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1.1 Introduction

In modern communication systems, the rapid evolution of integrated circuit (IC) and packaging 
technologies have driven more and more function blocks to be integrated into a single chip/
module. In the second decade of the twenty‐first century, highly‐integrated front‐end modules 
such as microwave/millimeter‐wave radar and image systems, [1–4], phased arrays [5, 6], and 
so on have hit the commercial markets. In general, the RF modules require a large number of 
transmission‐line‐based elements for vector signal processing in the analog domain. The 
transmission line elements, however, inevitably occupy a large circuit area. In the cost‐driven 
market, area is the cost. It therefore leads to an enormous amount of research work focusing 
on developing various kinds of synthesized transmission lines for reducing the required circuit 
size. A synthesized transmission line is a lumped or quasi‐lumped network that may function 
identically to a uniform transmission line within a given bandwidth.

Synthesized transmission lines can be developed with or without periodicity. In a 
broad sense, it could be either right‐handed or left‐handed depending on the forming 
blocks. To describe the general concept, in this chapter we will start from Maxwell’s 
equations and discuss the analog between plane wave propagation in a material media 
and the TEM mode in a parallel‐plate waveguide. The parameters associated with the 
wave propagation and their corresponding circuit parameters in a transmission line are 
linked herein. Based on the fundamental principle, design formulae for periodic and 
non‐periodic synthesized transmission lines are summarized. Classical design approaches 
are reviewed to demonstrate how synthesized transmission lines are realized practically. 
A brief review of left‐handed synthesized lines, or metamaterial structures, is provided 
at the end of the chapter.
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2 Synthesized Transmission Lines

The formulae in this chapter form the basis of the non‐periodic synthesized transmission 
lines in Chapter 2 for circuit miniaturization, and in Chapter 5 for chip implementation. 
The multi‐operational mode synthesized transmission lines in Chapters 3 and 4, for phased 
array applications, are also derived using the same building blocks. The two‐dimensional syn-
thesized transmission lines in Chapter 6 also follow the periodic condition in Sec. 1.3.1.

1.2 Propagation Characteristics of a TEM Transmission Line

In this section, we start with the Maxwell’s equations to derive the governed equations in a 
wave‐guiding structure under the assumption of a transverse electromagnetic (TEM) field 
distribution. The propagation characteristics are summarized and compared to a distributed 
transmission line having similar mathematical forms by using circuit parameters.

1.2.1 Wave Equations

As shown in Fig. 1.1, consider a parallel‐plate waveguide operated in the TEM mode. The 
field distribution inside the wave‐guiding structure is known to be identical to a uniform plane 
wave in free space with uniquely defined voltage and current in the transverse plane. Maxwell’s 
curl equations in a source‐free region are:

 
E

H

t

�� ���
, (1.1)

 
H

E

t

��� ��
. (1.2)

Assuming that the wave propagates along the z‐direction, the fields transverse to the direction 
of propagation in a parallel‐plate waveguide, from (1.1) and (1.2), are:
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Figure 1.1 Wave propagation in a parallel‐plate waveguide
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Partially differentiate (1.3) with respect to z and (1.4) with respect to t to get,
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Substitution of (1.6) into (1.5) yields
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It is a second‐order partial differential equation known as the one‐dimensional wave equation, 
which can be applied to any wave‐guiding structure supporting TEM wave propagation. The 
phase velocity of the TEM wave is simply

 
vp

1
. (1.8)

where μ and ε are the permeability and permittivity of the medium filled within the wave‐
guiding structure.

Now, let us turn our attention to a lossless distributed uniform transmission line modeled by 
periodically loaded LC sections, as shown in Fig. 1.2. Under the assumption that each lumped 
LC segment is infinitesimal in length, the voltage and current along the line, from Kirchhoff’s 
laws, are related to each other by,
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, (1.9)
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L and C are the per‐unit‐length inductance and capacitance of the line. Equations (1.9) and (1.10) 
are known as the Telegrapher’s equations and actually take the same form as (1.3) and (1.4).

I(z) I(z+Δz)
L

C V(z+Δz)

Δz

V(z)
++

––

Figure 1.2 Equivalent lumped LC model of a distributed uniform transmission line
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4 Synthesized Transmission Lines

Following the same mathematical procedure, the wave equation is derived in terms of the 
voltage (V) or current (I) as,
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. (1.11)

The general solution of the voltage and current waves propagated along the lossless uniform 
transmission line, from (1.11), is

 V z V e V ej z j z , (1.12)

 I z I e I ej z j z . (1.13)

β is known as the phase constant or guided wavenumber,

 v
LC

p

. (1.14)

The phase velocity of the voltage and current waves is therefore,

 
v

LC
p

1
. (1.15)

Meanwhile, differentiating (1.12) with respect to z, we have

 

V z

z
j V e j V e j LI zj z j z . (1.16)

Substitution of (1.13) into (1.16) yields

 j V e j V e j LI e j LI ej z j z j z j z . (1.17)

From (1.17), the characteristic impedance of a lossless transmission line is then defined as,
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1
. (1.18)

It is interesting to note that (1.3)–(1.8), (1.9)–(1.13), and (1.15) are actually in the same form, 
suggesting that under the TEM‐mode operation, the electromegnetic (EM) parameters of a 
wave‐guiding structure can be mapped one‐to‐one onto the circuit parameters of its transmission‐
line equivalence. The wave impedance of the parallel‐plate waveguide in Fig. 1.1 is in the 
same form as the characteristic impedance in (1.18), as well.
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Introduction 5

Table  1.1 summarizes the analog between the EM parameters of a TEM wave‐guiding 
structure and the circuit parameters of a lossless transmission line. The mapping holds exactly 
for TEM transmission lines and approximately for quasi‐TEM ones. To simplify the design 
procedure, hereafter we will use the scalar circuit parameters (V, I, L, C) to analyze the 
propagation characteristics of any kind of TEM/quasi‐TEM transmission lines.

1.2.2 Keys to Miniaturization

In Sec. 1.2.1, the wave equation and general solution of a TEM transmission line are derived 
in terms of the field parameters (E, H, μ, ε) as well as circuit parameters (V, I, L, C) at the same 
time. In this section, we further introduce the slow wave factor as a figure of merit for judging 
the circuit miniaturization capability of a given wave‐guiding structure.

First of all, recall the guided wavenumber can be expressed in terms of both EM and circuit 
parameters as

 
g

p
r o r ov

LC . (1.19)

The free space wavenumber, or the phase constant of a wave propagated in free space, is

 o o o . (1.20)

The slow wave factor is defined as the ratio of the guided wavenumber to free space wavenum-
ber as

 
SWF c LCg

o

o

g
r r . (1.21)

c is the speed of light in vacuum. The slow wave factor is a measure of how good a wave‐
guiding structure can be used for circuit miniaturization.

Meanwhile, a section of transmission line is commonly expressed in terms of its electrical 
length at the operating frequency as

 gl. (1.22)

Table 1.1 Analog between EM parameters in a TEM parallel‐plate 
waveguide and circuit parameters in a uniform transmission line

EM Parameters Circuit Parameters

E: Electric field intensity (V/m) V: Voltage wave (V)
H: Magnetic field intensity (A/m) I: Current wave (A)
ε: Permittivity (F/m) C: Capacitance per meter (F/m)
μ: Permeability (H/m) L: Inductance per meter (H/m)
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6 Synthesized Transmission Lines

l is the physical length of the line section. From (1.22), for a given electrical length, 
increasing the guided wavenumber (β

g
) becomes the key factor to reduce the required 

physical length of a transmission line. Choosing a material media with a higher ε
r
 or μ

r
 is 

a possible way to reduce the physical length with a larger β
g
. However, it is likely at the 

expense of higher fabrication cost. Alternatively, using synthesized transmission lines in 
accordance with (1.19) and (1.22) paves another way for circuit miniaturization by simul-
taneously increasing the per‐unit‐length inductance and capacitance of that line. Here, the 
synthesized transmission line is referred to as any microwave lumped/quasi‐lumped network 
that can be electrically equivalent to a section of uniform transmission line over a frequency 
band of interest.

A further thought on developing a synthesized transmission line is: in a practical circuit, 
how can we fulfill the goal by simultaneously increasing the inductance and capacitance of a 
line? The answer is quite straightforward: “just follow the fundamental physical rules.” An 
extra current path always generates additional magnetic fields and, hence, the inductance. The 
charge accumulation between electrodes, in the meantime, results in extra capacitive loadings. 
Accordingly, using a meander or spiral high‐impedance line is an effective way to provide 
more current paths or higher current density to increase the per‐unit‐length inductance in a 
real design. Meanwhile, adding parallel‐plate or interdigital capacitor is a good way to boost 
the capacitance of the host transmission line. When one attempts to adjust the per‐unit‐length 
inductance and capacitance for raising the slow wave factor, it is interesting to note that the 
characteristic impedance of the line can be controlled at the same time using (1.18) within a 
reasonable range, say, 20–120 Ω.

Quite a few synthesized transmission lines (or the so‐call artificial transmission lines) 
are summarized and listed in [7]. Some of them are redrawn in Fig. 1.3 for easy reference 
[8–16]. They are all designed based on alternatively connected series inductance and 
shunt capacitance with or without periodicity. This sort of synthesized lines is right‐
handed in nature with lowpass responses. Readers are encouraged to find clues on how the 
line inductance and capacitance in the examples are boosted. Following the same rule, the 
readers can develop new and creative structures on their own. In fact, the number of 
layout patterns of a synthesized transmission line with given electrical properties can be 
extended to infinity!

Finally, although the aforementioned discussion is restricted to lossless transmission lines, 
similar statements hold true for a low‐loss one. The only difference is the introduction of the 

[8] [9] [10]

[11] [12] [13]

[14] [15] [16]

Figure 1.3 Typical slow‐wave synthesized transmission lines in open literature
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Introduction 7

attenuation constant (α), which results in a complex propagation constant (γ = α + jβ) with a 
small real part representing the loss. The quality factor (Q) is evaluated by

 
Q

2
. (1.23)

In the following section, the common ways to analyze a periodic or non‐periodic synthesized 
transmission line are introduced as the basis of the entire book.

1.3 Analysis of Synthesized Transmission Lines

Synthesized transmission lines can be realized with or without periodicity. While the 
non‐periodic lines can be dealt with using simple transmission line equivalence, the periodic 
lines are in general analyzed by the Bloch theorem [17]. In this section, the general analysis 
procedures for periodic and non‐periodic synthesized transmission lines are introduced in 
sequence as follows.

1.3.1  Bloch Theorem and Characterization of a Periodic 
Synthesized Transmission Line

Figure 1.4 shows a typical periodically‐loaded synthesized transmission line. It comprises a 
uniform transmission line of (Z

c
) (the host line) periodically loaded by lumped or quasi‐

lumped shunt elements (jb). The line is composed of infinite elements in cascade, with each 
element termed as a unit cell. The voltage and current waves on the nth and (n + 1)th nodes 
are related by the ABCD matrix of the unit cell as

 

V

I

A B

C D

V

I
n

n

n

n

1

1

. (1.24)

Let the unit cell have a periodicity of p and the complex propagation constant equal to γ, 
we have

 

V V e

I I e
n n

p

n n
p

1

1

. (1.25)
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Figure 1.4 Typical periodically‐loaded synthesized transmission line
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8 Synthesized Transmission Lines

Substitution of (1.25) into (1.24) yields
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or
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C D e
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I

p

p

n

n

1

1

0. (1.27)

For a nontrivial solution of (V
n+1

, I
n+1

), the determinant of the matrix must be zero, which leads to

 AD e A D e BCp p2 0. (1.28)

Since the unit cell is a reciprocal network, we have AD – BC = 1. Thus,

 e A D ep p2 1 0. (1.29)

From (1.29), the propagation constant can be expressed in terms of the ABCD matrix as

 
cosh p

A D

2
. (1.30)

In lossless case with α = 0, (1.30) is reduced to

 
cos p

A D

2
. (1.31)

In a periodic synthesized transmission line, the phase constant of the line can be solved from 
the ABCD matrix of the unit cell with a given periodicity p (i.e., physical length) in accor-
dance with (1.31). In the meantime, the characteristic impedance of the unit cell can be 
defined as

 
Z

V

IB
n

n

1

1

. (1.32)

This impedance is also called the Bloch impedance. From (1.27), we have

 A e V BIp
n n1 1 0. (1.33)

Substitution of (1.33) into (1.32), the Bloch impedance is

 
Z

B

A eB p
. (1.34)
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Introduction 9

From (1.29), eγp can be solved as

 
e

A D A D
p

2
4

2
. (1.35)

The Bloch impedance in terms of the ABCD matrix is therefore

 

Z
B

A D A D
B

2

4
2



. (1.36)

If the unit cell is a symmetric network such as the case in Fig. 1.4, we have A = D and the Bloch 
impedance can be simplified as

 
Z

B

A
B 2 1

. (1.37)

Equations (1.31) and (1.37) are the synthesis basis of all sort of one‐dimensional periodic 
structures. They will be used intensively in Chapter 6 for analyzing a periodic synthesized 
transmission line with two‐dimensional routing capability.

1.3.2 Characterization of a Non‐Periodic Synthesized Transmission Line

The characterization of a non‐periodic synthesized transmission line starts from equating 
the ABCD matrix of the network under development to that of a uniform transmission line 
with a given characteristic impedance and electrical length, say, Z

c
 and θ. The equivalences 

are illustrated in Fig. 1.5. Here, three‐element networks, i.e. π‐/T‐models, are analyzed as 
an illustration.

The ABCD matrices of the π‐/T‐models are:

 

A B

C D Y

Z

Y

ZY Z

Y ZY
STL ,

1 0

1

1

0 1

1 0

1

1

2 1 ZY
, (1.38a)
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Z ZY Z ZY

STL T,

1

0 1

1 0

1

1

0 1

1 2

YY ZY1
. (1.38b)

Z

Y Y Yor

Z Z

Zc,θ

Figure 1.5 Three‐element networks as non‐periodic synthesized lines and their transmission line 
equivalence

0002814284.INDD   9 9/29/2016   4:49:04 PM



10 Synthesized Transmission Lines

The ABCD matrix of a uniform transmission line is given by

 

A B

C D

jZ

jY
TLine

c

c

cos sin

sin cos
. (1.39)

By equating the corresponding entries in both matrices, one gets;

 
Z

B

C

Z

Y ZY
ZSTL c, 2

, (1.40a)

 
Z

B

C

Z ZY

Y
ZSTL T c,

2
, (1.40b)

 STL cZYcos 1 1 . (1.41)

At the targeted frequency, Z
STL

 and θ
STL

 are the equivalent characteristic impedance and electrical 
length of the three‐element network as a non‐periodic synthesized transmission line. Note that 
they are a function of frequency and might be equivalent to a uniform transmission line only on 
a narrowband basis. Similar analysis can be applied to develop a non‐periodic synthesized 
transmission line with an arbitrary network topology, as long as the network is symmetric in 
configuration. Readers may find this technique repeatedly throughout the book. Last but not 
the least, although in general the ABCD matrix is the most intuitive and straightforward way 
to complete the design, the analysis could be started with the Z or Y matrix, as well.

1.3.3 Extraction of Line Parameters from S‐Parameters

The propagation parameters of a synthesized transmission line, without or with periodicity, 
can also be extracted from its two‐port S‐parameters. To illustrate this, the ABCD matrix of a 
general lossy transmission line is first expressed as,

 

A B

C D

l Z l

Y l l
c

c

cosh sinh

sinh cosh
. (1.42)

l is the physical length of the line. The relationships between the ABCD and S matrices are 
known as

 A S S S S1 211 22 21/  (1.43a)

 B S S S Z So1 211 22 21/  (1.43b)

 C S S S S Zo1 211 22 21/  (1.43c)

 D S S S S1 211 22 21/  (1.43d)

where ΔS = S
11

S
22

 − S
21

S
12

 and Z
0
 is the system reference impedance.
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Introduction 11

Given the fact that the lossy transmission line is symmetric and reciprocal, the complex 
characteristic impedance (Z

c
) and propagation constant (γ

g
) are, after some manipulation, 

extracted from (1.42) and (1.43) as [18]:

 
e

S S S S S
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gl

1 1 2
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11
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21
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11
2
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11

2

21

, (1.44)

 

Z Z
S S

S S
c o
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1

11

2

21
2

11

2

21
2

. (1.45)

For a synthesized transmission line, the characteristic impedance and propagation constant can be 
characterized without much effort by using (1.44) and (1.45) as long as its two‐port S‐parameters 
are specified by simulation or measurement in advance. The procedure has been widely applied 
to verify the performance of a synthesized line after the synthesis or integration process.

1.4 Lumped and Quasi‐Lumped Approaches

In this and the following sections, classical design approaches are introduced successively to 
show how a synthesized transmission line can be realized and analyzed. Since the 3‐dB 
branch‐line coupler, or the quadrature hybrid, is one of the most common building blocks in 
microwave systems, it will be adopted as the design example in the following sections for 
comparison. For each design approach, a branch‐line coupler realized by ideal components is 
first simulated, followed by a real example reported in the literature. The readers may compare 
the responses of the couplers to learn more about the tradeoff in developing a synthesized 
transmission line with given specifications.

1.4.1 Lumped Networks

Lumped networks are unambiguously the most intuitive way to fulfill non‐periodic synthe-
sized transmission lines [19–21]. Figure 1.6 illustrates a typical synthesized line implemented 
by lumped elements. It is a π‐network comprising two shunt capacitors and a series inductor. 
By using the technique in Sec. 1.3.2, the ABCD matrix of the π‐network is

 

1 0

1

1

0 1

1 0

1

1

2 1

2

2j C

j L

j C

LC j L

j C LC 2LC
. (1.46)

CC

L
1 2

Figure 1.6 Non‐periodic synthesized transmission line using a lumped π‐network
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12 Synthesized Transmission Lines

Meanwhile, the ABCD matrix of a lossless uniform transmission line (Z
c
, θ) is

 

A B

C D

jZ

jY
c

c

cos sin

sin cos
. (1.47)

By equating the ABCD matrices of the two, the design equations are simplified to

 cos 1 2LC (1.48)

 jZ j Lc sin . (1.49)

Specifically, the required inductance and capacitance values for a quarter‐wavelength synthesized 
line, with θ = π/2, are

 
L

Zc  (1.50)

 
C

L

1
2

. (1.51)

An important observation of this sort of synthesized transmission lines is that, unlike a uniform 
TEM line, the lumped network is lowpass in nature with a cutoff frequency. The 3‐dB cutoff 
frequency can be estimated by

 
f

LC
cutoff

2

2
. (1.52)

In a real design, to preserve phase linearity and non‐dispersive characteristic impedance, one 
should keep in mind that the cutoff frequency of the network should be allocated far away 
from the targeted operating band to avoid undesired performance degradation.

Using (1.50)–(1.51), the design parameters of a lumped 3‐dB quadrature hybrid are summa-
rized in Table 1.2. The center operating frequency for demonstration is set as 1 GHz. The 
circuit topology is shown in Fig. 1.7(a). The quadrature hybrid consists of pairs of 50‐ and 
35‐Ω quarter‐wavelength synthesized transmission lines. The simulated S‐parameters and 
phase difference between coupled and thru ports are illustrated in Fig. 1.8. The response is 
somewhat asymmetric with respect to the center frequency, a result of the dispersive nature of 
the line equivalence. In general, the coupler developed by using the lumped approach has a 

Table 1.2 Design parameters of a 1‐GHz lumped branch‐line coupler

Z
c
(Ω) Frequency (GHz) L

1,2
 (nH) C

1,2
 (pF)

50 1 7.958 3.183
35.4 1 5.626 4.502
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Introduction 13

narrower bandwidth than its conventional counterpart. The reduced operating bandwidth can 
be attributed to the fact that the synthesis equations (1.50)–(1.51) are exact only at the center 
frequency. Figure  1.7(b) shows the layout of an alternative design [22]. It is realized by 
lumped π‐networks composed of series capacitors and shunt inductors. The alternative net-
work is high‐pass or left‐handed in nature, but the formulation and line equivalence are 
the same. Readers may refer to Sec. 1.7 for more information on the circuit realization of 
metamaterials.

Commercial SMD (surface‐mounted device) components are frequently used to fulfill 
lumped couplers on the printed circuit board (PCB); in the IC implementation, the lumped 
inductors are generally realized on the thick metal layers in meander or spiral shape. The 
capacitors, in the meantime, can be implemented by metal‐oxide‐metal (MOM) or metal‐insu-
lator‐metal (MIM) structures. Ideally, synthesized transmission lines based on the lumped 
approach could achieve a very high slow wave factor and hence promising miniaturization 
capability. Nevertheless, in reality, the parasitic loss, or the Q‐factor, ultimately sets an upper 
bound of the achievable size reduction ratio of the design. In addition, the design flexibility 
may be limited since the off‐the‐shelf component values may be restricted.

1

(a) (b)

C1 C1

C1 C1

C2

C2

L1

L1

L2 L2
C2

C2

2

4 3

Figure 1.7 Lumped 3‐dB branch‐line coupler: (a) circuit topology and (b) a design example. Source: 
Chiang 2001 [22]. Reproduced with permission of IEEE
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Figure 1.8 S‐parameters and phase difference of the lumped coupler
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14 Synthesized Transmission Lines

1.4.2 Shunt‐Stub Loaded Lines

In addition to the lumped approach, the shunt‐stub loaded synthesized transmission lines have 
received considerable attention [15, 23], as well. A uniform quarter‐wavelength line and its 
open‐stub loaded equivalence using the T‐model are shown in Fig. 1.9. Following the same 
procedure in Sec. 1.3.2, the ABCD matrix of the quarter‐wavelength synthesized line should 
be identical to that of the uniform one as

 

cos sin

sin cos tan

cos s1 1 1

1 1 1 2 2

1 11 0

1

jZ

jY jY

jZ iin

sin cos
.1

1 1 1

0

0jY

jZ

jY
c

c

 (1.53)

By equating the entries in the matrices, the synthesis equations for a shunt‐stub loaded synthe-
sized line can be derived from (1.53) and summarized as

 
Z

Zc
1

1tan
 (1.54)

 
Y

Z2 2
1 1

2

2
tan

tan
. (1.55)

Since there are only two equations but four unknowns (Z
1
, Z

2
, θ

1
, θ

2
), the designer has two 

degrees of freedom. A variety of circuit layouts, by selecting different variables as the initial 
parameters, are therefore reported in the literature.

The duality of the T‐model, i.e. the π‐model in Fig. 1.10, can be equivalent to a quarter‐
wavelength uniform transmission line, as well. Following the same analysis, the design 
equations are summarized as

Zc , π/2 Z1, θ1 Z1, θ1

Z2, θ2

O.C.

Figure 1.9 A uniform quarter‐wavelength line and its equivalent shunt‐stub loaded synthesized line 
using the T‐model

Z1, θ1

Z2, θ2 Z2, θ2

O.C. O.C.

Figure 1.10 A shunt‐stub loaded synthesized line based on the π‐model
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Z

Zc
1

1sin
 (1.56)

 
Y

Zc
2 2

1tan
cos

. (1.57)

A 3‐dB branch‐line coupler is designed as an example. The operating frequency is also 1 GHz 
for easy comparison. The T‐model in Fig. 1.9 is adopted as the building block. Let θ

1
 = 30o and 

Z
2
 = 30 Ω for the 35‐ and 50‐Ω synthesized lines, one can use (1.54)–(1.55) to calculate the 

remaining parameters as listed in Table 1.3. Figure 1.11 illustrates the S‐parameters of 
the coupler; the phase difference between the thru and coupled ports is shown at the same 
time. The S‐parameters are asymmetric with respect to the center frequency since the cutoff 
frequency of the non‐periodic synthesized line, also low-pass in nature, may be too close to 
the band of concern. In addition, the network equivalence in (1.54) and (1.55) is on a narrow-
band basis, which may account for the discrepancy, as well.

For efficient usage of the circuit area, the open stub in the synthesized line can be further 
split into multiple stubs. Figure 1.12 shows an example by replacing the original stub with two 
open stubs connected in parallel [23]. The design equation is straightforward as

 

Z Z

Z Z Z
Y Ya c a

a a c a

tan tan

tan tan
tan tan .

2 1 1 2 2  (1.58)

Table 1.3 Design parameters of a 1‐GHz shunt‐stub branch‐line coupler

Z
c
 (Ω) Frequency (GHz) Z

1
 (Ω) θ

1
(°) Z

2
 (Ω) θ

2
(°)

50 1 86.60 30 30 21.8
35.4 1 61.23 30 30 29.5
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Figure 1.11 S‐parameters and phase difference of the 3‐dB coupler realized by loaded shunt stubs
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16 Synthesized Transmission Lines

Figure 1.13 shows the typical layout of a 3‐dB quadrature hybrid using split stubs. The stubs 
are meandered to fill out the inner space of the coupler. It is 23.5% the size of a conventional 
design. Splitting a single stub into triple or even more stubs for circuit miniaturization is also 
possible, yet the parasitic coupling between adjacent lines makes the design highly dependent 
on an EM simulator to optimize the layout for good responses.

The ways to implement synthesized transmission lines using non‐periodic lumped/quasi‐
lumped networks are included but not limited to the aforementioned approaches. For 
example, the bridged T‐coil in [24] is a very elegant way to fulfill a very compact design. 
The readers can find more design examples and new ideas in Chapter 2 about PCB designs 
and in Chapter 5 about on‐chip realization.

1.5 One‐Dimensional Periodic Structures

Periodic structures are also a popular way to realize synthesized transmission lines for circuit 
miniaturization [25, 26]. In this section, one‐dimensional periodic structures will be analyzed 
using the Bloch wave analysis in Sec. 1.3.1; the two‐dimensional ones, in the meantime, will 
be covered in Sec. 1.6.

In general, a one‐dimensional periodic synthesized line is composed of periodically‐loaded 
inductors and capacitors, and can be directly mapped to the distributed transmission‐line 
model in Fig. 1.2. Figure 1.14(a) shows a typical one‐dimensional periodic synthesized line. 
The unit cell can be represented by either a T‐ or π‐model. As an example, the T‐model is 
discussed in terms of the two‐port z‐parameters in Fig.  1.14(b). According to (1.30) and 
Fig. 1.14(b), the propagation constant can be expressed as

 
cosh .p

A D Z Z

Z2 2
11 22

12

 (1.59)

Zc , θ

Z1, θ1

Za, θa

Z2, θ2O.C.
O.C. O.C.

Figure 1.12 Splitting a single stub into dual open stubs in parallel connection

Splitting stubs

1 2

34

Figure 1.13 Typical layout of a shunt‐stub loaded coupler using split open stubs. Source: Tang 2007 [23]. 
Reproduced with permission of IEEE
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Since the unit cell is much smaller than the guided wavelength (p < < λ
g
), the hyper‐trigonometric 

function can be simplified to:

 
cosh .p

p
1

2

2

 (1.60)

Substitution of (1.60) into (1.59) gets,

 
p

Z Z Z

Z

Z

Z
se

sh

2 11 22 12

12

2
. (1.61)

Here, Z
se
 is the direct sum of the series impedances of the T‐network, and Z

sh
 is the impedance 

of the shunt stub. The propagation constant is therefore characterized by

 
j

p

Z

Z
se

sh

1
, (1.62)

and the Bloch impedance of the periodic synthesized line is

 Z Z ZB se sh . (1.63)

Equations (1.62)–(1.63) are the design basis of a one‐dimensional periodic synthesized trans-
mission line.

Consider again the 1‐GHz branch‐line coupler. Based on the T‐model, a lossless periodic LC 
network is shown in Fig. 1.15. The series impedance (Z

se
) and shunt impedance (Z

sh
) are, respectively,

 Z j Lse  (1.64a)

 Z j Csh 1 / . (1.64b)

Z11–Z12 Z22–Z12

Z12

Zse/2

Zse/2
Zsh Zsh Zsh

Zse/2

Zse/2

T-model

(a)

(b)

p p

p

π-model

Figure 1.14 Typical one‐dimensional periodic synthesized transmission line: (a) infinite unit cells in 
cascade and (b) two‐port Z‐parameters of the unit cell using the T‐model
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18 Synthesized Transmission Lines

Substitution of (1.64) into (1.62) and (1.63) yields,

 
j

p
j LC

1
 (1.65)

 
Z

L

Cc . (1.66)

If the number of unit cells in a quarter‐wavelength line is specified as N
UC

, the design equations 
for the inductance and capacitance values in each unit cell become

 
C

N Z
UC c

/ 2 1
 (1.67)

 L Z Cc
2 . (1.68)

Using (1.67) and (1.68), the parameters for realizing a 1‐GHz branch‐line coupler are summa-
rized in Table 1.4. The numbers of unit cells in the 35‐Ω and 50‐Ω periodic synthesized lines 
are 25 and 30, respectively. Figure  1.16 shows its corresponding S‐parameters and phase 
difference. Since the periodic structure is more similar in topology to a uniform transmission 
line, the operating bandwidth of the coupler is very similar to that of a conventional design. 
The cutoff frequency of the synthesized line also reflects the same trend. For this specific 
design, the cut‐off frequency of the unit cell is as high as 18.9 GHz, making the responses very 
symmetric with respect to the center frequency.

In a real design, the inductors and capacitors in the one‐dimensional periodic structure are 
commonly realized by high‐impedance lines and shunt open stubs, respectively. Although 
the design methodology is similar, one should be aware that since there are only two requisite 

C C

Unit cell

C

p

L/2 L/2 L/2 L/2 L/2 L/2

Figure 1.15 A periodic synthesized transmission line using T‐model unit cells

Table 1.4 Parameters of a 3‐dB branch‐line coupler by periodic 
lumped LC unit cells

Z
c
(Ω) Frequency (GHz) N

UC
C (pF) L (nH)

50 1 30 0.1667 0.4167
35.4 1 25 0.2829 0.3535
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conditions (Z
c
, θ) but four unknowns (characteristic impedances and electrical lengths of the 

series/shunt lines), a number of topologies with equal electrical properties can be developed 
for layout optimization and circuit miniaturization. Typical examples are shown in Fig. 1.17. 
The number of unit cells in a quarter‐wavelength line varies from 4 to 12. Readers may also 
use the same procedure to develop their own periodic synthesized transmission lines with a 
unique layout arrangement.

1.5.1 Complementary‐Conducting‐Strip Lines

The complementary‐conducting‐strip (CCS) line is a one‐dimensional periodic synthesized line 
especially suitable for semiconductor fabrication processes. It can facilitate two‐dimensional 
routing and has been widely used in microwave systems [2, 3, 27–29]. Figure 1.18(a) shows the 
unit cell of a typical CCS transmission line. The signal trace is composed of a central patch 
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Figure 1.16 S‐parameters and phase difference of the 3‐dB coupler by one‐dimensional periodic 
synthesized lines with lumped LC sections

[26][25]

1 2

34

Port 1 Port 2

Port 3Port 4

Figure  1.17 Design examples of quadrature hybrids using periodic synthesized transmission lines. 
Source: Eccleston 2003 [25]; Sun 2005 [26]. Reproduced with permission of IEEE
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20 Synthesized Transmission Lines

and connection arms. The widths of the patch and connection arm are w and s, respectively. 
The ground plane is deposited around the patch with a mesh area of w

h
 × w

h
. Since the arms of 

the CCS cell can be connected to two out of four directions, the CCS line can fulfill two‐
dimensional routing with very efficient usage of the circuit area for miniaturization.

The Bloch wave analysis in Sec. 1.3.1 can be again applied to develop the line. The periodicity 
of the unit cell, which should be much smaller than the guided wavelength, is denoted as p. 
The shunt capacitance is determined by the overlapped area between the ground plane mesh 
(w

h
 × w

h
) and signal trace (s). Increasing the overlapped area raises the capacitance. The 

inductance is determined by the patch width (w) as well as the signal trace (s). Since the 
inductance and capacitance of a CCS cell can be determined independently, one can fulfill a 
two‐dimensional routing with a wide variety of characteristic impedances.

A design example is discussed for clear illustration. In a 1P6M 0.18 µm CMOS process, the 
design parameters for a CCS unit cell are p = 30 µm, w

h
 = 29 µm, w = 5 µm, and s = 3 µm [29]. The 

thicknesses of the signal trace and meshed ground plane are 2.39 and 6.05 µm, respectively. By 
a cascade connection of nine unit cells, the layout of the meander line is shown in Fig. 1.18(b); 
the total length is 270 µm. By using an EM simulator, the S‐parameters of the CCS sample at 
24 GHz are S

11
 = 0.053 + j0.088 and S

21
 = 0.921–j0.304. The extracted characteristic impedance 

from (1.45) is 70.28 − j3.59 Ω. The image part accounts for the conductor and dielectric losses. 
The slow‐wave factor and quality factor at 24 GHz are 2.25 and 7.6, respectively.

The CCS synthesized line is non‐dispersive over a wide frequency range. As a rule of 
thumb, the variation of the characteristic impedance of the meander line in Fig. 1.18(b) is less 
than 3.6% from 10 to 40 GHz. Its slow wave factor, which is around 2.3, is actually not 
remarkable at all. Nevertheless, the two‐dimensional routing capability makes the CCS line 
become a promising solution for circuit miniaturization with great layout flexibility.

1.6 Photonic Bandgap Structures

The photonic bandgap (PBG) structure is a real two‐dimensional synthesized transmission 
line. Unlike the previous cases, the periodic patterns are fabricated on the entire ground plane 
rather than the signal trace [30, 31]. Figure 1.19 illustrates the typical layout of nine PBG unit 
cells. Each unit cell consists of a square metal pad along with four connecting arms. The ground 

Ground

(a) (b)

wh

p

s

W

Figure 1.18 CCS synthesized transmission line: (a) unit cell and (b) a meander line

0002814284.INDD   20 9/29/2016   4:49:16 PM



Introduction 21

plane is etched with a periodic pattern, and the signal trace above the ground plane could be 
any sort of conventional transmission line, such as a microstrip line. While the narrow arms of 
the unit cell lead to additional inductance, the coupling between nearby pads raises the overall 
capacitance. The structure hence reveals slow‐wave characteristics.

Despite its slow‐wave nature, the main purpose of PBG structures is to introduce bandgap 
phenomenon for mode suppression, system isolation, and so on. During the design phase, a 
full‐wave EM simulator is always required to complete the design since analyzing the PBG 
structure using simple circuit models is nearly impossible. For interested readers, more 
information can be found in [30].

1.7 Left‐Handed Structures

Left‐handed structures, or the metamaterials, are also a popular solution not only for size minia-
turization but also for realizing a number of circuits not feasible by conventional righted‐handed 
components. For example, dual‐band designs with a non‐integer ratio between passbands, 
beam‐switching agility of leaky‐wave antennas, and so on are realized and demonstrated [32, 
33]. In fact, the concept of metamaterials is not new, and can be traced back to 1967 by a Russian 
physicist, Victor Veselago [34]. Nevertheless, it was not introduced to the microwave and antenna 
communities until the late 1990s and early 2000s. After the induction, related research was 
boosted dramatically, and this has been recognized as one of the main streams in the 2010s. The 
interested readers may found more information in a number of books such as [35, 36].

As shown in Fig. 1.20(a), a pure left‐handed transmission line is a periodic structure con-
sisting of alternatively connected series capacitance and shunt inductance. By using the Bloch 
wave analysis in Sec. 1.3.1, the propagation characteristics of the left‐handed structure can 
be extracted. Some interesting phenomena, such as negative permittivity and permeability, 
anti‐parallel phase and group velocities, and so on are observed. However in the real imple-
mentation, since the series capacitance and shunt inductance are inevitably connected to 
one  another by conventional, or right‐handed, transmission lines, a more realistic model 
named the composite right/left-handed (CRLH) transmission line was proposed and analyzed. 
Referring to Fig. 1.20(b), the CRLH line consists of periodically connected series LC reso-
nator in the serial path and parallel LC resonator in the shunt path. While the C

L
 and L

L
 are 

the left‐handed components, the C
R
 and L

R
 account for the right‐handed connecting lines. 

PBG pattern

Overlaid microstrip line

Figure 1.19 A typical PBG structure with an overlaid microstrip line
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22 Synthesized Transmission Lines

The propagation constant and characteristic impedance, under a lossless assumption, can be 
solved from (1.62) and (1.63) as

 

1
1

1

2
1

2

2

2

2

2

2

2

2p
L

R

L

se

L

sh

cos  (1.69)
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2

2

2
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1
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 (1.70)

where

 
L

L L

R

R R

se

L R

sh

R LC L C L C L C L

1 1 1 1
. (1.71)

p is the periodicity. If one further assumes

 
se

L R R L

sh
C L C L

1 1
,  (1.72)

the CRLH line is said to be balanced so that the equations are reduced as

 
L C

L C
R R

L L

1
 (1.73)

(b)

CL

LL LL LL

CL CL

LL

Unit cell

CL LR

CR LL

p

CR LL CR

CL LR CL LR

(a)

Figure 1.20 Periodic unit cells of (a) a pure left‐handed synthesized line and (b) a composite right/left 
handed (CRLH) transmission line
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Cc
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. (1.74)

Figure 1.21 compares the dispersion diagrams of the balanced and unbalanced CRLH trans-
mission lines. For the unbalanced case, a bandgap between the left‐handed and right‐handed 
passbands is clearly observed. With the balanced condition, the bandgap is disappeared and 
the operating band becomes continuous. A number of positive as well as negative resonance 
modes, occurring when βp = ±nπ, are observed. They have been widely applied to various 
applications with distinct circuit properties.

Figure 1.22(a) shows a typical design example, which is a dual‐band branch‐line coupler 
[37]. Each CRLH line is realized by a pair of conventional microstrip lines along with two 
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Figure 1.21 Dispersion diagrams of the balanced and unbalanced CRLH lines
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Figure 1.22 (a) Layout and (b) S‐parameters (measurement) of a dual‐band branch‐line coupler using 
CRLH lines. Source: Lin 2004 [37]. Reproduced with permission of IEEE
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24 Synthesized Transmission Lines

T‐model left‐handed unit cells. The ratio between the operating frequency bands, as shown 
in Fig.  1.22(b), is a non‐integer. This feature is not attainable by uniform wave‐guiding 
structures. A left‐handed synthesized line without periodicity is also realizable. In this case, the 
network could be analyzed using the ABCD matrix as mentioned in Sec. 1.3.2. Generally, it 
comprises a number of series capacitors and shunt inductors in cascade and is highpass in 
nature. A number of left‐handed synthesized lines are developed in the following chapters to 
utilize their unusual frequency responses to fulfill design goals such as multi‐mode operation.
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