements to see
if the project is heading in the right direction. If someone suggests that the project should include
a video tutorial, you can see if that was included in the requirements. If this is a new feature, you
might allow that change if it would be useful and wouldn’t mess up the rest of the schedule. If that
request doesn’t make sense, either because it wouldn’t add value to the project or you can’t do it
with the time you have, then you may need to defer it for a later release.

 CHANGE HAPPENS

 Although there are some similarities between software and other kinds of
engineering, the fact that software doesn’t exist in any physical way means there are
some major differences as well. Because software is so malleable, users frequently
ask for new features up to the day before the release party. They ask developers

High‐Level Design ❘ 5

c01.indd 5 11/02/2015 1:50 PMM

 HIGH‐LEVEL DESIGN

 After you know the project’s requirements, you can start working on the high‐level design. The
high‐level design includes such things as decisions about what platform to use (such as desktop,
laptop, tablet, or phone), what data design to use (such as direct access, 2‐tier, or 3‐tier), and
interfaces with other systems (such as external purchasing systems).

 The high‐level design should also include information about the project architecture at a relatively
high level. You should break the project into the large chunks that handle the project’s major areas
of functionality. Depending on your approach, this may include a list of the modules that you need
to build or a list of families of classes.

 For example, suppose you’re building a system to manage the results of ostrich races. You might
decide the project needs the following major pieces:

➤ Database (to hold the data)

➤ Classes (for example, Race, Ostrich, and Jockey classes)

➤ User interfaces (to enter Ostrich and Jockey data, enter race results, produce result reports,
and create new races)

➤ External interfaces (to send information and spam to participants and fans via e‐mail, text
message, voice mail, and anything else we can think of)

 You should make sure that the high‐level design covers every aspect of the requirements. It should
specify what the pieces do and how they should interact, but it should include as few details as
possible about how the pieces do their jobs.

to shorten schedules and request last‐minute changes such as switching database
platforms or even hardware platforms. (Yes, both of those have happened to me.)
“The program is just 0s and 1s,” they reason. “The 0s and 1s don’t care whether
they run on an Android tablet or a Windows Phone, do they?”

 In contrast, a company wouldn’t ask an architectural fi rm to move a new
convention center across the street at the last minute; a city transportation
authority wouldn’t ask the builder to add an extra lane to a freeway bridge right
after it opens; and no one would try to insert an atrium level at the bottom of a
newly completed 90‐story building.

 TO DESIGN OR NOT TO DESIGN, THAT IS THE QUESTION

 At this point, fans of extreme programming, Scrum, and other incremental
development approaches may be rolling their eyes, snorting in derision and
muttering about how those methodologies don’t need high‐level designs.

continues

6 ❘ CHAPTER 1 SOFTWARE ENGINEERING FROM 20,000 FEET

c01.indd 6 11/02/2015 1:50 PM

 Let’s defer this argument until Chapter 5 , “High‐Level Design,” which talks
about high‐level design in greater detail. For now, I’ll just claim that every design
methodology needs design, even if it doesn’t come in the form of a giant written
design specifi cation carved into a block of marble.

(continued)

LOW‐LEVEL DESIGN

After your high‐level design breaks the project into pieces, you can assign those pieces to groups
within the project so that they can work on low‐level designs. The low‐level design includes
information about how that piece of the project should work. The design doesn’t need to give every
last nitpicky detail necessary to implement the project’s major pieces, but they should give enough
guidance to the developers who will implement those pieces.

For example, the ostrich racing application’s database piece would include an initial design for the
database. It should sketch out the tables that will hold the race, ostrich, and jockey information.

At this point you will also discover interactions between the different pieces of the project that may
require changes here and there. The ostrich project’s external interfaces might require a new table to
hold e‐mail, text messaging, and other information for fans.

DEVELOPMENT

After you’ve created the high‐ and low‐level designs, it’s time for the programmers to get to work.
(Actually, the programmers should have been hard at work gathering requirements, creating the
high‐level designs, and refi ning them into low‐level designs, but development is the part that most
programmers enjoy the most.) The programmers continue refi ning the low‐level designs until they
know how to implement those designs in code.

(In fact, in one of my favorite development techniques, you basically just keep refi ning the design to give
more and more detail until it would be easier to just write the code instead. Then you do exactly that.)

As the programmers write the code, they test it to make sure it doesn’t contain any bugs.

At this point, any experienced developers should be snickering if not actually laughing out loud.
It’s a programming axiom that no nontrivial program is completely bug‐free. So let me rephrase the
previous paragraph.

As the programmers write the code, they test it to fi nd and remove as many bugs as they reasonably can.

TESTING

Effectively testing your own code is extremely hard. If you just wrote the code, you obviously didn’t
insert bugs intentionally. If you knew there was a bug in the code, you would have fi xed it before
you wrote it. That idea often leads programmers to assume their code is correct (I guess they’re just
naturally optimistic) so they don’t always test it as thoroughly as they should.

Testing ❘ 7

c01.indd 7 11/02/2015 1:50 PMM

 Even if a particular piece of code is thoroughly tested and contains no (or few) bugs, there’s no
guarantee that it will work properly with the other parts of the system.

 One way to address both of these problems (developers don’t test their own code well and the pieces
may not work together) is to perform different kinds of tests. First developers test their own code. Then
testers who didn’t write the code test it. After a piece of code seems to work properly, it is integrated
into the rest of the project, and the whole thing is tested to see if the new code broke anything.

 Any time a test fails, the programmers dive back into the code to fi gure out what’s going wrong and
how to fi x it. After any repairs, the code goes back into the queue for retesting.

 A SWARM OF BUGS

 At this point you may wonder why you need to retest the code. After all, you just
fi xed it, right?

 Unfortunately fi xing a bug often creates a new bug. Sometimes the bug fi x is
incorrect. Other times it breaks another piece of code that depended on the original
buggy behavior. In the known bug hides an unknown bug.

 Still other times the programmer might change some correct behavior to a different
correct behavior without realizing that some other code depended on the original
correct behavior. (Imagine if someone switched the arrangement of your hot and
cold water faucets. Either arrangement would work just fi ne, but you may get a
nasty surprise the next time you take a shower.)

 Any time you change the code, whether by adding new code or fi xing old code, you
need to test it to make sure everything works as it should.

 Unfortunately, you can never be certain that you’ve caught every bug. If you run your tests and
don’t fi nd anything wrong, that doesn’t mean there are no bugs, just that you haven’t found them.
As programming pioneer Edsger W. Dijkstra said, “Testing shows the presence, not the absence of
bugs.” (This issue can become philosophical. If a bug is undetected, is it still a bug?)

 The best you can do is test and fi x bugs until they occur at an acceptably low rate. If bugs don’t bother
users too frequently or too severely when they do occur, then you’re ready to move on to deployment.

EXAMPLE Counting Bugs

 Suppose requirements gathering, high‐level design, low‐level design, and development works like this:
Every time you make a decision, the next task in the sequence includes two more decisions that depend
on the fi rst one. For example, when you make a requirements decision, the high‐level design includes
two decisions that depend on it. (This isn’t exactly the way it works, but it’s not as ridiculous as you
might wish.)

 Now suppose you made a mistake during requirements gathering. (The customer said the application
had to support 30 users with a 5‐second response time, but you heard 5 users with a 30‐second
response time.)

8 ❘ CHAPTER 1 SOFTWARE ENGINEERING FROM 20,000 FEET

c01.indd 8 11/02/2015 1:50 PM

In this example, you have 15 times as many decisions to track down, examine, and possibly fi x than
you would have if you had discovered the mistake right away during requirements gathering. That
leads to one of the most important rules of software engineering. A rule that is so important, I’ll
repeat it later in the book:

 The longer a bug remains undetected, the harder it is to fi x.

Some people think of testing as something you do after the fact to verify that the code you wrote is
correct. Actually, testing is critical at every stage of development to ensure the resulting application
is usable.

DEPLOYMENT

Ideally, you roll out your software, the users are overjoyed, and everyone lives happily ever after. If
you’ve built a new variant of Tetris and you release it on the Internet, your deployment may actually
be that simple.

Often, however, things don’t go so smoothly. Deployment can be diffi cult, time‐consuming, and
expensive. For example, suppose you’ve written a new billing system to track payments from your
company’s millions of customers. Deployment might involve any or all of the following:

➤ New computers for the back-end database

➤ A new network

➤ New computers for the users

➤ User training

If you detect the error during the requirements gathering phase, you need to fi x only that one error. But
how many incorrect decisions could depend on that one mistake if you don’t discover the problem until
after development is complete?

The one mistake in requirements gathering leads to two decisions in high‐level design that could be
incorrect.

Each of the two possible mistakes in high‐level design leads to
two new decisions in low‐level design that could also be wrong,
giving a total of 2 × 2 = 4 possible mistakes in low‐level design.

Each of the four suspicious low‐level design decisions lead to
two more decisions during development, giving a total of 4 × 2
= 8 possible mistakes during development.

Adding up all the mistakes in requirements gathering, high‐level
design, low‐level design, and development gives a total of 1 + 2 +
4 + 8 = 15 possible mistakes. Figure 1-1 shows how the potential
mistakes propagate.

Requirements

High-level Design

Low-level Design

Development

 FIGURE 1-1: The circles represent
possible mistakes at different stages of
development. One early mistake can
lead to lots of later mistakes.

Wrap‐up ❘ 9

c01.indd 9 11/02/2015 1:50 PMM

➤ On-site support while the users get to know the new system

➤ Parallel operations while some users get to know the new system and other users keep using
the old system

➤ Special data maintenance chores to keep the old and new databases synchronized

➤ Massive bug fi xing when the 250 users discover dozens or hundreds of bugs that testing
didn’t uncover

➤ Other nonsense that no one could possibly predict

 WHO COULD HAVE PREDICTED?

 I worked on one project that assigned repair people to fi x customer problems for a
phone company. Twice during live testing the system assigned someone to work at
his ex‐wife’s house. Fortunately, the repair people involved recognized the address
and asked their supervisors to override the assignments.

 If psychics were more consistent, it would be worth adding one to every software
project to anticipate these sorts of bizarre problems. Failing that or a working
crystal ball, you should allow some extra time in the project schedule to handle
these sorts of completely unexpected complications.

 MAINTENANCE

 As soon as the users start pounding away on your software, they’ll fi nd bugs. (This is another
software axiom. Bugs that were completely hidden from testers appear the instant users touch the
application.)

 Of course, when the users fi nd bugs, you need to fi x them. As mentioned earlier, fi xing a bug
sometimes leads to another bug, so now you get to fi x that one as well.

 If your application is successful, users will use it a lot, and they’ll be even more likely to fi nd bugs.
They also think up a slew of enhancements, improvements, and new features that they want added
immediately.

 This is the kind of problem every software developer wants to have: customers that like an
application so much, they’re clamoring for more. It’s the goal of every software engineering project,
but it does mean more work.

 WRAP‐UP

 At this point in the process, you’re probably ready for a break. You’ve put in long hours of
planning, design, development, and testing. You’ve found bugs you didn’t expect, and the users are
keeping you busy with bug reports and change requests. You want nothing more than a nice, long
vacation.

10 ❘ CHAPTER 1 SOFTWARE ENGINEERING FROM 20,000 FEET

c01.indd 10 11/02/2015 1:50 PM

There’s one more important thing you should do before you jet off to Cancún: You need to
perform a post‐mortem. You need to evaluate the project and decide what went right and what
went wrong. You need to fi gure out how to make the things that went well occur more often in
the future. Conversely, you need to determine how to prevent the things that went badly in the
future.

Right after the project’s completion, many developers don’t feel like going through this exercise,
but it’s important to do right away before everyone forgets any lessons that you can learn from the
project.

EVERYTHING ALL AT ONCE

Several famous people have said, “Time is nature’s way to keep everything from happening all at
once.” Unfortunately, time doesn’t work that way in software engineering. Depending on how big
the project is and how the tasks are distributed, many of the basic tasks overlap—and sometimes in
big ways.

Suppose you’re building a huge application that’s vital to national security interests. For example,
suppose you want to optimize national energy drink ordering, distribution, and consumption. This
is a big problem. (Really, it is.) You might have some ideas about how to start, but there are a lot of
details that you’ll need to work out to build the best possible solution. You’ll probably need to spend
quite a while studying existing operations to develop the user requirements.

You could spend several weeks peppering the customers with questions while the rest of the
development team plays Mario Cart and consumes the drinks you’re studying, but that would bet
ineffi cient.

A better use of everyone’s time would be to put people to work with as much of the project that
is ready to roll at any given moment. Several people can work with the customers to defi ne the
requirements. This takes more coordination than having a single person gather requirements, but on
big projects it can still save you a lot of time.

After you think you understand some of the requirements, other team members can start working
on high‐level designs to satisfy them. They’ll probably make more mistakes than they would if you
waited until the requirements are fi nished, but you’ll get things done sooner.

As the project progresses, the focus of work moves down through the basic project tasks. For
example, as requirements gathering nears completion, you should fi nalize the high‐level designs, so
team members can move on to low‐level designs and possibly even some development.

Meanwhile, throughout the entire project, testers can try to shoot holes in things. As parts of
the application are fi nished, they can try different scenarios to make sure the application can
handle them.

Depending on the testers’ skills, they can even test things such as the designs and the requirements.
Of course, they can’t run the requirements through a compiler to see if the computer can make sense
of them. They can, however, look for situations that aren’t covered by the requirements. (“What
if a shipment of Quickstart Energy Drink is delayed, but the customer is on a cruise ship and just
crossed the International Date Line! Is the shipment still considered late?”)

Summary ❘ 11

c01.indd 11 11/02/2015 1:50 PMM

 Sometimes tasks also fl ow backward. For example, problems during development may discover
a problem with the design or even the requirements. The farther back a correction needs to fl ow,
the greater its impact. Remember the earlier example where every problem caused two more? The
requirements problem you discovered during development could lead to a whole slew of other
undiscovered bugs. In the worst case, testing of “fi nished” code may reveal fundamental fl aws in the
early designs and even the requirements.

 REQUIREMENT REPAIRS

 The fi rst project I worked on was an inventory system for NAVSPECWARGRU
(Navy Special Warfare Group, basically the Navy SEALs). The application let you
defi ne equipment packages for various activities and then let team members check
out whatever was necessary. (Sort of the way a Boy Scouts quartermaster does
this. For this campout, you’ll need a tent, bedroll, canteen, cooking gear, and M79
grenade launcher.)

 Anyway, while I was building one of the screens, I realized that the requirements
specifi cations and high‐level design didn’t include any method for team members
to return equipment when they were done with it. In a matter of weeks, the
quartermaster’s warehouse would be empty and the barracks would be packed to
the rafters with ghillie suits and snorkels!

 This was a fairly small project, so it was easy to fi x. I told the project manager,
he whipped up a design for an inventory return screen, and I built it. That kind of
quick correction isn’t possible for every project, particularly not for large ones, but
in this case the whole fi x took approximately an hour.

 In addition to overlapping and fl owing backward, the basic tasks are also sometimes handled in very
different ways. Some development models rely on a specifi cation that’s extremely detailed and rigid.
Others use specifi cations that change so fl uidly it’s hard to know whether they use any specifi cation
at all. Iterative approaches even repeat the same basic tasks many times to build ever‐improving
versions of the fi nal application. The chapters in the second part of this book discuss some of the
most popular of those sorts of development approaches.

 SUMMARY

 All software engineering projects must handle the same basic tasks. Different development models
may handle them in different ways, but they’re all hidden in there somewhere.

 In fact, the strengths and weaknesses of various development models depend in a large part on
how they handle these tasks. For example, agile methods and test‐driven development use frequent
builds to force developers to perform a lot of tests early on so that they can catch bugs as quickly as
possible. (For a preview of why that’s important, see the “Counting Bugs” example earlier in this
chapter and Exercise 4.)

12 ❘ CHAPTER 1 SOFTWARE ENGINEERING FROM 20,000 FEET

c01.indd 12 11/02/2015 1:50 PM

 The chapters in Part II, “Development Models,” describe some of the most common development
models. Meanwhile the following chapters describe the basic software engineering tasks in greater
detail. Before you delve into the complexities of requirements gathering, however, there are a few
things you should consider.

 The next chapter explains some basic tools that you should have in place before you consider a new
project. The chapter after that discusses project management tools and techniques that can help you
keep your project on track as you work through the basic software engineering tasks.

EXERCISES

1. What are the basic tasks that all software engineering projects must handle?

2. Give a one sentence description of each of the tasks you listed for Exercise 1.

3. I have a few customers who do their own programming, but who occasionally get stuck and
need a few pointers or a quick example program. A typical project runs through the following
stages:

 a. The customer sends me an e‐mail describing the problem.

 b. I reply telling what I think the customer wants (and sometimes asking for clarifi cation).

 c. The customer confi rms my guesses or gives me more detail.

 d. I crank out a quick example program.

 e. I e‐mail the example to the customer.

 f. The customer examines the example and asks more questions if necessary.

 g. I answer the new questions.

 Earlier in this chapter, I said that every project runs through the same basic tasks. Explain
where those tasks are performed in this kind of interaction. (For example, which of those steps
includes testing?)

4. List three ways fi xing one bug can cause others.

5. List fi ve tasks that might be part of deployment.

Summary ❘ 13

c01.indd 13 11/02/2015 1:50 PMM

▸ WHAT YOU LEARNED IN THIS CHAPTER
➤ All projects perform the same basic tasks:

1. Requirements Gathering

2. High‐level Design

3. Low‐level Design

4. Development

5. Testing

6. Deployment

7. Maintenance

8. Wrap‐up

➤ Different development models handle the basic tasks in different ways, such as making some
less formal or repeating tasks many times.

➤ The basic tasks often occur at the same time, with some developers working on one task
while other developers work on other tasks.

➤ Work sometimes fl ows backward with later tasks requiring changes to earlier tasks.

➤ Fixing a bug can lead to other bugs.

➤ The longer a mistake remains undetected, the harder it is to fi x.

➤ Surprises are inevitable, so you should allow some extra time to handle them.

