
PART I

▸ LESSON 1: Introduction to HTML5

▸ LESSON 2: Basic HTML

▸ LESSON 3: Lists and Tables

▸ LESSON 4: Introduction to CSS

▸ LESSON 5: Structuring Pages with CSS

▸ LESSON 6LESSON 6: HTML F HTML Forms

▸ LESSON 7: Semantic Tabs

▸ LESSON 8: HTML5 Validation

▸ LESSON 9: Drag and Drop

▸ LESSON 10: Dynamic ElementsCO
PYRIG

HTED
 M

ATERIA
L

This lesson is an introduction to the HTML5 markup language. The HTML5 markup
 language is a language for structuring and expressing the content of a web page in a manner
that can be consistently interpreted by a web browser.

If you are already familiar with HTML, much of this lesson will look very familiar. It is
still important that you read through this lesson, however, because there are a number of
 important changes in HTML5, and many of these are very subtle.

If you are not familiar with HTML, or have only a passing familiarity, this lesson will provide
you with the background you need to understand the basics of an HTML web page. This
lesson is only an introduction, however; the material in this lesson will be enhanced in the
remainder of this section.

WHAT IS A MARKUP LANGUAGE?

A markup language is a language for annotating a document with a set of tags. These tags
are used to provide additional meaning and structure to the text of the document, or provide
instructions on the manner in which it should be displayed to the reader.

For instance, a tag may state that one portion of the text is a header, while another portion is
a paragraph of text. Consider the following document fragment:

<h1>This is a heading</h1>
<p>This is a paragraph of text</p>

In this example, the tags can be clearly differentiated from the content of the document by the
angle brackets. The following represents the start of a heading:

<h1>

while this represents the end of the heading:

</h1>

1

4 ❘ LESSON 1 INTRODUCTION TO HTML5

NOTE HTML defi nes six categories of header from h1 to h6. The lower the
number, the more important the header is.

The entire h1 structure—including the start tag, the end tag, and its textual content—is referred to
as an element.

The HTML5 markup language specifi es the tags that can be used in an HTML document, how they
should be used, and what additional information (called attributes) they can contain.

In the early days of HTML, many of the tags included in the markup language instructed the
browser how to present information. For instance, tags were used to dictate font size and color.

The HTML markup language is no longer responsible for dictating the presentation of a document, and
in HTML5 most of the remaining presentation tags have been removed. Presentation is now the sole pre-
serve of another technology called Cascading Style Sheets, which will be examined later in this section.

Instead, the HTML5 markup language is responsible for conveying the meaning of the various
components of the document and how they interact with other components.

NOTE Browsers can still provide their own default styles for tags, however, and
this is why an h1 element will appear in large, bold text.

HTML5 greatly enhances the expressiveness of earlier version of HTML, however, and allows
sections of the document to be marked as, amongst other things, headers, footers, and asides.

Earlier versions of HTML were based on a technology called SGML, which is a language for express-
ing markup languages. As of HTML5, the HTML markup language is not based on any other tech-
nology. This has removed a number of restrictions from the language; therefore, if you are familiar
with HTML, you will notice in the sections that follow that a number of the old rules no longer apply.

THE SIMPLEST HTML PAGE POSSIBLE

When learning any technology, it’s always a good idea to start out with the simplest implementation
possible. In HTML5, the simplest page you can possibly write is as follows:

<!DOCTYPE html>
hello world!!!

Open your favorite text editor, enter this text, and save the document
as hello.html.

Now, open Chrome, and select Ctrl-O in Windows or -O on a Mac, navigate to the fi le you have
just saved, and select “Open”. This should look like Figure 1-1 when loaded in the web browser.

FIGURE 1-1

The Simplest HTML Page Possible ❘ 5

This may not look like a web page; after all, there are no tags in the page except the strange looking
tag on the fi rst line of the document.

With the page open in Chrome, now select to open the developer tools:

➤ Command+Option+I on OS X

➤ F12 or Ctrl+Shift+I on Windows

This should open the window shown in Figure 1-2 below the web page.

FIGURE 1-2

This is the web-browser’s internal representation of the web page. As you can see, this has
normalized the structure of the document, and does provide a set of tags nested inside one another.
On the outermost level is the html element, and inside this are two elements: head and body. The
content of the body element is the text you wrote in the text editor.

The document has been normalized to conform to the rules of the Document Object Model (DOM).
The DOM will turn out to be enormously important throughout this book because much of the power
of modern web pages comes from their ability to manipulate the DOM after the page has loaded.

The manner in which a Document Object Model should be constructed from an HTML page has
been a contentious issue since HTML fi rst appeared. Historically, different browsers would generate
different models for the same HTML, and this made it very diffi cult to write cross-browser web pages.

In order to counteract cross-browser issues, the World Wide Web Consortium (W3C), which is the
standards body behind web standards such as HTML, decided to recommend a set of standards
placing the onus on the web page developer. These standards, called HTML Strict and XHTML,
forced the web page developer to create a normalized web page, and therefore made it easy for web
browsers to render pages consistently.

This approach did not work very well. The real power behind HTML is not the standards bodies,
but the browser vendors because they ultimately decide what is a valid web page. They did not want
to enforce this strictness on web pages because failing to load web pages would only serve to make
their browser look defi cient.

As the W3C continued on with their strict standards, a rival group called WHATWG started work
on a rival standard that would eventually become HTML5. The members of this group were made
up of participants from the main browser vendors, and their goals were far more pragmatic. Rather
than creating a whole new set of standards, this group fi rst looked at what browsers were already
doing and, where possible, formed standards from this.

W3C eventually abandoned their efforts for strictness and joined WHATWG’s efforts, and the two
groups each publish a version of the HTML5 standard.

6 ❘ LESSON 1 INTRODUCTION TO HTML5

A large part of the HTML5 standard describes how browser vendors should create a normalized
DOM from a non-normalized HTML document. This is why Chrome created the DOM that it did
in the preceding example, and why Firefox, IE, and Safari would create exactly the same structures.

AN HTML TEMPLATE

In the previous section, you wrote the simplest web page you could write. In this section, you
will write a web page following a basic template that is intended to represent the simplest HTML
structure you should write.

I will fi rst present the template, and then I will walk you through it line by line. Open a new docu-
ment in your text editor, and save the following as template.html:

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="utf-8">
</head>
<body>
 This is the body of the document.
</body>
</html>

If you open this in Chrome, and then view the DOM in the developer tools, it will look like the
example in Figure 1-3.

FIGURE 1-3

As you can see, in this case there is far closer alignment between the content you provided in the
HTML fi le and the normalized structure generated by the browser.

Let’s now walk through each line in the document and examine its purpose.

The fi rst line in the document is as follows:

<!DOCTYPE html>

This line defi nes the document type of the page. Because there have been many different HTML
standards over the years, the browser uses this line to understand which of these standards the page
is using, and then uses the rules applicable for this standard to interpret the content of the page and
render it accordingly.

An HTML Template ❘ 7

This is the HTML5 document type defi nition, and comes as a pleasant surprise for developers who
may be accustomed to copying and pasting DOCTYPE declarations such as:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/
strict.dtd">

The other main surprise about this document type defi nition is that it does not include a version
number: The document type is simply html.

Although the specifi cation is referred to as HTML5, it defi nes a “living-standard” that will be subject
to incremental change as and when browser vendors implement, and agree on, new features. Put
another way, there will never be another version of HTML, but HTML will always continue to evolve.

The next line contains the opening html tag, which encapsulates the remainder of the document:

<html lang="en">

This tag contains an attribute called lang, which has been given the value en. Attributes provide a
mechanism for providing extra meaning to tags. This particular attribute is stating that the
language of the document is English.

NOTE The ISO standard 639-1 defi nes the set of two-letter codes that can be
used for languages. These can also be paired with a country code, for instance
en-US. Country codes are defi ned in the ISO standard 3166.

As with many aspects of HTML5, although the specifi cation defi nes the attributes and their
expected values, it is up to the browser to decide what to do with this information. The browser may
use this information to suggest a translation to a non-English speaker, or it may do absolutely noth-
ing with this information.

The next element in the document is the head element. This is the section of the document where
you can provide important metadata about the document, along with links to other fi les needed by
the document. The head section never contains any visual components of the web page. In this par-
ticular case, the head contains one important piece of metadata:

<meta charset="utf-8" />

This specifi es that the character encoding of the document is UTF-8. I will not cover character
encodings in this section, but the specifi cation recommends setting this.

There is one other element that is commonly added to the head element: the title element. This is
the text that the browser will display in the title bar when the web page is loaded. Therefore, add the
following inside the head section:

<title>Basic template</title>

and then view the page in Chrome; the tab header will appear as follows:

FIGURE 1-4

8 ❘ LESSON 1 INTRODUCTION TO HTML5

Next you come to the body element. This is where all the visual elements of the page will be
described. In this particular example, the body consists of a single text string, but it is this area of
the document that you will enhance in the lessons ahead to create interesting web pages.

UNDERSTANDING ELEMENTS AND ATTRIBUTES

Even though the examples you have created are very simple, you can already see that elements can
be nested inside one another, and as a result, create a tree-like structure.

Every HTML document has a single top-level element, which is always the html element (the docu-
ment type element is not part of the document as such).

In addition, every element in the document can have zero or more children. The html element has
two children: head and body. The head element in turn has a child of its own: the meta element.

Every element in the document (except the html element) has one (and only one) parent. The parent
of the head element is the html element. The parent of the meta element is the head element.

As you will see, the structure of pages will become considerably more complex, and the degrees of
nesting will increase enormously. No matter how complex the pages become, however, all the ele-
ments will follow these simple rules.

You have examined how elements consist of an opening and closing tag; for instance the opening of the
head tag is <head> while the closing is an identically named tag preceded by a forward slash </head>.

Some elements do not require any content: The tag and its attributes provide all the information that
is required. In this case, the start and the end tag can be combined into the following construct:

<meta charset="utf-8" />

The forward slash before the end of the tag indicates that the tag is being closed. This is the direct
equivalent of the following:

<meta charset="utf-8"></meta>

You should always ensure that all tags are closed in the reverse order they are opened. For example,
you should never write markup as follows:

<p>Hello</p>

In this case, the strong element is supposed to be the child of the p element, but the p element ends
before the strong element.

NOTE The strong tag is used to indicate that a piece of text is important.
Although this is often confused with the now deprecated bold tag, it is, in fact,
still a valid HTML5 tag. This tag is not considered a presentation tag because
it indicates that text is important, not how this text should be styled. You may
decide that strong elements are colored red rather than with a bold font.

Try It ❘ 9

If you add this to your template.html fi le before the
 ending body tag, and then view the normalized structure
in Chrome, you will notice that the browser has rearranged
these tags, as you can see in Figure 1-5.

Although the HTML5 specifi cation does have rules for
fi xing up your mistakes, it is generally best not to make
mistakes in the fi rst place because the rules of the HTML5
specifi cation may not be what you intended.

I generally fi nd it best to write tags in lowercase. As it turns out, tag names are entirely case insensi-
tive because they are automatically converted to lowercase in the DOM. The following is therefore
valid, but should be avoided for obvious readability reasons:

<HEADER>this is a header</header>

The fi nal feature I will cover in this lesson is attributes. You have already seen two examples of attri-
butes, on the html tag and on the meta tag. Many other tags also support attributes, and you will
examine these throughout the book.

Attributes often consist of a name/value pair. When an attribute has a value, the value can either be
included in single or double quotes. The following are equivalent:

<meta charset="utf-8" />
<meta charset='utf-8' />

A tag can contain more than one attribute, in which case they are simply separated by white space:

<p id="firstParagraph" class="bold">

Additionally, some attributes do not have a value. These are referred to as Boolean attributes. The
presence of the attribute is all that is required. For instance:

<input read-only/>

In this case, the attribute is called read-only, but the presence of the attribute is enough to indicate
that the element is read-only. It is still possible to add a value to a Boolean attribute, but it has no
meaning. For instance, the following input fi eld is still read-only:

<input read-only="false"/>

Attribute names should also be written in lowercase (because this is how they will be represented in
the DOM). Generally attribute names will also use hyphens if they contain more than one word.

TRY IT

In this Try It, you will duplicate the template html page outlined in the lesson. You may choose to
skip this portion if you are familiar with HTML, but the simple act of typing code word for word
enhances your understanding.

If you get stuck in this example, you can refer back to the example earlier in the lesson, or use the
screencast to guide you though the process.

FIGURE 1-5

10 ❘ LESSON 1 INTRODUCTION TO HTML5

Lesson Requirements
You will need a text editor and a web browser.

Step-by-Step

1. Open your text editor and create a new document.

2. Add the HTML5 doctype to the document.

3. Add an html element (both the opening and closing tags) below the document type.

4. Indicate the language of the document using an attribute on the html tag.

5. Add a head element inside the html element. You will need both an opening and a closing tag.

6. Add a title inside the head element, and give the document a name. Remember that this
needs to be a child of the head element.

7. Add a body element inside the html element just below the closing head tag.

8. Add a meta element to the head indicating that the charset is UTF-8.

9. Add any text you like to the body of the document. Any text that you add should be
displayed back to you when you open the web page in Chrome.

10. Save the document with a .html extension.

11. Open the document in Chrome and inspect the Document Object Model in the developer tools.

When you open this in Chrome, and then open the development tools to inspect the elements, the
markup should look like Figure 1-6.

FIGURE 1-6

There is also a complete example in the Lesson 1 folder on the book’s website called tryit.html.

REFERENCE Ple ase select the video for Lesson 1 online at www.wrox.com/go/
html5jsjquery24hr. You will also be able to download the code and resources
for this lesson from the website.

