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CHAPTER 1

Introduction

Multiphase fluid phenomena and flows occur when two or more fluids that

do not readily mix (such as air and water) share an interface. Multiphase fluid

interactions are nearly ubiquitous in natural and industrial processes. Multi-

phase phenomena and flows can involve single component multiphase fluids,

e.g., water and its own vapor, and multi-component multiphase fluids, e.g.,

oil/water. Some practical examples of multiphase fluid problems are the recovery

and enhanced recovery of petroleum resources from reservoirs, non-aqueous

phase liquid contamination of groundwater, soil water behavior, surface wetting

phenomena, fuel cell operation, and the movement and evolution of clouds.

Computational fluid dynamics (CFD) has become very important in fluid flow

studies. The Lattice Boltzmann method (LBM) has developed very quickly in the

last two decades and has become a novel and powerful CFD tool – particularly

for multiphase flows. The LBM has some major advantages compared to

traditional CFD methods. First, it originates from Boltzmann’s kinetic molecular

dynamics – a more foundational level than normal continuum approaches.

The LBM is able to recover the traditional macroscopic scale continuity and

Navier–Stokes (N–S) equations, which are discretized and solved numerically

in the common CFD methods. In the LBM, the more fundamental Boltzmann

equation is directly discretized. Alternatively, the LBM can be viewed from

its discrete-particle, more molecular-dynamics-like lattice gas origins. Second,

in the LBM the pressure is usually related to the density through an ideal

gas equation of state (for single-phase flow) or through a non-ideal van der

Waals-like equation of state for some types of complex multiphase fluids. The

pressure fields can be obtained directly once the density field is known. Hence,

the Poisson equation – which can be computationally expensive – does not have

to be solved in the LBM. The third advantage of the LBM is that the method is

easy to parallelize due to the locality of much of the computation. Finally, no-slip

boundary condition can be easily handled by simple bounce-back scheme.

The LBMhas had great success in studies of single-phase flows, with commer-

cial software known as POWERFLOW (Exa Corporation, https://www.exa.com/),

based on the LBM, appearing about ten years ago. In contrast, multiphase LBMs
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2 Chapter 1

are still undergoing development and there are many multiphase Lattice

Boltzmann models available.

1.1 History of the Lattice Boltzmann method

LBMs trace their roots to cellular automata, which were originally conceived by

Stanislaw Ulam and John von Neumann in the 1940s. Cellular automata con-

sist of a discretization of space on which individual cells exist in a particular state

(say 0 or 1), and update their state at each time step according to a rule that takes

as input the states of some set of the cell’s neighbors. Sukop and Thorne (2006)

provide an introduction to cellular automata. Wolfram (1983, 2002) studied sim-

ple cellular automata systematically and inspired some of the earliest application

to fluids, leading to the first paper to propose a lattice gas cellular automaton

(LGCA) for the N–S equations (Frisch et al. 1986). The use of a triangular grid

restored some of the symmetry required to properly simulate fluids. Rothman

and Zaleski (1997), Wolf-Gladrow (2000), Succi (2001), and Sukop and Thorne

(2006) all provide instructive information on this model and the extensions that

appeared. All of the LGCA models suffer from inherent defects, however, in par-

ticular the lack of Galilean invariance for fast flows and statistical noise (Qian

et al. 1992, Wolf-Gladrow 2000). These are explicit particle-based Boolean mod-

els that include the random fluctuations that one would expect at a molecular

level of gas simulation and hence required extensive averaging to recover the

smooth behavior expected at macroscopic scales.

A second major step towards the modern LBM was taken by McNamara and

Zanetti (1988), who dispensed with the individual particles of the LGCAs and

replaced them with an averaged but still directionally discrete distribution func-

tion. This completely eliminated the statistical noise of the LGCA. A major sim-

plification was introduced by Qian et al. (1992): the collision matrix of Higuera

et al. (1989) is replaced by a single relaxation time, leading to the Bhatnagar,

Gross, and Krook (BGK) model. After that, the LBM developed very quickly.

Sukop and Thorne (2006) showed that there were fewer than 20 papers on the

topic in 1992; more than 600 were published in 2013.

Later Lallemand and Luo (2000) and Luo (1998) showed that the LBM can

be derived from the continuous Boltzmann equation (Boltzmann 1964/1995).

Hence, it can be considered as a special discretized form of the Boltzmann

equation (Nourgaliev et al. 2003). From the Chapman–Enskog expansion

(Wolf-Gladrow 2000), the governing continuity and N–S equations can be

recovered from the LBM. Without solving Poisson’s equation, the pressure field

can be obtained directly from the density distributions.

Today, the use of LBM spans a broad variety of disciplines. For example,

an overview of the LBM for material science and engineering can be found in
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Raabe (2004). Application of the LBM to biophysics can be found in Boyd et al.

(2005) and Sun et al. (2003).

1.2 The Lattice Boltzmann method

The LBM can be derived from the BGK approximation of the Boltzmann

equation (He and Luo 1997),

𝜕f

𝜕t
+ 𝛏 ⋅ ∇f + F ⋅ ∇𝛏 f = −

f − f eq

𝜏
, (1.1)

where f (x, 𝛏, t) is the single-particle distribution function in the phase space (x, 𝛏),
and f eq(x, 𝛏) is the Maxwell–Boltzmann distribution function. x is the position

vector, 𝛏 is the microscopic velocity, F(x,t) is a body force, and 𝜏 is the relaxation

time, which determines the kinematic viscosity.

In the lattice BGK method, a discrete distribution function fi is introduced

to represent the fluid. This distribution function satisfies the following Lattice

Boltzmann equation (He and Luo 1997):

fi(x + eiΔt, t + Δt) = fi(x, t) −
1
𝜏
(fi(x, t) − f eq

i
(x, t)) + Si(x, t), (1.2)

where fi(x, t) is the density distribution function related to the discrete velocity

direction i and 𝜏 is a relaxation time, which is related to the kinematic viscosity by

𝜈 = c2s (𝜏 − 0.5)Δt, where cs is the sound speed. Si(x, t) is the source term added into

the standard Lattice Boltzmann equation. The equilibrium distribution function

f eq
i
(x, t) can be calculated as (Luo 1998)

f eq
i
(x, t) = 𝑤i𝜌

[
1 +

ei ⋅ u

c2s
+

(ei ⋅ u)2

2c4s
− (u)2

2c2s

]
. (1.3)

In Eqs (1.2) and (1.3) the ei are the discrete velocities, as defined below,

and 𝑤is are weights, as given in Table 1.1. 𝜌 is the macroscopic density and u
is the macroscopic velocity vector. Discrete velocity models are usually specified

as DnQm, where n is the space dimension and m is the number of velocities.

Table 1.1 Overview of the weighting coefficients and sound speeds.

Model 𝒘i c2s

D2Q7 1
2
(i = 0), 1

12
(i = 1, … ,6), c2∕4

D2Q9 4
9
(i = 0), 1

9
(i = 1,2,3,4), 1

36
(i = 5,6,7,8) c2∕3

D3Q15 2
9
(i = 0), 1

9
(i = 1, … ,6), 1

72
(i = 7, … ,14) c2∕3

D3Q19 1
3
(i = 0), 1

18
(i = 1, … ,6), 1

36
(i = 7, … ,18) c2∕3
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Figure 1.1 Discrete velocity models (a) D2Q7, (b) D2Q9, (c) D3Q15, and (d) D3Q19.

The popular 2D and 3D discrete velocity models are D2Q7, D2Q9, D3Q15, and

D3Q19, which are shown in Figure 1.1.

For the D2Q7 model (Frisch et al. 1986), the discrete velocities are

[e0,e1,e2,e3,e4,e5,e6]

= c
⎡⎢⎢⎣

0 1 1

2
− 1

2
−1 − 1

2

1

2

0 0
√
3

2

√
3

2
0 −

√
3

2
−

√
3

2

⎤⎥⎥⎦ .
For the D2Q9 model, the discrete velocities are given by (Qian et al. 1992)

[e0,e1,e2,e3,e4,e5,e6,e7,e8]

= c

[
0 1 0 −1 0 1 −1 −1 1

0 0 1 0 −1 1 1 −1 −1

]
.
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For the D3Q15 model (Wolf-Gladrow 2000), the velocities are

[e0,e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14]

= c
⎡⎢⎢⎣
0 1 0 0 −1 0 0 1 −1 1 1 −1 1 −1 −1
0 0 1 0 0 −1 0 1 1 −1 1 −1 −1 1 −1
0 0 0 1 0 0 −1 1 1 1 −1 −1 −1 −1 1

⎤⎥⎥⎦ .
For the D3Q19 model (Wolf-Gladrow 2000), they are

[e0,e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14,e15,e16,e17,e18]

= c
⎡⎢⎢⎣
0 1 −1 0 0 0 0 1 −1 1 −1 1 −1 1 −1 0 0 0 0

0 0 0 1 −1 0 0 1 1 −1 −1 0 0 0 0 1 −1 1 −1
0 0 0 0 0 1 −1 0 0 0 0 1 1 −1 −1 1 1 −1 −1

⎤⎥⎥⎦ .
In the above equations, c is the lattice speed and is defined as c = Δx

Δt
. Here,

we define 1 lattice unit (Δ x) as 1 lu, 1 time step (Δt) as 1 ts, and 1 mass unit as

1 mu. There are other velocity models available, for example the D3Q27 model

(He and Luo 1997), but we do not use them in simulations in this book.

In Eq. (1.3) 𝑤is are weighting coefficients that can be derived theoretically

(He and Luo 1997). c2s can be derived from

c2s 𝛿𝛼𝛽 =
∑
i

𝑤iei𝛼ei𝛽 , (1.4)

where 𝛿𝛼𝛽 = 1when 𝛼 = 𝛽, otherwise 𝛿𝛼𝛽 = 0 andwe use the Einstein summation

convention as detailed in the appendix to this chapter. Hence, c2s =
∑

i𝑤ieixeix or

c2s =
∑

i𝑤ieiyeiy. As a detailed example, the computation of c2s for the D2Q9 model

is given in the following (calculation of each term from i = 0 to i = 8 is shown):

8∑
i=0

𝑤ieixeix = 0 + 1
9
c2 + 0 + 1

9
c2 + 0

+ 1
36

c2 + 1
36

c2 + 1
36

c2 + 1
36

c2 = 1
3
c2 = c2s , (1.5)

while the contribution from 𝛼 ≠ 𝛽 (x ≠ y) is

8∑
i=0

𝑤ieixeiy = 0 + 1
9
c × 0 + 1

9
0 × c + 1

9
(−c) × 0 + 1

9
0 × (−c)

+ 1
36

c2 − 1
36

c2 + 1
36

c2 − 1
36

c2 = 0. (1.6)

In Eq. (1.3) 𝜌 is the density of the fluid, which can be obtained from:

𝜌 =
∑
i

fi. (1.7)
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This is simply the sum of the fi, revealing them as portions of the overall density

associated with one of the discrete velocity directions. For Si = 0, themacroscopic

fluid velocity is given by

u = 1
𝜌

∑
i

fiei, (1.8)

or in terms of the vector components of u as

u𝛼 = 1
𝜌

∑
i

fiei𝛼, (1.9)

which means the discrete velocities weighted by the directional densities. Appli-

cation examples for viscous single-phase flow can be found in Yu et al. (2003),

Dünweg and Ladd (2009), Aidun and Clausen (2010), and many others. A dis-

cussion on the H theorem in the context of the LBM can be found in Succi et al.

(2002).

1.3 Multiphase LBM

Numerous macroscopic numerical methods have been developed for solv-

ing the two-phase N–S equations (Scardovelli and Zaleski 1999), such as the

front-tracking method, the volume-of-fluid (VOF) method, the level set method,

and so on. The first three methods are the most popular ones. However, the

front-tracking method is usually not able to simulate interface coalescence

or break-up (Liu et al. 2012; Scardovelli and Zaleski 1999). In the VOF and

level set methods an interface reconstruction step or interface reinitialization

is usually required, which may be non-physical or complex to implement (Liu

et al. 2012). In addition, numerical instability may appear when the VOF and

level set methods are applied to simulate surface-tension-dominated flows in

complex geometries (Scardovelli and Zaleski 1999).

Compared to common CFD methods, the LBM has many advantages (Chen

and Doolen 1998). First, it is based on the molecular kinetic theory (Luo

1998). At the macroscopic scale it is able to recover N–S equations. Second,

for single-phase flow simulations it usually involves an ideal-gas equation of

state. Hence, it is not necessary to solve a Poisson equation for the pressure

in the LBM. This saves significant computer central processing unit (CPU)

time compared with common CFD methods. Third, it is easy to program and

parallelize with much of the computational burden local to a node.

In the last decade LBM has become a numerically robust and efficient tech-

nique for simulating both single-phase and multiphase fluids (Chen and Doolen

1998; Guo and Shu 2013; He et al. 1999; Lee and Lin 2005; Rothman and Keller

1988; Shan and Chen 1993; Swift et al. 1995). Compared with conventional

methods for multiphase flows, LBM usually automatically maintains sharp inter-

faces, and explicit interface tracking is not needed (Házi et al. 2002; Inamuro et al.

2004; Sankaranarayanan et al. 2003).
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There are several popular multiphase LBM models. The earliest one is the

color-gradient model proposed by Gunstensen et al. (1991), which is based on

the Rothman–Keller (RK) multiphase lattice gas model (Rothman and Keller

1988). The Shan–Chen (SC) model (Shan and Chen 1993) appeared soon after

and is based on incorporation of an attractive or repulsive force, which leads

to phase separation. The free-energy (FE) model was proposed by Swift et al.

(1995), then the He-Chen-Zhang (HCZ) model (He et al. 1999) was proposed.

Coupling with common CFD techniques, some other less popular multiphase

LBMs have also been proposed, such as symmetric free-energy-based multi-

component LBM (Li and Wagner 2007), the front-tracking LBM (Lallemand

et al. 2007), finite-difference LBM for binary fluid (Xu 2005), the total variation

diminishing LBM (Teng et al. 2000), the model of Nourgaliev et al. (2002), etc.

We provide an introduction to each of these popular models below and the

models are examined in detail in the chapters that follow.

1.3.1 Color-gradient model
In the two-component model, one component is red-colored fluid and the other

is blue-colored fluid. Two distribution functions are used to represent the two

fluids. In addition to the common collision step in the LBM, there is an extra

collision term in the model (Latva-Kokko and Rothman 2005a). There is also

a re-coloring step in the model. Grunau et al. (1993) modified the model to

handle binary fluids with different density and viscosity ratios. More recently,

Ahrenholz et al. (2008) improved the RK model and used a multiple relaxation

time (MRT) LBM to handle cases of higher viscosity ratios and lower capillary

numbers. One advantage of the RK model is that the surface tension and the

ratio of viscosities can be adjusted independently (Ahrenholz et al. 2008). Huang

et al. (2013) confirmed that although the RK model is able to correctly simulate

density-matched cases, it is usually unable to handle high-density ratio cases.

The possible reasons are given in Huang et al. (2013). For cases of density ratio of

order O(10), a scheme to improve the RKmodel is suggested (Huang et al. 2013).

1.3.2 Shan–Chen model
The second type of multiphase LBM model is the SC model (Shan and Chen

1993, Shan and Chen 1994, Sukop and Thorne 2006). In the single-component

multiphase (SCMP) SC model, incorporating a forcing term into the correspond-

ing Lattice Boltzmann equation replaces the ideal gas equation of state (EOS) in

single-phase LBMs by a non-ideal non-monotonic EOS (Shan and Chen 1993).

In the multi-component multiphase (MCMP) SC model, each component is rep-

resented by its own distribution function (Shan and Doolen 1995).

The SC SCMP model works well with density ratios of O(10) (Huang et al.

2011a), but the surface tension and the ratio of densities and viscosities cannot

be adjusted independently. Some parameters have to be determined through
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Figure 1.2 Citations in each year for the SC model (Shan and Chen 1993) (data from Web of

Science).

numerical experiments (Ahrenholz et al. 2008). Falcucci et al. (2010) and Sbra-

gaglia et al. (2007) argue that by adopting a multirange pseudopotential form

(including interactions beyond nearest neighbors), the ratio of densities and the

surface tension can be adjusted. Shan (2008) outlined a general approach for

calculating the pressure tensor in the SC LBM with interactions beyond nearest

neighbors. The extension of the interaction beyond the range of nearest neigh-

bors is able to eliminate the spurious currents (Shan 2006, Wagner 2003), which

are small-amplitude artificial and unphysical velocity fields near the interface.

This finding may expand the possible applications of the SC model. However,

some studies (Huang et al. 2011a; Shan et al. 2006) indicate that there is a defect

in the original forcing strategy of the SC model and suggest a correct one.

Web of Science citations of the first SC model paper (Shan and Chen 1993)

are illustrated in Figure 1.2. From the figure we can see that the citations have

increased with time. Study and/or application of the model are very active

(approximately 100 citations per year). It is worth mentioning that Shan and

Chen (1993) is first in the list of most-cited articles that have been published in

Physical Review E since 1993. To the end of 2013, the total number of citations

is about 860 in the Web of Science. Refer to http://pre.aps.org/ for additional

information.

1.3.3 Free-energy model
The third type of multiphase LBM model is the FE LBM (Swift et al. 1996,

1995). In this model the thermodynamic issue of the non-monotonic EOS is
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Table 1.2 Citations of main articles about Lattice Boltzmann multiphase models.

Model Article Total citations through 2013 Citations in 2013

RK Rothman and Keller (1988) 314 12

Gunstensen et al. (1991) 468 43

SC Shan and Chen (1993) 860 103

Shan and Chen (1994) 398 40

FE Swift et al. (1995) 468 38

Swift et al. (1996) 498 50

HCZ He et al. (1999) 277 38

Lee and Lin (2005) 146 31

incorporated into the pressure tensor in the N–S equations and the normal equi-

librium distribution function is revised (Swift et al. 1995). However, the original

FE model (Swift et al. 1995) is not Galilean invariant for the viscous terms in the

N–S equation (Luo 1998; Swift et al. 1995). Holdych et al. (1998) improved the

model by redefining the stress tensor and Galilean invariance was recovered to

O(u2), which is consistent with the spirit of the LBM.

Inamuro et al. (2004) achieved a high-density ratio through improving Swift’s

FE model (Swift et al. 1995), but the model has to solve a Poisson equation,

which decreased the simplicity of the usual LBM. Zheng et al. (2006) proposed

a Galilean-invariant FE LBM model. This model is simpler than that of Inamuro

et al., but only valid for density-matched cases (Fakhari and Rahimian 2010).

1.3.4 Interface tracking model
The fourth type of multiphase LBM model is the interface tracking model

proposed by He et al. (1999) (the HCZ model). In the HCZ model, two dis-

tribution functions and two corresponding LBEs are used. Macroscopically,

the Cahn–Hilliard interface tracking equation and the N–S equations can be

recovered from the Lattice Boltzmann equations. Based on this model, many

models have been developed to access higher density ratios (Amaya-Bower and

Lee 2010; Lee and Fischer 2006; Lee and Lin 2005; Lee and Liu 2010) or to

enhance numerical stability by extending into an MRT version (McCracken and

Abraham 2005).

All the above Lattice Boltzmannmultiphase models are under active develop-

ment. The citation trends are similar to those of the SC model. In Table 1.2, the

total citations garnered by each model (based on only the most representative

articles) are listed.

1.4 Comparison of models

There are some theoretical analyses (He and Doolen 2002; Luo 1998; Swift et al.

1995) of the RK, SC, and FE models, and a few numerical analyses (Hou et al.
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Table 1.3 Comparison of Lattice Boltzmann multiphase models.

Model Maximum Convenient to specify Efficiency Accuracy
density ratio wetting condition?

RK O(10)∗ Yes Not so efficient Accurate

SC SCMP O(102) Yes Very efficient Less accurate

SC MCMP O(1) Yes Very efficient Less accurate

FE O(10) No, density gradient required Not so efficient Accurate

HCZ O(10) Yes Efficient Accurate

Lee–Lin O(103) No, density gradient required Efficient Accurate

∗ The revised RK (Huang et al. 2013). For the RK model (Latva-Kokko and Rothman 2005a), only

density-matched cases can be simulated correctly.

1997; Huang et al. 2011b). Hou et al. (1997) compared the SC and RK mod-

els, and focused on drop/bubble simulation. However, there are no quantita-

tive comparisons with other available analytical solutions in that work. Huang

et al. (2011b) evaluated the performance of the RK, SC, and FE models for

multi-component flow in porous media.

In this book, all of these popular models, the RK model (Grunau et al. 1993;

Gunstensen et al. 1991; Rothman and Keller 1988), the SC model (Shan and

Chen 1993; Shan and Doolen 1995), the FE model (Inamuro et al. 2004; Swift

et al. 1995), and the HCZ model (He et al. 1999; Lee and Lin 2005), will be

evaluated in detail. The emphasis is on the strengths andweakness of eachmodel.

The models are compared in Table 1.3. For the RK model (Latva-Kokko and

Rothman 2005a), only density-matched cases can be simulated correctly. Huang

et al. (2013) extended the RK model to handle higher density ratios. According

to our experience, the SC model is very efficient but less accurate. The FE model

is as efficient as the RK model. Potentially, there are some similarities between

them (Huang et al. 2011b). For the original HCZ model (He et al. 1999), the

density ratio is about O(10). Later the HCZ model was extended by Lee and Lin

(2005) (Lee–Lin model) to handle high-density ratios. How to specify the wet-

ting condition is an important topic in multiphase flow problems, especially for

flows in porous media. In the RK, SC, and HCZ models, a “wall density” can be

specified to obtain the desired contact angles (Huang et al. 2014b; Huang and

Lu 2009) or a fluid-surface force can be incorporated (Huang et al. 2007; Martys

and Chen 1996; Sukop and Thorne 2006). In the FE and Lee–Lin models, the

wetting condition can only be implemented by specifying the density gradient

on the wall (Liu et al. 2013). Specifying “wall density” or force is more conve-

nient than the density gradient scheme (Liu et al. 2013). For more details readers

should refer to the corresponding chapters.

The structure of the book is shown in Figure 1.3 and it is organized as follows.

In each chapter, first the model will be introduced briefly. Second, the relevant
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Figure 1.3 Content of the book.

numerical analysis, such as the Chapman–Enskog expansion, and other impor-

tant formula derivations relevant to the model are presented. Then applications

of the model are given, such as contact angles, bubble rise, and multiphase flows

in porous media.

1.5 Units in this book and parameter conversion

In this book, if the units of a variable are not specified, the units are in lattice

units. In other words, the units are combinations of the basic units listed in

Table 1.4. For example, velocity is given in lu/ts, density in mu/ lu3, pressure

in mu/(lu ts2), surface tension in mu/ ts2, etc.

Usually, parameter conversion can be performed through non-dimensional

parameters, e.g., Reynolds number Re, Weber number We, or capillary number

Ca. For single-component flows, the parameter conversion is easier than for mul-

tiphase flows because often only Re is considered. Hilpert (2011), Sukop and

Thorne (2006) provide a procedure for Re-matching for gravity-driven flow in a

slit. As another example, in a lid-driven cavity flow, the fluid is water at 20∘ C
(𝜈 = 10−6 m2/s), cavity dimension (characteristic length) is L = 0.01 m, and the
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Table 1.4 Units in Lattice Boltzmann methods.

Unit

Mass mu (mass unit)

Length lu (lattice unit)

Time ts (time step)

Temperature tu (temperature unit)

lid velocity is U = 0.01 m/s. The Reynolds number in this flow is

Re =
UphysLphys

𝜈phys
= 0.01 m/s × 0.01 m

10−6 m2∕ s
= 100 =

ULBMLLBM
𝜈LBM

. (1.10)

One can first choose the LBM length L, pick an LBM kinematic viscosity 𝜈,

and then compute the LBM lid velocity U. Change parameters if U is too big

(> 0.1 lu/ts). Alternatively, if the dimension of the cavity and the velocity in

LBM are assumed to be L = 100 lu and U = 0.1 lu/ts, the kinematic viscosity

can be calculated from 𝜈LBM = ULBMLLBM
Re

= 0.1 lu2/ts. Then the relaxation time

can be obtained through 𝜏 = 𝜈

c2s Δt
+ 0.5 = 0.8, where 𝜏 is supposed to be a

non-dimensional parameter. The non-dimensional time step is

Δt∗ =
ΔtLBMULBM

LLBM
=

ΔtphysUphys

Lphys
. (1.11)

Hence, in this case, Δt∗ = ULBMΔtLBM
LLBM

= 10−3. In the physical situation, the time

step is Δtphys, which corresponds to the time step in the LBM ΔtLBM == Δt∗×LLBM
ULBM

=
10−3×100 lu

0.1 lu/ts
= 1.

From the above calculation procedure, we can see that if U is chosen to be

smaller, say U = 0.001 and L is fixed, the calculated 𝜏 = 0.503, which is very

close to 0.5. That means the non-dimensional time step Δt∗ = UΔt
L

= 10−5 is

smaller. For unsteady flow problems, not only grid-independence studies but

also time step-independence studies should be performed in CFD simulations.

For unsteady flow problems, a smaller non-dimensional time step (Δt∗) is

preferred, which means that a smaller 𝜏 should be adopted.

For the LBM, the CFL (Courant–Friedrichs–Lewy) number is CFL = e𝛼Δt
Δx𝛼

= 1,

which is fixed to be unity. A ‘predictor–corrector’ algorithm was introduced in

Nourgaliev et al. (2003) to relax constraints imposed by the CFL condition.

For the cases of multiphase flows, here an example about oil–water flow in

porous media is used to illustrate how to convert the parameters between LBM

and reality. The density and viscosity of oil (dyed PCE) and water are shown

in Table 1.5 (Pan et al. 2004). The subscripts n and w denote non-wetting and

wetting fluid, respectively.

To make the simulation analogous to reality, the following non-dimensional

parameters (capillary number Ca, dynamic viscosity ratio M, and Bond
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Table 1.5 Properties of an experimental multiphase system.

NWP (dyed PCE) density 𝜌n 1.6 × 103 kg/ m3

WP (water) density 𝜌
𝑤

1.0 × 103 kg/ m3

NWP dynamic viscosity 𝜂n 1.844 × 10−3 Pa⋅s

WP dynamic viscosity 𝜂
𝑤

1.0 × 10−3 Pa⋅s

Interfacial tension 𝜎 3.623 × 10−2 (kg/ s2)

Dynamic viscosity ratio M 1.844

Bond number Bo 8.9 × 10−5

NWP, non-wetting phase; PCS, tetrachloroethylene; WP, wetting

phase.

number Bo) should be identical in both the simulations and reality:

Ca =
u𝑤𝜂𝑤
𝜎

,

M =
𝜂n

𝜂𝑤
,

Bo = g0(𝜌n − 𝜌𝑤)
R2

𝜎
, (1.12)

where u𝑤 is the wetting phase Darcy velocity, g0 is the gravitational constant,

and R is the mean pore radius.

Using the SC model, Pan et al. (2004) proposed two ways to achieve the

desired dynamic viscosity ratio in the above flow system (Table 1.5). One

approach matches both the density and kinematic viscosity ratios (Case A) and

the other approach assumes that the densities for both fluids are identical and

matches the dynamic viscosity ratio by changing the kinematic viscosity of each

fluid (Case B). Obviously, in Case B the body force effect is neglected because

the Bond number Bo = 0 due to 𝜌n = 𝜌𝑤. As mentioned in Pan et al. (2004) in

their work, capillary force dominates and Bo = 0 is acceptable.

Here we discuss Case A. If the densities of the water and oil (PCE) are set to

be 1 mu/ lu3 and 1.6 mu/ lu3, respectively, then the density ratio matches that

in reality. The surface tension is related to the interaction force between the two

components in the SC model (Chapter 3). After the strength of the fluid/fluid

interaction (a parameter in the interaction formula) is set, the surface tension is

determined. Suppose the relaxation time of the wetting fluid is unity (𝜏𝑤 = 1)

because the dynamic viscosity ratio is

𝜂n, phys

𝜂𝑤, phys

=
𝜂n, LBM

𝜂𝑤, LBM

=
𝜌nc

2
s (𝜏n − 0.5)

𝜌𝑤c
2
s (𝜏𝑤 − 0.5)

(1.13)

and by rearrangement the relaxation time of the non-wetting fluid is

𝜏n =
𝜂n

𝜂𝑤

𝜌𝑤

𝜌n
(𝜏𝑤 − 0.5) + 0.5 = 1.844

1.6
(1 − 0.5) + 0.5 = 1.08. (1.14)
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Through the definition of Ca in Eq. (1.12), we have

Ca =
u𝑤, phys𝜂𝑤, phys

𝜎phys
=
u𝑤, LBM𝜂𝑤, LBM

𝜎LBM
. (1.15)

Hence, to match a case with the physical Ca = 10−3, if 𝜎LBM = 0.1 mu/ ts2 (pos-

sibly determined by fitting the Laplace law to drops and bubbles), displacement

velocity u𝑤,LBM can be calculated in lattice units as follows:

u𝑤,LBM =
𝜎LBMCa

𝜂𝑤,LBM

=
𝜎LBMCa

𝜌𝑤c
2
s (𝜏𝑤,LBM − 0.5)Δt

= 0.1 mu/ts2 × 10−3

1 mu/lu3 × 1

3
lu2∕ ts2 × (1.0 − 0.5) × 1 ts

= 6 × 10−4lu/ts. (1.16)

This u𝑤,LBM can be used to specify the inlet velocity of the displacement to match

the case with Ca = 10−3. For the gravity effect, if in our LBM simulation R = 10

lu, then g0 in lattice units can be calculated from the definition of Bo:

Bo = g0, phys(𝜌n, phys − 𝜌𝑤, phys)
R2
phys

𝜎phys
= g0, LBM(𝜌n, LBM − 𝜌𝑤, LBM)

R2LBM
𝜎LBM

. (1.17)

That is

g0, LBM =
𝜎LBMBo

R2LBM(𝜌n, LBM − 𝜌𝑤, LBM)

= 0.1 mu/ts2 × 8.9 × 10−5

100 lu2 × (1.6 − 1.0) mu/lu3
= 1.48 × 10−7 lu/ts2. (1.18)

For more examples of parameter conversion between LBM simulations and

physical reality, please refer to Chapter 2 (Section 2.6), Chapter 7 (Sections 7.6

and 7.7), and Chapter 8 (Sections 8.6 and 8.8).

1.6 Appendix: Einstein summation convention

In this book, the subscripts 𝛼, 𝛽, and 𝛾 denote Cartesian components (for 2D

cases, it is x or y coordinates; for 3D cases, it is x, y, or z coordinates).

According to the Einstein summation convention, when an index variable

(the subscript) appears twice in a single term it implies summation of that term

over all the values of the index. For example, the kinematic energy E in 2D

cases is

E = 1
2
m(u2x + u2y ), (1.19)

where m is mass of an object. Obviously, the indices (subscripts) can range over

the set x, y for 2D cases. Eq. (1.19) can be reduced by the convention to

E = 1
2
mu𝛼u𝛼. (1.20)
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For 3D cases, the equation (1.20) means E = 1

2
m(u2x + u2y + u2z ).

The index that is summed over is a summation index, in this case 𝛼. It is

also called a dummy index since any symbol can replace 𝛼 without changing the

meaning of the expression, provided that it does not collide with index symbols

in the same term (Hazewinkel 1993). Note that dummy indices do not appear in

the ‘answer’, e.g., I = ∫ f (𝜃)d𝜃 = ∫ f (x)dx, where 𝜃 and x are dummy variables.

An index that is not summed over is a free index and should be found in each

term of the equation or formula if it appears in any term (Hazewinkel 1993).

The connection between the boldface notation and Einstein summation can be

illustrated in the following examples. The boldface notation v ⋅ w, ∇ ⋅ ⃗⃗𝜏, and ∇2s

can be expressed as 𝑣i𝑤i, 𝜕j𝜏ji, and 𝜕i𝜕is = 𝜕2
i
s, respectively. Here v, w are vectors,

⃗⃗𝜏 is a second-order tensor, and s is a scaler.

1.6.1 Kronecker 𝜹 function
When the subscripts in 𝛿𝛼𝛽 are identical, for example 𝛼 = 𝛽 = x (or 𝛼 = 𝛽 = y in 2D

cases), then 𝛿𝛼𝛽 = 1, otherwise 𝛿𝛼𝛽 = 0. Hence, we have u𝛼u𝛽𝛿𝛼𝛽 = u𝛼u𝛼 = u2x + u2y
for 2D cases.

In the following, two additional examples demonstrate the operation of the

𝛿 function. For 2D cases ((x, y) coordinates), 𝛿𝛼𝛽𝛿𝛼𝛽 = 2 because according to the

summation rule

𝛿𝛼𝛽𝛿𝛼𝛽 = (𝛿𝛼x𝛿𝛼x) + (𝛿𝛼y𝛿𝛼y) = (𝛿xx𝛿xx + 𝛿yx𝛿yx) + (𝛿xy𝛿xy + 𝛿yy𝛿yy)

= 𝛿xx𝛿xx + 𝛿yy𝛿yy = 2. (1.21)

It is easy to derive 𝛿𝛼𝛽𝛿𝛼𝛽 = 3 for 3D cases.

For 2D cases ((x, y) coordinates), 𝛿𝛼𝛽𝛿𝛼𝛾 = 𝛿𝛽𝛾 because

𝛿𝛼𝛽𝛿𝛼𝛾 = 𝛿x𝛽𝛿x𝛾 + 𝛿y𝛽𝛿y𝛾 . (1.22)

It is obvious that providing 𝛽 = 𝛾 (no matter 𝛽 = 𝛾 = x or 𝛽 = 𝛾 = y), 𝛿𝛼𝛽𝛿𝛼𝛾 = 1

(otherwise 𝛿𝛼𝛽𝛿𝛼𝛾 = 0), which exactly means 𝛿𝛼𝛽𝛿𝛼𝛾 = 𝛿𝛽𝛾 .

1.6.2 Lattice tensors
For the first- and third-order lattice tensors in the D2Q9 model, because of the

symmetry of the velocities in the velocity model we have

8∑
i=0

ei𝛼 = 0 (1.23)

and
8∑
i=0

ei𝛼ei𝛽ei𝛾 = 0. (1.24)
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For the second-order lattice tensor in the D2Q9 model we have:

4∑
i=1

ei𝛼ei𝛽 = 2c2𝛿𝛼𝛽 and

8∑
i=5

ei𝛼ei𝛽 = 4c2𝛿𝛼𝛽 . (1.25)

For the fourth-order lattice tensor in the D2Q9 model, the formula is a little

bit more complex:

4∑
i=1

ei𝛼ei𝛽ei𝛾ei𝛿 = 2c4𝛿𝛼𝛽𝛾𝛿 and

8∑
i=5

ei𝛼ei𝛽ei𝛾ei𝛿 = 4c4(𝛿𝛼𝛽𝛿𝛾𝛿 + 𝛿𝛼𝛾𝛿𝛽𝛿 + 𝛿𝛼𝛿𝛿𝛽𝛾 ) − 8c4𝛿𝛼𝛽𝛾𝛿 (1.26)

If the weighting factor 𝑤i in the equilibrium distribution function (Eq. (1.3))

is added into the above tensors, we have

8∑
i=0

𝑤iei𝛼 = 0, (1.27)

8∑
i=0

𝑤iei𝛼ei𝛽 = 1
3
c2𝛿𝛼𝛽 , (1.28)

8∑
i=0

𝑤iei𝛼ei𝛽ei𝛾 = 0, (1.29)

and
8∑
i=0

𝑤iei𝛼ei𝛽ei𝛾ei𝛿 = c4s (𝛿𝛼𝛽𝛿𝛾𝛿 + 𝛿𝛼𝛾𝛿𝛽𝛿 + 𝛿𝛼𝛿𝛿𝛽𝛾 ). (1.30)

In the following chapters, in the Chapman–Enskog expansion analysis the

above formulae are used extensively.

1.7 Use of the Fortran code in the book

The codes provided with this book were originally written and edited using Com-

paq Visual Fortran version 6.5.0. The format is strictly based on the fixed format

(Fortan77): before each line, there are seven blank spaces. For a long line exceed-

ing the fixed line length of 80 columns, “&”, “*” or “%” at the beginning of the

next line can be used to extend the content onto that line.

Lines “c=====================================” in the

book’s listing of the code are used to separate the different files only. Please

do not include these lines in the separate Fortran files that will be needed to
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compile the code. Lines “c- - - - - - - - - - - - - - - - - ” in the code are used to

separate small segments inside a subroutine.

If Compaq Visual Fortran is used to compile the files, choose Win32 Release

in the menu Build-> Set Active Configuration. Executable files compiled using

Win32 Release are much more efficient than those compiled using the Win32

Debug option. If you encounter an error “forrt1: severe <170> : Program

Exception – stack overflow”, modify the following option and compile again.

In “Project->Setting->Link->Output->Reserve”, set the reserve value to be at

least 200,000,000. This means you reserve more memory when the executable

file runs.

Create a new folder “out” in the working directory before running the code

and all output files will be written into the subfolder. The codes given in this

book have not been optimized for memory or efficiency.

We also provide instructions designed to make the codes compatible with

gfortran when directly copied from the PDF. This is necessary due to the fact that

directly copying from the PDF changes much of the spacing and involves char-

acters that are not compilable by gfortran. We suggest not using Adobe reader

for directly copying and pasting due to the program not working well. We sug-

gest using other alternative PDF viewer/editors such as Foxit, which do not have

these problems.

The code should be compiled using the command “gfortran -ffree-form *.for”

in order to compile all the files at once. Each file should be tested individually

using gfortran in order to catch errors. All c’s used to comment should be changed

to !. All continuation characters, including &, *, and %, should be changed to &

and placed at the end of the preceding line, not at the beginning of the new line.

When copying directly from a PDF to a text editor, the system uses * as a

linebreak separating code. If this occurs, then the previous line must be joined

with the next line with the * in between. This is only in the case when * is used

as an operator and not as a replacement for &.

A line of - - - - - - - - - ending in - tends to pull the next line up. The next line

should be moved back down where it is part of the code.

Thick apostrophes are not readable by the compiler and should be replaced

with a standard’.

Finally, we have made a repository of codes in both the Compaq and gfortan

forms available on the internet (www.wiley.com/go/huang/boltzmann).


