
1

T19_.indd 1 30/10/2015 12:07 PM

 C H A P T E R

 1

 A Data Miner Looks at SQLks at SQL

 Data is being collected everywhere. Every transaction, every web page visit,

every payment—and much more—is fi lling databases, relational and otherwise,

with raw data. Computing power and storage have grown to be cost effective, a

trend where today’s smart phones are more powerful than supercomputers of

yesteryear. Databases are no longer merely platforms for storing data; they are

powerful engines for transforming data into useful information about custom-

ers and products and business practices.

 The focus on data mining has historically been on complex algorithms

developed by statisticians and machine-learning specialists. Once upon a

time, data mining required downloading source code from a research lab or

university, compiling the code to get it to run, and sometimes even debug-

ging it. By the time the data and software were ready, the business problem

had lost urgency.

 This book takes a different approach because it starts with the data. The

billions of transactions that occur every day—credit cards swipes, web page

visits, telephone calls, and so on—are now often stored in relational databases.

Relational database engines count among the most powerful and sophisticated

software products in the business world, so they are well suited for the task of

extracting useful information. And the lingua franca of relational databases

is SQL.

 The focus of this book is more on data and what to do with data and less

on theory. Instead of trying to squeeze every last iota of information from a

small sample—the goal of much statistical analysis—the goal is instead to

fi nd something useful in the gigabytes and terabytes of data stored by the

business. Instead of asking programmers to learn data analysis, the goal

CO
PYRIG

HTED
 M

ATERIA
L

2 Chapter 1 ■ A Data Miner Looks at SQL

T19_.indd 2 30/10/2015 12:07 PM T19

is to give data analysts—and others—a solid foundation for using SQL to

learn from data.

 This book strives to assist anyone facing the problem of analyzing data stored

in large databases, by describing the power of data analysis using SQL and Excel.

SQL, which stands for Structured Query Language, is a language for extracting

information from data. Excel is a popular and useful spreadsheet for analyzing

smaller amounts of data and presenting results.

 The various chapters of this book build skill in and enthusiasm for SQL

queries and the graphical presentation of results. Throughout the book, the

SQL queries are used for more and more sophisticated types of analyses,

starting with basic summaries of tables, and moving to data exploration. The

chapters continue with methods for understanding time-to-event problems,

such as when customers stop, and market basket analysis for understanding

what customers are purchasing. Data analysis is often about building models,

and—perhaps surprisingly to most readers—some models can be built directly

in SQL, as described in Chapter 11 , “Data Mining in SQL.” An important

part of any analysis, though, is constructing the data in a format suitable for

modeling—customer signatures.

 The fi nal chapter takes a step back from analysis to discuss performance. This

chapter is an overview of a topic, concentrating on good performance practices

that work across different databases.

 This chapter introduces SQL for data analysis and data mining. Admittedly,

this introduction is heavily biased because the purpose is for querying data-

bases rather than building and managing them. SQL is presented from three

different perspectives, some of which may resonate more strongly with dif-

ferent groups of readers. The fi rst perspective is the structure of the data,

with a particular emphasis on entity-relationship diagrams. The second is the

processing of data using datafl ows, which happen to be what is “under the

hood” of most relational database engines. The third, and strongest thread

through subsequent chapters, is the syntax of SQL itself. Although data is

well described by entities and relationships, and processing by datafl ows, the

ultimate goal is to express the transformations in SQL and present the results

often through Excel.

Databases, SQL, and Big Data

Collecting and analyzing data is a major activity, so many tools are available

for this purpose. Some of these focus on “big data” (whatever that might mean).

Some focus on consistently storing the data quickly. Some on deep analysis.

Some have pretty visual interfaces; others are programming languages.

 SQL and relational databases are a powerful combination that is useful in

any arsenal of tools for analysis, particularly ad hoc analyses:

PM

Chapter 1 ■ A Data Miner Looks at SQL 3

T19_.indd 3 30/10/2015 12:07 PM

■ A mature and standardized language for accessing data

■ Multiple vendors, including open source

■ Scalability over a very broad range of hardware

■ A non-programming interface for data manipulations

Before continuing with SQL, it is worth looking at SQL in the context of other

tools.

What Is Big Data?
Big data is one of those concepts whose defi nition changes over time. In the

1800s, when statistics was fi rst being invented, researchers worked with dozens

or hundreds of rows of data. That might not seem like a lot, but if you have to

add everything up with a pencil and paper, and do long division by hand or

using a slide rule, then it certainly seems like a lot of data.

 The concept of big data has always been relative, at least since data process-

ing was invented. The difference is that now data is measured in gigabytes

and terabytes—enough bytes to fi t the text in all the books in the Library of

Congress—and we can readily carry it around with us. The good news is that

analyzing “big data” no longer requires trying to get data to fi t into very limited

amounts of memory. The bad news is that simply scrolling through “big data”

is not suffi cient to really understand it.

 This book does not attempt to defi ne “big data.” Relational databases defi nitely

scale well into the tens of terabytes of data—big by anyone’s defi nition. They also

work effi ciently on smaller datasets, such as the ones accompanying this book.

Relational Databases
Relational databases, which were invented in the 1970s, are now the store-

house of mountains of data available to businesses. To a large extent, the

popularity of relational databases rests on what are called ACID properties

of transactions:

■ Atomicity

■ Consistency

■ Isolation

■ Durability

These properties basically mean that when data is stored or updated in a database,

it really is changed. The databases have transaction logs and other capabilities

to ensure that changes really do happen and that modifi ed data is visible when

the data modifi cation step completes. (The data should even survive major

failures such as the operating system crashing.) In practice, databases support

4 Chapter 1 ■ A Data Miner Looks at SQL

T19_.indd 4 30/10/2015 12:07 PM T19

transactions, logs, replication, concurrent access, stored procedures, security,

and a host of features suitable for designing real-world applications.

 From our perspective, a more important attribute of relational databases is

their ability to take advantage of the hardware they are running on—multiple

processors, memory, and disk. When you run a query, the optimization engine fi rst

translates the SQL query into the appropriate lower-level algorithms that exploit

the available resources. The optimization engine is one of the reasons why SQL is

so powerful: the same query running on a slightly different machine or slightly

different data might have very different execution plans. The SQL remains the

same; it is the optimization engine that chooses the best way to execute the code.

Hadoop and Hive
One of the technologies highly associated with big data is Hadoop in conjunction

with MapReduce. Hadoop is an open-source project, meaning that the code is

available for free online, with the goal of developing a framework for “reliable,

scalable, distributed computing.” (The SQL world has free open-source databases

such as MySQL, Postgres, and SQLite; in addition, several commercial databases

have free versions.) In practice, Hadoop is a platform for processing humongous

amounts of data, particularly data from sources such as web logs, high-energy

physics, high volumes of streaming images, and other voluminous data sources.

 The roots of MapReduce go back to the 1960s and a language called Lisp.

In the late 1990s, Google developed a parallel framework around MapReduce,

and now it is a framework for programming data-intensive tasks on large grid

computers. It became popular because both Google and Yahoo developed

MapReduce engines; and, what big successful internet companies do must

be interesting.

 Hadoop actually has a family of technologies and MapReduce is only one

application. Built on Hadoop are other tools, all with colorful names such as

Hive, Mahout, Cassandra, and Pig. Although the underlying technology is

different from relational databases, there are similarities in the problems these

technologies are trying to solve. Within the Hadoop world are languages, such

CQL, which is based on SQL syntax. Hive, in particular, is being developed into

a fully functional SQL engine and can run many of the queries in this book.

NoSQL and Other Types of Databases
NoSQL refers to a type of database that, at fi rst sight, might seem to be the

antithesis of SQL. Actually, the “No” stands for “Not Only.” This terminology

can be used to refer to a variety of different database technologies:

■ Key-value pairs, where the columns of data can vary between rows—and,

quite importantly—the columns themselves can contain lists of things

PM

Chapter 1 ■ A Data Miner Looks at SQL 5

T19_.indd 5 30/10/2015 12:07 PM

■ Graph-based databases, which specialize in representing and handling

problems from graph theory

■ Document databases, which are used for analyzing documents and other texts

■ Geographic information systems (GIS), which are used for geographic

analysis

These types of databases are often specialized for particular functions. For

instance, key-value pair databases provide excellent performance in a web

environment for managing data about online sessions.

 These technologies are really complementary technologies to traditional rela-

tional databases rather than replacement technologies. For instance, key-value

databases are often used on a website in conjunction with relational databases

that store history. Graph and document databases are often used in conjunction

with data warehouses that support more structured information.

 Further, good ideas are not limited to a single technology. One of the moti-

vations for writing a second edition of this book is that database technology is

improving. SQL and the underlying relational database technology increasingly

support functionality similar to NoSQL databases. For example, recursive common

table expressions provide functionality for traversing graphs. Full text indexes

provide functionality for working with text. Most databases offer extensions for

geographic data. And, increasingly databases are providing better functionality

for nested tables and portable data formats, such as XML and JSON.

SQL
SQL was designed to work on structured data—think tables with well-

defi ned columns and rows, much like an Excel spreadsheet. Much of the

power of SQL comes from the power of the underlying database engine and

the optimizer. Many people use databases running on powerful computers,

without ever thinking about the underlying hardware. That is the power of

SQL: The same query that runs on a mobile device can run on the largest

grid computer, taking advantage of all available hardware with no changes

to the query.

 The part of the SQL language used for analysis is the SELECT statement. Much

of the rest of the language is about getting data in to databases. Our concern is

getting information out of them to solve business problems. The f SELECT state-

ment describes what the results look like, freeing the analyst to think about

what to do, instead of how to do it.

TIP SQL (when used for querying) is a descriptive language rather than a procedural
language. It describes what needs to be done, letting the SQL engine optimize the
code for the particular data, hardware, and database layout where the query is run-
ning, and freeing the analyst to think more about the business problem.

6 Chapter 1 ■ A Data Miner Looks at SQL

T19_.indd 6 30/10/2015 12:07 PM T19

Picturing the Structure of the Data

In the beginning, there is data. Although data may seem to be without form

and chaotic, there is an organization to it, an organization based on tables and

columns and relationships between and among them. Relational databases store

structured data—that is, tables with well-defi ned rows and columns.

 This section describes databases by the data they contain. It introduces entity-
relationship diagrams , in the context of the datasets (and associated data models)

used with this book. These datasets are not intended to represent all the myriad

different ways that data might be stored in databases; instead, they are intended

as practice data for the ideas in the book. They are available on the companion

website, along with all the examples in the book.

What Is a Data Model?
The defi nition of the tables, the columns, and the relationships among them

constitute the data model for the database. A well-designed database actually

has two data models. The logical data model explains the database in terms that

business users understand. The logical data model communicates the contents

of the database because it defi nes many business terms and how they are stored

in the database.

 The physical data model explains how the database is actually implemented. In

many cases, the physical data model is identical to or very similar to the logi-

cal data model. That is, every entity in the logical data model corresponds to a

table in the database; every attribute corresponds to a column. This is true for

the datasets used in this book.

 On the other hand, the logical and physical data models can differ. For

instance, in more complicated databases, certain performance issues might

drive physical database design. A single entity might have rows split into

several tables to improve performance, enhance security, enable backup-

restore functionality, or facilitate database replication. Multiple similar

entities might be combined into a single table, especially when they have

many attributes in common. Or, a single entity could have different columns

in different tables, with the most commonly used columns in one table and

less commonly used ones in another table (this is called vertical partitioning,g
which some databases support directly without having to resort to multiple

tables). Often these differences are masked through the use of views and

other database constructs.

 The logical model is quite important for analytic purposes because it pro-

vides an understanding of the data from the business perspective. However,

queries actually run on the database represented by the physical model, so it

is convenient that the logical and physical structures are often quite similar.

PM

Chapter 1 ■ A Data Miner Looks at SQL 7

T19_.indd 7 30/10/2015 12:07 PM

What Is a Table?
A table is a set of rows and columns that describe multiple instances of some-

thing. Each row represents one instance—such as a single purchase made by a

customer, or a single visit to a web page, or a single zip code with its demographic

details. Each column contains one attribute for one instance. SQL tables represent

unordered sets, so the table does not have a fi rst row or a last row—unless a

specifi c column such as an id or creation date provides that information.

 Any given column contains the same genre of information for all rows. So a

zip code column should not be the “sent-to” zip code in one row and the “billed-

to” zip code in another. Although these are both zip codes, they represent two

different uses, so they belong in two different columns.

 Columns, unless declared otherwise, are permitted to take on the value

NULL , meaning that the value is not available or is unknown. For instance, a

row describing customers might contain a column for birthdate. This column

would take on the value of NULL for all rows where the birthdate is not known.

 A table can have as many columns as needed to describe an instance, although

for practical purposes tables with more than a few hundred columns are rare

(and most relational databases do have an upper limit on the number of columns

in a single table, typically in the low thousands). A table can have as many rows

as needed; here the numbers easily rise to the millions and even billions.

 As an example, Table 1-1 shows a few rows and columns from ZipCensus

(which is available on the companion website). This table shows that each zip

code is assigned to a particular state, which is the abbreviation in the stab col-

umn (“ ST ate AB breviation”) . The pctstate column is an indicator that zip codes

sometimes span state boundaries. For instance, 10004 is a zip code in New York

City that covers Ellis Island. In 1998, the Supreme Court split jurisdiction of the

island between New York and New Jersey, but the Post Offi ce did not change

the zip code. So, 10004 has a portion in New York and a smaller, unpopulated

portion in New Jersey.

 Each zip code also has an area, measured in square miles and recorded in the

landsqmi column. This column contains a number, and the database does not

Table 1-1: Some Rows and Columns from ZipCensus

ZCTA5 STAB PCTSTATE TOTPOP LANDSQMI

10004 NY 100% 2,780 0.56

33156 FL 100% 31,537 13.57

48706 MI 100% 40,144 66.99

55403 MN 100% 14,489 1.37

73501 OK 100% 19,794 117.34

92264 CA 100% 20,397 52.28

8 Chapter 1 ■ A Data Miner Looks at SQL

T19_.indd 8 30/10/2015 12:07 PM T19

know what this number means. It could be area in acres, or square kilometers,

or square inches, or pyongs (a Korean unit for area). What the number really

means depends on information not stored in the tables. The term metadata is

used to describe such information about what the values in columns mean.

Similarly, fipco is a numeric value that encodes the state and county, with the

smallest value being 1001, for Alabaster County in Alabama.

 Databases typically have some metadata information about each column.

Conveniently, there is often a label or description (and it is a good idea to fi ll

this in when creating a table). More importantly, each column has a data type

and a fl ag specifying whether NULL values are allowed. The next two sections

discuss these two topics because they are quite important for analyzing data.

 Allowing NULL Values

Nullability is whether or not a column may contain the NULL value. By default in

SQL, a column in any row can contain a special value that says that the value

is empty or unknown. Although this is quite useful, NULL s have unexpected

side effects. Almost every comparison returns “unknown” if any argument is

NULL, and “unknown” is treated as false.

 The following very simple query looks like it is counting all the rows in the

ZipCensus table where the FIPCo column is not NULL . (<> is the SQL operator

for “not equals.”)

 SELECT COUNT(*)
 FROM ZipCensus zc
 WHERE zc.fipco <> NULL

Alas, this query always returns zero. When a NULL value is involved in a

comparison—even “not equals”—the result is almost always NULL , which is

treated as false.

 Of course, determining which rows have NULL values is quite useful, so SQL

provides the special operators IS NULL and IS NOT NULL . These behave as

expected, with the preceding query returning 32,845 instead of 0.

 The problem is more insidious when comparing column values, either within

a single table or between tables. For instance, the column fipco contains the

primary county of a zip code and fipco2 contains the second county, if any. The

following query counts the number of zip codes in total and the number where

these two county columns have different values. This query uses conditional

aggregation, which is when a conditional statement (CASE) is the argument to

an aggregation function such as SUM() :

 SELECT COUNT(*),
 SUM(CASE WHEN fipco <> fipco2 THEN 1 ELSE 0 END) as numsame
 FROM ZipCensus zc

PM

Chapter 1 ■ A Data Miner Looks at SQL 9

T19_.indd 9 30/10/2015 12:07 PM

Or does it? The columns fipco and fipco2 should always have different values,

so the two counts should be the same. In reality, the query returns the values

32,989 and 8,904. And changing the not-equals to equals shows that there are 0

rows where the values are equal. What is happening on the other 32,989 − 8,904

rows? Once again, the “problem” is NULL values. When fipco2 is NULL , the test

always fails.

 When a table is created, there is the option to allow NULL values on each

column in the table. This is a relatively minor decision when creating the table.

However, making mistakes on columns with NULL values is easy.

WARNING Designing databases is diff erent from analyzing the data inside them.
For example, NULL columns can cause unexpected—and inaccurate—results when
analyzing data and make reading queries diffi cult. Be very careful when using col-
umns that allow them.

NULL values may seem troublesome, but they solve an important problem:

how to represent values that are not present. One alternative method is to use

a special value, such as -99 or 0. However, the database would just treat this

as a regular value, so calculations (such as MIN() , MAX() , and SUM()) would be

incorrect.

 Another alternative would be to have separate fl ags indicating whether or not

a value is NULL . That would make even simple calculations cumbersome. “A +

B”, for instance, would have to be written as something like “ (CASE WHEN A_flag

= 1 AND B_flag = 1 THEN A + B END) ”. Given the alternatives, having NULL s

in the database is a practical approach to handling missing values.

Column Types

The second important attribute of a column is its type, which tells the database

exactly how to store values. A well-designed database usually has parsimonious

columns, so if two characters suffi ce for a code, there is no reason to store eight.

There are a few important aspects of column types and the roles that columns play.

Primary key columns uniquely identify each row in the table. That is, no two

rows have the same value for the primary key and the primary key is never NULL .

Databases guarantee that primary keys are unique by refusing to insert rows

with duplicate primary keys. Chapter 2 , “What’s in a Table? Getting Started with

Data Exploration,” shows techniques to determine whether this condition holds

for any given column. Typically the primary key is a single column, although

SQL does allow composite primary keys, which consist of multiple columns.

Numeric values are values that support arithmetic and other mathematical

operations. In SQL, these can be stored in different ways, such as fl oating-point

numbers, integers, and decimals. The details of how these formats differ are

much less important than what can be done with numeric data types.

10 Chapter 10 ■ A Data Miner Looks at SQL

T19_.indd 10 30/10/2015 12:07 PM T19

 Within the category of numeric types, one big difference is between integers,

which have no fractional part, and real numbers, which do. When doing arith-

metic on integers, the result might be an integer or it might be a real number,

depending on the database. So 5/2 might evaluate to 2 rather than 2.5, and

the average of 1 and 2 might turn out to be 1 instead of 1.5, depending on the

database. To avoid this problem, examples in this book multiply integer values

by 1.0 to convert them to decimal values when necessary.

 Of course, just because it walks like a duck and talks like a duck does not

mean that it is a duck. Some values look like numbers, but really are not. Zip

codes (in the United States) are an example, as are primary key columns stored

as numbers. What is the sum of two zip codes? What does it mean to multiply

a primary key value by 2? These questions yield nonsense results (although

the values can be calculated). Zip codes and primary keys happen to look like

numbers, but they do not behave like numbers.

 The datasets used in this book use character strings for zip codes and numbers

for primary keys. To distinguish such false numeric values from real numbers,

the values are often left padded with zeros to get a fi xed length. After all, the

zip code for Harvard Square in Cambridge, MA, is 02138, not 2,138.

Dates and date-times are exactly what their names imply. SQL provides several

functions for common operations, such as determining the number of days

between two dates, extracting the year and month, and comparing two times.

Unfortunately, these functions often differ between databases. The Appendix

provides a list of equivalent functions in different databases for functions used

in this book, including date and time functions.

 Another type of data is character string data. These are commonly codes, such

as the state abbreviation in the zip code table, or a description of something,

such as a product name or the full state name. SQL has some very rudimentary

functions for handling character strings, which in turn support rudimentary text

processing. Spaces at the end of a character string are ignored, so the condition

'NY' = 'NY ' evaluates to TRUE. However, spaces at the beginning of a char-

acter string are counted, so 'NY' = ' NY' evaluates to FALSE. When working

with data in character columns, it might be worth checking out whether there

are spaces at the beginning, a topic discussed in Chapter 2 .

What Is an Entity-Relationship Diagram?
The “relational” in the name “relational databases” refers to the fact that

different tables relate to each other via keys, and to the fact that columns in

a given row relate to the values for that column via the column name. For

instance, a zip code column in any table can link (that is “relate”) to the zip

code table. The key makes it possible to look up information available in

the zip code table. Figure 1-1 shows the relationships between tables in the

purchases dataset.

PM

Chapter 1 ■ A Data Miner Looks at SQL 11

T19_.indd 11 30/10/2015 12:07 PM

 These relationships have a characteristic called cardinality, which is the num-yy
ber of items related on each side. For instance, the relationship between Orders

and ZipCensus is a zero/one-to-many relationship. This specifi es every row in

Orders has at most one zip code. And, every zip code has zero, one, or more

orders. Typically, this relationship is implemented by having a column in the

fi rst table contain the zip code, which is called a foreign key . A foreign key is y
just a column whose contents are the primary key of another table (ZipCode in

Orders is a foreign key; zcta5 in ZipCensus is a primary key). To indicate no

match, the foreign key column would typically be NULL .

 The zero/one-to-one relationship says that there is at most one match between

two tables. This is often a subsetting relationship. For instance, a database might

contain sessions of web visits, some of which result in a purchase. Any given ses-

sion would have zero or one purchases. Any given purchase would have exactly

one session.

 Another relationship is a many-to-many relationship. A customer might

purchase many different products and any given product might be purchased

by many different customers. In fact, the purchase dataset does have a many-

to-many relationship between Orders and Products ; this relationship is rep-

resented by the OrderLines entity, which has a zero/one-to-many relationship

with each of those.

 An example of the one-at-a-time relationship is a customer who resides in

a particular zip code. The customer might move over time. Or, at any given

time, a customer might have a particular handset or billing plan, but these can

change over time.

Figure 1-1: This entity-relationship diagram shows the relationship among entities in the
purchase dataset. Each entity corresponds to one table.

Orders

OrderIDPK

CustomerID
OrderDate
CampaignID
PaymentType
City
State
ZipCode

OrderLines

OrderLineIDPK

ProductID
OrderID
ShipDate
BillDate
UnitPrice
NumUnits
TotalPrice

Products

ProductIDPK

Name
GroupCode
GroupName
IsInStock
FullPrice

Campaigns

CampaignIDPK

CampaignName
Channel
Discount
FreeShipFlag

Customers

CustomerIDPK

HouseholdID
Gender

Calendar

DatePK

Month
Year
Day of Week
. . . ZipCensus

zcta5PK

. . .

ZipCounty

ZipCodePK

. . .

12 Chapter 1 ■ A Data Miner Looks at SQL

T19_.indd 12 30/10/2015 12:07 PM T19

 With this brief introduction to entity-relationship diagrams, the following

sections describe the datasets used in this book.

The Zip Code Tables
The ZipCensus table consists of more than one hundred columns describing

each zip code, or, strictly speaking, each zip code tabulation area (ZCTA) defi ned

by the Census Bureau. The column zcta5 is the zip code. This information was

gathered from the Missouri Census Data Center, based on US Census data,

specifi cally the American Community Survey.

 The fi rst few columns consist of overview information about each zip code,

such as the state, the county, population (totpop), latitude, and longitude. There

is a column for additional zip codes because the zip-code tabulation area does

not necessarily match 100% with actual zip codes. In addition to population,

there are four more counts: the number of households (tothhs), the number

of families (famhhs), the number of housing units (tothus), and the number of

occupied housing units (occhus).

 The following information is available for the general population:

■ Proportion and counts in various age groups

■ Proportion and counts by gender

■ Proportion and counts in various racial categories

■ Proportion and counts of households and families by income

■ Information about occupation categories and income sources

■ Information about marital status

■ Information about educational attainment

■ And more

Information on the columns and exact defi nitions of terms such as ZCTA are

available at http://mcdc.missouri.edu/data/georef/zcta_master.Metadata.html .

 The second zip code table is ZipCounty , a companion table that maps zip

codes to counties. It contains information such as the following:

■ County name

■ Post offi ce name

■ Population of county

■ Number of households in county

■ County land area

This table has one row for each zip code, so it can be joined to ZipCensus and

to other tables using the ZipCode column. The two tables are from different

PM

Chapter 1 ■ A Data Miner Looks at SQL 13

T19_.indd 13 30/10/2015 12:07 PM

time frames and sources so not all zip codes match between the two tables—a

common problem when working with data.

Subscription Dataset
The subscription data has only two entities, shown in Figure 1-2 . This dataset

paints a picture of a subscriber at a given point in time (the date when the

snapshot was created).

 The Subscribers table describes customers in a telephone company. It is a

snapshot that shows what customers (and former customers) look like as of

a particular date. The columns in this table describe customers as they start

and as they stop. This particular snapshot table has no intermediate behavior

information.

 The Calendar table is a general-purpose table that has information about

dates, including:

■ Year

■ Month number

■ Month name

■ Day of month

■ Day of week

■ Day of year

■ Holiday information

This table has the date as a primary key, and covers dates from 1950 through 2050.

Figure 1-2: An entity-relationship diagram with only two entities describes the data in the
customer snapshot dataset.

Subscribers

SubscriberIdPK

StartDate
StopDate
StopType
Channel
Market
MonthlyFee
Tenure
. . .

Calendar

DatePK

Month
Year
Day of Week
. . .

14 Chapter 14 ■ A Data Miner Looks at SQL

T19_.indd 14 30/10/2015 12:07 PM T19

Purchases Dataset
The purchases dataset contains entities typical of retail purchases; the entities

in this dataset and their relationships are shown in Figure 1-1 (page 11) :

■ Customers

■ Orders

■ OrderLines

■ Products

■ Campaigns

■ ZipCensus

■ ZipCounty

■ Calendar

This data captures the important entities associated with retail purchases. The

most detailed information is in OrderLines , which describes each of the items

in an order. To understand the name of the table, think of a receipt. Each line on

the receipt represents a different item in the purchase. In addition, the line has

other information such as the product id, the price, and the number of items,

which are all in this table.

 The Products table provides information such as the product group name and

the full price of a product. The table does not contain detailed product names.

These were removed as part of the effort to anonymize the data.

 To tie all the items in a single purchase together, each row of OrderLines

has an OrderId . Each OrderId , in turn, represents one row in the Orders table,

which has information such as the date and time of the purchase, where the

order was shipped to, and the type of payment. It also contains the total dollar

amount of the purchase, summed up from the individual items. Each order

line is in exactly one order and each order has one or more order lines. This

relationship is described as a one-to-many relationship between these tables.

 Just as the OrderId ties multiple order lines into an order, the d CustomerId assigns d

orders made at different points in time to the same customer. The existence of

the CustomerId prompts the question of how it is created. In one sense, it makes

no difference how it is created; the CustomerId is simply a given, defi ning the

customer in the database. Is it is doing a good job? That is, are a single customer’s

purchases being tied together most of the time? The aside “The Customer ID:

Identifying Customers Over Time,” discusses the creation of customer IDs.

Tips on Naming Things
The datasets provided with this book have various original sources, so they

have different naming conventions. In general, there are some things that should

always be avoided and some things that are good practice:

PM

Chapter 1 ■ A Data Miner Looks at SQL 15

T19_.indd 15 30/10/2015 12:07 PM

■ Always use only alphanumeric characters and underscores for table and

column names. Other characters, such as spaces, require that the name be

escaped when referenced. The escape characters, typically double quotes

or square braces, make it hard to write and read queries.

■ Never use SQL reserved words. Databases have their own special words,

but words like Order , Group , and Values are keywords in the language

and should be avoided.

 Additional good practices include the following:

■ Table names are usually in plural (this helps avoid the problem with

reserved words) and reinforces the idea that tables contain multiple

instances of the entity.

■ The primary key is the singular of the table name followed by “Id.” Hence,

OrderId and SubscriberId . When a column references another table

such as the OrderId column in OrderLines (a foreign key relationship) use

the exact same name, making it easy to see relationships between tables.

 THE CUSTOMER ID: IDENTIFYING CUSTOMERS OVER TIME

 The CustomerId column combines transactions over time into a single grouping, the
customer (or household or similar entity). How is this accomplished? It all depends on
the business and the business processes:

■ The purchases might contain name and address information. So, purchases with
matching names and addresses would have the same customer ID.

■ The purchases might all have telephone numbers or email address, so these
could provide the customer ID.

■ Customers may have loyalty cards or account numbers which provide the
customer ID.

■ The purchases might be on the web, so browser cookies and logins could
identify customers over time.

■ The purchases might all be by credit card, so purchases with the same credit
card number would have the same customer ID.

 Of course, any combination of these or other methods might be used to generate an
internal customer id. And, because any one of these ids could change over time, the
problem has a time component as well.

 And all these approaches have their challenges. What happens when a customer
browses on a tablet as well as a laptop (and diff erent cookies are stored on diff er-
ent machines) or deletes her web cookies? Or when customers forget their loyalty
cards (so the loyalty numbers are not attached to the purchases)? Or move? Or
change phone numbers or email addresses? Or change their names? Keeping track of
customers over time can be challenging.

16 Chapter 16 ■ A Data Miner Looks at SQL

T19_.indd 16 30/10/2015 12:07 PM T19

■ “CamelBack” case is used (upper case for each new word, lowercase for

the rest). Hence, OrderId instead of Order_Id . In general, table names and

column names are not case sensitive. The CamelBack method is to make it

easier to read the name, while at the same time keeping the name shorter

(than if using underscores).

■ The underscore is used for grouping common columns together. For

instance, in the Calendar table, the indicators for holidays for specifi c

religions start with hol_ .

Of course, the most important practice is to make the column and table

names understandable and consistent, so you (and others) recognize what

they mean.

Picturing Data Analysis Using Datafl ows

Tables store data, but tables do not actually do anything. Tables are nouns; queries

are verbs. This book mates SQL and Excel for data manipulation, transformation,

and presentation. The differences between these tools are exacerbated because

they often support the same operations, although in very different ways. For

instance, SQL uses the GROUP BY clause to summarize data in groups. An Excel

user, on the other hand, might use pivot tables, use the subtotal wizard, or

manually do calculations using functions such as SUMIF() ; however, nothing

in Excel is called “group by.”

 Because this book intends to combine the two technologies, it is useful to

have a common way of expressing data manipulations and data transforma-

tions, a common language independent of the tools being used. Datafl ows

provide this common language by showing the transformation operations

fi tting together like an architecture blueprint for data processing, a blueprint

that describes what needs to be done, without saying which tool is going to

do the work. This makes datafl ows a powerful mechanism for thinking about

data transformations.

What Is a Datafl ow?
A datafl ow is a graphical way of visualizing data transformations. Datafl ows

have two important elements. The nodes in a datafl ow diagram transform data,

taking zero or more inputs and producing output. The edges in a datafl ow dia-

gram are pipes connecting the nodes. Think of the data fl owing through the

pipes and getting banged and pushed and pulled and fl attened into shape by

the nodes. In the end, the data has been transformed into information.

 Figure 1-3 shows a simple datafl ow that adds a new column, called SCF for

Sectional Center Facility (something the U.S. Post Offi ce uses to route mail).

PM

Chapter 1 ■ A Data Miner Looks at SQL 17

T19_.indd 17 30/10/2015 12:07 PM

Figure 1-3 : A simple dataflow reads the ZIPCODE, calculates and appends a new field called SCF,
and outputs the SCF and ZIPCODE.

READ
ZipCensus

APPEND
SCF = substring(zcta5, 1, 3)

SELECT
zcta5, SCF

OUTPUT

. . .totpopstabzcta5
. . .

33126 46,880FL

33127 29,801FL

33128

33126

33127

33128

33126

33127

331287,652FL

. . .

SCF. . .totpopstabzcta5
. . .

33146,880FL

33129,801FL

3317,652FL

. . .

SCFzcta5
. . .

331

331

331

. . .

This column is the fi rst three digits of a zip code. The output is each zip code

with its SCF. The datafl ow has four nodes, connected by three edges. The fi rst,

shaped like a cylinder, represents a database table or fi le and is the source of

the data. The edge leaving this node shows some of the records being passed

from it, records from the ZipCensus table.

 The second node appends the new column to the table, which is also visible

along the edge leading out from the node. The third selects two columns for

output—in this case, zcta5 and SCF . And the fi nal node simply represents the

output. On the datafl ow diagram, imagine a magnifying glass that makes it

possible to see the data moving through the fl ow. Seeing the data move from

node to node shows what is happening in the fl ow.

 The actual processing could be implemented in either SQL or Excel. The SQL

code corresponding to this datafl ow is:

 SELECT zc.zcta5, LEFT(zc.zcta5, 3) as scf
 FROM ZipCensus zc

Alternatively, if the data were in an Excel worksheet with the zip codes in col-

umn A, the following formula would extract the SCF:

 =MID(A1, 1, 3)

Of course, the formula would have to be copied down the column.

 Excel, SQL, and datafl ows are three different ways of expressing similar

transformations. The advantage of datafl ows is that they provide an intuitive

way of visualizing and thinking about data manipulations, independent of the

18 Chapter 18 ■ A Data Miner Looks at SQL

T19_.indd 18 30/10/2015 12:07 PM T19

tool used for the processing. Datafl ows facilitate understanding, but in the end,

the work described in this book is in SQL or Excel.

TIP When column A has a column of data and we want to copy a formula down col-
umn B, the following is a handy method based on keyboard shortcuts:

1. Type the formula in the first cell in column B where there is data in column A.

2. Move the cursor to column A.

3. Hit Ctrl+down arrow to go to the end of the data in column A (Command+down
arrow on a Mac)

4. Hit the right arrow to move to column B.

5. Hit Ctrl+Shift+up arrow to highlight all of column B (Command+up arrow on a
Mac).

6. Hit Ctrl+D to copy the formula down the column.

Voila! The formula gets copied without a lot of fi ddling with the mouse and with menus.

READ: Reading a Database Table

The READ operator reads all the columns of data from a database table or fi le.

In SQL, this operation is implicit when tables are included in the FROM clause

of a query. The READ operator does not accept any input datafl ows, but has

an output. Generally, if a table is needed more than once in a datafl ow, each

occurrence has a separate READ.

OUTPUT: Outputting a Table (or Chart)

The OUTPUT operator creates desired output, such as a table in a row-column

format or some sort of chart based on the data. The OUTPUT operator does not

have any outputs, but accepts inputs. It also accepts parameters describing the

type of output.

SELECT: Selecting Various Columns in the Table

The SELECT operator chooses one or more columns from the input and passes

them to the output. It might reorder columns and/or choose a subset of them.

The SELECT operator has one input and one output. It accepts parameters

describing the columns to keep and their order.

FILTER: Filtering Rows Based on a Condition

The FILTER operator chooses rows based on a TRUE or FALSE condition. Only

rows that satisfy the condition are passed through, so it is possible that no rows

PM

Chapter 1 ■ A Data Miner Looks at SQL 19

T19_.indd 19 30/10/2015 12:07 PM

ever make it through the node. The FILTER operator has one input and one

output. It accepts parameters describing the condition used for fi ltering.

 APPEND: Appending New Calculated Columns

The APPEND operator appends new columns, which are calculated from existing

columns and functions. The APPEND operator has one input and one output.

It accepts parameters describing the new columns.

UNION: Combining Multiple Datasets into One

The UNION operator takes two or more datasets as inputs and creates a single

output that combines all rows from both of them. The input datasets need to

have exactly the same columns. The UNION operator has two or more inputs

and one output.

 AGGREGATE: Aggregating Values

The AGGREGATE operator groups its input based on zero or more key col-

umns. All the rows with the same key values are summarized into a single

row, and the output contains the aggregate key columns and the summaries.

The AGGREGATE operator takes one input and produces one output. It also

takes parameters describing the aggregate keys and the summaries to produce.

LOOKUP: Looking Up Values in One Table in Another

The LOOKUP operator takes two inputs, a base table and a reference table,

which have a key in common. The reference table should have at most one row

for each key value. The LOOKUP operator appends one or more columns in the

reference table to the base table, based on matching key values. When there is

no match, LOOKUP just outputs NULL for the corresponding output columns.

 It takes two parameters. The fi rst describes the key and the second describes

which columns to append. Although this can also be accomplished with a JOIN,

the LOOKUP is intended to be simpler and more readable for this common

operation where no new rows are generated and no rows are fi ltered.

CROSSJOIN: Generating the Cartesian Product of Two Tables

The CROSSJOIN operator takes two inputs and combines them in a very specifi c

way. It produces a wider table that contains all the columns in the two inputs,

the Cartesian product of the two tables. Every row in the output corresponds

to a pair of rows, one from each input. For instance, if the fi rst table has four

rows, A, B, C, and D, and the second has three rows, X, Y, and Z, then the output

20 Chapter 10 ■ A Data Miner Looks at SQL

T19_.indd 20 30/10/2015 12:07 PM T19

consists of all twelve combinations of these: AX, AY, AZ, BX, BY, BZ, CX, CY,

CZ, DX, DY, and DZ. The CROSSJOIN is the most general join operation.

 JOIN: Combining Two Tables Using a Key Column

The JOIN operator takes two inputs and a join condition as a parameter, and

produces an output that has all the columns in the two tables. The join condi-

tion typically specifi es that at least one column in one table is related to one

column in the other, usually by having the same value. This type of join, called

an equijoin, is the most common type of join.

 With an equijoin, it is possible to “lose” rows in one or both of the inputs.

This occurs when there is no matching row in the other table. A variation of

the join ensures that all rows in one or the other table are represented in the

output. Specifi cally, the LEFT OUTER JOIN keeps all rows in the fi rst input table

and the RIGHT OUTER JOIN keeps all rows in the second. FULL OUTER JOIN

keeps all rows in both tables.

SORT: Ordering the Results of a Dataset

The SORT operator orders its input dataset based on one or more sort keys.

It takes a parameter describing the sort keys and the sort order (ascending or

descending).

Datafl ows, SQL, and Relational Algebra
Beneath the skin of most relational databases is an engine that is essentially a

datafl ow engine. Datafl ows focus on data and SQL focuses on data, so they are

natural allies.

 Historically, though, SQL has a somewhat different theoretical foundation based

on mathematical set theory. This foundation is called relational algebra , an area in

mathematics that defi nes operations on unordered sets of tuples . A tuple is a lot

like a row, consisting of attribute-value pairs. The “attribute” is the column and

the “value” is the value of the column in the row. Relational algebra then includes

a bunch of operations on sets of tuples, operations such as union and intersection,

joins and projections, which are similar to the datafl ow constructs just described.

 The notion of using relational algebra to access data is credited to E. F. Codd

who, while a researcher at IBM in 1970, wrote a paper called A Relational Model of

Data for Large Shared Data Banks . This paper became the basis of using relational

algebra for accessing data, eventually leading to the development of SQL and

modern relational databases.

 A set of tuples is a lot like a table, but not quite. One difference between the two

is that a table can contain duplicate rows but a set of tuples cannot have duplicates.

A very important property of sets is that they have no ordering. Sets have no

PM

Chapter 1 ■ A Data Miner Looks at SQL 21

T19_.indd 21 30/10/2015 12:07 PM

concept of the fi rst, second, and third elements—unless another attribute defi nes

the ordering. To most people (or at least most people who are not immersed in set

theory), tables have a natural order, defi ned perhaps by a primary key or perhaps

by the sequence that rows were originally loaded into the table.

 As a legacy of the history of relational algebra, SQL tables have no natural

ordering. The order of the results of a query are defi ned only when there is an

ORDER BY clause.

SQL Queries

This section provides the third perspective on SQL, an introduction to the SQL

querying language. The querying part of SQL is the visible portion of an iceberg

whose bulky mass is hidden from view. The hidden portion is the data manage-

ment side of the language—the defi nitions of tables and views, inserting rows,

updating rows, defi ning triggers, stored procedures, and so on. As data miners

and analysts, our goal is to exploit the visible part of the iceberg, by extracting

useful information from the database.

 SQL queries answer specifi c questions. Whether the question being asked

is actually the question being answered is a big issue for database users. The

examples throughout this book include both the question and the SQL that

answers it. Sometimes, small changes in the question or the SQL produce very

different results.

What to Do, Not How to Do It
A SQL query describes the result set, but does not specify how this is accom-

plished. This approach has several advantages. A query is isolated from the

hardware and operating system where it is running. The same query should

return equivalent results on the same data in two very different environments.

 Being non-procedural means that SQL needs to be compiled into computer code

on any given computer. This compilation step provides an opportunity to optimize

the query to run as fast as possible in the environment. Database engines contain

many different algorithms, ready to be used under just the right circumstances. The

specifi c optimizations, though, might be quite different in different environments.

 Another advantage of being non-procedural is that SQL can take advantage of

parallel processing. The language itself was devised in a world where comput-

ers were very expensive, had a single processor, limited memory, and one disk.

The fact that SQL has adapted to modern system architectures where CPUs,

memory, and disks are plentiful is a testament to the power and scalability of

the ideas underlying the relational database paradigm. When Codd wrote his

paper suggesting relational algebra for “large data banks,” he was probably

thinking of a few megabytes of data, an amount of data that now easily fi ts in

22 Chapter 1 ■ A Data Miner Looks at SQL

T19_.indd 22 30/10/2015 12:07 PM T19

an Excel spreadsheet and pales in comparison to gigabytes of information on a

mobile device or the terabytes of data found in corporate repositories.

The SELECT Statement
This chapter has already included several examples of simple SQL queries. More

formally, the SELECT statement consists of clauses, the most important of which are:

■ WITH

■ SELECT

■ FROM

■ WHERE

■ GROUP BY

■ HAVING

■ ORDER BY

These clauses are always in this order. There is a close relationship between

the datafl ow operations discussed in the previous section and these clauses.

 Note that a SELECT statement can contain subqueries within it. Supporting

subqueries provide much of the power of SQL.

A Basic SQL Query
A good place to start with SQL is with the simplest type of query, one that

selects a column from a table. Consider, once again, the query that returns zip

codes along with the SCF:

 SELECT zc.zcta5, LEFT(zc.zcta5, 3) as scf
 FROM ZipCensus zc

This query returns a table with two columns, the zip code and the SCF. The

rows might be returned in any order. If you want the rows in a particular order,

include an explicit ORDER BY clause:

 SELECT zc.zcta5, LEFT(zc.zcta5, 3) as scf
 FROM ZipCensus zc
 ORDER BY zc.zcta5

Without an ORDER BY , never assume that the result of a query will be in a par-

ticular order.

WARNING The results of a query are unordered, unless you use an ORDER BY clause Y

at the outermost level. Never depend on a “default ordering,” because there isn’t one.

PM

Chapter 1 ■ A Data Miner Looks at SQL 23

T19_.indd 23 30/10/2015 12:07 PM

 This simple query already shows some of the structure of the SQL language.

All queries begin with the SELECT clause that lists the columns being returned.

The tables being accessed are in the FROM clause, which follows the SELECT state-

ment. And, the ORDER BY is the last clause in the query.

 This example uses only one table, ZipCensus . In the query, this table has a

table alias , or abbreviation, called zc . The fi rst part of the SELECT statement is

taking the zcta5 column from zc . Although table aliases are optional in SQL,

as a rule this book uses them extensively because aliases clarify where columns

come from and make queries easier to write and to read.

TIP Use table aliases in your queries that are abbreviations for the table names.
These make the queries easier to write and to read.

 The second column returned by the query is calculated from the zip code itself,

using the LEFT() function. LEFT() is just one of dozens of functions provided by

SQL, and specifi c databases generally support user-defi ned functions as well.

The second column has a column alias . That is, the column is named SCF , which

is the header of the column in the output.

 A simple modifi cation that returns the zip codes and SCFs only in Minnesota:

 SELECT zc.zcta5, LEFT(zc.zcta5, 3) as scf
 FROM ZipCensus zc
 WHERE stab = 'MN'
 ORDER BY 1

The query has an additional clause, the WHERE clause, which, if present,

always follows the FROM clause. The WHERE clause specifi es a condition; in

this case, that only rows where stab is equal to “MN” are included in the

result set. The ORDER BY clause then sorts the rows by the fi rst column; the

“1” is a reference to the fi rst column being selected, in this case, zc.zcta5 .

The preferred method, however, is to use the column name (or alias) in the

ORDER BY clause.

 The datafl ow corresponding to this modifi ed query is in Figure 1-4 . In this

datafl ow, the WHERE clause has turned into a fi lter after the data source, and the

ORDER BY clause has turned into a SORT operator just before the output. Also

notice that the datafl ow contains several operators, even for a simple SQL query.

SQL is a parsimonious language; complex operations can often be specifi ed

quite simply.

WARNING When a column value is NULL , any comparison in a WHERE clause—
with the important exception of IS NULL — always returns unknown, which is treated
as FALSE. So, the clause WHERE stab <> 'MN' really means WHERE stab IS NOT
NULL AND stab <> 'MN'.

24 Chapter 14 ■ A Data Miner Looks at SQL

T19_.indd 24 30/10/2015 12:07 PM T19

A Basic Summary SQL Query
A very powerful component of SQL is the ability to summarize data in a table.

The following SQL counts the number of zip codes in ZipCensus :

 SELECT COUNT(*) as numzip
 FROM ZipCensus zc

The form of this query is very similar to the basic select query. The func-

tion COUNT(*) , not surprisingly, counts the number of rows. The “ * ” means

that all rows are being counted. It is also possible to count a column, such as

COUNT(zcta5) . This counts the number of rows that have a valid (i.e., non-

NULL) value in zcta5 .

 The preceding query is an aggregation query that treats the entire table as a

single group. Within this group, the query counts the number of rows, which

calculates the number of rows in the table. A very similar query returns the

number of zip codes in each state:

 SELECT stab, COUNT(*) as numzip
 FROM ZipCensus zc
 GROUP BY stab
 ORDER BY numzip DESC

The GROUP BY clause says to treat the table as consisting of several groups

defi ned by the different values in the column stab . The result is then sorted

in reverse order of the count (DESC stands for “descending”), so the state with

Figure 1-4: A WHERE clause in a query adds a filter node to the dataflow.

READ
ZipCensus

APPEND
SCF = substring(zcta5, 1, 3)

SELECT
zcta5, SCF OUTPUT

. . .totpopstabzcta5
. . .

33126 46,880FL

33127 29,801FL

33128 7,652FL

. . .

SCFzcta5
. . .

55401 554

55402 554

55403 554

. . .

SORT
zcta5

FILTER
Stab = 'MN'

. . .totpopstabzcta5
. . .

55401 7,157MN

55402 381MN

55403 14,489MN

. . .

SCFzcta5
. . .

55401 554

55402 554

55403 554

. . .

SCF. . .totpopstabzcta5
. . .

55401 5547,157MN

55402 554381MN

55403 55414,489MN

. . .

PM

Chapter 1 ■ A Data Miner Looks at SQL 25

T19_.indd 25 30/10/2015 12:07 PM

Figure 1-5 : This dataflow diagram describes a basic aggregation query.

READ
ZipCensus

OUTPUT

. . .totpopstabzcta5
. . .

33126 46,880FL

33127 29,801FL

33128 7,652FL

. . .

SORT
numzips desc

AGGREGATE
group by stab

numzips = count(*)

numzipsstab
1,798PA

983FL
405AZ
361MT

. . .

numzipsstab
1,935TX
1,798PA
1,794NY
1,763CA

. . .

the most zip codes (Texas) is fi rst. Figure 1-5 shows the corresponding data-

fl ow diagram.

 In addition to COUNT() , standard SQL offers other useful aggregation

functions. The SUM() , AVG() , MIN() , and MAX() functions compute, respec-

tively, the sum, average, minimum, and maximum values. In general, the

first two operate only on numeric values and the MIN() and MAX() can work

on any data type. Note that all these functions ignore NULL values in their

calculations.

COUNT(DISTINCT) returns the number of distinct values. An example of using

it is to answer the following question: How many SCFs are in each state? The

following query answers this question:

 SELECT zc.stab, COUNT(DISTINCT LEFT(zc.zcta5, 3)) as numscf
 FROM ZipCensus zc
 GROUP BY zc.stab
 ORDER BY zc.stab

This query also shows that functions, such as LEFT() , can be nested in the

aggregation functions. SQL allows arbitrarily complicated expressions. Chapter 2

shows another way to answer this question using subqueries.

What It Means to Join Tables
Because they bring together information from two tables, joins are perhaps the

most powerful feature of SQL. Database engines can have dozens of algorithms

just for this one key word. A lot of programming and algorithms are hidden

beneath this simple construct.

26 Chapter 16 ■ A Data Miner Looks at SQL

T19_.indd 26 30/10/2015 12:07 PM T19

 As with anything powerful, joins need to be used carefully—not sparingly,

but carefully. It is very easy to make mistakes using joins, especially the fol-

lowing two:

■ “Mistakenly” losing rows in the result set, and

■ “Mistakenly” adding unexpected additional rows.

Whenever joining tables, it is worth asking whether either of these could be

happening. These are subtle questions because the answer depends on the data

being processed, not on the syntax of the expression itself. There are examples

of both problems throughout the book.

 This discussion is about what joins do rather than about the multitude of

algorithms for implementing them (although the algorithms are quite interest-

ing—to some people—they don’t help us understand customers and data). The

most general type of join is the cross-join. The discussion then explains the

more common variants: look up joins, equijoins, nonequijoins, and outer joins.

WARNING Whenever joining two tables, ask yourself the following two questions:

1. Could one of the tables accidentally be losing rows because there are no
matches in the other table?

2. Could the result set unexpectedly have duplicate rows due to multiple matches
between the tables?

 The answers require understanding the underlying data.

Cross-Joins: The Most General Joins

The most general form of joining two tables is called the cross-join or, for the more

mathematically inclined, the Cartesian product of the two tables. As discussed

earlier in the section on datafl ows, a cross-join results in an output consisting

of all columns from both tables and every combination of rows from one table

with rows from the other. The number of rows in the output grows quickly as

the two tables become bigger. If the fi rst table has four rows and two columns,

and the second has three rows and two columns, then the resulting output has

twelve rows and four columns. This is easy enough to visualize in Figure 1-6 .

 Because the number of rows in the output is the number of rows in each table

multiplied together, the output size grows quickly. If one table has 3,000 rows

and the other 4,000 rows, the result has 12,000,000 rows—which is a bit big for

an illustration. The number of potential columns is the sum of the number of

columns in each input table.

 In the business world, tables often have thousands, or millions, or even more

rows, so a cross-join quickly gets out of hand, with even the fastest computers.

If this is the case, why are joins so useful, important, and practical?

PM

Chapter 1 ■ A Data Miner Looks at SQL 27

T19_.indd 27 30/10/2015 12:07 PM

 The reason is that the general form of the join is not the form that gets used

very often, unless one of the tables is known to have only one row or a hand-

ful of rows. By imposing some restrictions—say by imposing a relationship

between columns in the two tables—the result becomes more tractable. Even

though more specialized joins are more commonly used, the cross-join is still

the foundation that explains what they are doing.

Lookup: A Useful Join

ZipCensus is an example of a reference table summarized at the zip code level.

Each row describes a zip code and any given zip code appears exactly once

in the table. As a consequence, the zcta5 column makes it possible to look up

census information for zip codes stored in another table. Intuitively, this is one

of the most natural join operations, using a foreign key in one table to look up

values in a reference table.

 A lookup join makes the following two assumptions about the base and

reference tables:

■ All values of the key in the base table are in the reference table (missing

join keys lose rows unexpectedly).

■ The lookup key is the primary key in the reference table (duplicate join

keys cause unexpected rows).

Unfortunately, SQL does not provide direct support for lookups because there is

no simple check in the query ensuring these two conditions are true. However,

the join mechanism makes it possible to do lookups, and this works smoothly

when the two preceding conditions are true.

Figure 1-6: A cross-join on two tables, one with four rows and one with three rows, results in a
new table that has twelve rows and all columns from both tables.

ZipCodeField
10011A
55401B
33132C

ZipCodeFieldValueID
10011A1,7981001
55401B1,7981001
33132C1,7981001
10011A9831002
55401B9831002
33132C9831002
10011A4051003
55401B4051003
33132C4051003
10011A3611004
55401B3611004
33132C3611004

CROSS
JOIN

ValueID
1001 1,798

1002 983

1003 405

1004 361

28 Chapter 18 ■ A Data Miner Looks at SQL

T19_.indd 28 30/10/2015 12:07 PM T19

 Consider the SQL query that appends the zip code population to each row

of Orders :

 SELECT o.OrderId, o.ZipCode, zc.totpop
 FROM Orders o JOIN
 ZipCensus zc
 ON o.ZipCode = zc.zcta5

This example uses the ON clause to establish the condition between the tables.

There is no requirement that the condition be equality in general, but for a

lookup it is.

 From the datafl ow perspective, the lookup could be implemented with

CROSSJOIN. The output from the CROSSJOIN is fi rst fi ltered to the correct

rows (those where the two zip codes are equal) and the desired columns (all

columns from Orders plus totpop) are selected. Figure 1-7 shows a datafl ow

that appends a population column to Orders using this approach.

 Unlike the datafl ow diagram, the SQL query describes that a join needs to

take place, but does not explain how this is done. The cross-join is one method,

although it would be quite ineffi cient in practice. Databases are practical, so

database writers have invented many different ways to speed this up. The

details of such performance enhancements are touched upon in Chapter 14 ,

“Performance Is the Issue: Using SQL Effectively.” It is worth remembering

that databases are practical, not theoretical, and the database engine is usually

trying to optimize the run-time performance of queries.

 Although the preceding query does implement the lookup, it does not guar-

antee the two conditions mentioned earlier. If there were multiple rows in

ZipCensus for a given zip code, there would be extra rows in the output (because

any matching row would appear more than once). You can defi ne a constraint or

unique index on the table to ensure that it has no duplicates, but in the query

itself there is no evidence of whether or not such a constraint is present. On the

other hand, if zip code values in Orders were missing in ZipCensus , rows would

unexpectedly disappear. In fact, this happens and the output has fewer rows

than the original Orders table. The condition that all the zip codes in Orders

match a row in ZipCensus could be enforced (if it were true) with another type

of constraint, a foreign key constraint. t
 Having multiple rows in ZipCensus for a given zip code is not an outland-

ish idea. For instance, it could include information for both the 2000 and 2010

censuses, which would make it possible to see changes over time. One way to

implement this would be to have another column, say, CensusYear to specify the

year of the census. Now the primary key would be a compound key composed

of zcta5 and CensusYear together. A join on the table using just zip code would

result in multiple rows, one for each census year.

PM

Chapter 1 ■ A Data Miner Looks at SQL 29

T19_.indd 29 30/10/2015 12:07 PM

Figure 1-7: In SQL, looking up a value in one table is theoretically equivalent to creating the
cross-join of the two tables and then restricting the values.

. . .ZipCodeOrderId

10011000001

33158000002

55403000003

02138000004

. . .

. . .totpopStabzcta5. . .ZipCodeOrderId

17,380MA0100110011000001

. . .

29,396NY1001010011000001
51,853NY1001110011000001
24,703NY1001210011000001

. . .
2,361AK9992910011000001

17,380MA0100133158000002

. . .
6,719FL3315833158000002

. . .

CROSS
JOIN

CROSS
JOIN

READ
ZipCensus

(zc)

READ
Orders

(o)

. . .totpopstabzcta5
. . .

33126 46,880FL

33127 29,801FL

33128 7,652FL
. . .

SELECT
o.*, zc.totpop

FILTER
= o.ZipCode

zc.zcta5
OUTPUT

. . .totpopStabzcta5. . .ZipCodeOrderId

51,853NY1001110011000001

6,719FL3315833158000002

. . .

. . .ZipCodeOrderId totpop

10011000001

33158

51,853

6,719000002

. . .

Equijoins

An equijoin is a join that has at least one condition asserting that two columns

in the tables have equal values, and all the conditions are connected by AND

(which is normally the case). In SQL, the conditions are the ON clause following

the JOIN statement.

 An equijoin can return extra rows the same way that a cross-join can. If a

column value in the fi rst table is repeated three times, and the same value occurs

in the second table four times, the equijoin between the two tables produces

twelve rows of output for that column. This is similar to the situation depicted

in Figure 1-6 (page 27) that illustrates the cross-join. Using an equijoin, it is

possible to add many rows to output that are not intended, especially when the

equijoin is on non-key columns.

 Equijoins can also fi lter out rows, when there are no matching key values in

the second table. This fi ltering can be a useful feature. For instance, one table

might have a small list of ids that are special in some way. The join would then

apply this fi lter to the bigger table.

 Although joins on primary keys are more common, there are cases where

such a many-to-many equijoin is desired. Consider this question: For each zip
code, how many zip codes in the same state have a larger population?

30 Chapter 10 ■ A Data Miner Looks at SQL

T19_.indd 30 30/10/2015 12:07 PM T19

 The following query uses a self-join (followed by an aggregation) to answer

this question. A self-join simply means that two copies of the ZipCensus table

are joined together. The equijoin uses the state column as a key, rather than the

zip code column.

 SELECT zc1.zcta5,
 SUM(CASE WHEN zc1.totpop < zc2.totpop THEN 1
 ELSE 0 END) as numzip
 FROM ZipCensus zc1 JOIN
 ZipCensus zc2
 ON zc1.stab = zc2.stab
 GROUP BY zc1.zcta5

Notice that ZipCensus is mentioned twice in the FROM clause. Each occurrence

is given a different table alias to distinguish them in the query.

 The datafl ow for this query, in Figure 1-8 , reads the ZipCensus table twice,

feeding both into the JOIN operator. The JOIN in the datafl ow is an equijoin

because the condition is on the stab column. The results from the join are then

aggregated.

Figure 1-8: This dataflow illustrates a self-join and an equijoin on a non-key column.

totpopstabzcta5 . . .totpopstabzcta5

. . .

46,880FL3312646,880FL33126

29,801FL3312746,880FL33126

7,652FL3312846,880FL33126

. . .
46,880FL3312629,801FL33127

29,801FL3312729,801FL33127

7,652FL3312829,801FL33127

. . .
46,880FL331267,652FL33128

29,801FL331277,652FL33128

7,652FL331287,652FL33128

. . .

JOIN
on stab

READ
ZipCensus

(zc2)

. . .totpopstabzcta5
. . .

33126 46,880FL

33127 29,801FL

33128 7,652FL

. . .

OUTPUT

numzipszcta5

. . .

5133126

. . .

71833128

. . .

22433127

. . .

. . .totpopstabzcta5
. . .

33126 46,880FL

33127 29,801FL

33128 7,652FL

. ..

AGGREGATE
group by zc1.stab

= sum(case when zc1.totpop < cz2.totpop numzips
then 1 else 0 end)

READ
ZipCensus

(zc1)

PM

Chapter 1 ■ A Data Miner Looks at SQL 31

T19_.indd 31 30/10/2015 12:07 PM

Nonequijoins

A nonequijoin is a join where none of the conditions is equality between two

columns. Nonequijoins are unusual. This is fortunate because there are many

fewer performance tricks available to make them run quickly. Often, a nonequi-

join is actually a mistake and indicates an error.

 Note that when any of the conditions are equality, and the conditions are

connected by AND , the join is an equijoin. Consider the following question about

Orders : How many orders are greater than the median rent where the customer resides ? s
The following query answers this question:

 SELECT zc.stab, COUNT(*) as numrows
 FROM Orders o JOIN
 ZipCensus zc
 ON o.zipcode = zc.zcta5 AND
 o.totalprice > zc.mediangrossrent
 GROUP BY zc.stab

The JOIN in this query has two conditions, one specifi es that the zip codes are

equal and the other specifi es that the total amount of the order is greater than

the median rent in the zip code. This is still an example of an equijoin because

of the condition on zip code.

Outer Joins

The fi nal type of join is the outer join, which guarantees that all rows from one

or both of the tables remain in the result set, even when there are no matching

rows in the other table. All the previous joins have been inner joins , meaning

that only rows that match are included. For a cross-join, this does not make a

difference because there are many copies of rows from both tables in the result.

However, for other types of joins, losing rows in one or the other table may not

be desirable; hence the need for the outer join.

 Lookups are a good example of an outer (equijoin), because the join asserts

that a foreign key in one table equals a primary key in a reference table.

Lookups return all the rows in the fi rst table, even when there is no matching

row.

 Outer joins comes in three fl avors:

■ The LEFT OUTER JOIN ensures that all rows from the fi rst table remain in

the result set.

■ The RIGHT OUTER JOIN ensures that all rows from the second table remain.

■ The FULL OUTER JOIN ensures that all rows from both tables are kept.

When there is no match, then the columns from the “missing” table are

all set to NULL in the result set.

32 Chapter 1 ■ A Data Miner Looks at SQL

T19_.indd 32 30/10/2015 12:07 PM T19

What does this mean? Consider the Orders table, which has some zip codes

that are not in ZipCensus . This could occur for several reasons. ZipCensus

contains a snapshot of zip codes as of the census, and new zip codes might

have appeared since then. Also, the Census Bureau is not interested in all

zip codes, so they exclude some zip codes where no one lives. Or, perhaps

the problem might lie in Orders . There could be mistakes in the ZipCode

column. Or, as is the case, the Orders table might include orders from outside

the United States.

 Whatever the reason, any query using the inner join eliminates all rows

where the zip code in Orders does not appear in ZipCensus . Losing such rows

could be a problem, which the outer join fi xes. The only change to the query

is replacing the word JOIN with the phrase LEFT OUTER JOIN (or equivalently

LEFT JOIN):

 SELECT zc.stab, COUNT(*) as numrows
 FROM Orders o LEFT OUTER JOIN
 ZipCensus zc
 ON o.ZipCode = zc.zcta5 AND
 o.TotalPrice > zc.mediangrossrent
 GROUP BY zc.stab

The results from this query are not particularly interesting. The results are the

same as the previous query with one additional large group for NULL . When

there is no matching row in ZipCensus , zc . stab is NULL .

TIP In general, you can write queries using just LEFT OUTER JOIN and INNER
JOIN . There is usually no reason to mix LEFT OUTER JOIN and RIGHT OUTER
JOIN in the same query.

Left outer joins are very practical. When they are chained together, they

essentially say “keep all rows in the fi rst table.” As a general rule, don’t mix

outer join types if you can avoid it, because just having LEFT OUTER JOIN s and

INNER JOIN s is suffi cient for most purposes. As an example, if one table con-

tains information about customers, then subsequent joins could bring in other

columns from other tables, and the LEFT OUTER JOIN ensures that no custom-

ers are accidently lost. Chapter 13 , “Building Custom Signatures for Further

Analysis,” uses outer joins extensively.

Other Important Capabilities in SQL
SQL has other features that are used throughout the book. The goal here is

not to explain every nuance of the language, because reference manuals and

database documentation do a good job there. The goal here is to give a feel for

the important capabilities of SQL needed for data analysis.

PM

Chapter 1 ■ A Data Miner Looks at SQL 33

T19_.indd 33 30/10/2015 12:07 PM

UNION ALL

UNION ALL is a set operation that combines all rows in two tables, by just cre-

ating a result set with all the rows from each input table. The columns must

be the same in each of the input tables. In practice, this means that UNION ALL

almost always operates on subqueries, because it is unusual for two tables to

have exactly the same columns.

 SQL has other set operations, such as UNION , INTERSECTION , and MINUS (also

called EXCEPT). The UNION operation combines the rows in two tables together,

and then removes duplicates. This means that UNION is much less effi cient

than UNION ALL , so it is worth avoiding. INTERSECTION takes the overlap of

two tables—rows that are in both. However, it is often more interesting to

understand the relationship between two tables—how many items are in

both and how many are in each one but not the other. Solving this problem

is discussed in Chapter 2 .

 CASE

 The CASE expression adds conditional logic into the SQL language. Its most

general form is:

 CASE WHEN <condition-1> THEN <value-1>
 . . .
 WHEN <condition-n THEN <value-n>
 ELSE <default-value> END

 The <condition> clauses look like conditions in a WHERE clause; they can be arbi-

trarily complicated. The <value> clauses are values returned by the statement,

and these should all be the same type. The <condition> clauses are evaluated

in the order they are written. When no <else> condition is present, the CASE

statement returns NULL if none of the previous clauses match.

 One common use of CASE is to create indicator variables. Consider the follow-

ing question: How many zip codes in each state have a population of more than 10,000

and what is the total population of these? The following SQL query is, perhaps, the

most natural way of answering this question:

 SELECT zc.stab, COUNT(*) as numbigzip, SUM(totpop) as popbigzip
 FROM ZipCensus zc
 WHERE totpop > 10000
 GROUP BY zc.stab

 This query uses a WHERE clause to choose the appropriate set of zip codes.

 Now consider the related question: How many zip codes in each state have a

population of more than 10,000, how many have more than 1,000, and what is the total
population of each of these sets?

34 Chapter 14 ■ A Data Miner Looks at SQL

T19_.indd 34 30/10/2015 12:07 PM T19

 Unfortunately, the WHERE clause solution no longer works, because two over-

lapping sets of zip codes are needed. One solution is to run two queries, which

is messy. Combining the results into a single query is easy using conditional

aggregation:

 SELECT zc.stab,
 SUM(CASE WHEN totpop > 10000 THEN 1 ELSE 0 END) as num_10000,
 SUM(CASE WHEN totpop > 1000 THEN 1 ELSE 0 END) as num_1000,
 SUM(CASE WHEN totpop > 10000 THEN totpop ELSE 0 END
) as pop_10000,
 SUM(CASE WHEN totpop > 1000 THEN totpop ELSE 0 END
) as pop_1000
 FROM ZipCensus zc
 GROUP BY zc.stab

Notice that in this version, the SUM() function is used to count zip codes that

meet the appropriate condition; it does so by adding 1 for each matching row.

COUNT() is not the right function, because it would count the number of non-

NULL values.

TIP When a CASE statement is nested in an aggregation function, the appropriate
function is usually SUM() , or MAX() sometimes AVG() , and on rare occasions
COUNT(DISTINCT) . Check to be sure that you are using SUM() even when “count-
ing” things up.

 The following two statements are very close to being the same, but the second

lacks the ELSE clause:

 SUM(CASE WHEN totpop > 10000 THEN 1 ELSE 0 END) as num_10000,
 SUM(CASE WHEN totpop > 10000 THEN 1 END) as num_10000,

Each counts the number of zip codes where population is greater than 10,000.

The difference is what happens when no zip codes have such a large popula-

tion. The fi rst returns the number 0. The second returns NULL . Usually when

counting things, it is preferable to have the value be a number rather than NULL ,

so the fi rst form is generally preferred.

 The CASE statement can be much more readable than the WHERE clause because

the CASE statement has the condition in the SELECT , rather than much further

down in the query. On the other hand, the WHERE clause provides more oppor-

tunities for optimization.

IN

The IN statement is used in a WHERE clause to choose items from a set. The fol-

lowing WHERE clause chooses zip codes in New England states:

PM

Chapter 1 ■ A Data Miner Looks at SQL 35

T19_.indd 35 30/10/2015 12:07 PM

 WHERE stab IN ('VT', 'NH', 'ME', 'MA', 'CT', 'RI')

This use is equivalent to the following:

 WHERE (stab = 'VT' OR
 stab = 'NH' OR
 stab = 'ME' OR
 stab = 'MA' OR
 stab = 'CT' OR
 stab = 'RI')

The IN statement is easier to read and easier to modify.

 Similarly, the following NOT IN statement would choose zip codes that are

not in New England:

 WHERE stab NOT IN ('VT', 'NH', 'ME', 'MA', 'CT', 'RI')

This use of the IN statement is simply a convenient shorthand for what would

otherwise be complicated WHERE clauses. The section on subqueries explores

another use of IN .

Window Functions

Window functions are a class of functions that use the OVER clause. These func-

tions return a value on a single row, but the value is based on a group of rows.

A simple example is SUM() . Say we wanted to return each zip code with the sum

of the population in the state. With window functions, this is easy:

 SELECT zc.zcta5,
 SUM(totpop) OVER (PARTITION BY zc.stab) as stpop
 FROM ZipCensus zc;

The PARTITION BY clause says “do the sum for all rows with the same value of

stab .” The result is that all zip codes in a given state have the same value for stpop .

 A particularly interesting window function is ROW_NUMBER() . This assigns a

sequential value, starting with 1, to rows within each group.

 SELECT zc.zcta5,
 SUM(totpop) OVER (PARTITION BY zc.stab) as stpop,
 ROW_NUMBER() OVER (PARTITION BY zc.stab
 ORDER BY totpop DESC
) as ZipPopRank
 FROM ZipCensus zc

This query adds an additional ranking column to each row in the result set.

The value is 1 for the zip code with the highest population in each state, 2 for

the second highest, and so on.

36 Chapter 16 ■ A Data Miner Looks at SQL

T19_.indd 36 30/10/2015 12:07 PM T19

 SQL offers two other similar functions for ranking: RANK() and DENSE_RANK() .

They differ in their handling of ties, as shown by the example in Table 1-2 .

 All three functions assign the fi rst row a number of “1”. ROW_NUMBER() ignores

duplicates, just giving each row a different number. RANK() assigns duplicate

numbers when rows have the same value, but then skips the next numbers, so

the results have gaps. DENSE_RANK() is like rank except the resulting numbers

have no gaps.

Subqueries and Common Table Expressions
Are Our Friends

Subqueries are exactly what their name implies, queries within queries.

They make it possible to do complex data manipulation within a single SQL

statement, exactly the types of manipulation needed for data analysis and

data mining.

 In one sense, subqueries are not needed. All the manipulations could be

accomplished by creating intermediate tables and combining them. The resulting

SQL would be a series of CREATE TABLE statements and INSERT statements (or

possibly CREATE VIEW or SELECT INTO), with simpler queries. Although such

an approach is sometimes useful, especially when the intermediate tables are

used multiple times, it suffers from several problems.

 First, instead of thinking about solving a particular problem, you end up

thinking about the data processing, the naming of intermediate tables, deter-

mining the types of columns, remembering to remove tables when they are no

longer needed, deciding whether to build indexes, and so on. All the additional

bookkeeping activity distracts from focusing on the data and the business

problems.

 Second, SQL optimizers can often fi nd better approaches to running a compli-

cated query than people can. So, writing multiple SQL statements can interfere

with the optimizer.

Table 1-2: Example of ROW_NUMBER() , RANK() , and DENSE_RANK()

VALUE ROW_NUMBER() RANK() DENSE_RANK()

10 1 1 1

20 2 2 2

20 3 2 2

30 4 4 3

50 5 5 4

50 6 5 4

PM

Chapter 1 ■ A Data Miner Looks at SQL 37

T19_.indd 37 30/10/2015 12:07 PM

 Third, maintaining a complicated chain of queries connected by tables can

be quite cumbersome. For instance, adding a new column might require add-

ing new columns in all sorts of places. Or, you may run part of the script and

not realize that one of the intermediate tables has values from a previous run.

 Fourth, the read-only SQL queries that predominate in this book can be run

with a minimum of permissions for the user—simply the permissions to run

queries. Running complicated scripts requires create and modify permissions

on at least part of the database. These permissions are dangerous, because an

analyst might inadvertently damage the database. Without these permissions,

it is impossible to cause such damage.

 Subqueries can appear in many different parts of the query, in the SELECT

clause, in the FROM clause, and in the WHERE and HAVING clauses. However, this

section approaches subqueries by why they are used rather than where they

appear syntactically.

 Common table expressions (often referred to as CTE s) are another way of

writing queries that appear in the FROM clause. They are more powerful than

subqueries for two reasons. First, they can be used multiple times throughout

the query. And, they can refer to themselves—something called recursive CTE s.

The following sections have examples of both CTEs and subqueries.

Subqueries for Naming Variables
When it comes to naming variables, SQL has a shortcoming. The following is

not syntactically correct in most SQL dialects:

 SELECT totpop as pop, pop + 1

The SELECT statement names columns, but these names cannot be used again in

the same clause. Because queries should be at least somewhat understandable

to humans, as well as database engines, this is a real shortcoming. Complicated

expressions should have names.

 Fortunately, subqueries provide a solution. The earlier query that summarized

zip codes by population greater than 10,000 and greater than 1,000 could instead

use a subquery that is clearer about what is happening:

 SELECT zc.stab,
 SUM(is_pop_10000) as num_10000,
 SUM(is_pop_1000) as num_1000,
 SUM(is_pop_10000 * totpop) as pop_10000,
 SUM(is_pop_1000 * totpop) as pop_1000
 FROM (SELECT zc.*,
 (CASE WHEN totpop > 10000 THEN 1 ELSE 0
 END) as is_pop_10000,
 (CASE WHEN totpop > 1000 THEN 1 ELSE 0
 END) as is_pop_1000

38 Chapter 18 ■ A Data Miner Looks at SQL

T19_.indd 38 30/10/2015 12:07 PM T19

 FROM ZipCensus zc
) zc
 GROUP BY zc.stab

This version of the query uses two indicator variables, IS_POP_10000 and IS_

POP_1000 . These take on the value of 0 or 1, depending on whether or not the

population is greater than 10,000 or 1,000. The query then sums the indicators

to get the counts, and sums the product of the indicator and the population to

get the population count. Figure 1-9 illustrates this process as a datafl ow. Notice

that the datafl ow does not include a “subquery.”

TIP Subqueries with indicator variables, such as IS_POP_1000 , are a powerful and
fl exible way to build queries.

 Indicator variables are only one example of using subqueries to name variables.

Throughout the book, there are many other examples. The purpose is to make

the queries understandable to humans, relatively easy to modify, and might,

with luck, help us remember what a query written six months ago is really doing.

Figure 1-9: This dataflow illustrates the process of using indicator variables to obtain information
about zip codes.

OUTPUT

AGGREGATE
group by stab

numzips= count(*),
num_1000 = sum(is_pop_1000),
pop_1000 = sum(is_pop_1000 * totpop), . . .

READ
ZipCensus

APPEND
is_pop_1000

Is_pop_10000

SORT
stab

. . .totpopstabzcta5

. . .
55401 7,157MN

55402 381MN

55403 14,489MN
. . .

Is_pop_10000Is_pop_1000. . .totpopstabzcta5
. . .

017,157MN55401
00381MN55402
1114,489MN55403

. . .

pop_10000num_10000pop_10000num_1000numzipsstab

3,545,6334,483,393156404515LA
3,236,8953,778,487121274417OR

5,067,5526,408,018214594775IN

2,423,0242,716,03781166288UT
. . .

pop_10000num_10000pop_10000num_1000numzipsstab

515,160653,4772262238AK

3,276,1034,724,461169517642AL

1,973,8942,816,22289346591AR

5,844,7016,380,749189326405AZ
. . .

PM

Chapter 1 ■ A Data Miner Looks at SQL 39

T19_.indd 39 30/10/2015 12:07 PM

 FORMATTING SQL QUERIES

 There is no agreed-upon standard for formatting SQL queries. There are a few good
practices, such as:

■ Use table aliases that are abbreviations for the table name.

■ Use as to defi ne column aliases.

■ Be consistent in capitalization, in usage of underscores, and in indentation.

■ Write the code to be understandable, so you and someone else can read it.

 Writing readable code is always a good idea.
 Any guidelines for writing code necessarily have a subjective element. The goal

should be to communicate what the query is doing. Formatting is important: Just
imagine how diffi cult it would be to read text without punctuation, capitalization, and
paragraphs.

 The code in this book (and on the companion website) follows additional rules to
make the queries easier to follow.

■ Most keywords are capitalized and most table and column names use
CamelBack casing (except for ZipCensus).

■ The high-level clauses defined by the SQL language are all aligned on the
left. These are WITH , SELECT , FROM , WHERE , GROUP BY , HAVING , and
ORDER BY .

■ Within a clause, subsequent lines are aligned after the keyword, so the scope of
each clause is visually obvious.

■ Subqueries follow similar rules, so all the main clauses of a subquery are
indented, but still aligned on the left.

■ Within the FROM clause, table names and subqueries start on a new line (the
tables are then aligned and easier to see). The ON predicate starts on its own
line, and the join keywords are at the end of the line.

■ Columns are generally qualifi ed, meaning that they use table aliases.

■ Operators generally have spaces around them.

■ Commas are at the end of a line, just as a human would place them.

■ Closing parenthesis—when on a subsequent line—is aligned under the
opening parenthesis.

■ CASE statements are always surrounded by parentheses.

 The goal should be to write queries so other people can readily understand them.
After all, you may be returning to your queries one day and you would like to be able
to quickly fi gure out what they are doing.

40 Chapter 10 ■ A Data Miner Looks at SQL

T19_.indd 40 30/10/2015 12:07 PM T19

 The above subquery can also be written as a CTE:

 WITH zc as (
 SELECT zc.*,
 (CASE WHEN totpop > 10000 THEN 1 ELSE 0
 END) as is_pop_10000,
 (CASE WHEN totpop > 1000 THEN 1 ELSE 0
 END) as is_pop_1000
 FROM ZipCensus zc
)
 SELECT zc.stab,
 SUM(is_pop_10000) as num_10000,
 SUM(is_pop_1000) as num_1000,
 SUM(is_pop_10000 * totpop) as pop_10000,
 SUM(is_pop_1000 * totpop) as pop_1000
 FROM zc
 GROUP BY zc.stab

Here, the subquery is introduced using the WITH clause; otherwise, it is very

similar to the version with a subquery in the FROM clause. A query can have

only one WITH clause, although it can defi ne multiple CTEs. These can refer to

CTEs defi ned earlier in the same clause.

Subqueries for Handling Summaries
The most typical place for a subquery is as a replacement for a table in the FROM

clause. After all, the source is a table and a query essentially returns a table,

so it makes a lot of sense to combine queries in this way. From the datafl ow

perspective, this use of subqueries is simply to replace one of the sources with

a series of datafl ow nodes.

 Consider the question: How many zip codes in each state have a population density

greater than the average zip code population density in the state? The population density

is the population divided by the land area, which is in the column landsqmi .

 Let’s think about the different data elements needed to answer the question.

The comparison is to the average zip code population density within a state,

which is easily calculated:

 SELECT zc.stab, AVG(totpop / landsqmi) as avgpopdensity
 FROM ZipCensus zc
 WHERE zc.landsqmi > 0
 GROUP BY zc.stab

Next, the idea is to combine this information with the original zip code infor-

mation in the FROM clause:

 SELECT zc.stab, COUNT(*) as numzips,
 SUM(CASE WHEN zc.popdensity > zcsum.avgpopdensity
 THEN 1 ELSE 0 END) as numdenser

PM

Chapter 1 ■ A Data Miner Looks at SQL 41

T19_.indd 41 30/10/2015 12:07 PM

 FROM (SELECT zc.*, totpop / landsqmi as popdensity
 FROM ZipCensus zc
 WHERE zc.landsqmi > 0
) zc JOIN
 (SELECT zc.stab, AVG(totpop / landsqmi) as avgpopdensity
 FROM ZipCensus zc
 WHERE zc.landsqmi > 0
 GROUP BY zc.stab) zcsum
 ON zc.stab = zcsum.stab
 GROUP BY zc.stab

The datafl ow diagram for this query follows the same logic and is shown in

Figure 1-10 . Later in this chapter we will see another way to answer this question

using window functions.

 An interesting observation is that the population density of each state is not

the same as the average of the population densities for all the zip codes in the

state. That is, the preceding question is different from: How many zip codes in

each state have a population density greater than the state’s population density? The

state’s population density would be calculated in zcsum as:

 SUM(totpop) / SUM(landsqmi) as statepopdensity

There is a relationship between these two densities. The zip code average

gives each zip code a weight of 1, no matter how big in area or population.

The state average is the weighted average of the zip codes by the land area of

the zip codes.

 The proportion of zip codes that are denser than the average zip code varies

from about 4% of the zip codes in North Dakota to about 35% in Florida. Never

are half the zip codes denser than the average, although this is theoretically

possible. The density where half the zip codes are denser and half less dense

is the median density rather than the average or average of averages. Averages,

average of averages, and medians are different from each other and discussed

in Chapter 2 .

Figure 1-10: This dataflow diagram compares the zip code population density to the average zip
code population density in a state.

OUTPUT

AGGREGATE
group by stab

avgpopdensity =
avg(totpop / landsqmi)

READ
ZipCensus

READ
ZipCensus

APPEND
popdensity =
totpop / landsqmi

AGGREGATE
group by stab

numzips = count(*)
numdenser = sum(case when popdensity
> avgpopdensity then 1 else 0 end)

LOOKUP
on stab

42 Chapter 1 ■ A Data Miner Looks at SQL

T19_.indd 42 30/10/2015 12:07 PM T19

Subqueries and IN
IN and NOT IN were introduced earlier as convenient shorthand for complicated

WHERE clauses. There is another version where the “in” set is specifi ed by a sub-

query, rather than by a fi xed list. For example, the following query gets the list

of all zip codes in states with fewer than 100 zip codes:

 SELECT zc.zcta5, zc.stab
 FROM ZipCensus zc
 WHERE zc.stab IN (SELECT stab
 FROM ZipCensus
 GROUP BY stab
 HAVING COUNT(*) < 100
)

The subquery creates a set of all states in ZipCensus where the number of zip

codes in the state is less than 100 (that is, DC, DE, HI, and RI). The HAVING

clause sets this limit. HAVING is very similar to WHERE , except it fi lters rows after
aggregating, rather than before. The outer e SELECT then chooses zip codes whose

state matches one of the states in the IN set. This process takes place as a join

operation, as shown in Figure 1-11 .

Rewriting the “IN” as a JOIN

Strictly speaking, the IN operator is not necessary, because queries with IN s

and subqueries can be rewritten as joins. For example, this is equivalent to the

previous query:

 SELECT zc.*
 FROM ZipCensus zc JOIN
 (SELECT stab, COUNT(*) as numstates
 FROM ZipCensus
 GROUP BY stab
) zipstates
 ON zc.stab = zipstates.stab AND
 zipstates.numstates < 100

Figure 1-11: The processing for an IN with a subquery really uses a join operation.N

OUTPUT

READ
ZipCensus

READ
ZipCensus

JOIN
on stab

AGGREGATE
group by stab

numzips = count(*)

SELECT
stab

FILTER
numzips < 100

PM

Chapter 1 ■ A Data Miner Looks at SQL 43

T19_.indd 43 30/10/2015 12:07 PM

Note that in the rewritten query, the zipstates subquery has two columns

instead of one. The second column contains the count of zip codes in each

state. Using the IN statement with a subquery makes it impossible to get this

information.

 On the other hand, the IN does have a small advantage, because it guarantees

that there are no duplicate rows in the output, even when the “in” set has dupli-

cates. To guarantee this using the JOIN , aggregate the subquery by the key used

to join the tables. In this case, the subquery is doing aggregation anyway to fi nd

the states that have fewer than one hundred zip codes. This aggregation has the

additional effect of guaranteeing that the subquery has no duplicates.

 The general way of rewriting an IN subquery using join requires eliminating

the duplicates. So, the query:

 SELECT x.*
 FROM x
 WHERE x.col_a IN (SELECT y.col_b FROM y)

would be rewritten as:

 SELECT DISTINCT x.*
 FROM x JOIN
 y
 ON x.col_a = y.col_b;

or:

 SELECT x.*
 FROM x JOIN
 (SELECT DISTINCT y.col_b FROM y) y
 ON x.col_a = y.col_b;

The DISTINCT keyword removes duplicates from the output. However, this requires

additional processing so it is best to avoid DISTINCT unless it is really necessary.

Correlated Subqueries

A correlated subquery occurs when the subquery includes a reference to the

outer query. An example shows this best. Consider the following question: Which
zip code in each state has the maximum population and what is the population? One

way to approach this problem uses a correlated subquery:

 SELECT zc.stab, zc.zcta5, zc.totpop
 FROM ZipCensus zc
 WHERE zc.totpop = (SELECT MAX(zcinner.totpop)
 FROM ZipCensus zcinner
 WHERE zcinner.stab = zc.stab
)
 ORDER BY zc.stab

44 Chapter 14 ■ A Data Miner Looks at SQL

T19_.indd 44 30/10/2015 12:07 PM T19

The “correlated” part of the subquery is the inner WHERE clause, which specifi es that

the state in a record processed by the subquery must match the state in the outer table.

 Conceptually, the database engine reads one row from zc (the table referenced

in the outer query). Then, the engine fi nds all rows in zcinner that match this

state. From these rows, it calculates the maximum population. If the original

row matches this maximum, it is selected. The engine then moves on to the

next row in the outer query.

 Correlated subqueries are sometimes cumbersome to understand. Although

complicated, correlated subqueries are not a new way of processing the data;

they are another example of joins. The following query produces the same

results:

 SELECT zc.stab, zc.zcta5, zc.totpop
 FROM ZipCensus zc JOIN
 (SELECT zc.stab, MAX(zc.totpop) as maxpop
 FROM ZipCensus zc
 GROUP BY zc.stab) zcsum
 ON zc.stab = zcsum.stab AND
 zc.totpop = zcsum.maxpop
 ORDER BY zc.stab

This query makes it clear that ZipCensus is summarized by stab to calculate the

maximum population. The JOIN then fi nds the zip code (or possibly zip codes)

that matches the maximum population, returning information about them. In

addition, this method makes it possible to include other information, such as

the number of zip codes where the maximum population is achieved. This can

be calculated using COUNT(*) in zcsum .

 The examples throughout this book tend not to use correlated subqueries for SELECT

queries, preferring explicit JOIN s instead. Joins provide more fl exibility for processing N

and analyzing data and, in general, SQL engines do a good job of optimizing JOIN s.N

There are some situations where the correlated subquery may offer better performance

than the corresponding JOIN query or may even be simpler to understand. N

NOT IN Operator

The NOT IN operator can also use subqueries and correlated subqueries. ConsiderN

the following question: Which zip codes in the Orders table are not in the ZipCensus

table ? Once again, there are different ways to answer this question. The fi rst e
uses the NOT IN operator:

 SELECT o.ZipCode, COUNT(*) as NumOrders
 FROM Orders o
 WHERE ZipCode NOT IN (SELECT zcta5
 FROM ZipCensus zc
)
 GROUP BY o.ZipCode

PM

Chapter 1 ■ A Data Miner Looks at SQL 45

T19_.indd 45 30/10/2015 12:07 PM

This query is straightforward as written, choosing the zip codes in Orders with

no matching zip code in ZipCensus , then grouping them and returning the

number of purchases in each.

 An alternative uses the LEFT OUTER JOIN operator. Because the N LEFT OUTER JOIN

keeps all zip codes in the Orders table—even those that don’t match—a fi lter after-

wards can choose the non-matching set:

 SELECT o.ZipCode, COUNT(*) as NumOrders
 FROM Orders o LEFT OUTER JOIN
 ZipCensus zc
 ON o.ZipCode = zc.zcta5
 WHERE zc.zcta5 IS NULL
 GROUP BY o.ZipCode
 ORDER BY NumOrders DESC

This query joins the two tables using a LEFT OUTER JOIN and only keeps the results N

rows do not match (because of the WHERE clause). This is essentially equivalent to

using NOT IN ; whether one works better than the other depends on the underlyingN

optimization engine. Figure 1-12 shows the datafl ow associated with this query.

EXISTS and NOT EXISTS Operators

EXISTS and NOT EXISTS are similar to IN and NOT IN with subqueries. The opera-

tors return true when any row exists (or no row exists) in a subquery. They are

often used with correlated subqueries.

 The query to return all the orders whose zip code is not in ZipCensus could

be written as:

 SELECT o.ZipCode, COUNT(*)
 FROM Orders o
 WHERE NOT EXISTS (SELECT 1
 FROM ZipCensus zc
 WHERE zc.zcta5 = o.ZipCode)
 GROUP BY o.ZipCode

Figure 1-12: This dataflow shows the LEFT OUTER JOIN version of a query using N NOT IN. N

OUTPUT

READ
ZipCensus

(zc)

READ
Orders

(o)

LEFT JOIN
On o.ZipCode

= zc.zcta5

SELECT
o.*

FILTER
zc.zcta5 is null

46 Chapter 16 ■ A Data Miner Looks at SQL

T19_.indd 46 30/10/2015 12:07 PM T19

The “1” in the subquery has no importance, because NOT EXISTS is really deter-

mining if any rows are returned. It doesn’t care about the particular value in

any of the columns . In fact, some databases accept a nonsensical value, such as

1 / 0 (although this is not recommended).

EXISTS has several advantages over IN . First, EXISTS is more expressive—

the comparison could be made on more than one column. IN only works

for comparing one column to a list (although some databases extend this

functionality to multiple columns). If, for instance, the query were comparing

both state name and country name, then it would be easier to write using

NOT EXISTS .

 A second advantage is more subtle and applies only to NOT EXISTS . If the

list of values returned by NOT IN contains a NULL value, then all rows fail the

test. Why? SQL treats a comparison to NULL as unknown. So if the comparison

were 'X' NOT IN ('A', 'B', 'X', NULL) then the result is false, because 'X'

is, in fact, in the list. If the comparison were 'X' NOT IN ('A', 'B', NULL) ,

then the result is unknown, because it is unknown whether or not X matches

the NULL. The important point: neither version returns true. The equivalent

NOT EXISTS query behaves more intuitively. The second example—using NOT

EXISTS —would return true.

 The fi nal advantage is practical. In many databases, EXISTS and NOT EXISTS

are optimized to be more effi cient than the equivalent IN and NOT IN . One

reason is that IN essentially creates the entire underlying list and then does

the comparison, whereas EXISTS can simply stop at the fi rst matching value.

Subqueries for UNION ALL
The UNION ALL operator almost always demands subqueries, because it requires

that the columns be the same for all tables involved in the union. Consider

extracting the location names from ZipCensus into a single column along with

the type:

 SELECT u.location, u.locationtype
 FROM ((SELECT DISTINCT stab as location, 'state' as locationtype
 FROM ZipCensus zc
) UNION ALL
 (SELECT DISTINCT county, 'county' FROM ZipCensus zc
) UNION ALL
 (SELECT DISTINCT zipname, 'zipname' FROM ZipCensus zc
)
) u

 This example uses subqueries to ensure that each part of the UNION ALL has

the same columns. Also, note that the column names are taken from the fi rst

subquery, so they are not needed in the subsequent subqueries.

PM

Chapter 1 ■ A Data Miner Looks at SQL 47

T19_.indd 47 30/10/2015 12:07 PM

Lessons Learned

This chapter introduces SQL and relational databases from several different

perspectives that are important for data mining and data analysis. The focus is

exclusively on using databases to extract information from data, rather than on

the mechanics of building databases, the myriad options available in designing

them, or the sophisticated algorithms implemented by database engines.

 One very important perspective is the data perspective—the tables themselves

and the relationships between them. Entity-relationship diagrams are a good

way of visualizing the structure of data in the database and the relationships

among tables. Along with introducing entity-relationship diagrams, the chapter

also explains the various datasets used throughout this book.

 Of course, tables and databases store data, but they don’t actually do anything.

Queries extract information, transforming data into information. For some

people, thinking in terms of data fl ow diagrams is simpler than understanding

complex SQL statements. These diagrams show how various operators transform

data. About one dozen operators suffi ce for the rich set of processing available

in SQL. Datafl ows are not only useful for explaining how SQL processes data;

database engines generally use a form of datafl ows for running SQL queries.

 In the end, though, transforming data into information requires SQL queries,

whether simple or complex. The focus in this chapter, and throughout the book,

is on SQL for querying. This chapter introduces the important functionality of

SQL and how it is expressed, with particular emphasis on JOIN s, GROUP BY s,

and subqueries, because these play an important role in data analysis.

 The next chapter starts the path toward using SQL for data analysis by explor-

ing data in a single table.

