
rt

The Linux Com

IN THIS PART

Chapter 1

Starting with Linux Shells

Chapter 2

Getting to the Shell

Chapter 3

Basic bash Shell Commands

Chapter 4

More bash Shell Commands

Chapter 5

Understanding the Shell

Chapter 6

Using Linux Environment Variables

Chapter 7

Understanding Linux File Permissionns

Chapter 8

Managing Filesystems

Chapter 9

Installing Software

Chapter 10

Working with Editors

CO
PYRIG

HTED
 M

ATERIA
L

3

CHAP T ER

Starting with Linux Shells

IN THIS CHAPTER

What is Linux?

Parts of the Linux kernel

Exploring the Linux desktop

Visiting Linux distributions

B
efore you can dive into working with the Linux command line and shells, you should fi rst
understand what Linux is, where it came from, and how it works. This chapter walks you
through what Linux is and explains where the shell and command line fi t in the overall

Linux picture.

What Is Linux?
If you’ve never worked with Linux before, you may be confused about why so many different
versions are available. I’m sure you have been confused by various terms such as distribution,
LiveCD, and GNU when looking at Linux packages. Wading through the world of Linux for the fi rst
time can be a tricky experience. This chapter takes some of the mystery out of the Linux system
before you start working on commands and scripts.

First, four main parts make up a Linux system:

■ The Linux kernel

■ The GNU utilities

■ A graphical desktop environment

■ Application software

Each of these parts has a specifi c job in the Linux system. No part is very useful by itself.
Figure 1-1 shows a basic diagram of how the parts fi t together to create the overall Linux system.

4

Part I: The Linux Command Line

FIGURE 1-1

The Linux system

Application Software

Window
Management

Software GNU
System
Utilities

Linux Kernel

Computer Hardware

This section describes these four main parts in detail and gives you an overview of how
they work together to create a complete Linux system.

Looking into the Linux Kernel
The core of the Linux system is the kernel. The kernel controls all the hardware and soft-
ware on the computer system, allocating hardware when necessary and executing software
when required.

If you’ve been following the Linux world at all, no doubt you’ve heard the name Linus
Torvalds. Linus is the person responsible for creating the fi rst Linux kernel software when
he was a student at the University of Helsinki. He intended it to be a copy of the Unix
system, at the time a popular operating system used at many universities.

After developing the Linux kernel, Linus released it to the Internet community and solic-
ited suggestions for improving it. This simple process started a revolution in the world of
computer operating systems. Soon Linus was receiving suggestions from students as well as
professional programmers from around the world.

Allowing anyone to change programming code in the kernel would result in complete chaos.
To simplify things, Linus acted as a central point for all improvement suggestions. It was
ultimately Linus’s decision whether or not to incorporate suggested code in the kernel.

5

Chapter 1: Starting with Linux Shells

1

1

This same concept is still in place with the Linux kernel code, except that instead of just
Linus controlling the kernel code, a team of developers has taken on the task.

The kernel is primarily responsible for four main functions:

■ System memory management

■ Software program management

■ Hardware management

■ Filesystem management

The following sections explore each of these functions in more detail.

System Memory Management

One of the primary functions of the operating system kernel is memory management. Not
only does the kernel manage the physical memory available on the server, but it can also
create and manage virtual memory, or memory that does not actually exist.

It does this by using space on the hard disk, called the swap space. The kernel swaps the
contents of virtual memory locations back and forth from the swap space to the actual
physical memory. This allows the system to think there is more memory available than
what physically exists, as shown in Figure 1-2.

FIGURE 1-2

The Linux system memory map

Virtual Memory

The Kernel

Physical Memory

Swap Space

6

Part I: The Linux Command Line

The memory locations are grouped into blocks called pages. The kernel locates each page
of memory either in the physical memory or the swap space. The kernel then maintains a
table of the memory pages that indicates which pages are in physical memory and which
pages are swapped out to disk.

The kernel keeps track of which memory pages are in use and automatically copies memory
pages that have not been accessed for a period of time to the swap space area (called
swapping out), even if there’s other memory available. When a program wants to access a
memory page that has been swapped out, the kernel must make room for it in physical
memory by swapping out a different memory page and swapping in the required page from
the swap space. Obviously, this process takes time and can slow down a running process.
The process of swapping out memory pages for running applications continues for as long
as the Linux system is running.

Software Program Management

The Linux operating system calls a running program a process. A process can run in the
foreground, displaying output on a display, or it can run in the background, behind the
scenes. The kernel controls how the Linux system manages all the processes running on the
system.

The kernel creates the fi rst process, called the init process, to start all other processes on the
system. When the kernel starts, it loads the init process into virtual memory. As the kernel
starts each additional process, it gives it a unique area in virtual memory to store the data
and code that the process uses.

Some Linux implementations contain a table of processes to start automatically on bootup.
On Linux systems, this table is usually located in the special fi le /etc/inittabs.

Other systems (such as the popular Ubuntu Linux distribution) utilize the /etc/init.d
folder, which contains scripts for starting and stopping individual applications at boot
time. The scripts are started via entries under the /etc/rcX.d folders, where X is aX
run level.

The Linux operating system uses an init system that utilizes run levels. A run level can be
used to direct the init process to run only certain types of processes, as defi ned in the /
etc/inittabs fi le or the /etc/rcX.d folders. There are fi ve init run levels in the Linux
operating system.

At run level 1, only the basic system processes are started, along with one console terminal
process. This is called single-user mode. Single-user mode is most often used for emergency
fi lesystem maintenance when something is broken. Obviously, in this mode, only one per-
son (usually the administrator) can log in to the system to manipulate data.

The standard init run level is 3. At this run level, most application software, such as net-
work support software, is started. Another popular run level in Linux is run level 5. This is

7

Chapter 1: Starting with Linux Shells

1

the run level where the system starts the graphical X Window software and allows you to
log in using a graphical desktop window.

The Linux system can control the overall system functionality by controlling the init run
level. By changing the run level from 3 to 5, the system can change from a console-based
system to an advanced, graphical X Window system.

In Chapter 4, you’ll see how to use the ps command to view the processes currently run-
ning on the Linux system.

Hardware Management

Still another responsibility for the kernel is hardware management. Any device that the
Linux system must communicate with needs driver code inserted inside the kernel code.
The driver code allows the kernel to pass data back and forth to the device, acting as a
middle man between applications and the hardware. Two methods are used for inserting
device driver code in the Linux kernel:

■ Drivers compiled in the kernel

■ Driver modules added to the kernel

Previously, the only way to insert device driver code was to recompile the kernel. Each time
you added a new device to the system, you had to recompile the kernel code. This process
became even more ineffi cient as Linux kernels supported more hardware. Fortunately,
Linux developers devised a better method to insert driver code into the running kernel.

Programmers developed the concept of kernel modules to allow you to insert driver code
into a running kernel without having to recompile the kernel. Also, a kernel module could
be removed from the kernel when the device was fi nished being used. This greatly simpli-
fi ed and expanded using hardware with Linux.

The Linux system identifi es hardware devices as special fi les, called device files. There are
three classifi cations of device fi les:

■ Character

■ Block

■ Network

Character device fi les are for devices that can only handle data one character at a time.
Most types of modems and terminals are created as character fi les. Block fi les are for
devices that can handle data in large blocks at a time, such as disk drives.

The network fi le types are used for devices that use packets to send and receive data. This
includes network cards and a special loopback device that allows the Linux system to com-
municate with itself using common network programming protocols.

8

Part I: The Linux Command Line

Linux creates special fi les, called nodes, for each device on the system. All communication
with the device is performed through the device node. Each node has a unique number pair
that identifi es it to the Linux kernel. The number pair includes a major and a minor device
number. Similar devices are grouped into the same major device number. The minor device
number is used to identify a specifi c device within the major device group.

Filesystem Management

Unlike some other operating systems, the Linux kernel can support different types of
fi lesystems to read and write data to and from hard drives. Besides having over a dozen
fi lesystems of its own, Linux can read and write to and from fi lesystems used by other
operating systems, such as Microsoft Windows. The kernel must be compiled with support
for all types of fi lesystems that the system will use. Table 1-1 lists the standard fi lesystems
that a Linux system can use to read and write data.

TABLE 1-1 Linux Filesystems

Filesystem Description

ext Linux Extended fi lesystem — the original Linux fi lesystem

ext2 Second extended fi lesystem, provided advanced features over ext

ext3 Third extended fi lesystem, supports journaling

ext4 Fourth extended fi lesystem, supports advanced journaling

hpfs OS/2 high-performance fi lesystem

jfs IBM’s journaling fi lesystem

iso9660 ISO 9660 fi lesystem (CD-ROMs)

minix MINIX fi lesystem

msdos Microsoft FAT16

ncp Netware fi lesystem

nfs Network File System

ntfs Support for Microsoft NT fi lesystem

proc Access to system information

ReiserFS Advanced Linux fi lesystem for better performance and disk recovery

smb Samba SMB fi lesystem for network access

sysv Older Unix fi lesystem

ufs BSD fi lesystem

umsdos Unix-like fi lesystem that resides on top of msdos

vfat Windows 95 fi lesystem (FAT32)

XFS High-performance 64-bit journaling fi lesystem

9

Chapter 1: Starting with Linux Shells

1

Any hard drive that a Linux server accesses must be formatted using one of the fi lesystem
types listed in Table 1-1.

The Linux kernel interfaces with each fi lesystem using the Virtual File System (VFS). This
provides a standard interface for the kernel to communicate with any type of fi lesystem.
VFS caches information in memory as each fi lesystem is mounted and used.

The GNU Utilities
Besides having a kernel to control hardware devices, a computer operating system needs
utilities to perform standard functions, such as controlling fi les and programs. While Linus
created the Linux system kernel, he had no system utilities to run on it. Fortunately for
him, at the same time he was working, a group of people were working together on the
Internet trying to develop a standard set of computer system utilities that mimicked the
popular Unix operating system.

The GNU organization (GNU stands for GNU’s Not Unix) developed a complete set of Unix
utilities, but had no kernel system to run them on. These utilities were developed under a
software philosophy called open source software (OSS).

The concept of OSS allows programmers to develop software and then release it to the world
with no licensing fees attached. Anyone can use the software, modify it, or incorporate it
into his or her own system without having to pay a license fee. Uniting Linus’s Linux ker-
nel with the GNU operating system utilities created a complete, functional, free operating
system.

While the bundling of the Linux kernel and GNU utilities is often just called Linux, you will
see some Linux purists on the Internet refer to it as the GNU/Linux system to give credit to
the GNU organization for its contributions to the cause.

The Core GNU Utilities

The GNU project was mainly designed for Unix system administrators to have a Unix-like
environment available. This focus resulted in the project porting many common Unix
system command line utilities. The core bundle of utilities supplied for Linux systems is
called the coreutils package.

The GNU coreutils package consists of three parts:

■ Utilities for handling fi les

■ Utilities for manipulating text

■ Utilities for managing processes

Each of these three main groups of utilities contains several utility programs that are
invaluable to the Linux system administrator and programmer. This book covers each of the
utilities contained in the GNU coreutils package in detail.

10

Part I: The Linux Command Line

The Shell

The GNU/Linux shell is a special interactive utility. It provides a way for users to start pro-
grams, manage fi les on the fi lesystem, and manage processes running on the Linux system.
The core of the shell is the command prompt. The command prompt is the interactive part
of the shell. It allows you to enter text commands, and then it interprets the commands
and executes them in the kernel.

The shell contains a set of internal commands that you use to control things such as copy-
ing fi les, moving fi les, renaming fi les, displaying the programs currently running on the
system, and stopping programs running on the system. Besides the internal commands,
the shell also allows you to enter the name of a program at the command prompt. The shell
passes the program name off to the kernel to start it.

You can also group shell commands into fi les to execute as a program. Those fi les are called
shell scripts. Any command that you can execute from the command line can be placed in
a shell script and run as a group of commands. This provides great fl exibility in creating
utilities for commonly run commands, or processes that require several commands grouped
together.

There are quite a few Linux shells available to use on a Linux system. Different shells have
different characteristics, some being more useful for creating scripts and some being more
useful for managing processes. The default shell used in all Linux distributions is the bash
shell. The bash shell was developed by the GNU project as a replacement for the standard
Unix shell, called the Bourne shell (after its creator). The bash shell name is a play on this
wording, referred to as the “Bourne again shell.”

In addition to the bash shell, we will cover several other popular shells in this book.
Table 1-2 lists the different shells we will examine.

TABLE 1-2 Linux Shells

Shell Description

ash A simple, lightweight shell that runs in low-memory environments but has full compat-
ibility with the bash shell

korn A programming shell compatible with the Bourne shell but supporting advanced pro-
gramming features like associative arrays and fl oating-point arithmetic

tcsh A shell that incorporates elements from the C programming language into shell scripts

zsh An advanced shell that incorporates features from bash, tcsh, and korn, providing
advanced programming features, shared history fi les, and themed prompts

11

Chapter 1: Starting with Linux Shells

1

Most Linux distributions include more than one shell, although usually they pick one of
them to be the default. If your Linux distribution includes multiple shells, feel free to
experiment with different shells and see which one fi ts your needs.

The Linux Desktop Environment
In the early days of Linux (the early 1990s) all that was available was a simple text inter-
face to the Linux operating system. This text interface allowed administrators to start pro-
grams, control program operations, and move fi les around on the system.

With the popularity of Microsoft Windows, computer users expected more than the old text
interface to work with. This spurred more development in the OSS community, and the
Linux graphical desktops emerged.

Linux is famous for being able to do things in more than one way, and no place is this more
relevant than in graphical desktops. There are a plethora of graphical desktops you can
choose from in Linux. The following sections describe a few of the more popular ones.

The X Window System

Two basic elements control your video environment: the video card in your PC and your
monitor. To display fancy graphics on your computer, the Linux software needs to know
how to talk to both of them. The X Window software is the core element in presenting
graphics.

The X Window software is a low-level program that works directly with the video card and
monitor in the PC, and it controls how Linux applications can present fancy windows and
graphics on your computer.

Linux isn’t the only operating system that uses X Window; versions are written for many
different operating systems. In the Linux world, several different software packages can
implement it.

The most popular package is X.org. It provides an open source software implementation of
the X Window system and supports many of the newer video cards used today.

Two other X Window packages are gaining in popularity. The Fedora Linux distribution is
experimenting with the Wayland software, and the Ubuntu Linux distribution has devel-
oped the Mir display server for use with its desktop environment.

When you fi rst install a Linux distribution, it attempts to detect your video card and moni-
tor, and then it creates an X Window confi guration fi le that contains the required informa-
tion. During installation, you may notice a time when the installation program scans your
monitor for supported video modes. Sometimes, this causes your monitor to go blank for a

12

Part I: The Linux Command Line

few seconds. Because there are lots of different types of video cards and monitors, this pro-
cess can take a while to complete.

The core X Window software produces a graphical display environment, but nothing else.
Although this is fi ne for running individual applications, it is not useful for day-to-day
computer use. No desktop environment allows users to manipulate fi les or launch programs.
To do that, you need a desktop environment on top of the X Window system software.

The KDE Desktop

The K Desktop Environment (KDE) was fi rst released in 1996 as an open source project to
produce a graphical desktop similar to the Microsoft Windows environment. The KDE desk-
top incorporates all the features you are probably familiar with if you are a Windows user.
Figure 1-3 shows a sample KDE 4 desktop running in the openSUSE Linux distribution.

FIGURE 1-3

The KDE 4 desktop on an openSUSE Linux system

13

Chapter 1: Starting with Linux Shells

1

The KDE desktop allows you to place both application and fi le icons in a special area on the
desktop. If you click an application icon, the Linux system starts the application. If you
click a fi le icon, the KDE desktop attempts to determine what application to start to
handle the fi le.

The bar at the bottom of the desktop is called the Panel. The Panel consists of four parts:

■ The K menu: Much like the Windows Start menu, the K menu contains links to
start installed applications.

■ Program shortcuts: These are quick links to start applications directly from the
Panel.

■ The taskbar: The taskbar shows icons for applications currently running on the
desktop.

■ Applets: These are small applications that have an icon in the Panel that often can
change depending on information from the application.

The Panel features are similar to what you would fi nd in Windows. In addition to the desk-
top features, the KDE project has produced a wide assortment of applications that run in
the KDE environment.

The GNOME Desktop

The GNU Network Object Model Environment (GNOME) is another popular Linux desktop
environment. First released in 1999, GNOME has become the default desktop environment
for many Linux distributions. (However, the most popular is Red Hat Linux.)

Although GNOME chose to depart from the standard Microsoft Windows look-and-feel, it
incorporates many features that most Windows users are comfortable with:

■ A desktop area for icons

■ A panel area for showing running applications

■ Drag-and-drop capabilities

Figure 1-4 shows the standard GNOME desktop used in the CentOS Linux distribution.

Not to be outdone by KDE, the GNOME developers have also produced a host of graphical
applications that integrate with the GNOME desktop.

The Unity Desktop

If you’re using the Ubuntu Linux distribution, you’ll notice that it’s somewhat different
from both the KDE and GNOME desktop environments. Canonical, the company responsible

14

Part I: The Linux Command Line

for developing Ubuntu, has decided to embark on its own Linux desktop environment,
called Unity.

FIGURE 1-4

A GNOME desktop on a CentOS Linux system

The Unity desktop gets its name from the goal of the project — to provide a single desktop
experience for workstations, tablet devices, and mobile devices. The Unity desktop works
the same whether you’re running Ubuntu on a workstation or a mobile phone! Figure 1-5
shows an example of the Unity desktop in Ubuntu 14.04 LTS.

Other Desktops

The downside to a graphical desktop environment is that it requires a fair amount of
system resources to operate properly. In the early days of Linux, a hallmark and selling

15

Chapter 1: Starting with Linux Shells

1

feature of Linux was its ability to operate on older, less powerful PCs that the newer
Microsoft desktop products couldn’t run on. However, with the popularity of KDE and
GNOME desktops, this has changed, because it takes just as much memory to run a KDE or
GNOME desktop as the latest Microsoft desktop environment.

FIGURE 1-5

The Unity desktop on the Ubuntu Linux distribution

If you have an older PC, don’t be discouraged. The Linux developers have banded together
to take Linux back to its roots. They’ve created several low-memory–oriented graphical
desktop applications that provide basic features that run perfectly fi ne on older PCs.

Although these graphical desktops don’t have a plethora of applications designed around
them, they still run many basic graphical applications that support features such as word
processing, spreadsheets, databases, drawing, and, of course, multimedia support.

Table 1-3 shows some of the smaller Linux graphical desktop environments that can be used
on lower-powered PCs and laptops.

16

Part I: The Linux Command Line

TABLE 1-3 Other Linux Graphical Desktops

Desktop Description

Fluxbox A bare-bones desktop that doesn’t include a Panel, only a pop-up menu to
launch applications

Xfce A desktop that’s similar to the KDE desktop, but with fewer graphics for low-
memory environments

JWM Joe’s Window Manager, a very lightweight desktop ideal for low-memory and
low-disk space environments

Fvwm Supports some advanced desktop features such as virtual desktops and Panels,
but runs in low-memory environments

fvwm95 Derived from fvwm, but made to look like a Windows 95 desktop

These graphical desktop environments are not as fancy as the KDE and GNOME desktops, but
they provide basic graphical functionality just fi ne. Figure 1-6 shows what the JWM desk-
top used in the Puppy Linux antiX distribution looks like.

FIGURE 1-6

The JWM desktop as seen in the Puppy Linux distribution

17

Chapter 1: Starting with Linux Shells

1

If you are using an older PC, try a Linux distribution that uses one of these desktops and
see what happens. You may be pleasantly surprised.

Linux Distributions
Now that you have seen the four main components required for a complete Linux system,
you may be wondering how you are going to get them all put together to make a Linux sys-
tem. Fortunately, other people have already done that for you.

A complete Linux system package is called a distribution. Many different Linux distributions
are available to meet just about any computing requirement you could have. Most distribu-
tions are customized for a specifi c user group, such as business users, multimedia enthu-
siasts, software developers, or average home users. Each customized distribution includes
the software packages required to support specialized functions, such as audio- and video-
editing software for multimedia enthusiasts, or compilers and integrated development envi-
ronments (IDEs) for software developers.

The different Linux distributions are often divided into three categories:

■ Full core Linux distributions

■ Specialized distributions

■ LiveCD test distributions

The following sections describe these different types of Linux distributions and show some
examples of Linux distributions in each category.

Core Linux Distributions
A core Linux distribution contains a kernel, one or more graphical desktop environments,
and just about every Linux application that is available, precompiled for the kernel. It
provides one-stop shopping for a complete Linux installation. Table 1-4 shows some of the
more popular core Linux distributions.

TABLE 1-4 Core Linux Distributions

Distribution Description

Slackware One of the original Linux distribution sets, popular with Linux geeks

Red Hat A commercial business distribution used mainly for Internet servers

Fedora A spin-off from Red Hat but designed for home use

Continues

18

Part I: The Linux Command Line

Distribution Description

Gentoo A distribution designed for advanced Linux users, containing only Linux source
code

openSUSE Different distributions for business and home use

Debian Popular with Linux experts and commercial Linux products

In the early days of Linux, a distribution was released as a set of fl oppy disks. You had to
download groups of fi les and then copy them onto disks. It would usually take 20 or more
disks to make an entire distribution! Needless to say, this was a painful experience.

Nowadays, with home computers commonly having CD and DVD players built in, Linux
distributions are released as either a CD set or a single DVD. This makes installing Linux
much easier.

However, beginners still often run into problems when they install one of the core Linux
distributions. To cover just about any situation in which someone might want to use Linux,
a single distribution must include lots of application software. They include everything
from high-end Internet database servers to common games. Because of the quantity of
applications available for Linux, a complete distribution often takes four or more CDs.

Although having lots of options available in a distribution is great for Linux geeks, it can
become a nightmare for beginning Linux users. Most distributions ask a series of questions
during the installation process to determine which applications to load by default, what
hardware is connected to the PC, and how to confi gure the hardware. Beginners often fi nd
these questions confusing. As a result, they often either load way too many programs on
their computer or don’t load enough and later discover that their computer won’t do what
they want it to.

Fortunately for beginners, there’s a much simpler way to install Linux.

Specialized Linux Distributions
A new subgroup of Linux distributions has started to appear. These are typically based on
one of the main distributions but contain only a subset of applications that would make
sense for a specifi c area of use.

In addition to providing specialized software (such as only offi ce products for business
users), customized Linux distributions also attempt to help beginning Linux users by

TABLE 1-4 (continued)

19

Chapter 1: Starting with Linux Shells

1

autodetecting and autoconfi guring common hardware devices. This makes installing Linux
a much more enjoyable process.

Table 1-5 shows some of the specialized Linux distributions available and what they
specialize in.

TABLE 1-5 Specialized Linux Distributions

Distribution Description

CentOS A free distribution built from the Red Hat Enterprise Linux source code

Ubuntu A free distribution for school and home use

PCLinuxOS A free distribution for home and offi ce use

Mint A free distribution for home entertainment use

dyne:bolic A free distribution designed for audio and MIDI applications

Puppy Linux A free small distribution that runs well on older PCs

That’s just a small sampling of specialized Linux distributions. There are literally hundreds
of specialized Linux distributions, and more are popping up all the time on the Internet. No
matter what your specialty, you’ll probably fi nd a Linux distribution made for you.

Many of the specialized Linux distributions are based on the Debian Linux distribution.
They use the same installation fi les as Debian but package only a small fraction of a full-
blown Debian system.

The Linux LiveCD
A relatively new phenomenon in the Linux world is the bootable Linux CD distribution.
This lets you see what a Linux system is like without actually installing it. Most modern
PCs can boot from a CD instead of the standard hard drive. To take advantage of this, some
Linux distributions create a bootable CD that contains a sample Linux system (called a Linux
LiveCD). Because of the limitations of the single CD size, the sample can’t contain a complete
Linux system, but you’d be surprised at all the software they can cram in there. The result
is that you can boot your PC from the CD and run a Linux distribution without having to
install anything on your hard drive!

20

Part I: The Linux Command Line

This is an excellent way to test various Linux distributions without having to mess with
your PC. Just pop in a CD and boot! All the Linux software will run directly from the CD.
You can download lots of Linux LiveCDs from the Internet and burn onto a CD to test drive.

Table 1-6 shows some popular Linux LiveCDs that are available.

TABLE 1-6 Linux LiveCD Distributions

Distribution Description

Knoppix A German Linux, the fi rst Linux LiveCD developed

PCLinuxOS Full-blown Linux distribution on a LiveCD

Ubuntu A worldwide Linux project, designed for many languages

Slax A live Linux CD based on Slackware Linux

Puppy Linux A full-featured Linux designed for older PCs

You may notice a familiarity in this table. Many specialized Linux distributions also have
a Linux LiveCD version. Some Linux LiveCD distributions, such as Ubuntu, allow you to
install the Linux distribution directly from the LiveCD. This enables you to boot with the
CD, test drive the Linux distribution, and then if you like it, install it on your hard drive.
This feature is extremely handy and user-friendly.

As with all good things, Linux LiveCDs have a few drawbacks. Because you access every-
thing from the CD, applications run more slowly, especially if you’re using older, slower
computers and CD drives. Also, because you can’t write to the CD, any changes you make to
the Linux system will be gone the next time you reboot.

But advances are being made in the Linux LiveCD world that will help to solve some of
these problems. These advances include the ability to:

■ Copy Linux system fi les from the CD to memory

■ Copy system fi les to a fi le on the hard drive

■ Store system settings on a USB memory stick

■ Store user settings on a USB memory stick

Some Linux LiveCDs, such as Puppy Linux, are designed with a minimum number of Linux
system fi les. The LiveCD boot scripts copy them directly into memory when the CD boots.
This allows you to remove the CD from the computer as soon as Linux boots. Not only does
this make your applications run much faster (because applications run faster from mem-
ory), but it also gives you a free CD tray to use for ripping audio CDs or playing video DVDs
from the software included in Puppy Linux.

Other Linux LiveCDs use an alternative method that allows you to remove the CD from the
tray after booting. It involves copying the core Linux fi les onto the Windows hard drive as

21

Chapter 1: Starting with Linux Shells

1

a single fi le. After the CD boots, it looks for that fi le and reads the system fi les from it. The
dyne:bolic Linux LiveCD uses this technique, which is called docking. Of course, you must
copy the system fi le to your hard drive before you can boot from the CD.

A very popular technique for storing data from a live Linux CD session is to use a com-
mon USB memory stick (also called a fl ash drive or a thumb drive). Just about every Linux
LiveCD can recognize a plugged-in USB memory stick (even if the stick is formatted for
Windows) and read and write fi les to and from it. This allows you to boot a Linux LiveCD,
use the Linux applications to create fi les, store those fi les on your memory stick, and then
access them from your Windows applications later (or from a different computer). How
cool is that?

Summary
This chapter discussed the Linux system and the basics of how it works. The Linux kernel
is the core of the system, controlling how memory, programs, and hardware all interact
with one another. The GNU utilities are also an important piece in the Linux system. The
Linux shell, which is the main focus of this book, is part of the GNU core utilities. The
chapter also discussed the fi nal piece of a Linux system, the Linux desktop environment.
Things have changed over the years, and Linux now supports several graphical desktop
environments.

The chapter also discussed the various Linux distributions. A Linux distribution bundles
the various parts of a Linux system into a simple package that you can easily install on
your PC. The Linux distribution world consists of full-blown Linux distributions that
include just about every application imaginable, as well as specialized Linux distributions
that include applications focused only on a special function. The Linux LiveCD craze has
created another group of Linux distributions that allow you to easily test-drive Linux with-
out even having to install it on your hard drive.

In the next chapter, you look at what you need to start your command line and shell script-
ing experience. You’ll see what you need to do to get to the Linux shell utility from your
fancy graphical desktop environment. These days, that’s not always an easy thing.

