
Exam LX0-103

CO
PYRIG

HTED
 M

ATERIA
L

Chapter

1
Exploring Linux
Command-Line Tools

THE FOLLOWING EXAM OBJECTIVES ARE
COVERED IN THIS CHAPTER:

 ✓ 103.1 Work on the command line

 ✓ 103.2 Process text streams using filters

 ✓ 103.4 Use streams, pipes, and redirects

 ✓ 103.7 Search text files using regular expressions

Linux borrows heavily from Unix, and Unix began as a
text-based operating system (OS). Unix and Linux retain
much of this heritage, which means to understand how to use

and, especially administer Linux, you must understand at least the basics of its command-
line tools. Using command-line tools requires the use of a shell. A shell is a program thatl
accepts and interprets text-mode commands and provides an interface to the system.

This chapter begins with basic shell information, including the various shell programs
available and the procedures for using them. From there, this chapter covers streams,
pipes, and redirection, which you can use to move input and output between programs or
between fi les and programs. These techniques are frequently combined with text processing
using fi lters—commands you can use to manipulate text without the help of a conventional
text editor. Sometimes you must manipulate text in an abstract way, using codes to
represent several different types of text. This chapter, therefore, covers this topic as well.

Understanding Command-Line Basics

Before you do anything else with Linux, you should understand how to use a Linux shell.
The shell allows you to enter commands as needed. Which commands can be entered
depends on which shell program is running. Several of the available shell programs are
briefl y described.

In using shell commands, you should also understand shell environment variables,
which are placeholders for data that may be useful to many programs. Finally, it is helpful
to know how to get help with the shell commands you’re trying to use.

Exploring Your Linux Shell Options
The shell to be used for entering commands is confi gured for each individual user, and
Linux provides a range of available shells. A complete shell list would be quite long, but the
following shells are among the more common choices:

bash The GNU Bourne Again Shell (bash) is based on the earlier Bourne shell for Unix
but extends it in several ways. In Linux, bash is the most common default shell for user
accounts, and it’s the one emphasized in this book and on the exam.

sh The Bourne shell upon which bash is based goes by the name sh. It’s not often used in
Linux and the sh command is often a pointer to the bash shell or other shells.

Understanding Command-Line Basics 5

tcsh This shell is based on the earlier C shell (csh). It’s a fairly popular shell in some
circles, but no major Linux distributions make it the default shell. Although it’s similar
to bash in many respects, some operational details differ. For instance, you don’t assign
environment variables the same way in tcsh as in bash.

csh The original C shell isn’t used much on Linux, but if a user is familiar with csh, tcsh
makes a good substitute.

ksh The Korn shell (ksh) was designed to take the best features of the Bourne shell and the
C shell and extend them. It has a small but dedicated following among Linux users.

zsh The Z shell (zsh) takes shell evolution further than the Korn shell, incorporating
features from earlier shells and adding still more.

In addition to these shells, dozens more obscure ones are available. In Linux, most
users run bash because it is the most popular shell. Some other OSs use csh or tcsh as
the default, so if your users have backgrounds on non-Linux Unix-like OSs, they may be
more familiar with these other shells. You can change a user’s default shell by editing their
account, as described in Chapter 7, “Administering the System.”

Be aware that there are two types of default shells. The default interactive shell is the
shell program a user uses to enter commands, run programs from the command line,
run shell scripts, and so on. The other default shell type is a default system shell. The
default system shell is used by the Linux system to run system shell scripts, typically at
startup.

The fi le /bin/sh is a pointer to the system’s default system shell—normally /bin/bash

for Linux. However, be aware that, on some distributions, the /bin/sh points to a different
shell. For example, on Ubuntu, /bin/sh points to the dash shell, /bin/dash.

Using a Shell
Linux shell use is fairly straightforward for anybody who’s used a text-mode OS before:
You type a command, possibly including options to it, and the computer executes the
command. For the most part, Linux commands are external—that is, they’re programs
that are separate from the shell.

A few commands are internal to the shell, though, and knowing the distinction can be
important. You should also know some of the tricks that can make using the command
shell easier—how to have the computer complete a long command or fi lename, retrieve a
command you’ve recently run, or edit a command you’ve recently used (or haven’t yet fully
entered).

Starting a Shell
If you log into Linux using a text-mode login screen, you have logged into a virtual console
terminal and, most likely, you’ll be dropped directly into your default shell. The shell
program is what presents the prompt and accepts subsequent commands.

6 Chapter 1 ■ Exploring Linux Command-Line Tools

If you log into Linux using a graphical user interface (GUI) login screen, you’ll have to
start a terminal emulator manually in order to reach your default shell. Some GUIs provide
a menu option, such as xterm or terminal, to start a terminal emulator program. These
programs enable you to run text-mode programs within Linux, and by default they come
up running your shell. If you can’t fi nd such a menu option, look for a menu option that
enables you to run an arbitrary command. Select it, and type xterm or konsole as the
command name. This will launch a terminal emulator program that will run a shell.

Once you start a terminal or log into a virtual console terminal, the shell will provide
you with a prompt for entering commands. Remember that the shell is a program providing
you with an interface to the Linux system.

A good fi rst command to try, uname, will show what operating system is being run:

$ uname

Linux

$

That’s not too interesting. You can fi nd out additional information by tacking on the -a
option to the command. Be sure to include the necessary space between the command and
the option:

$ uname -a

Linux server01.class.com 2.6.32-431.5.1.el6.x86_64 #1 SMP Wed Feb 12

00:41:43 UTC 2014 x86_64 x86_64 x86_64 GNU/Linux

$

The uname -a command provides a lot more information, including the current Linux
kernel being used (2.6.32) as well as the system’s hostname (server01.class.com). The
uname command is an external command. The shell also provides internal commands. It’s
important to know the difference between the two command types, as explained in the
next section.

Using Internal and External Commands
Internal commands are, as you might expect, built into the shell program. Thus they are
also called built-in commands. Most shells offer a similar set of internal commands, but
shell-to-shell differences do exist. Internal commands that you’re likely to use enable you to
perform some common tasks:

Change the Working Directory Whenever you’re running a shell, you’re working in a
specifi c directory. The cd command changes the current working directory. For instance,
typing cd /home/sally changes the current working directory to the /home/sally
directory.

You can use shortcut characters with the cd command as well. The tilde (~) character is a
useful shortcut; it stands for your home directory. Thus typing cd ~ will have the same
effect as typing cd /home/sally if your home directory is /home/sally.

Display the Working Directory The pwd command displays (“prints” to the screen) the
current working directory. This command is helpful, especially after you have changed
your working directory, to ensure you ended up in the right place.

Understanding Command-Line Basics 7

Display a Line of Text The echo command displays the text you enter. For instance,
typing echo Hello causes the system to display the string Hello. This may seem pointless,
but it’s useful in scripts (described in Chapter 9, “Writing Scripts, Confi guring Email, and
Using Databases”), and it can also be a good way to review the contents of environment
variables (described later in this chapter, in the section “Using Environment Variables”).

Time an Operation The time command times how long subsequent commands take to
execute. For instance, typing time pwd tells you how long the system took to execute the
pwd command. The time is displayed after the full command terminates. Three times are
displayed: total execution time (aka real time), user CPU time, and system CPU time. The
fi nal two values tell you about CPU time consumed, which is likely to be much less than the
total execution time.

Set Options In its most basic form, the set command displays a wide variety of options
relating to bash shell operation. These options are formatted much like environment vari-
ables, but they aren’t the same things. You can pass various options to set to have it affect
a wide range of shell operations.

Terminate the Shell The exit and logout commands both terminate the shell. The exit

command terminates any shell, but the logout command terminates only login shells.
Login shells are shell programs that are launched automatically when you initiate a text-
mode login as opposed to those that run in xterm windows or other terminal emulators.

The preceding list isn’t complete. Later sections of this chapter and later
chapters describe some additional internal commands. Consult your shell’s
documentation for a complete list of its internal commands.

You can quickly determine if a command is a built-in command by using the type com-
mand. Just enter the command type before the name of the command you wish to check:

$ type pwd

pwd is a shell builtin

$

$ type cd

cd is a shell builtin

$

$ type bash

bash is /bin/bash

$

Some of these internal commands are duplicated by external commands that do the
same thing. But those external commands aren’t always installed on all systems. You can
see if there are internal commands with installed duplicate external commands by using the
-a option on the type command:

$ type -a cd

cd is a shell builtin

8 Chapter 1 ■ Exploring Linux Command-Line Tools

$

$ type -a pwd

pwd is a shell builtin

pwd is /bin/pwd

$

You can see that on this system, there is no external cd command installed. However, it
does have an external pwd command installed.

Keep in mind that even when external commands are installed, the internal command
takes precedence. To access the external command, you must provide the complete external
command path, as in typing /usr/bin/time rather than time.

Confusion over Internal and External Commands

When duplicate internal and external commands exist, they sometimes produce subtly

different results or accept different options. These differences may occasionally cause

problems if you are unaware of them. For example, the time built-in command returns

slightly different results than the /usr/bin/time external command:

$ time pwd

/home/Christine

real 0m0.002s

user 0m0.002s

sys 0m0.001s

$

$ /usr/bin/time pwd

/home/Christine

0.00user 0.00system 0:00.04elapsed 24%CPU

 (0avgtext+0avgdata 2336maxresident)k

56inputs+0outputs (1major+173minor)pagefaults 0swaps

$

As you can see, bash’s internal time shows the time to execute the pwd command in a

very nice format, while the external time command /usr/bin/time is not only a little

sloppy in appearance, it also provides additional details. Be mindful of the potential

behavior differences between internal and external commands.

When you type a command that’s not recognized by the shell as one of its internal com-
mands, the shell checks its path to fi nd a program by that name to execute it. The path is a
list of directories in which commands can be found. It’s defi ned by the $PATH environment

Understanding Command-Line Basics 9

variable, as described shortly in “Using Environment Variables.” A typical user account
has about half a dozen or so directories in its path. You can add and remove directories to
the shell’s path by changing the $PATH environment variable in a shell confi guration fi le, as
described in “Exploring Shell Confi guration” later in this chapter.

You can run programs that aren’t on the path by providing a complete path name on
the command line. For instance, typing ./myprog runs the myprog program in the current
directory. Typing /home/arthur/thisprog runs the thisprog program in the /home/

arthur directory.

The root account should normally have a shorter path than ordinary
user accounts. Typically, you’ll omit directories that store GUI and other
user-oriented programs from root’s path in order to discourage use
of the root account for routine operations. This minimizes the risk of
security breaches related to buggy or compromised binaries being run
by root. Most important, root’s path should never include the current

directory (./). Placing this directory in root’s path makes it possible for a
local troublemaker to trick root into running replacements for common
programs. Omitting the current directory from ordinary user paths is also
generally a good idea. If this directory must be part of the ordinary user
path, it should appear at the end of the path so that the standard programs
take precedence over any replacement programs in the current directory.

Whether you need to enter the path or not for a command, the program fi le must be
marked as executable. This is done via the execute bit that’s stored with the fi le. Standard
programs are marked as executable when they’re installed, but if you need to adjust a
program’s executable status, you can do so with the chmod command, as described in
Chapter 4, “Managing Files.”

Performing Some Shell Command Tricks
Many users fi nd typing commands to be tedious and error-prone. This is particularly true
of slow or sloppy typists. For this reason, Linux shells include various tools that can help
speed up operations. The fi rst of these is command completion: Type part of a command or
a fi lename (as an option to the command), and then press the Tab key. The shell tries to fi ll
in the rest of the command or the fi lename. If just one command or fi lename matches the
characters you’ve typed so far, the shell fi lls the rest of the command (or fi lename) for you
and adds a space after it.

If the characters you’ve typed don’t uniquely identify a command (or fi lename), the shell
fi lls in what it can and then stops. Depending on the shell and its confi guration, it may
beep. If you press the Tab key again, the system responds by displaying the possible
completions. You can then type another character or two and, if you haven’t completed the
command (or fi lename), press the Tab key again to have the process repeat.

The most fundamental Linux commands have fairly short names—mv, ls, set,
and so on. However, some other commands are much longer, such as traceroute or

10 Chapter 1 ■ Exploring Linux Command-Line Tools

service --status-all. Filenames can also be quite lengthy—up to 255 characters on
many fi lesystems. Thus command completion can save a lot of time when you’re typing.
It can also help you avoid typos.

The most popular Linux shells, including bash and tcsh, support command
and filename completion. Some older shells, though, don’t support this
helpful feature.

Another useful shell shortcut is history. The shell history keeps a record of every com-
mand you type. If you’ve typed a long command recently and want to use it again or use a
minor variant of it, you can pull the command out of the history.

There are several rather easy methods to retrieve commands. It comes down to deter-
mining the method you like best:

Retrieve a Command The simplest way to do this is to press the Up arrow key on your
keyboard; this brings up the previous command. Pressing the Up arrow key repeatedly
moves through multiple commands so you can fi nd the one you want. If you overshoot,
press the Down arrow key to move down the history. The Ctrl+P and Ctrl+N keystrokes
double for the Up and Down arrow keys, respectively.

Search for a Command Press Ctrl+R to begin a backward (reverse) search, and begin
typing characters that should be unique to the command you want to fi nd. The characters
you type need not be the ones that begin the command; they can exist anywhere in the
command. You can either keep typing until you fi nd the correct command or, after you’ve
typed a few characters, press Ctrl+R repeatedly until you fi nd the one you want.

The Ctrl+S keystroke is used to search forward in the command history. You can press
the Ctrl+S keystroke while using the backward search. This reverses the history search from
backward to forward. If you used a backward search and have passed by what you need,
then this keystroke is useful.

If the Ctrl+S keystroke causes your terminal to hang, press Ctrl+Q to resume
terminal operations. To keep your terminal from hanging when Ctrl+S is
used, type stty -ixon at the command line.

In either event, if you can’t find the command you want or if you change your mind and
want to terminate the search, press Ctrl+G to do so.

Frequently, after fi nding a command in the history, you want to edit it. The bash shell,
like many shells, provides editing features modeled after those of the Emacs editor:

Move within the Line Press Ctrl+A or Ctrl+E to move the cursor to the start or end of
the line, respectively. The Left and Right arrow keys move within the line a character at a
time. Ctrl+B and Ctrl+F do the same, moving backward and forward within a line. Pressing
Ctrl plus the Left or Right arrow key moves backward or forward a word at a time, as does
pressing Esc and then B or F.

Understanding Command-Line Basics 11

Delete Text Pressing Ctrl+D or the Delete key deletes the character under the cursor.
Pressing the Backspace key deletes the character to the left of the cursor. Pressing Ctrl+K
deletes all text from the cursor to the end of the line. Pressing Ctrl+X and then Backspace
deletes all of the text from the cursor to the beginning of the line.

Transpose Text Pressing Ctrl+T transposes the character before the cursor with the
character under the cursor. Pressing Esc and then T transposes the two words immediately
before (or under) the cursor.

Change Case Pressing Esc and then U converts text from the cursor to the end of the word
to uppercase. Pressing Esc and then L converts text from the cursor to the end of the word to
lowercase. Pressing Esc and then C converts the letter under the cursor (or the fi rst letter of
the next word) to uppercase, leaving the rest of the word unaffected.

Invoke an Editor You can launch a full-fl edged editor to edit a command by pressing
Ctrl+X followed by Ctrl+E. The bash shell attempts to launch the editor defi ned by the
$FCEDIT or $EDITOR environment variable, or it launches Emacs as a last resort.

These editing commands are just the most useful ones supported by bash. In practice,
you’re likely to make heavy use of command and fi lename completion, the command
history, and perhaps a few editing features.

If you prefer the vi editor to Emacs, you can use a vi-like mode in bash by
typing set -o vi. (vi is described in Chapter 5, “Booting Linux and Edit-
ing Files.”)

The history command provides an interface to view and manage the history. Typing
history alone displays all of the commands in the history (typically the latest 500
commands).

To retrieve the last command in your shell history, type !! and press Enter. This will not
only show you the command you recalled but execute it as well:

$!!

type -a pwd

pwd is a shell builtin

pwd is /bin/pwd

$

You can execute a command by number via typing an exclamation mark followed by
its number, as in !210 to execute command 210. Typing history -c clears the history,
which can be handy if you’ve recently typed commands you’d rather not have discovered by
others, such as commands that include passwords.

The bash history is stored in the .bash_history fi le in your home directory. This is an
ordinary plain-text fi le, so you can view it with a text editor or a command such as less
(described later, in “Paging through Files with less”).

12 Chapter 1 ■ Exploring Linux Command-Line Tools

Because your bash history is stored in a file, it can be examined by
anybody who can read that file. Some commands enable you to type
passwords or other sensitive data on the same line as the commands
themselves, which can therefore be risky. The ~/.bash_history file does
not record what you type in response to other programs’ prompts, just t
what you type at the bash prompt itself. Thus, if you have a choice, you
should let commands that require passwords (or other sensitive data)
prompt you to enter this data rather than enter such information as
options to the command at the bash prompt.

In Exercise 1.1, you’ll experiment with your shell’s completion and command-editing tools.

E X E R C I S E 1 .1

Editing Commands

To experiment with your shell’s completion and command-editing tools, follow these steps:

1. Log in as an ordinary user.

2. Create a temporary directory by typing mkdir test. (Directory and fi le manipula-

tion commands are described in more detail in Chapter 4.)

3. Change into the test directory by typing cd test.

4. Create a few temporary fi les by typing touch one two three. This command

creates three empty fi les named one, two, and three.

5. Type ls -l t and, without pressing the Enter key, press the Tab key. The system

may beep at you or display two three. If it doesn’t display two three, press the

Tab key again and it should do so. This reveals that either two or three is a valid

completion to your command, because these are the two fi les in the test directory

whose fi lenames begin with the letter t.

6. Type h, and again without pressing the Enter key, press the Tab key. The system

should complete the command (ls -l three), at which point you can press the Enter

key to execute it. (You’ll see information on the fi le.)

7. Press the Up arrow key. You should see the ls -l three command appear on the

command line.

8. Press Ctrl+A to move the cursor to the beginning of the line.

9. Press the Right arrow key once, and type es (without pressing the Enter key). The

command line should now read less -l three.

10. Press the Right arrow key once, and press the Delete key three times. The command

should now read less three. Press the Enter key to execute the command. (Note

that you can do so even though the cursor isn’t at the end of the line.) This invokes

the less pager on the three fi le. (The less pager is described more fully later in

Understanding Command-Line Basics 13

“Paging through Files with less.”) Because this fi le is empty, you’ll see a mostly

empty screen.

11. Press the Q key to exit from the less pager.

Exploring Shell Configuration
Shells, like many Linux programs, are confi gured through fi les that hold confi guration
options in a plain-text format. The bash confi guration fi les are actually bash shell scripts,
which are described more fully in Chapter 9. A couple of examples of these confi guration
fi les are ~/.bashrc and /etc/profile.

Even without knowing much about shell scripting, you can make simple changes to
these fi les. Edit them in your favorite text editor, and change whatever needs changing.
For instance, you can add directories to the $PATH environment variable, which takes a
colon-delimited list of directories.

Be careful when changing your bash configuration files, particularly the
global bash configuration files. Save a backup of the original file before
making changes, and test your changes immediately by logging in using
another virtual terminal. If you spot a problem, revert to your saved copy
until you determine the problem’s causes and create a working file.

Using Environment Variables
Environment variables are like variables in programming languages—they hold data to
be referred to by the variable name. Environment variables differ from programs’ internal
variables in that they’re part of the program’s environment, and other programs, such as
the shell, can modify this environment. Programs can rely on environment variables to set
information that can apply to many different programs. For instance, many text-based
programs need to know the capabilities of the terminal program you use. This information
is conveyed in the $TERM environment variable, which is likely to hold a value such as xterm
or linux. Programs that need to position the cursor, display color text, or perform other
tasks that depend on terminal-specifi c capabilities can customize their output based on this
information.

Chapter 9 describes environment variables and their manipulation in more detail. For
the moment, you should know that you can set them in bash by using an assignment (=)
operator followed by the export command. A fun environment variable to change is the
$PS1 variable. It modifi es your shell prompt:

$

$ PS1="My New Prompt: "

My New Prompt: export PS1

My New Prompt:

14 Chapter 1 ■ Exploring Linux Command-Line Tools

You can combine these two commands into a single form:

My New Prompt: export PS1="Prompt: "

Prompt:

Prompt:

Either method sets the $PS1 environment variable to a new setting. When setting an
environment variable, you omit the dollar sign, but subsequent references include a dollar
sign to identify the environment variable as such. Thereafter, programs that need this infor-
mation can refer to the environment variable. In fact, you can do so from the shell yourself
using the echo command:

$ Prompt: echo $PS1

Prompt:

An echo of the $PS1 variable value can be a little confusing because it just shows your
current prompt setting. However, you can get a better feel for displaying an environment
variable by viewing the $PATH variable using echo:

Prompt: echo $PATH

/usr/lib64/qt-3.3/bin:/usr/local/bin:/bin:/usr/bin:

/usr/local/sbin:/usr/sbin:/sbin:/home/Christine/bin

Prompt:

That’s a little better. Remember, the $PATH environment variable provides the shell with
a directory list to search when you’re entering command or program names.

Some environment variables, including the $PATH environment variable,
are set automatically when you log in via the shell configuration files. If a
program uses environment variables, its documentation should say so.

You can also view the entire environment by typing env. The result is likely to be several
dozen lines of environment variables and their values. Chapter 9 describes what many of
these variables are in more detail.

To delete an environment variable, use the unset command. The command takes the
name of an environment variable (without the leading $ symbol) as an option. For instance,
unset PS1 removes the $PS1 environment variable. But if you do this, you will have no
shell prompt!

Getting Help
Linux provides a text-based help system known as man. This command’s name is short for
manual, and its entries (its man pages) provide succinct summaries of what a command, fi le,
or other feature does. For instance, to learn about man itself, you can type man man. The
result is a description of the man command.

Understanding Command-Line Basics 15

To peruse the manual pages for a particular command or topic, you type man followed
by the command or topic as an option. For example, to read about the export command,
you would type man export at the prompt. If you wanted to learn more about the shell
built-in (internal) commands, you would type man builtin at the prompt.

The man utility uses the less pager by default to display information. This program
displays text a page at a time. Press the spacebar to move forward a page, Esc followed by
V to move back a page, the arrow keys to move up or down a line at a time, the slash (/)
key to search for text, and so on. (Type man less to learn all the details, or consult the
upcoming section “Paging through Files with less.”) When you’re done, press Q to exit
less and the man page it’s displaying.

You aren’t stuck using the less pager with the man utility. You can change the pager by
using the -P option. For example, if you decided to use the more pager instead to look up
information on the uname command, you would type man -P /bin/more uname at the
shell prompt.

Occasionally, the problem arises where you can’t remember the exact name of a
command to look up. The man utility has an option to help you here. You can use the
-k option along with a keyword or two to search through the man pages:

$ man -k "system information"

dumpe2fs (8) - dump ext2/ext3/ext4 filesystem information

[…]

uname (1) - print system information

$

The returned information (shown as a partial listing above) can give you some clues as
to your desired command name. Be aware that poor keyword choices may not produce the
results you seek.

On some older Linux distributions, you may get no results from a man

utility keyword search. This is most likely due to a missing whatis
database. The whatis database contains a short description of eache man

page, and it is necessary for keyword searches. To create it or update it,
type makewhatis at the prompt. You will need to do this as superuser, and
it may take several minutes to run.

Linux man pages are organized into several sections, which are summarized in
Table 1.1. Sometimes a single keyword has entries in multiple sections. For instance, passwd
has entries under both section 1 and section 5. In most cases, man returns the entry in the
lowest-numbered section, but you can force the issue by preceding the keyword by the
section number. For instance, typing man 5 passwd returns information on the passwd fi le
format rather than the passwd command.

16 Chapter 1 ■ Exploring Linux Command-Line Tools

TA B LE 1.1 Manual sections

Section number Description

1 Executable programs and shell commands

2 System calls provided by the kernel

3 Library calls provided by program libraries

4 Device files (usually stored in /dev)

5 File formats

6 Games

7 Miscellaneous (macro packages, conventions, and so on)

8 System administration commands (programs run mostly or exclusively
by root)

9 Kernel routines

Some programs have moved away from man pages to info pages. The basic purpose of
info pages is the same as that for man pages. However, info pages use a hypertext format
so that you can move from section to section of the documentation for a program. Type
info info to learn more about this system.

There are also pages specifi cally for the built-in (internal) commands called the help

pages. To read the help pages for a particular built-in command, type help command. For
instance, to get help on the pwd command, type help pwd at the shell prompt. To learn
more about how to use the help pages, type help help at the shell prompt.

The man pages, info pages, and help pages are usually written in a terse style. They’re
intended as reference tools, not tutorials! They frequently assume basic familiarity with the
command, or at least with Linux in general. For more tutorial information, you must look
elsewhere, such in books or on the Web.

Using Streams, Redirection, and Pipes

Streams, redirection, and pipes are some of the more powerful command-line tools in
Linux. Linux treats the input to and output from programs as a stream, which is a data
entity that can be manipulated. Ordinarily, input comes from the keyboard and output
goes to the screen. You can redirect these input and output streams to come from or go to
other sources, such as fi les. Similarly, you can pipe the output of one program as input into
another program. These facilities can be great tools to tie together multiple programs.

Using Streams, Redirection, and Pipes 17

Part of the Unix philosophy to which Linux adheres is, whenever possible,
to do complex things by combining multiple simple tools. Redirection
and pipes help in this task by enabling simple programs to be combined
together in chains, each link feeding off the output of the preceding link.

Exploring File Descriptors
To begin understanding redirection and pipes, you must fi rst understand the different fi le
descriptors. Linux handles all objects as fi les. This includes a program’s input and output
stream. To identify a particular fi le object, Linux uses fi le descriptors:

Standard Input Programs accept keyboard input via standard input, abbreviated STDIN.
Standard input’s fi le descriptor is 0 (zero). In most cases, this is the data that comes into the
computer from a keyboard.

Standard Output Text-mode programs send most data to their users via standard out-
put, abbreviated STDOUT. Standard output is normally displayed on the screen, either in
a full-screen text-mode session or in a GUI terminal emulator, such as an xterm. Standard
output’s fi le descriptor is 1 (one).

Standard Error Linux provides a second type of output stream, known as standard error, rr
abbreviated STDERR. Standard error’s fi le descriptor is 2 (two). This output stream is
intended to carry high-priority information such as error messages. Ordinarily, standard
error is sent to the same output device as standard output, so you can’t easily tell them
apart. You can redirect one independently of the other, though, which can be handy. For
instance, you can redirect standard error to a fi le while leaving standard output going to
the screen. This allows you to view the error messages at a later time.

Internally, programs treat STDIN, STDOUT, and STDERR just like data fi les—they
open them, read from or write to the fi les, and close them when they’re done. This is why
the fi le descriptors are necessary and why they can be used in redirection.

Redirecting Input and Output
To redirect input or output, you use operators following the command, including any
options it takes. For instance, to redirect the STDOUT of the echo command, you would
type something like this:

$ echo $PATH 1> path.txt

$

$ cat path.txt

/usr/lib64/qt-3.3/bin:/usr/local/bin:/bin:/usr/bin:

/usr/local/sbin:/usr/sbin:/sbin:/home/Christine/bin

$

The result is that the fi le path.txt contains the output of the command (in this case, the
value of the $PATH environment variable). The operator used to perform this redirection
was > and the fi le descriptor used to redirect STDOUT was 1 (one).

18 Chapter 1 ■ Exploring Linux Command-Line Tools

The cat command allows you to display a file’s contents to STDOUT. It is
described further in the section “Processing Text Using Filters” later in this
chapter.

A nice feature of redirecting STDOUT is that you do not have to use its fi le descriptor,
only the operator. Here’s an example of leaving out the 1 (one) fi le descriptor, when redi-
recting STDOUT:

$ echo $PATH > another_path.txt

$

$ cat another_path.txt

/usr/lib64/qt-3.3/bin:/usr/local/bin:/bin:/usr/bin:

/usr/local/sbin:/usr/sbin:/sbin:/home/Christine/bin

$

You can see that even without the STDOUT fi le descriptor, the output was redirected to
a fi le. However, the redirection operator (>) was still needed.

You can also leave out the STDIN fi le descriptor when using the appropriate redirection
operator. Redirection operators exist to achieve several effects, as summarized in Table 1.2.

TA B LE 1. 2 Common redirection operators

Redirection operator Effect

> Creates a new file containing standard output. If the specified file
exists, it’s overwritten. No file descriptor necessary.

>> Appends standard output to the existing file. If the specified file
doesn’t exist, it’s created. No file descriptor necessary.

2> Creates a new file containing standard error. If the specified file
exists, it’s overwritten. File descriptor necessary.

2>> Appends standard error to the existing file. If the specified file
doesn’t exist, it’s created. File descriptor necessary.

&> Creates a new file containing both standard output and standard error.
If the specified file exists, it’s overwritten. No file descriptors necessary.

< Sends the contents of the specified file to be used as standard input.
No file descriptor necessary.

<< Accepts text on the following lines as standard input. No file
descriptor necessary.

<> Causes the specified file to be used for both standard input and
standard output. No file descriptor necessary.

Using Streams, Redirection, and Pipes 19

Most of these redirectors deal with output, both because there are two types of output
(standard output and standard error) and because you must be concerned with what to
do in case you specify a fi le that already exists. The most important input redirector is <,
which takes the specifi ed fi le’s contents as standard input.

A common trick is to redirect standard output or standard error to /dev/
null. This file is a device that’s connected to nothing; it’s used when you
want to get rid of data. For instance, if the whine program is generating too
many unimportant error messages, you can type whine 2> /dev/null to
run it and discard its error messages.

One redirection operator that requires elaboration is the << operator. This operator
implements something called a here document. A here document takes text from subse-t
quent lines as standard input. Chances are you won’t use this redirector on the command
line. Subsequent lines are standard input, so there’s no need to redirect them. Rather, you
might use this command in a script to pass data to an interactive program. Unlike with
most redirection operators, the text immediately following the << code isn’t a fi lename;
instead, it’s a word that’s used to mark the end of input. For instance, typing someprog
<< EOF causes someprog to accept input until it sees a line that contains only the string
EOF (without even a space following it).

Some programs that take input from the command line expect you to
terminate input by pressing Ctrl+D. This keystroke corresponds to an
end-of-file marker using the American Standard Code for Information
Interchange (ASCII).

Piping Data between Programs
Programs can frequently operate on other programs’ outputs. For instance, you might use
a text-fi ltering command (such as the ones described shortly in “Processing Text Using
Filters”) to manipulate text output by another program. You can do this with the help of
redirection operators: send the fi rst program’s standard output to a fi le, and then redi-
rect the second program’s standard input to read from that fi le. This method is awkward,
though, and it involves the creation of a fi le that you might easily overlook, leading to
unnecessary clutter on your system.

The solution is to use data pipes (aka pipelines). A pipe redirects the fi rst program’s stan-
dard output to the second program’s standard input, and it is denoted by a vertical bar (|):

$ first | second

For instance, suppose that first generates some system statistics, such as system uptime,t

CPU use, number of users logged in, and so on. This output might be lengthy, so you want
to trim it a bit. You might therefore use second, which could be a script or command that
echoes from its standard input only the information in which you’re interested. (The grep

command, described in “Using grep,” is often used in this role.)

20 Chapter 1 ■ Exploring Linux Command-Line Tools

Pipes can be used in sequences of arbitrary length:

$ first |t second |d third |d fourth |h fifth |h sixth [h ...]

Another redirection tool often used with pipes is the tee command. This command
splits standard input so that it’s displayed on standard output and in as many fi les as you
specify. Typically, tee is used in conjunction with data pipes so that a program’s output can
be both stored and viewed immediately. For instance, to view and store the output of the
echo $PATH command, you might type this:

$ echo $PATH | tee path.txt

/usr/lib64/qt-3.3/bin:/usr/local/bin:/bin:/usr/bin:

/usr/local/sbin:/usr/sbin:/sbin:/home/Christine/bin

$

$ cat path.txt

/usr/lib64/qt-3.3/bin:/usr/local/bin:/bin:/usr/bin:

/usr/local/sbin:/usr/sbin:/sbin:/home/Christine/bin

$

Notice that not only were the results of the command displayed to STDOUT, but they
were also redirected to the path.txt fi le by the tee command. Ordinarily, tee overwrites
any fi les whose names you specify. If you want to append data to these fi les, pass the -a
option to tee.

Generating Command Lines
Sometimes you’ll fi nd yourself needing to conduct an unusual operation on your Linux
server. For instance, suppose you want to remove every fi le in a directory tree that belongs
to a certain user. With a large directory tree, this task can be daunting!

The usual fi le-deletion command, rm (described in more detail in Chapter 4), doesn’t
provide an option to search for and delete every fi le that matches a specifi c criterion. One
command that can do the search portion is find (also described in more detail in Chapter 4).
This command displays all of the fi les that match the criteria you provide. If you could
combine the output of find to create a series of command lines using rm, the task would be
solved. This is precisely the purpose of the xargs command.

The xargs command builds a command from its standard input. The basic syntax for
this command is as follows:

xargs [options] [command [d initial-arguments]]

The command is the command you want to execute, and d initial-arguments is a list of s

arguments you want to pass to the command. The options ares xargs options; they aren’t
passed to command. When you run xargs, it runs command once for every word passed to itd

on standard input, adding that word to the argument list for command. If you want to pass
multiple options to the command, you can protect them by enclosing the group in quota-
tion marks.

Using Streams, Redirection, and Pipes 21

For instance, consider the task of deleting several fi les that belong to a particular user.
You can do this by piping the output of find to xargs, which then calls rm:

find / -user Christine | xargs -d "\n" rm

The fi rst part of this command (find / -user Christine) fi nds all of the fi les in direc-
tory tree (/) and its subdirectories that belong to user Christine. (Since you are looking
through the entire directory tree, you need superuser privileges for this to work properly.)
This list is then piped to xargs, which adds each input value to its own rm command.
Problems can arise if fi lenames contain spaces because by default xargs uses both spaces
and newlines as item delimiters. The -d "\n" option tells xargs to use only newlines as
delimiters, thus avoiding this problem in this context. (The find command separates each
found fi lename with a newline.)

It is important to exercise caution when using the rm command with
superuser privileges. This is especially true when piping the files to
delete into the rm command. You could easily delete the wrong files
unintentionally.

A tool that’s similar to xargs in many ways is the backtick (̀), which is a character to
the left of the 1 key on most keyboards. The backtick is not the same as the single quotet
character ('), which is located to the right of the semicolon (;) on most keyboards.

Text within backticks is treated as a separate command whose results are substituted
on the command line. For instance, to delete those user fi les, you can type the following
command:

rm `find ./ -user Christine`

The backtick solution works fi ne in some cases, but it breaks down in more complex
situations. The reason is that the output of the backtick-contained command is passed to
the command it precedes as if it had been typed at the shell. By contrast, when you use
xargs, it runs the command you specify (rm in these examples) once for each of the input
items. What’s more, you can’t pass options such as -d "\n" to a backtick. Thus these two
examples will work the same in many cases, but not in all of them.

Use of the backtick is falling out of favor because backticks are so often
confused with single quotation marks. In several shells, you can use $()

instead. For instance, the backtick example used in the preceding example
would be changed to

rm $(find ./ -user Christine)

This command works just as well, and it is much easier to read and
understand.

22 Chapter 1 ■ Exploring Linux Command-Line Tools

Processing Text Using Filters

In keeping with Linux’s philosophy of providing small tools that can be tied together
via pipes and redirection to accomplish more complex tasks, many simple commands to
manipulate text are available. These commands accomplish tasks of various types, such as
combining fi les, transforming the data in fi les, formatting text, displaying text, and sum-
marizing data.

Many of the following descriptions include input-file specifications. In
most cases, you can omit these input-file specifications, in which case the
utility reads from standard input instead.

File-Combining Commands
The fi rst text-fi ltering commands are those used to combine two or more fi les into one fi le.
Three important commands in this category are cat, join, and paste, which join fi les end
to end based on fi elds in the fi le or by merging on a line-by-line basis.

Combining Files with cat
The cat command’s name is short for concatenate, and this tool does just that: It links
together an arbitrary number of fi les end to end and sends the result to standard output.
By combining cat with output redirection, you can quickly combine two fi les into one:

$ cat first.txt second.txt > combined.txt

$

$ cat first.txt

Data from first file.

$

$ cat second.txt

Data from second file.

$

$ cat combined.txt

Data from first file.

Data from second file.

$

Although cat is offi cially a tool for combining fi les, it’s also commonly used to display
the contents of a short fi le to STDOUT. If you type only one fi lename as an option, cat
displays that fi le. This is a great way to review short fi les; but for long fi les, you’re better off
using a full-fl edged pager command, such as more or less.

Processing Text Using Filters 23

You can add options to have cat perform minor modifi cations to the fi les as it combines
them:

Display Line Ends If you want to see where lines end, add the -E or --show-ends option.
The result is a dollar sign ($) at the end of each line.

Number Lines The -n or --number option adds line numbers to the beginning of every line.
The -b or --number-nonblank option is similar, but it numbers only lines that contain text.

Minimize Blank Lines The -s or --squeeze-blank option compresses groups of blank
lines down to a single blank line.

Display Special Characters The -T or --show-tabs option displays tab characters as ^I.
The -v or --show-nonprinting option displays most control and other special characters
using carat (̂) and M- notations.

The tac command is similar to cat, but it reverses the order of lines in the output:

$ cat combined.txt

Data from first file.

Data from second file.

$

$ tac combined.txt

Data from second file.

Data from first file.

$

Joining Files by Field with join
The join command combines two fi les by matching the contents of specifi ed fi elds within
the fi les. Fields are typically space-separated entries on a line. However, you can specify
another character as the fi eld separator with the -t char option, where r char is the characterr

you want to use. You can cause join to ignore case when performing comparisons by using
the -i option.

The effect of join may best be understood through a demonstration. Consider Listing
1.1 and Listing 1.2, which contain data on telephone numbers. Listing 1.1 shows the names
associated with those numbers, and Listing 1.2 shows whether the numbers are listed or
unlisted.

Listing 1.1: Demonstration file containing telephone numbers and names

555-2397 Beckett, Barry

555-5116 Carter, Gertrude

555-7929 Jones, Theresa

555-9871 Orwell, Samuel

24 Chapter 1 ■ Exploring Linux Command-Line Tools

Listing 1.2: Demonstration file containing telephone number listing status

555-2397 unlisted

555-5116 listed

555-7929 listed

555-9871 unlisted

You can display the contents of both fi les using join:

$ join listing1.1.txt listing1.2.txt

555-2397 Beckett, Barry unlisted

555-5116 Carter, Gertrude listed

555-7929 Jones, Theresa listed

555-9871 Orwell, Samuel unlisted

By default, join uses the fi rst fi eld as the one to match across fi les. Because Listing 1.1
and Listing 1.2 both place the phone number in this fi eld, it’s the key fi eld in the output.
You can specify another fi eld by using the -1 or -2 option to indicate the join fi eld for
the fi rst or second fi le, respectively. For example, type join -1 3 -2 2 cameras.txt

lenses.txt to join using the third fi eld in cameras.txt and the second fi eld in lenses.

txt. The -o FORMAT option enables more complex specifi cations for the output fi le’s format.T

You can consult the man page for join for even more details.
The join command can be used at the core of a set of simple customized database-

manipulation tools using Linux text-manipulation commands. It’s very limited by itself,
though. For instance, it requires its two fi les to have the same ordering of lines. (You can
use the sort command to ensure this is so.)

Merging Lines with paste
The paste command merges fi les line by line, separating the lines from each fi le with tabs,
as shown in the following example, using Listings 1.1 and 1.2 again:

$ paste listing1.1.txt listing1.2.txt

555-2397 Beckett, Barry 555-2397 unlisted

555-5116 Carter, Gertrude 555-5116 listed

555-7929 Jones, Theresa 555-7929 listed

555-9871 Orwell, Samuel 555-9871 unlisted

You can use paste to combine data from fi les that aren’t keyed with fi elds suitable for
use by join. Of course, to be meaningful, the fi les’ line numbers must be exactly equiva-
lent. Alternatively, you can use paste as a quick way to create a two-column output of
textual data; however, the alignment of the second column may not be exact if the fi rst
column’s line lengths aren’t exactly even.

File-Transforming Commands
Many of Linux’s text-manipulation commands are aimed at transforming the contents of
fi les. These commands don’t actually change fi les’ contents but instead send the changed

Processing Text Using Filters 25

fi les’ contents to standard output. You can then pipe this output to another command or
redirect it into a new fi le.

An important file-transforming command is sed. This command is very
complex and is covered later in this chapter in “Using sed.”

Converting Tabs to Spaces with expand
Sometimes text fi les contain tabs but programs that need to process the fi les don’t cope well
with tabs. In such a case, you may want to convert tabs to spaces. The expand command
does this.

By default, expand assumes a tab stop every eight characters. You can change this
spacing with the -t num or --m tabs=num option, where m num is the tab spacing value.m

Displaying Files in Octal with od
Some fi les aren’t easily displayed in ASCII. For example, most graphics fi les, audio fi les,
and so on use non-ASCII characters that look like gibberish. Worse, these characters can
do strange things to your display if you try to view such a fi le with cat or a similar tool.
For instance, your font may change, or your console may begin beeping uncontrollably.
Nonetheless, you may sometimes want to display such fi les, particularly if you want to
investigate the structure of a data fi le.

In such a case, od (whose name stands for octal dump) can help. It displays a fi le in an
unambiguous format—octal (base 8) numbers by default. For instance, consider Listing 1.2
as parsed by od:

$ od listing1.2.txt

0000000 032465 026465 031462 033471 072440 066156 071551 062564

0000020 005144 032465 026465 030465 033061 066040 071551 062564

0000040 005144 032465 026465 034467 034462 066040 071551 062564

0000060 005144 032465 026465 034071 030467 072440 066156 071551

0000100 062564 005144

0000104

The fi rst fi eld on each line is an index into the fi le in octal. For instance, the second line
begins at octal 20 (16 in base 10) bytes into the fi le. The remaining numbers on each line
represent the bytes in the fi le. This type of output can be diffi cult to interpret unless you’re
well versed in octal notation and perhaps in the ASCII code.

Although od is nominally a tool for generating octal output, it can generate many
other output formats, such as hexadecimal (base 16), decimal (base 10), and even ASCII
with escaped control characters. Consult the man page for od for details on creating these
variants.

26 Chapter 1 ■ Exploring Linux Command-Line Tools

Sorting Files with sort
Sometimes you’ll create an output fi le that you want sorted. To do so, you can use a
command that’s called, appropriately enough, sort. This command can sort in several
ways, including the following:

Ignore Case Ordinarily, sort sorts by ASCII value, which differentiates between upper-
case and lowercase letters. The -f or --ignore-case option causes sort to ignore case.

Month Sort The -M or --month-sort option causes the program to sort by three-letter
month abbreviation (JAN through DEC).

Numeric Sort You can sort by number by using the -n or --numeric-sort option.

Reverse Sort Order The -r or --reverse option sorts in reverse order.

Sort Field By default, sort uses the fi rst fi eld as its sort fi eld. You can specify another fi eld
with the -k field or d --key=field option. (The d field can be two numbered fi elds separated d

by commas, to sort on multiple fi elds.)

As an example, suppose you wanted to sort Listing 1.1 by fi rst name. You could do so
like this:

$ sort -k 3 listing1.1.txt

555-2397 Beckett, Barry

555-5116 Carter, Gertrude

555-9871 Orwell, Samuel

555-7929 Jones, Theresa

The sort command supports a large number of additional options, many of them quite
exotic. Consult sort’s man page for details.

Breaking a File into Pieces with split
The split command can split a fi le into two or more fi les. Unlike most of the
text-manipulation commands described in this chapter, this command requires you to enter
an output fi lename or, more precisely, an output fi lename prefi x, to which is added an alpha-
betic code. You must also normally specify how large you want the individual fi les to be:

Split by Bytes The -b size or e --bytes=size option breaks the input fi le into pieces of e

size bytes. This option can have the usually undesirable consequence of splitting the fi le e

mid-line.

Split by Bytes in Line-Sized Chunks You can break a fi le into fi les of no more than a
 specifi ed size without breaking lines across fi les by using the -C=size or e --line-bytes=size

option. (Lines will still be broken across fi les if the line length is greater than size.)

Split by Number of Lines The -l lines ors --lines=lines option splits the fi le intos

chunks with no more than the specifi ed number of lines.

Processing Text Using Filters 27

As an example, consider breaking Listing 1.1 into two parts by number of lines:

$ split -l 2 listing1.1.txt numbers

The result is two fi les, numbersaa and numbersab, which together hold the original con-
tents of listing1.1.txt.

If you don’t specify any defaults (as in split listing1.1.txt), the result is output
fi les split into 1,000-line chunks, with names beginning with x (xaa, xab, and so on). If you
don’t specify an input fi lename, split uses standard input.

Translating Characters with tr
The tr command changes individual characters from standard input. Its syntax is as follows:

tr [options] SET1 [1 SET2]

You specify the characters you want replaced in a group (SET1) and the characters with
which you want them to be replaced as a second group (SET2). Each character in SET1 is1

replaced with the one at the equivalent position in SET2. Here’s an example using Listing 1.1:

$ tr BCJ bc < listing1.1.txt

555-2397 beckett, barry

555-5116 carter, Gertrude

555-7929 cones, Theresa

555-9871 Orwell, Samuel

The tr command relies on standard input, which is the reason for the input
redirection (<) in this example. This is the only way to pass the command
a file.

This example translates some, but not all, of the uppercase characters to lowercase. Note
that SET2 in this example was shorter than 2 SET1. The result is that tr substitutes the last
available letter from SET2 for the missing letters. In this example, the2 J in Jones became a c.
The -t or --truncate-set1 option causes tr to truncate SET1 to the size of 1 SET2 instead.2

Another tr option is -d, which causes the program to delete the characters from SET1.
When using -d, you omit SET2 entirely.2

The tr command also accepts a number of shortcuts, such as [:alnum:] (all numbers
and letters), [:upper:] (all uppercase letters), [:lower:] (all lowercase letters), and
[:digit:] (all digits). You can specify a range of characters by separating them with dashes
(-), as in A-M for characters between A and M, inclusive. Consult tr’s man page for a complete
list of these shortcuts.

Converting Spaces to Tabs with unexpand
The unexpand command is the logical opposite of expand; it converts multiple spaces to
tabs. This can help compress the size of fi les that contain many spaces and can be helpful if
a fi le is to be processed by a utility that expects tabs in certain locations.

28 Chapter 1 ■ Exploring Linux Command-Line Tools

Like expand, unexpand accepts the -t num orm --tabs=num option, which sets the tab m

spacing to once every num characters. If you omit this option,m unexpand assumes a tab stop
every eight characters.

Deleting Duplicate Lines with uniq
The uniq command removes duplicate lines. It’s most likely to be useful if you’ve sorted
a fi le and don’t want duplicate items. For instance, suppose you want to summarize
Shakespeare’s vocabulary. You might create a fi le with all of the Bard’s works, one word
per line. You can then sort this fi le using sort and pass it through uniq. Using a shorter
example fi le containing the text to be or not to be, that is the question (one word
per line), the result looks like this:

$ sort shakespeare.txt | uniq

be

is

not

or

question

that

the

to

Note that the words to and be, which appeared in the original fi le twice, appear only
once in the uniq-processed version.

File-Formatting Commands
The next three commands—fmt, nl, and pr—reformat the text in a fi le. The fi rst of these
is designed to reformat text fi les, such as when a program’s README documentation fi le uses
lines that are too long for your display. The nl command numbers the lines of a fi le, which
can be helpful in referring to lines in documentation or correspondence. Finally, pr is a
print-processing tool; it formats a document in pages suitable for printing.

Reformatting Paragraphs with fmt
Sometimes text fi les arrive with outrageously long line lengths, irregular line lengths, or
other problems. Depending on the diffi culty, you may be able to cope simply by using
an appropriate text editor or viewer to read the fi le. If you want to clean up the fi le a bit,
though, you can do so with fmt. If called with no options (other than the input fi lename, if
you’re not having it work on standard input), the program attempts to clean up paragraphs,
which it assumes are delimited by two or more blank lines or by changes in indentation.
The new paragraph formatting defaults to paragraphs that are no more than 75 characters
wide. You can change this with the -width, -w width, and --width=width options, whichh

set the line length to width characters.h

Processing Text Using Filters 29

Numbering Lines with nl
As described earlier, in “Combining Files with cat,” you can number the lines of a fi le
with that command. The cat line-numbering options are limited, though, if you need to
do complex line numbering. The nl command is the tool to use in this case. In its simplest
form, you can use nl alone to accomplish much the same goal as cat -b achieves: number-
ing all the non-blank lines in a fi le. You can add many options to nl to achieve various
special effects:

Body Numbering Style You can set the numbering style for the bulk of the lines with the
-b style or e --body-numbering=style option, wheree style is a style format code, describede

shortly.

Header and Footer Numbering Style If the text is formatted for printing and has
headers or footers, you can set the style for these elements with the -h style or e --header-

numbering=style option for the header ande -f style or e --footer-numbering=style option e

for the footer.

Page Separator Some numbering schemes reset the line numbers for each page. You can
tell nl how to identify a new page with the -d=code or e --section-delimiter=code option, e

where code is a code for the character that identifi es the new page.e

Line-Number Options for New Pages Ordinarily, nl begins numbering each new page
with line 1. If you pass the -p or --no-renumber option, though, it doesn’t reset the line
number with a new page.

Number Format You can specify the numbering format with the -n format or t --number-

format=format option, where t format ist ln (left justifi ed, no leading zeros), rn (right justi-
fi ed, no leading zeros), or rz (right justifi ed with leading zeros).

The body, header, and footer options enable you to specify a numbering style for each of
these page elements, as described in Table 1.3.

TA B LE 1. 3 Styles used by nl

Style code Description

t The default behavior is to number lines that aren’t empty. You can make this
default explicit by using a style code of t.

a This style code causes all lines to be numbered, including empty lines.

n This style code causes all line numbers to be omitted, which may be
desirable for headers or footers.

pREGEXP This option causes only lines that match the specified regular expression
(REGEXP) to be numbered. Regular expressions are described later in “UsingPP
Regular Expressions.”

30 Chapter 1 ■ Exploring Linux Command-Line Tools

As an example, suppose you’ve created a script, buggy, but you fi nd that it’s not working
as you expect. When you run it, you get error messages that refer to line numbers, so you
want to create a version of the script with lines that are numbered for easy reference. You
can do so by calling nl with the option to number all lines, including blank lines (-b a):

$ nl -b a buggy > numbered-buggy.txt

Because the input file doesn’t have any explicit page delimiters, the output
will be numbered in a single sequence. The nl command doesn’t try to
impose its own page-length limits.

The numbered-buggy.txt fi le created by this command isn’t useful as a script because of
the line numbers that begin each line. You can, however, load it into a text editor or display
it with a pager such as less to view the text and see the line numbers along with the com-
mands they contain.

Preparing a File for Printing with pr
If you want to print a plain-text fi le, you may want to prepare it with headers, footers, page
breaks, and so on. The pr command was designed to do this. In its most basic form, you
pass the command a fi le:

$ pr myfile.txt

The result is text formatted for printing on a line printer—that is, pr assumes an
80-character line length in a monospaced font. Of course, you can also use pr in a pipe,
either to accept input piped from another program or to pipe its output to another program.
(The recipient program might be lpr, which is used to print fi les, as described in Chapter 6,
“Confi guring the X Window System, Localization, and Printing.”)

By default, pr creates output that includes the original text with headers, which lists the
current date and time, the original fi lename, and the page number. You can tweak the out-
put format in a variety of ways, including the following:

Generate Multicolumn Output Passing the -numcols or s --columns=numcols options

creates output with numcols columns. For example, if you typeds pr -3 myfile.txt, the
output would be displayed in three columns. Note that pr doesn’t reformat text; if lines are
too long, they’re truncated or run over into multiple columns.

Generate Double-Spaced Output The -d or --double-space option causes double-spaced
output from a single-spaced fi le.

Use Form Feeds Ordinarily, pr separates pages by using a fi xed number of blank lines.
This works fi ne if your printer uses the same number of lines that pr expects. If you have
problems with this issue, you can pass the -F, -f, or --form-feed option, which causes pr
to output a form-feed character between pages. This works better with some printers.

Set Page Length The -l lines or s --length=lines option sets the length of the pages

in lines.

Processing Text Using Filters 31

Set the Header Text The -h text or t --header=text option sets the text to be displayed in t

the header, replacing the fi lename. To specify a multi-word string, enclose it in quotes, as in
--header="My File". The -t or --omit-header option omits the header entirely.

Set Left Margin and Page Width The -o chars or s --indent=chars option sets the lefts

margin to chars characters. This margin size is added to the page width, which defaults to s

72 characters and can be explicitly set with the -w chars or s --width chars option.s

These options are just the beginning; pr supports many more options, which are
described in its man page. As an example of pr in action, consider printing a double-spaced
and numbered version of a confi guration fi le (say, /etc/profile) for your reference. You
can do this by piping together cat and its -n option to generate a numbered output, pr and
its -d option to double-space the result, and lpr to print the fi le:

$ cat -n /etc/profile | pr -d | lpr

The result should be a printout that might be handy for taking notes on the confi gura-
tion fi le. One caveat, though: If the fi le contains lines that approach or exceed 80 characters
in length, the result can be single lines that spill across two lines. The result will be
disrupted page boundaries. As a workaround, you can set a somewhat short page length
with -l and use -f to ensure that the printer receives form feeds after each page:

$ cat -n /etc/profile | pr -dfl 50 | lpr

The pr command is built around assumptions about printer capabilities that
were reasonable in the early 1980s. It’s still useful today, but you might pre-
fer to look into GNU Enscript (www.codento.com/people/mtr/genscript/).
This program has many of the same features as pr, but it generates Post-
Script output that can take better advantage of modern printer features.

File-Viewing Commands
Sometimes you just want to view a fi le or part of a fi le. A few commands can help you
accomplish this goal without loading the fi le into a full-fl edged editor.

As described earlier, the cat command is also handy for viewing short files.

Viewing the Starts of Files with head
Sometimes all you need to do is see the fi rst few lines of a fi le. This may be enough to
identify what a mystery fi le is, for instance; or you may want to see the fi rst few entries of a
log fi le to determine when that fi le was started. You can accomplish this goal with the head

32 Chapter 1 ■ Exploring Linux Command-Line Tools

command, which echoes the fi rst 10 lines of one or more fi les to standard output. (If you
specify multiple fi lenames, each one’s output is preceded by a header to identify it.) You can
modify the amount of information displayed by head in two ways:

Specify the Number of Bytes The -c num or m --bytes=num option tells m head to display num

bytes from the fi le rather than the default 10 lines.

Specify the Number of Lines You can change the number of lines displayed with the -n

num or m --lines=num option.m

Viewing the Ends of Files with tail
The tail command works just like head, except that tail displays the last 10 lines of a fi le.t
(You can use the -c or --bytes, and -n or --lines options to change the amount of data
displayed, just as with head.) This command is useful for examining recent activity in log
fi les or other fi les to which data may be appended.

The tail command supports several options that aren’t present in head and that enable
the program to handle additional duties, including the following:

Track a File The -f or --follow option tells tail to keep the fi le open and to display new
lines as they’re added. This feature is helpful for tracking log fi les because it enables you to
see changes as they’re made to the fi le.

Stop Tracking on Program Termination The --pid=pid option tells d tail to terminate
tracking (as initiated by -f or --follow) once the process with a process ID (PID) of pid
terminates. (PIDs are described in more detail in Chapter 2, “Managing Software.”)

Some additional options provide more obscure capabilities. Consult tail’s man page
for details.

You can combine head with tail to display or extract portions of a file. For
instance, suppose you want to display lines 11 through 15 of a file, sample.
txt. You can extract the first 15 lines of the file with head and then display
the last five lines of that extraction with tail. The final command would be
head -n 15 sample.txt | tail -n 5.

Paging through Files with less
The less command’s name is a joke; it’s a reference to the more command, which was an
early fi le pager. The idea was to create a better version of more, so the developers called it
less (“less is more”).

The idea behind less (and more, for that matter) is to enable you to read a fi le a screen
at a time. When you type less filename, the program displays the fi rst few lines of
filename. You can then page back and forth through the fi le:

■ Pressing the spacebar moves forward through the file a screen at a time.

■ Pressing Esc followed by V moves backward through the file a screen at a time.

Processing Text Using Filters 33

■ The Up and Down arrow keys move up or down through the file a line at a time.

■ You can search the file’s contents by pressing the slash (/) key followed by the search
term. For instance, typing /portable finds the first occurrence of the string portable

after the current position. Typing a slash followed by the Enter key moves to the next
occurrence of the search term. Typing n alone repeats the search forward, while typing
N alone repeats the search backward.

■ You can search backward in the file by using the question mark (?) key rather than the
slash key.

■ You can move to a specific line by typing g followed by the line number, as in g50 to
go to line 50.

■ When you’re done, type q to exit from the program.

Unlike most of the programs described here, less can’t be readily used in a pipe, except
as the fi nal command in the pipe. In that role, though, less is very useful because it enables
you to examine lengthy output conveniently.

Although less is quite common on Linux systems and is typically
configured as the default text pager, some Unix-like systems use more in
this role. Many of less’s features, such as the ability to page backward in a
file, don’t work in more.

One additional less feature can be handy: Typing h displays less’s internal help system.
This display summarizes the commands you may use, but it’s long enough that you must
use the usual less paging features to view it all! When you’re done with the help screens,
just type q as if you were exiting from viewing a help document with less. This action will
return you to your original document.

File-Summarizing Commands
The fi nal text-fi ltering commands described here are used to summarize text in one way
or another. The cut command takes segments of an input fi le and sends them to standard
output, while the wc command displays some basic statistics on the fi le.

Extracting Text with cut
The cut command extracts portions of input lines and displays them on standard output.
You can specify what to cut from input lines in several ways:

By Byte The -b list or t --bytes=list option cuts the specifi ed list of bytes from the input t

fi le. (The format of list is described shortly.)t

By Character The -c list ort --characters=list option cuts the specifi ed list of characterst

from the input fi le. In practice, this method and the by-byte method usually produce identical
results. (If the input fi le uses a multibyte encoding system, though, the results won’t be identical.)

34 Chapter 1 ■ Exploring Linux Command-Line Tools

By Field The -f list or t --fields=list option cuts the specifi ed list of fi elds from thet

input fi le. By default, a fi eld is a tab-delimited section of a line, but you can change the
delimiting character with the -d char, rr --delim=char, or rr --delimiter=char option, where r

char is the character you want to use to delimit fi elds. Ordinarily, r cut echoes lines that
don’t contain delimiters. Including the -s or --only-delimited option changes this behav-
ior so that the program doesn’t echo lines that don’t contain the delimiter character.

Many of these options take a list option, which is a way to specify multiple bytes, char-t

acters, or fi elds. You make this specifi cation by number. It can be a single number (such as
4), a closed range of numbers (such as 2-4), or an open range of numbers (such as -4 or 4-).
In this fi nal case, all bytes, characters, or fi elds from the beginning of the line to the speci-
fi ed number (or from the specifi ed number to the end of the line) are included in the list.

The cut command is frequently used in scripts to extract data from some other command’s
output. For instance, suppose you’re writing a script and the script needs to know the hard-
ware address of your Ethernet adapter. This information can be obtained from the ifconfig
command (described in more detail in Chapter 8, “Confi guring Basic Networking”):

$ ifconfig eth0

eth0 Link encap:Ethernet HWaddr 00:0C:76:96:A3:73

 inet addr:192.168.1.3 Bcast:192.168.1.255

Mask:255.255.255.0

 inet6 addr: fe80::20c:76ff:fe96:a373/64 Scope:Link

 UP BROADCAST NOTRAILERS RUNNING MULTICAST MTU:1500

Metric:1

 RX packets:7127424 errors:0 dropped:0 overruns:0 frame:0

 TX packets:5273519 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:1000

 RX bytes:6272843708 (5982.2 Mb) TX bytes:1082453585 (1032.3 Mb)

 Interrupt:10 Base address:0xde00

Unfortunately, most of this information is extraneous for the desired purpose. The
hardware address is the 6-byte hexadecimal number following HWaddr. To extract that
data, you can combine grep (described shortly in “Using grep”) with cut in a pipe:

$ ifconfig eth0 | grep HWaddr | cut -d " " -f 11

00:0C:76:96:A3:73

Of course, in a script, you would probably assign this value to a variable or otherwise
process it through additional pipes. (Chapter 9 describes scripts in more detail.)

Obtaining a Word Count with wc
The wc command produces a word count (that’s where it gets its name), as well as line and
byte counts, for a fi le:

$ wc file.txt

 308 2343 15534 file.txt

Using Regular Expressions 35

This fi le contains 308 lines (or more precisely, 308 newline characters), 2,343 words,
and 15,534 bytes. You can limit the output to the newline count, the word count, the byte
count, or a character count with the --lines (-l), --words (-w), --bytes (-c), or --chars
(-m) option, respectively. You can also learn the maximum line length with the --max-line-
length (-L) option.

For an ordinary ASCII file, the character and byte counts will be identical.
These values may diverge for files that use multibyte character encodings.

Using Regular Expressions

Many Linux programs employ regular expressions, which are tools for describing or
matching patterns in text. Regular expressions are similar in principle to the wildcards
that can be used to specify multiple fi lenames. At their simplest, regular expressions
can be plain text without adornment. However, certain characters are used to denote
patterns. Because of their importance, regular expressions are described in the following
section.

Two programs that make heavy use of regular expressions, grep and sed, are also
covered. These programs search for text within fi les and permit editing of fi les from the
command line, respectively.

Understanding Regular Expressions
Two forms of regular expression are common: basic and extended. Which form you must
use depends on the program. Some accept one form or the other, but others can use either
type, depending on the options passed to the program. (Some programs use their own
minor or major variants on either of these classes of regular expression.) The differences
between basic and extended regular expressions are complex and subtle, but the fundamen-
tal principles of both are similar.

The simplest type of regular expression is an alphabetic string, such as Linux or HWaddr.
These regular expressions match any string of the same size or longer that contains the
regular expression. For instance, the HWaddr regular expression matches HWaddr, This is
the HWaddr, and The HWaddr is unknown. The real strength of regular expressions comes
in the use of nonalphabetic characters, which activate advanced matching rules:

Bracket Expressions Characters enclosed in square brackets ([]) constitute bracket
expressions, which match any one character within the brackets. For instance, the regular
expression b[aeiou]g matches the words bag, beg, big, bog, and bug.

Range Expressions A range expression is a variant of a bracket expression. Instead of
listing every character that matches, range expressions list the start and end points
separated by a dash (-), as in a[2-4]z. This regular expression matches a2z, a3z, and a4z.

36 Chapter 1 ■ Exploring Linux Command-Line Tools

Any Single Character The dot (.) represents any single character except a newline. For
instance, a.z matches a2z, abz, aQz, or any other three-character string that begins with a
and ends with z.

Start and End of Line The carat (̂) represents the start of a line, and the dollar sign ($)
denotes the end of a line.

Repetition Operators A full or partial regular expression may be followed by a special
symbol to denote how many times a matching item must exist. Specifi cally, an asterisk (*)
denotes zero or more occurrences, a plus sign (+) matches one or more occurrences, and a
question mark (?) specifi es zero or one match. The asterisk is often combined with the dot
(as in .*) to specify a match with any substring. For instance, A.*Lincoln matches any
string that contains A and Lincoln, in that order—Abe Lincoln and Abraham Lincoln are
just two possible matches.

Multiple Possible Strings The vertical bar (|) separates two possible matches; for instance,
car|truck matches either car or truck.

Parentheses Ordinary parentheses (()) surround subexpressions. Parentheses are often
used to specify how operators are to be applied; for example, you can put parentheses
around a group of words that are concatenated with the vertical bar to ensure that the
words are treated as a group, any one of which may match, without involving surrounding
parts of the regular expression.

Escaping If you want to match one of the special characters, such as a dot, you must
escape it—that is, precede it with a backslash (\). For instance, to match a computer
hostname (say, twain.example.com), you must escape the dots, as in twain\.example\.com.

The preceding descriptions apply to extended regular expressions. Some details are
different for basic regular expressions. In particular, the ?, +, |, (, and) symbols lose their
special meanings. To perform the tasks handled by these characters, some programs, such
as grep, enable you to recover the functions of these characters by escaping them (say, using
\| instead of |). Whether you use basic or extended regular expressions depends on which
form the program supports. For programs such as grep, which support both, you can use
either. Which form you choose is mostly a matter of personal preference.

You can get more help on regular expressions at the command-line by
 typing man 7 regex. The certification objectives list this particular man
page as regex(7).

Regular expression rules can be confusing, particularly when you’re fi rst introduced to
them. Some examples of their use, in the context of the programs that use them, will help.
The next couple of sections provide such examples.

Using grep
The grep command is extremely useful. It searches for fi les that contain a specifi ed string
and returns the name of the fi le and (if it’s a text fi le) a line of context for that string. The
basic grep syntax is as follows:

grep [options] regexp [p files]

Using Regular Expressions 37

The regexp is a regular expression, as just described. Thep grep command supports a
large number of options. Some of the common options enable you to modify the way the
program searches fi les:

Count Matching Lines Instead of displaying context lines, grep displays the number of
lines that match the specifi ed pattern if you use the -c or --count option.

Specify a Pattern Input File The -f file or e --file=file option takes pattern input from e

the specifi ed fi le rather than from the command line.

Ignore Case You can perform a search that isn’t case sensitive, rather than the default
case-sensitive search, by using the -i or --ignore-case option.

Search Recursively The -r or --recursive option searches in the specifi ed directory and
all subdirectories rather than simply the specifi ed directory. You can use rgrep rather than
specify this option.

Use a Fixed Strings Pattern If you want to turn off the grep command’s use of regular
expressions and use basic pattern searching instead, you can use the -F or --fixed-strings
option. Alternatively, you can use fgrep rather than grep. Either way, the characters in the
basic pattern string are treated literally. For example, $ is treated literally as a $ and not as
a regular expression.

Use an Extended Regular Expression The grep command interprets regexp as a basicp

regular expression by default. To use an extended regular expression, you can pass the
-E or --extended-regexp option. Alternatively, you can call egrep rather than grep. This
variant command uses extended regular expressions by default.

A simple example of grep uses a regular expression with no special components:

$ grep -r eth0 /etc/*

This example fi nds all the fi les in /etc that contain the string eth0 (the identifi er
for the fi rst wired Ethernet device on most Linux distributions). Because the example
includes the -r option, it searches recursively, so fi les in subdirectories of /etc are
examined in addition to those in /etc itself. For each matching text fi le, the line that
contains the string is printed.

Some files in /etc can’t be read by ordinary users. Thus if you type this
command as a non-root user, you’ll see some error messages relating to
grep’s inability to open files.

Suppose you want to locate all the fi les in /etc that contain the string eth0 or eth1. You can
enter the following command, which uses a bracket expression to specify both variant devices:

$ grep eth[01] /etc/*

A still more complex example searches all fi les in /etc that contain the hostname
twain.example.com or bronto.pangaea.edu and, later on the same line, the number

38 Chapter 1 ■ Exploring Linux Command-Line Tools

127. This task requires using several of the regular expression features. Expressed using
extended regular expression notation, the command looks like this:

$ grep -E "(twain\.example\.com|bronto\.pangaea\.edu).*127" /etc/*

This command illustrates another feature you may need to use: shell quoting. Because
the shell uses certain characters, such as the vertical bar and the asterisk, for its own
purposes, you must enclose certain regular expressions in quotes lest the shell attempt to
parse the regular expression and pass a modifi ed version of what you type to grep.

You can use grep in conjunction with commands that produce a lot of output in order
to sift through that output for the material that’s important to you. (Several examples
throughout this book use this technique.) For example, suppose you want to fi nd the
process ID (PID) of a running xterm. You can use a pipe to send the result of a ps
command (described in Chapter 2) through grep:

ps ax | grep xterm

The result is a list of all running processes called xterm, along with their PIDs. You can
even do this in series, using grep to restrict further the output on some other criterion,
which can be useful if the initial pass still produces too much output.

Using sed
The sed command directly modifi es a fi le’s contents, sending the changed fi le to standard
output. Its syntax can take one of two forms:

sed [options] -f script-file [e input-file]

sed [options] script-text [t input-file]

In either case, input-file is the name of the fi le you want to modify. (Modifi cations are e

temporary unless you save them in some way, as illustrated shortly.) The script (script-text
or the contents of script-file) is the set of commands you want sed to perform. When you
pass a script directly on the command line, the script-text is typically enclosed in single t

quote marks. Table 1.4 summarizes a few sed commands that you can use in its scripts.

TA B LE 1. 4 Common sed commands

Command Addresses Meaning

= 0 or 1 Display the current line number.

a\text 0 or 1 Append text to the file.t

i\text 0 or 1 Insert text into the file.t

Using Regular Expressions 39

Command Addresses Meaning

r filename 0 or 1 Append text from filename into the file.e

c\text Range Replace the selected range of lines with the
provided text.

s/regexp/p
replacement

Range Replace text that matches the regular expression
(regexp) with replacement.

w filename Range Write the current pattern space to the specified file.

q 0 or 1 Immediately quit the script, but print the current
pattern space.

Q 0 or 1 Immediately quit the script.

Table 1.4 is incomplete; sed is quite complex, and this section merely intro-
duces this tool.

The Addresses column of Table 1.4 requires elaboration: sed commands operate on
addresses, which are line numbers. Commands may take no addresses, in which case they
operate on the entire fi le. If one address is specifi ed, they operate on the specifi ed line.
If two addresses (a range) are specifi ed, the commands operate on that range of lines,
inclusive.

In operation, sed looks something like this:

$ sed 's/2012/2013/' cal-2012.txt > cal-2013.txt

This command processes the input fi le, cal-2012.txt, using sed’s s command to replace
the fi rst occurrence of 2012 on each line with 2013. (If a single line may have more than one
instance of the search string, you must perform a global search by appending g to the com-
mand string, as in s/2012/2013/g.) By default, sed sends the modifi ed fi le to standard out-
put, so this example uses redirection to send the output to cal-2013.txt. The idea in this
example is to convert a fi le created for the year 2012 quickly so that it can be used in 2013.
If you don’t specify an input fi lename, sed works from standard input, so it can accept the
output of another command as its input.

Although it’s conceptually simple, sed is a very complex tool; even a modest summary of
its capabilities would fi ll a chapter. You can consult its man page for basic information, but to
understand sed fully, you may want to consult a book that tackles this tough subject, such as
our book Linux Command Line and Shell Scripting Bible, 3rd Edition (Wiley, 2015).

Certain sed commands, including the substitution command, are also used
in vi, which is described more fully in Chapter 5.

40 Chapter 1 ■ Exploring Linux Command-Line Tools

Doing One Thing in Many Ways

As you become experienced with Linux and compare notes with other Linux administra-

tors, you may fi nd that the way you work is different from the way others work. This is

because Linux often provides multiple methods to solve certain problems. For instance,

ASCII text fi les use certain characters to encode the end of a line. Unix (and Linux) use a

single line feed character (ASCII 0x0a, sometimes represented as \n), whereas DOS and

Windows use the combination of a carriage return (ASCII 0x0d or \r) and a line feed.

When moving ASCII fi les between computers, you may need to convert from one form to

the other. How can you do this?

One solution is to use a special-purpose program, such as dos2unix or unix2dos. You

could type dos2unix file.txt to convert file.txt from DOS-style to Unix-style

ASCII, for instance. This is usually the simplest solution, but not all distributions have

these utilities installed by default or even available to install.

Another approach is to use tr. For instance, to convert from DOS style to Unix style, you

might type this:

$ tr -d \\r < dosfile.txt > unixfile.txt

This approach won’t work when converting from Unix style to DOS style, though. For

that, you can use sed:

sed s/$/"\r"/ unixfile.txt > dosfile.txt

Variants on both the tr and sed commands exist. For instance, sometimes the quotes

around \r may be omitted from the sed command; whether they’re required depends on

your shell and its confi guration.

Yet another approach is to load the fi le into a text editor and then save it using different

fi le-type settings. (Not all editors support such changes, but some do.)

Many other examples exist of multiple solutions to a problem. Sometimes one solution

stands out above others as being superior, but at other times the differences may be sub-

tle, or each approach may have merit in particular situations. Thus it’s best to be at least

somewhat familiar with many of the alternatives, such as the options described through-

out this book.

Exam Essentials 41

Summary

The command line is the key to Linux. Even if you prefer GUI tools to text-mode tools,
understanding text-mode commands is necessary to fully manage a Linux system. This
task begins with the shell, which accepts commands you type and displays the results
of those commands. In addition, shells support linking programs together via pipes and
redirecting programs’ input and output. These features enable you to perform complex
tasks using simple tools by having each program perform its own small part of the task.
This technique is frequently used with Linux text fi lters, which manipulate text fi les in
various ways—sorting text by fi elds, merging multiple fi les, and so on.

Exam Essentials

Summarize features that Linux shells offer to speed up command entry. The command
history often enables you to retrieve an earlier command that’s similar or identical to the
one you want to enter. Tab completion reduces typing effort by letting the shell fi nish long
command names or fi lenames. Command-line editing lets you edit a retrieved command or
change a typo before committing the command.

Describe the purpose of the man command. The man command displays the manual page
for the keyword (command, fi lename, system call, or other feature) that you type. This
documentation provides succinct summary information that’s useful as a reference to learn
about exact command options or features.

Explain the purpose of environment variables. Environment variables store small pieces
of data—program options, information about the computer, and so on. This information
can be read by programs and used to modify program behavior in a way that’s appropriate
for the current environment.

Describe the difference between standard output and standard error. Standard output
carries normal program output, whereas standard error carries high-priority output, such
as error messages. The two can be redirected independently of one another.

Explain the purpose of pipes. Pipes tie programs together by feeding the standard output
from the fi rst program into the second program’s standard input. They can be used to link
together a series of simple programs to perform more complex tasks than any one of the
programs could manage.

Describe the filter commands. The various simple fi lter commands allow the manipula-
tion of text. These commands accomplish tasks of various types, such as combining fi les,
transforming the data in fi les, formatting text, displaying text, and summarizing data.

Summarize the structure of regular expressions. Regular expressions are strings that
describe other strings. They can contain normal alphanumeric characters, which match the
exact same characters in the string they are describing, as well as several special symbols
and symbol sets that match multiple different characters. The combination is a powerful
pattern-matching tool used by many Linux programs.

42 Chapter 1 ■ Exploring Linux Command-Line Tools

Review Questions

1. You type a command into bash and pass a long filename to it, but after you enter the com-
mand, you receive a File not found error message because of a typo in the filename. How
might you proceed?

A. Retype the command, and be sure you type the filename correctly, letter by letter.

B. Retype the command, but press the Tab key after typing a few letters of the long file-
name to ensure that the filename is entered correctly.

C. Press the Up arrow key, and use bash’s editing features to correct the typo.

D. Any of the above.

E. None of the above.

2. Which of the following commands is implemented as an internal command in bash?

A. cat

B. less

C. tee

D. sed

E. echo

3. You type echo $PROC, and the computer replies Go away. What does this mean?

A. No currently running processes are associated with your shell, so you may log out
without terminating them.

B. The remote computer PROC isn’t accepting connections; you should contact its adminis-
trator to correct the problem.

C. Your computer is handling too many processes; you must kill some of them to regain
control of the computer.

D. Your central processing unit (CPU) is defective and must be replaced as soon
as possible.

E. You, one of your configuration files, or a program you’ve run has set the $PROC envi-
ronment variable to Go away.

4. What does the pwd command accomplish?

A. It prints the name of the working directory.

B. It changes the current working directory.

C. It prints wide displays on narrow paper.

D. It parses web page URLs for display.

E. It prints the terminal’s width in characters.

5. What is the surest way to run a program (say, myprog) that’s located in the current working
directory?

A. Type ./ followed by the program name: ./myprog.

B. Type the program name alone: myprog.

Review Questions 43

C. Type run followed by the program name: run myprog.

D. Type /. followed by the program name: /.myprog.

E. Type the program name followed by an ampersand (&): myprog &.

6. How does man display information by default on most Linux systems?

A. Using a custom X-based application

B. Using the Firefox web browser

C. Using the info browser

D. Using the vi editor

E. Using the less pager

7. You want to store the standard output of the ifconfig command in a text file (file.txt)
for future reference, and you want to wipe out any existing data in the file. You do not
want to store standard error in this file. How can you accomplish these goals?

A. ifconfig < file.txt

B. ifconfig >> file.txt

C. ifconfig > file.txt

D. ifconfig | file.txt

E. ifconfig 2> file.txt

8. What is the effect of the following command?
$ myprog &> input.txt

A. Standard error to myprog is taken from input.txt.

B. Standard input to myprog is taken from input.txt.

C. Standard output and standard error from myprog are written to input.txt.

D. All of the above.

E. None of the above.

9. How many commands can you pipe together at once?

A. 2

B. 3

C. 4

D. 16

E. >16

10. You want to run an interactive script, gabby, which produces a lot of output in response to
the user’s inputs. To facilitate future study of this script, you want to copy its output to a
file. How might you do this?

A. gabby > gabby-out.txt

B. gabby | tee gabby-out.txt

C. gabby < gabby-out.txt

D. gabby &> gabby-out.txt

E. gabby `gabby-out.txt`

44 Chapter 1 ■ Exploring Linux Command-Line Tools

11. A text-mode program, verbose, prints a lot of bogus “error” messages to standard error.
How might you get rid of those messages while still interacting with the program?

A. verbose | quiet

B. verbose &> /dev/null

C. verbose 2> /dev/null

D. verbose > junk.txt

E. quiet-mode verbose

12. How do the > and >> redirection operators differ?

A. The > operator creates a new file or overwrites an existing one; the >> operator creates
a new file or appends to an existing one.

B. The > operator creates a new file or overwrites an existing one; the >> operator
appends to an existing file or issues an error message if the specified file doesn’t exist.

C. The > operator redirects standard output; the >> operator redirects standard error.

D. The > operator redirects standard output; the >> operator redirects standard input.

E. The > operator writes to an existing file but fails if the file doesn’t exist; the >>
operator writes to an existing file or creates a new one if it doesn’t already exist.

13. What program would you use to display the end of a configuration file?

A. uniq

B. cut

C. tail

D. wc

E. fmt

14. What is the effect of the following command?
$ pr report.txt | lpr

A. The file report.txt is formatted for printing and sent to the lpr program.

B. The files report.txt and lpr are combined together into one file and sent to
standard output.

C. Tabs are converted to spaces in report.txt, and the result is saved in lpr.

D. The file report.txt is printed, and any error messages are stored in the file lpr.

E. None of the above.

15. Which of the following commands will number the lines in aleph.txt? (Select three.)

A. fmt aleph.txt

B. nl aleph.txt

C. cat -b aleph.txt

D. cat -n aleph.txt

E. od -nl aleph.txt

Review Questions 45

16. You have a data file, data.txt, to be processed by a particular program. However, the
program cannot handle data separated by tabs. The data.txt file’s data is separated by
a tab stop at every eight characters. What command should you use before processing the
data file with the program?

A. od data.txt > data1.txt

B. expand data.txt >> data.txt

C. fmt --remove-tabs data.txt

D. expand data.txt > data1.txt

E. unexpand -t 8 data.txt

17. Which of the following commands will change all occurrences of dog in the file animals.
txt to mutt in the screen display?

A. sed –s "dog" "mutt" animals.txt

B. grep –s "dog||mutt" animals.txt

C. sed 's/dog/mutt/g' animals.txt

D. cat animals.txt | grep –c "dog" "mutt"

E. fmt animals.txt | cut 'dog' > 'mutt'

18. You’ve received an ASCII text file (longlines.txt) that uses no carriage returns within
paragraphs but two carriage returns between paragraphs. The result is that your preferred
text editor displays each paragraph as a very long line. How can you reformat this file so
that you can more easily edit it (or a copy)?

A. sed 's/Ctrl-M/NL/' longlines.txt

B. fmt longlines.txt > longlines2.txt

C. cat longlines.txt > longlines2.txt

D. pr longlines.txt > longlines2.txt

E. grep longlines.txt > longlines2.txt

19. Which of the following commands will print lines from the file world.txt that contain
matches to changes and changed?

A. grep change[ds] world.txt

B. sed change[d-s] world.txt

C. od "change'd|s'" world.txt

D. cat world.txt changes changed

E. find world.txt "change(d|s)"

20. Which of the following regular expressions will match the strings dog, dug, and various
other strings but not dig?

A. d.g

B. d[ou]g

C. d[o-u]g

D. di*g

E. d.ig

