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INTRODUCTION

It is probably no exaggeration to say that differential equations are the most common
and important mathematical model in science and engineering. Whenever we want
to model a system where the state variables vary with time and/or space, differential
equations are the natural tool for describing its behavior. The construction of a differ-
ential equation model demands a thorough understanding of what takes place in the
process we want to describe.

However, setting up a differential equation model is not enough, we must also
solve the equations. The process of finding useful solutions of a differential equation
is much a symbiosis of modeling, mathematics and choosing a method, analytical or
numerical. Therefore, when you are requested to solve a differential equation problem
from some application, it is useful to know facts about its modeling background, its
mathematical properties, and its numerical treatment. The last part involves choosing
appropriate numerical methods, adequate Software, and appealing ways of visualiz-
ing the result.

The interaction among modeling, mathematics, numerical methods, and program-
ming is nowadays referred to as scientific computing and its purpose is to perform
simulations of processes in science and engineering.

1.1 WHAT IS A DIFFERENTIAL EQUATION?

A differential equation is a relation between a function and its derivatives. If the func-
tion u depends on only one variable t, i.e., u = u(t), the differential equation is called
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2 INTRODUCTION

ordinary. If u depends on at least two variables t and x, i.e., u = u(x, t), the differential
equation is called partial.

1.2 EXAMPLES OF AN ORDINARY AND A PARTIAL DIFFERENTIAL
EQUATION

An example of an elementary ordinary differential equation (ODE) is

du
dt

= au (1.1)

where a is a parameter, in this case a real constant. It is frequently used to model, e.g.,
the growth of a population (a > 0) or the decay of a radioactive substance (a < 0).
The ODE (1.1) is a special case of differential equations called linear with constant
coefficients (see Chapter 2).

The differential equation (1.1) can be solved analytically, i.e., the solution can be
written explicitly as an algebraic formula. Any function of the form

u(t) = Ceat (1.2)

where C is an arbitrary constant satisfies (1.1) and is a solution. The expression (1.2)
is called the general solution. If C is known to have a certain value, however, we get
a unique solution, which, when plotted in the (t, u)-plane, gives a trajectory (solution
curve). This solution is called a particular solution.

The constant C can be determined, e.g., by selecting a point (t0, u0) in the
(t, u)-plane through which the solution curve shall pass. Such a point is called an
initial point and the demand that the solution shall go through this point is called the
initial condition. A differential equation together with an initial condition is called
an initial value problem (IVP) (Figure 1.1).
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Figure 1.1 General and particular solution
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Observe that the differential equation alone does not define a unique solution, we
also need an initial condition or other conditions. A plot of all trajectories, i.e., all
solutions of the ODE (1.1) in the (t, u)-plane will result in a graph that is totally black
as there are infinitely many solution curves filling up the whole plane.

In general, it is not possible to find analytical solutions of a differential equation.
The “simple” differential equation

du
dt

= t2 + u2 (1.3)

cannot be solved analytically. If we want to plot some of its trajectories, we have to
use numerical methods.

An example of an elementary partial differential equation (PDE) is

𝜕u
𝜕t

+ a
𝜕u
𝜕x

= 0 (1.4)

where a is a parameter, in this case a real constant. The solution of (1.4) is a function
of two variables u = u(x, t). This differential equation is called the 1D (one space
dimension, x) advection equation. Physically it describes the evolution of a scalar
quantity, e.g., temperature u(x, t) carried along the x-axis by a flow with constant
velocity a. It is also known as the linear convection equation and is an example of a
hyperbolic PDE (see Chapter 5).

The general solution of this differential equation is (see Exercise 1.2.4)

u(x, t) = F(x − at) (1.5)

where F is any arbitrary differentiable function of one variable. This is indeed a large
family of solutions! The three functions

u(x, t) = x − at, u(x, t) = e−(x−at)
2
, u(x, t) = sin(x − at)

are just three solutions out of the infinitely many solutions of this PDE.
To obtain a unique solution for t > 0 we need an initial condition. If the differen-

tial equation is valid for all x, i.e., −∞ < x < ∞ and u(x, t) is known for t = 0, i.e.,
u(x, 0) = u0(x) where u0(x) is a given function, the initial value function, we get the
particular solution (Figure 1.2)

u(x, t) = u0(x − at) (1.6)

Physically, (1.6) corresponds to the propagation of the initial function u0(x) along
the x-axis with velocity |a|. The propagation is to the right if a > 0 and to the left if
a < 0.

The graphical representation can alternatively be done in 3D (Figure 1.3).
When a PDE is formulated on a semi-infinite or finite x-interval, boundary condi-

tions are needed in addition to initial conditions to specify a unique solution.
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Figure 1.2 Propagation of a solution of the advection equation
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Most PDEs can only be solved with numerical methods. Only for very special
classes of PDE problems it is possible to find an analytic solution, often in the form
of an infinite series.

Exercise 1.2.1. If a is a complex constant a = 𝜇 + i𝜔what is the real and imaginary
part of eat?

Exercise 1.2.2. What conditions are necessary to impose on 𝜇 and 𝜔 if Re(eat) for
t > 0 is to be

a) exponentially decreasing,

b) exponentially increasing,

c) oscillating with constant amplitude,

d) oscillating with increasing amplitude,

e) oscillating with decreasing amplitude?

Exercise 1.2.3. If a is a complex constant what condition on a is needed if eat is to
be bounded for t ≥ 0?

Exercise 1.2.4. Show that the general solution of ut + aux = 0 is u(x, t) = F(x − at)
by introducing the transformation

𝜉 = x + at, 𝜂 = x − at

Transform the original problem to a PDE in the variables 𝜉 and 𝜂, and solve this PDE.
Sketch the two coordinate systems in the same graph.

Exercise 1.2.5. Show that a solution of (1.4) starting at t = 0, x = x0 is constant
along the straight line x − at = x0. This means that the initial value u(x0, 0) = u0(x0)
is transported unchanged along this line, which is called a characteristic of the hyper-
bolic PDE (1.4).

1.3 NUMERICAL ANALYSIS, A NECESSITY FOR SCIENTIFIC
COMPUTING

In scientific computing, the numerical methods used to solve mathematical models
should be robust, i.e., they should be reliable and give accurate values for a large range
of parameter values. Sometimes, however, a method may fail and give unexpected
results. Then, it is important to know how to investigate why an erroneous result has
occurred and how it can be remedied.

Two basic concepts in numerical analysis are stability and accuracy. When
choosing a method for solving a differential equation problem, it is necessary to
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have some knowledge about how to analyze the result of the method with respect to
these concepts. This necessity has been well expressed by the late Prof. Germund
Dahlquist, famous for his fundamental research in the theory of numerical treatment
of differential equations: “There is nothing as practical as a little good theory.”

As an example of what may be unexpected results, choose the well-known vibra-
tion equation, occurring in, e.g., mechanical vibrations, electrical vibrations, and
sound vibrations. The form of this equation with initial conditions is

m
d2u
dt2

+ c
du
dt

+ ku = f (t), u(0) = u0,
du
dt

(0) = v0 (1.7)

In mechanical vibrations, m is the mass of the vibrating particle, c the damping coef-
ficient, k the spring constant, f (t) an external force acting on the particle, u0 the initial
position, and v0 the initial velocity of the particle. The five quantitiesm, c, k, u0, v0 are
referred to as the parameters of the problem.

Solving (1.7) numerically for a set of values of the parameters is an example of
simulation of amechanical process and it is desirable to choose a robust method, i.e., a
method for which the results are reliable for a large range of values of the parameters.
The following two examples based on the vibration equation show that unexpected
results depending on instability and/or bad accuracy may occur.

Example 1.1. Assume that f (t) = 0 (free vibrations) and the following values of
the parameters:m = 1, c = 0.4, k = 4.5, u0 = 1, v0 = 0.Without toomuch knowledge
about mechanics, we would expect the solution to be oscillatory and damped, i.e.,
the amplitude of the vibrations is decreasing. If we use the simple Euler method with
constant stepsize h = 0.1 (see Chapter 3), we obtain the following numerical solution,
visualized together with the exact solution (Figure 1.4).

The graph shows a numerical solution that is oscillatory but unstable with increas-
ing amplitude. Why? The answer is given in Chapter 3. For the moment just accept
that insight in stability concepts and experience in handling unexpected results are
needed for successful simulations.

Example 1.2. When the parameters in equation (1.7) are changed to m = 1,
c = 10, k = 103, u0 = 0, v0 = 0, and f (t) = 10−4 sin(40t) (forced vibrations) we
obtain the following numerical result with a method from a commercial software
product for solving differential equations (Figure 1.5).

The graph shows that the numerical result is not correct. Why? In this example
there is an accuracy problem. The default accuracy used in the method is not suffi-
cient; the corresponding numerical parametermust be tuned appropriately. Accuracy
for ODEs is discussed in Chapter 3.

Numerical solution of PDEs can also give rise to unexpected results. As an
example consider the PDE (1.4), which has the property of propagating the initial
function along the x-axis. One important application of this equation occurs in gas
dynamics where simulation of shock waves is essential. A simple 1D model of a
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Figure 1.6 Numerical solution of the advection equation

shockwave is a stepfunction. Assume the initial function u0(x) is a stepfunction
(Figure 1.6). In the exact solution of (1.4) with a stepfunction as initial condition,
the solution propagates along the x-axis without changing shape.

However, using a numerical method, where simple difference approximations are
used in both the t- and the x-direction, wiggles are generated as the solution prop-
agates (see the graphs in Figure 1.6). The shape of the initial function is distorted.
Why? Answers will be given in Chapter 8.

1.4 OUTLINE OF THE CONTENTS OF THIS BOOK

After this introductory chapter, the text is organized so thatODEs are treated first, fol-
lowed by PDEs. The aim of this book is to be an introduction to scientific computing.
Therefore, not only numerical methods are presented but also

1. how to set up a mathematical model in the form of an ODE or a PDE;
2. an outline of the mathematical properties of differential equation problems and

explicit analytical solutions (when they exist); and
3. examples of how results are presented with proper visualization.

The ODE part starts in Chapter 2 presenting some mathematical properties of ODEs,
first the basic and important problem class of ODE systems which are linear with
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constant coefficients applied to important models from classical mechanics, electrical
networks, and chemical kinetics. This is followed by numerical treatment of ODE
problems in general, following the classical subdivision into IVPs in Chapter 3, and
boundary value problems, BVPs, in Chapter 4. For IVPs, the finite difference method
(FDM) is described starting with the elementary Euler method. Important concepts
brought up for ODEs are accuracy and stability which is followed up also for PDEs
in later chapters. For BVPs, both the FDM and the finite element method (FEM) are
described.

Important application areas where ODEs are used as mathematical model are pre-
sented, selected examples are described in the chapters and exercises, sometimes
suitable for computer labs, are inserted into the text.

PDEs are introduced in Chapter 5, which deals with some mathematical proper-
ties of their solutions. There is also a presentation of several of the important PDEs
of science and engineering, such as the equations of Navier–Stokes, Maxwell and
Schrödinger.

The three chapters to follow are devoted to the numerical treatment of PDEs
following the classical subdivision into parabolic, elliptic, and hyperbolic problems.
Concepts from the ODE chapters such as accuracy and stability are treated for
time-dependent, parabolic and hyperbolic PDEs. For stationary problems (ellip-
tic PDEs), sparse linear systems of algebraic equations are essential and hence
discussed.

Selected models introduced in Chapters 2, 5, and 9 are used as illustrations of
the different methods introduced. Models are taken from mechanics, fluid dynam-
ics, electromagnetics, reaction engineering, biochemistry, control theory, quantum
mechanics, solid mechanics, etc. and are suitable for computer labs.

In Chapter 9, an outline ofmathematical modeling is brought up with the intention
of giving a feeling of the principles usedwhen a differential equation (ODE or PDE) is
set up from conservation laws and constitutive relations. It is also shown by examples
how a general differential equation model can be simplified by suitable assumptions.
This chapter can be studied in parallel with Chapters 3, 4, 6, 7, and 8 if the reader
wants to see how the models are constructed.

In a number of Appendices (A.1–A.6), different parts of mathematics and numer-
ical mathematics that are essential for numerical treatment of differential equations
are presented as summaries.

Appendix B gives an overview of existing software for scientific computing with
emphasis on the use of MATLAB® for programming and COMSOL Multiphysics®

for modeling and parameter studies. Many of the exercises in this chapter and in
Chapters 2–8 are solved with MATLAB programs in this appendix.

Appendix C contains a number of computer exercises to support the chapters con-
taining numerical solution of ODEs and PDEs.

In Chapter 10, a number of projects are suggested. These projects involve problems
where knowledge from several chapters and appendices are needed to compute a
solution.
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