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CHAPTER 1
The Heston Model for

European Options

Abstract

Here, we present the European call price under the Heston model. We first present
the model and then illustrate that the call price in the Heston model can be expressed
as the sum of two terms that each contains an in-the-money probability but obtained
under a separate measure, a result demonstrated by Bakshi and Madan (2000). We
then show how to incorporate a continuous dividend yield and how to compute
the price of a European put, and demonstrate that the numerical integration can be
speed up by consolidating the two numerical integrals into a single integral. Finally,
we derive the Black-Scholes model as a special case of the Heston model.

CIR process, European call, characteristic function, dividend yield, put-call parity,
Black-Scholes

I n this chapter, we present the European call price under the Heston model. We first
present the model and then illustrate that the call price in the Heston model can be

expressed as the sum of two terms that each contains an in-the-money probability,
but obtained under a separate measure, a result demonstrated by Bakshi and Madan
(2000). We then show how to incorporate a continuous dividend yield and how to
compute the price of a European put, and demonstrate that the numerical integration
can be speeded up by consolidating the two numerical integrals into a single integral.
Finally, we derive the Black-Scholes model as a special case of the Heston model.

MODEL DYNAMICS

The Heston model assumes that the underlying stock price, St, follows a Black-
Scholes–type stochastic process, but with a stochastic variance, vt, that follows a
Cox, Ingersoll, and Ross (1985) process. Hence, the Heston model is represented by
the bivariate system of stochastic differential equations (SDEs),

dSt = 𝜇Stdt +
√

vtStdW1,t

dvt = 𝜅(𝜃 − vt)dt + 𝜎
√

vtdW2,t

, (1.1)
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2 THE HESTON MODEL AND ITS EXTENSIONS IN VBA

where Eℙ [
dW1,tdW2,t

]
= 𝜌dt. We will sometimes drop the time index and write S =

St, v = vt, W1 = W1,t and W2 = W2,t for notational convenience. The parameters of
the model are

𝜇 the drift of the process for the stock;

𝜅 > 0 the mean reversion speed for the variance;

𝜃 > 0 the mean reversion level for the variance;

𝜎 > 0 the volatility of the variance;

v0 > 0 the initial (time zero) level of the variance;

𝜌 ∈ [−1, 1] the correlation between the two Brownian motion W1 and W2; and

𝜆 the volatility risk parameter (discussed below).

We will see in Chapter 2 that these parameters affect the distribution of the
terminal stock price in a manner that is intuitive. Some authors refer to v0 as an
unobserved initial state variable rather than a parameter. Because volatility cannot
be observed, only estimated, and because v0 represents this state variable at time
zero, this characterization is sensible. For the purposes of estimation, however, many
authors treat v0 as a parameter like any other. Parameter estimation is covered in
Chapter 6.

The stock price and variance follow the processes in Equation (1.1) under the
historical measure ℙ, also called the physical measure. For pricing purposes, however,
we need the processes for (St, vt) under the risk-neutral measure ℚ. The risk-neutral
process is

dSt = rStdt +
√

vtStdW̃1,t

dvt = 𝜅∗(𝜃∗ − vt)dt + 𝜎
√

vtdW̃2,t

, (1.2)

where Eℚ [
dW̃1,tdW̃2,t

]
= 𝜌dt. The risk-neutral parameters of the variance process

are where 𝜅∗ = 𝜅 + 𝜆 and 𝜃∗ = 𝜅𝜃∕(𝜅 + 𝜆).
Note that when 𝜆 = 0, we have 𝜅∗ = 𝜅 and 𝜃∗ = 𝜃 so that the parameters under

the physical and risk-neutral measures are the same. Throughout this book, we
set 𝜆 = 0, but this is not always needed. Indeed, 𝜆 is embedded in the risk-neutral
parameters 𝜅∗ and 𝜃∗. Hence, when we estimate the risk-neutral parameters to price
options, we do not need to estimate 𝜆. Estimation of 𝜆 is the subject of its own
research, such as that by Bollerslev et al. (2011). For notational simplicity, through-
out this book we will drop the asterisk on the parameters and the tilde on the Brow-
nian motion when it is obvious that we are dealing with the risk-neutral measure.

For details on how the risk-neutral process is constructed, see Rouah (2013).

THE HESTON EUROPEAN CALL PRICE

In this section, we show that the call price in the Heston model can be expressed in
a manner that resembles the call price in the Black-Scholes model, which we present
in Equation (1.16). Authors sometimes refer to this characterization of the call price
as “Black-Scholes–like” or “à la Black-Scholes.” The time-t price of a European call
on a non-dividend-paying stock with spot price St, when the strike is K and the time
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to maturity is 𝜏 = T − t, is the discounted expected value of the payoff under the
risk-neutral measure ℚ

C(K) = e−r𝜏Eℚ[(ST − K)+]

= StP1 − Ke−r𝜏P2.
(1.3)

The last line of (1.3) is the “Black-Scholes–like” call price formula, with P1 replacing
Φ(d1), and P2 replacing Φ(d2) in the Black-Scholes call price (1.16).

By introducing two measures, ℚ and ℚS, the European call price of Equation
(1.3) can be written

C(K) = StℚS(ST > K) − Ke−r𝜏ℚ(ST > K). (1.4)

The measure ℚ uses the bond Bt as the numeraire, while the measure ℚS uses
the stock price St. Bakshi and Madan (2000) present a derivation of the call price
expressed as (1.4), but under a general setup. As shown in their paper, the change of
measure that leads to (1.4) is valid for a wide range of models, including the Black-
Scholes and Heston models. We will see later in this chapter that when ST follows
the lognormal distribution specified in the Black-Scholes model, then ℚS(ST > K) =
Φ(d1) and ℚ(ST > K) = Φ(d2). Hence, the characteristic function approach to pricing
options, pioneered by Heston (1993), applies to the Black-Scholes model also.

In the Heston model, it can be shown that P1 and P2 in (1.3) can be written

Pj = Prj(ln ST > ln K) = 1
2
+ 1

𝜋 ∫
∞

0
Re

[
e−i𝜙 ln Kfj(𝜙; x, v)

i𝜙

]
d𝜙, (1.5)

where i =
√
−1 is the imaginary unit, Pr1 = ℚS, Pr2 = ℚ, and fj(𝜙; x, v) are the char-

acteristic functions for the logarithm of the terminal stock price xT = ln ST . Heston
(1993) postulates that these characteristic functions are of the log linear form,

fj(𝜙; xt, vt) = exp
(
Cj(𝜏,𝜙) + Dj(𝜏,𝜙)vt + i𝜙xt

)
, (1.6)

where Cj and Dj are constant coefficients and 𝜏 = T − t is the time to maturity.
The coefficients can be shown to be

Dj(𝜏,𝜙) =
bj − 𝜌𝜎i𝜙 + dj

𝜎2

(
1 − edj𝜏

1 − gje
dj𝜏

)
(1.7)

and

Cj(𝜏,𝜙) = ri𝜙𝜏 + a
𝜎2

[
(bj − 𝜌𝜎i𝜙 + dj)𝜏 − 2 ln

(
1 − gje

dj𝜏

1 − gj

)]
, (1.8)

where a = 𝜅𝜃,

dj =
√

(𝜌𝜎i𝜙 − bj)2 − 𝜎2(2uji𝜙 − 𝜙2),

gj =
bj − 𝜌𝜎i𝜙 + dj

bj − 𝜌𝜎i𝜙 − dj
,

and with u1 = 1
2
, u2 = −1

2
, b1 = 𝜅 + 𝜆 − 𝜌𝜎, and b2 = 𝜅 + 𝜆. See Rouah (2013) for a

complete derivation of the coefficients (1.7) and (1.8).
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We use two functions to implement the Heston call price in VBA using the trape-
zoidal rule, HestonProb and HestonPriceTrapz. The first function calculates the char-
acteristic functions and returns the real part of the integrand. The functions allow
to price calls or puts, and allow for a dividend yield, as explained in the following
section. The following code snippet is taken from the Excel file Ch1Trapz.xls. To
conserve space, parts of the functions have been omitted.

Function HestonProb(phi As Double,...) As Double
' C = (r-q)*phi*tau*i + a/sigmaˆ2*((b - rho*sigma*i*phi + d)...
bigC = cAdd(Term3, term4)
' D = (b - rho*sigma*i*phi + d)/sigmaˆ2 * ((1-exp(d*tau))...
bigD = cProd(Term5, Term6)
' The characteristic function.
' f = cExp(C + D*v0 + phi*x*i)
f = cExp(cAdd(cAdd(bigC, dv0), phixi))
' Return the real part of the integrand.
' HestonProb = real(Exp(-i * phi * Log(K)) * f / i / phi)
philogKi = cProd(Complex(-Log(K) * phi, 0), i)
E = cDiv(e2, cProd(i, Complex(phi, 0)))
HestonProb = cReal(E)
End Function

The second function calculates the price of a European call C(K), or European
put P(K), by put-call parity in Equation (1.13). The function calls the HestonProb
function at every point of the integration grid and uses the trapezoidal rule for inte-
gration when all the integration points have been calculated.

Function HestonPriceTrapz(PutCall As String,...) As Double
' Integration increment and integration grid
dphi = (Uphi - Lphi) / (N - 1)
phi(1) = Lphi
For j = 2 To N

phi(j) = phi(j - 1) + dphi
Next j
' Weights for trapezoidal rule
W(1) = 0.5 * dphi
W(N) = 0.5 * dphi
For j = 2 To N - 1

W(j) = dphi
Next j
' Build the integrands for P1 and P2;
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For j = 1 To N
int1(j) = HestonProb(phi(j), ..., 1) * W(j)
int2(j) = HestonProb(phi(j), ..., 2) * W(j)

Next j
' The integrals and the probabilities
I1 = Sum(int1)
I2 = Sum(int2)
P1 = 0.5 + 1 / pi * I1
P2 = 0.5 + 1 / pi * I2
' The call price and put price by put call parity
HestonC = S * Exp(-q * T) * P1 - K * Exp(-r * T) * P2
HestonP = HestonC - S * Exp(-q * T) + K * Exp(-r * T)
End Function

Pricing European calls and puts is straightforward. For example, the price of a
six-month European put with strike K = 100 on a dividend-paying stock with spot
price S = 100 and yield q = 0.02, when the risk-free rate is r = 0.03 and using the
parameters 𝜅 = 5, 𝜎 = 0.5, 𝜌 = −0.8, 𝜃 = v0 = 0.05, and 𝜆 = 0, along with the inte-
gration grid 𝜙 ∈ [1e−8, 100] with 500 points is 5.7589. The price of the call with
identical features is 6.2527. This is illustrated in Figure 1.1, which is a screen shot
of the Excel file Ch1Trapz.xls.

If there is no dividend yield so that q = 0, then as expected, the put price decreases
to 5.3789, and the call price increases to 6.8677.

F IGURE 1.1 Heston Price Using the Trapezoidal Rule
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The Excel files Ch1GLa.xls and Ch1GLe GLo.xls implement the Heston price
using Gauss-Laguerre integration, and Gauss-Legendre and Gauss-Lobatto inte-
gration, respectively, each using 32 integration points. These rules will be covered
in Chapter 5. The pricing functions in these files are nearly identical to those for
the trapezoidal rule, except that the integration points and weights are hard-coded
outside the function. The functions also allow for the “Little Trap” formulation
of the characteristic function of Albrecher et al. (2007), which we discuss in the
following chapter.

The VBA function HestonProb from the Excel file Ch1GLa.xls illustrates this
point.

Function HestonProb(...,trap as integer) As Double
If trap = 0 Then

' Original Heston formulation of the c.f.
bigG = cDiv(Num2, Den2)
bigC = cAdd(Term3, term4)
bigD = cProd(Term5, Term6)

ElseIf trap = 1 Then
' Little Trap formulation of the c.f.
bigG = cDiv(Num2, Den2)
bigC = cAdd(Term3, term4)
bigD = cProd(Term5, Term6)

End If
' The characteristic function.
f = cExp(cAdd(cAdd(bigC, Dv0), phixi))
' Return the real part of the integrand.
HestonProb = cReal(E)
End Function

The function HestonPriceGaussLaguerre uses 32-point Gauss-Laguerre integra-
tion to produce the call or put price. Note that the integration points (x) and weights
(W) are passed as arguments to the function.

Function HestonPriceGaussLaguerre(..., x, W)
' Build the integrands for P1 and P2;
For j = 1 To N

phi = x(j)
weight = W(j)
int1(j) = HestonProb(phi, ...) * weight
int2(j) = HestonProb(phi, ...) * weight

Next j
End Function
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FIGURE 1.2 Heston Price Using Gauss-Laguerre Integration

Figure 1.2 shows that the Heston prices obtained using 32-point Gauss-
Laguerre integration are very close to those obtained with the trapezoidal rule in
Figure 1.1.

Some applications require VBA code for the Heston characteristic function. The
HestonProb function can be modified to return the characteristic function itself,
instead of the integrand. In certain instances, the integrand for Pj,

Re

[
e−i𝜙 ln Kfj(𝜙; x, v)

i𝜙

]
, (1.9)

is well behaved in that it poses no difficulties in numerical integration. This corre-
sponds to an integrand that does not oscillate much, that dampens quickly so that
a large upper limit in the numerical integration is not required, and that does not
contain portions that are excessively steep. In other instances, the integrand is not
well behaved, and numerical integration loses precision. To illustrate, in the Excel
file Ch1IntegrandPlot.xls, we plot the first integrand (j = 1) in Equation (1.9). This
plot appears in Figure 1.3. The integrand has a discontinuity at 𝜙 = 0, but this does
not show up in the figure.

The plot indicates an integrand that has a fair amount of oscillation, especially
at short maturities, and that is steep near the origin. In Chapter 2, we investigate
other problems that can arise with the Heston integrand.
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F IGURE 1.3 Heston Integrand and Maturity

DIV IDEND YIELD AND THE PUT PRICE

It is straightforward to include dividends into the model if it can be assumed that
the dividend payment is a continuous yield, q. In that case, r is replaced by r − q in
Equation for the stock price process

dSt = (r − q)Stdt +
√

vtStdW̃1,t. (1.10)

The solution for Cj becomes

Cj = (r − q)i𝜙𝜏 + 𝜅𝜃

𝜎2

[
(bj − 𝜌𝜎i𝜙 + dj)𝜏 − 2 ln

(
1 − gje

dj𝜏

1 − gj

)]
. (1.11)

To obtain the price P(K) of a European put, first obtain the price C(K) of a
European call, using a slight modification of Equation (1.3) to include the term e−q𝜏

for the dividend yield, as explained by Whaley (2006),

C(K) = Ste
−q𝜏P1 − Ke−r𝜏P2. (1.12)

The put price is found by put-call parity

P(K) = C(K) + Ke−r𝜏 − Ste
−q𝜏 . (1.13)
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CONSOLIDATING THE INTEGRALS

It is possible to regroup the integrals for the probabilities P1 and P2 into a single inte-
gral, which will speed up the numerical integration required in the call price calcula-
tion. Substituting the expressions for Pj into the call price in (1.12) and rearranging
produces

C(K) = 1
2

Ste
−q𝜏 − 1

2
Ke−r𝜏

+1
𝜋 ∫

∞

0
Re

[
e−i𝜙 ln K

i𝜙

(
Ste

−q𝜏 f1(𝜙; x, v) − Ke−r𝜏 f2(𝜙; x, v)
)]

d𝜙.
(1.14)

The advantage of this consolidation is that only a single numerical integration is
required instead of two, so the computation time will be reduced by almost one-half.
The put price can be obtained by using put-call parity, with the call price calculated
using (1.14).

The integrand of the consolidated form is in the function HestonProbConsol in
the Excel file Ch1ConsolCF.xls.

Function HestonProbConsol(phi As Double...) As Double
' Return the real part of the integrand.
expphilogK = cExp(cProd(cProd(im, Complex(phi, 0)) ...
HestonProbConsol = cReal(cProd(Term1, Term2))
End Function

This function is then fed into the HestonPriceConsol function, which calculates
the call price in accordance with Equation (1.14). The function uses the trapezoidal
rule for numerical integration.

Function HestonPriceConsol(PutCall As String...) As Double
' Build the consolidated integrand
For j = 1 To N

inte(j) = HestonProbConsol(phi(j),...) * W(j)
Next j
integral = Sum(inte)
' The call price and put price by put call parity
HestonC = 0.5 * S * Exp(-q * T) - 0.5 * K * Exp(-r * T) ...
HestonP = HestonC - S * Exp(-q * T) + K * Exp(-r * T)
' Output the option price
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If PutCall = "C" Then
HestonPriceConsol = HestonC

Else
HestonPriceConsol = HestonP

End If
End Function

The consolidated form produces exactly the same prices for the call and the put,
but with roughly one-half of the computation time.

BLACK-SCHOLES AS A SPECIAL CASE

With a little manipulation, it is straightforward to show that the Black-Scholes model
is nested inside the Heston model. The Black-Scholes model assumes the following
dynamics for the underlying price St under the risk-neutral measure ℚ

dSt = rSt + 𝜎BSStdW̃t. (1.15)

It is shown in many textbooks, such as that by Hull (2011) or Chriss (1996),
that (1.15) can be solved for the spot price St. The result is that, at time t, the natural
logarithm of the stock price at expiry ln ST is distributed as a normal random variable
with mean ln St + (r − 1

2
𝜎2

BS
)𝜏 and variance 𝜎2

BS
𝜏, where 𝜏 = T − t is the time to expiry.

Consequently, the Black-Scholes call price is given by

CBS(K) = StΦ(d1) − Ke−r𝜏Φ(d2) (1.16)

with

d1 =
ln(St∕K) + (r + 𝜎2

BS
∕2)𝜏

𝜎BS

√
𝜏

,

d2 =
ln(St∕K) + (r − 𝜎2

BS
∕2)𝜏

𝜎BS

√
𝜏

= d1 − 𝜎BS

√
𝜏,

(1.17)

where Φ(x) is the standard normal cumulative distribution function. The volatility
𝜎BS is assumed to be constant.

If we set 𝜎 = 0, the volatility of variance parameter in the Heston model, then the
Brownian component of the variance process in Equation (1.1) drops out. This will
produce volatility that is time varying but deterministic. If we further set 𝜃 = v0, then
this will produce volatility that is constant. Hence, setting 𝜎 = 0 and 𝜃 = v0 in the
Heston model leads us to expect the same price as that produced by the Black-Scholes
model, with 𝜎BS =

√
v0 as the Black-Scholes implied volatility.
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To implement the Black-Scholes model as a special case of the Heston model, we
cannot simply substitute 𝜎 = 0 into the pricing functions, because that will lead to
division by zero in the expressions for Cj(𝜏,𝜙) and Dj(𝜏,𝜙). Instead, we must use

Dj(𝜏,𝜙) =

(
uji𝜙 − 1

2
𝜙2

)(
1 − e−bj𝜏

)
bj

(1.18)

and

Cj(𝜏,𝜙) = ri𝜙𝜏 +
a
(

uji𝜙 − 1
2
𝜙2

)
bj

⎡⎢⎢⎢⎣𝜏 −
(

1 − e−bj𝜏
)

bj

⎤⎥⎥⎥⎦ . (1.19)

See Rouah (2013) for a detailed derivation.
The function HestonProbZeroSigma is used to implement the Black-Scholes

model as a special case of the Heston model (when 𝜎 = 0). This function is in the
Excel file Ch1BSHeston.xls. To conserve space, only the crucial portions of the func-
tion are presented.

Function HestonProbZeroSigma(phi As Double,...) As Double
' D = (u*i*phi - phiˆ2/2)*(1-exp(-b*tau))/b;
bigD = cDiv(cProd(Term1, Term2), Term3)
'C = (r-q)*i*phi*tau + a*(u*i*phi-0.5*phiˆ2)/b ...
bigC = cAdd(Term1, Term2)
' The characteristic function.
' f = exp(C + D*theta + i*phi*x)
f = cExp(cAdd(cAdd(bigC, Dtheta), iphix))
' Return the real part of the integrand.
HestonProbZeroSigma = cReal(cDiv(Num1, Den1))
End Function

The function HestonPriceZeroSigma uses the trapezoidal rule to obtain the price
when 𝜎 = 0. Again, only the relevant parts of the code are presented.

Function HestonPriceZeroSigma(...) As Double
' Integrands for probabilities P1 and P2
For j = 1 To N

P1_int(j) = HestonProbZeroSigma(phi(j), ..., 1) * W(j)
P2_int(j) = HestonProbZeroSigma(phi(j), ..., 2) * W(j)

Next j
End Function
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With the settings 𝜏 = 0.5, S = K = 100, q = 0.02, r = 0.03, 𝜅 = 5, v0 = 𝜃 = 0.05,
and 𝜆 = 0, the Heston model and Black-Scholes model with 𝜎BS =

√
v0 each return

6.4730 for the price of the call and 5.9792 for the price of the put.

CONCLUSION

The Heston model has become the most popular stochastic volatility model for pric-
ing equity options. This is in part due to the fact that the call price in the model is
available in closed form. Some authors refer to the call price as being in “semiclosed”
form because of the numerical integration required to obtain P1 and P2. But the
Black-Scholes model also requires numerical integration, to obtain Φ(d1) and Φ(d2).
In this sense, the Heston model produces call prices that are no less closed than those
produced by the Black-Scholes model. The difference is that programming languages
often have built-in routines for calculating the standard normal cumulative distri-
bution function, Φ(⋅) (usually by employing a polynomial approximation), whereas
the Heston probabilities are not built in and must be obtained using numerical inte-
gration. In the next chapter, we investigate some of the problems that can arise in
numerical integration when the integrand

Re

[
e−i𝜙 ln Kfj(𝜙; x, v)

i𝜙

]

is not well behaved. We encountered an example of such an integrand in Figure 1.3.


