
1 INTRODUCTION TO
N-DIMENSIONAL GEOMETRY

1.1 FIGURES IN N-DIMENSIONS

There is much to be said for a hands-on approach in geometry. We enhance
our understanding in two dimensions by drawing plane figures or by experi-
menting with polygons cut out of paper. In three dimensions, we can construct
polyhedrons out of cardboard, wire, or plastic straws. In some cases, we may
use a computer program to provide a visual representation. Although every-
one knows that a picture does not constitute a “proof,” there is no doubt that
a decent diagram can be utterly convincing.

However, we cannot make a full-dimensional model of an object that has more
than three dimensions. We cannot visualize a cube of four or five dimensions,
at least not in the usual sense. Nevertheless, if you can imagine that “hy-
percubes” of four or five dimensions exist, you might suspect that they are a
lot like three-dimensional cubes. You would be correct. Geometry in four or
higher dimensions is quite similar to geometry in two and three dimensions,
and although we cannot visualize space of any more than three dimensions,
we can build up a fairly reliable intuition about what such a space is like.

In this section, we examine some n-dimensional objects and learn how to
work with them. We begin with the higher dimensional analogs of points,
lines, planes, and spheres. We find out that these can be described in a
dimension-free way and that their geometric properties are as they should be.

We also examine how geometric notions such as perpendicular and parallel
lines extend to higher dimensions. The emphasis will be on how n-dimensional
space is like two- or three-dimensional space, but we also examine some of
the ways in which they differ.
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Geometry at this level necessarily involves proofs. Even if you have already
had a geometry course, you will find that some of the techniques are new. In
this first section, we spend some time explaining how a proof proceeds before
actually carrying it out. We apologize to anyone who is already familiar with
the methods.

1.2 POINTS, VECTORS, AND PARALLEL LINES

1.2.1 Points and Vectors

We denote the usual two-dimensional coordinate space by R2, three-dimen-
sional coordinate space by R3, four-dimensional coordinate space by R4, and
so on. In general, Rn denotes n-dimensional space (the n is not a variable—it
stands for some fixed nonnegative integer) and is the set of all n-tuples of real
numbers, that is,

Rn = { (x1,x2, . . . ,xn) : xi ∈ R for i = 1, 2, . . . ,n }.

Points in Rn will be denoted by italic letters such as x, y, and z. Numbers are
usually (but not always) denoted with lowercase Greek letters, α, β, γ, and so
on.∗

A point in Rn is just an n-tuple and can also be described by giving its
coordinates. In R4, for example, the ordered 4-tuple (α1,α2,α3,α4) denotes
the point whose ith coordinate is αi. The origin (0, 0, 0, 0) is denoted by 0
(the bar is used to avoid confusion with the real number 0). The symbol 0 is
also used to denote the origin in any space Rn.

Points from the same space can be added together, subtracted from each other,
and multiplied by scalars (that is, real numbers), and these operations are
performed coordinatewise.

∗ The Greek alphabet is as follows:

A α Alpha I ι Iota P ρ, � Rho
B β Beta K κ Kappa Σ σ, ς Sigma
Γ γ Gamma Λ λ Lambda T τ Tau
Δ δ Delta M μ Mu Υ υ Upsilon
E ε, ε Epsilon N ν Nu Φ φ, ϕ Phi
Z ζ Zeta Ξ ξ Xi X χ Chi
H η Eta O o Omicron Ψ ψ Psi
Θ θ Theta Π π, � Pi Ω ω Omega

The alternate pi (�), sigma (ς), and upsilon (υ) are very seldom used.
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If x = (α1,α2, . . . ,αn) and y = (β1,β2, . . . ,βn) are two points in Rn and if
ρ is any number, then we define

• x = y if and only if αi = βi for i = 1, 2, . . . ,n (equality)
• x + y = (α1 + β1,α2 + β2, . . . ,αn + βn) (addition)
• ρx = (ρα1, ρα2, . . . , ραn) (scalar multiplication).

With these definitions of addition and scalar multiplication, Rn becomes an
n-dimensional vector space.∗

In other words, points behave algebraically as though they were vectors. As a
consequence, a notation such as (1, 2) can be interpreted as a vector as well as
a point. The two interpretations may be tied together geometrically by thinking
of the vector as an arrow whose tail is at the origin and whose tip is at the
point (1, 2), as in the figure below.

or

x1

x2

x1

x2
(1, 2) (1, 2)

A more abstract notion of a vector is as a class of arrows (an equivalence class,
to be more exact), each arrow in the class having the same length and pointing
in the same direction. Any particular arrow from the class of a given vector is
called a representative of the vector. The arrow, in the example above, whose
tail is at the point (0, 0) and whose tip is at the point (1, 2), is but one of
infinitely many representatives of the vector, as in the figure below.

(0, 0) x1

x2
(1, 2)

Note. Representatives of a given vector are called free vectors, since apart
from their length and direction, there is no restriction as to their position.

Although a given n-tuple (α1,α2, . . . ,αn) has infinitely many free vectors
associated with it, the n-tuple always represents one and only one point in Rn.
When we refer to the point associated with a given vector, we mean that point.

∗ Unlike the situation in synthetic geometry, the notions of point and line are no longer primitive or
undefined terms but are defined in terms of n-tuples (coordinatized space).
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1.2.2 Lines

If we were to multiply the point v = (1, 2) by the numbers

−1, 1
2 , and 3,

we would get the points

(−1,−2), (1
2 , 1), and (3, 6),

respectively. The three points all lie on the straight line through 0 and v, as
in the figure below.

(3, 6)

(−1,−2)

(0, 0)

(1, 2)

If μ is any number, then the point μv also lies on the straight line through 0
and v. This is not just a property of R2: if v is any point other than 0 in R1,
R2, or R3, then the point μv also lies on the straight line through 0 and v.

In fact, we can describe the line L through 0 and v algebraically as the set of
all multiples of the point v:

L = {μv : −∞ < μ < ∞}.

The line L passes through the origin.

To obtain a line M parallel to L, but passing through a given point p, we
simply add p to every point of L:

M = { p + μv : −∞ < μ < ∞},

since p is on M (take μ = 0) and the vector v is parallel to L.

The above equations for L and M are also used to describe lines in spaces of
dimension n > 3. These equations, in fact, define what is meant by straight
lines in higher dimensions.
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Often a line is described by a vector equation. For example, a point x is on
M if and only if

x = p + μv,

for some real number μ. In this vector equation, p and v are fixed, and x is a
variable point; thus, the line passing through the point p in the direction of
v can be written as

M = {x ∈ Rn : x = p + μv, −∞ < μ < ∞}.

To give a concrete example, suppose that p = (1,−2, 4, 1) and v = (7, 8,−6, 5)
are points in R4. Denoting x by (x1,x2,x3,x4), we can describe the vector
equation for the line through p parallel to the vector v as the set of all points
x ∈ R4 such that

(x1,x2,x3,x4) = (1,−2, 4, 1) + μ(7, 8,−6, 5), −∞ < μ < ∞,

which is the same as

(x1,x2,x3,x4) = (1 + 7μ,−2 + 8μ, 4 − 6μ, 1 + 5μ), −∞ < μ < ∞.

This is sometimes written in parametric form:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x1 = 1 + 7μ
x2 = −2 + 8μ
x3 = 4 − 6μ

x4 = 1 + 5μ,

where −∞ < μ < ∞.

Perhaps some words of caution are worthwhile at this point. Giving a name
to something does not endow it with any special properties. Simply because
we have called an object in Rn by the same name as something from R2 or
R3, it does not follow that the n-dimensional object has the same properties
as its namesake in R2 or R3. We cannot assume that what we are calling
straight lines in Rn automatically have the same properties as do straight lines
in two or three dimensions. This has to be proved, which is what the next few
theorems do.

Theorem 1.2.1. In the definition of the line

M = {x ∈ Rn : x = p + μv, −∞ < μ < ∞},

the point p may be replaced by any point on M .
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Proof. It is often worthwhile to rephrase a statement to make sure that we
understand what it means. This theorem is saying that if p′ is any point on
the line M and if we replace p with p′ in the equation of M , then we will get
exactly the same line.

In a situation similar to this, it helps to give different names to the potentially
different lines. We will use M ′ to denote the line that we get when we replace
p by p′:

M ′ = {x ∈ Rn : x = p′ + μv, −∞ < μ < ∞}.
Our task is to show that M and M ′ must be the same line.

How do we show that two lines are the same? Well, lines are just special types
of sets, and we will use the standard strategy for showing that two sets are
equal—namely, we will show that every point in the first set also belongs to
the second set and vice versa.

(i) Note that a typical point x on M ′ can be written as

x = p′ + μv

for some number μ. We claim that x is also on M . To show that this is
the case, we have to show that there is some number λ such that x can
be written as p + λv, which is a point on M .
Now, since p′ is on M , there must be some number β such that

p′ = p + βv,

and therefore,

x = p′ + μv

= (p + βv) + μv

= p + (β + μ)v.

Setting λ = β + μ shows that x is on M , and since x was an arbitrary
point of M ′, then M ′ ⊆ M .

(ii) Conversely, we will show that every point on M is also on M ′. If we
let y be a typical point on M , then

y = p + μv

for some number μ. Using the fact that p′ is on M , we have

p′ = p + βv

for some number β, so that p = p′ − βv. Therefore,

y = p + μv

= (p′ − βv) + μv

= p′ + (−β + μ)v,
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which shows that y is on M ′, and since y was an arbitrary point of M ,
then M ⊆ M ′.

Thus, M = M ′, which completes the proof.

The proof of the next theorem is somewhat similar and is left as an exercise.

Theorem 1.2.2. In the definition of the line

M = {x ∈ Rn : x = p + μv, −∞ < μ < ∞},

the vector v may be replaced by any nonzero multiple of v.

Two nonzero vectors are said to be parallel if one is a multiple of the other.
With this terminology, the previous theorems can be combined as follows.

Corollary 1.2.3. In the definition of the line

M = {x ∈ Rn : x = p + μv, −∞ < μ < ∞},

the point p may be replaced by any point on the line and the vector v may be
replaced by any vector parallel to v.

In the next theorem, we would like to show that if one line is a subset of
another line, then the two lines must be the same. Before proving this, we
should convince ourselves that we actually have something to prove, since it
looks like this might be just another way of stating that a point and vector
determine a unique straight line. Perhaps the two statements

(i) “A point and a vector determine a unique straight line”
(ii) “If one line is contained in another, then the two lines must coincide”

are logically equivalent in the sense that one follows from the other without
really invoking any geometry.

To see that this is not the case, try replacing the word “line” by the words
“solid ball.” It is true that a point and a vector determine a unique solid ball,
namely, the ball with the point as its center and with a radius equal to the
length of the vector. It is clearly not true that two solid balls must coincide if
one is a subset of the other.
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Having talked ourselves into believing that there is something to prove, the
next problem is to find a way to carry it out. This is how we will do it:

We will first suppose that M1 passes through the point p1 and is parallel to the
nonzero vector v1 and that M2 passes through the point p2 and is parallel to
the nonzero vector v2. The assumption is that every point on M1 is contained
in M2. We will show that this means that v1 and v2 are parallel, which is
what our intuition suggests should be the case. We will then use the previous
theorems to finish the proof.

Theorem 1.2.4. If M1 and M2 are straight lines in Rn, and if M1 ⊂ M2,
then M1 = M2.

Proof. We may suppose that M1 and M2 are the lines

M1 = {x ∈ Rn : x = p1 + μv1, −∞ < μ < ∞}
M2 = {x ∈ Rn : x = p2 + μv2, −∞ < μ < ∞}.

Since M1 is a subset of M2, then p1 ∈ M1 ⊂ M2, and we can replace p2 in
M2 with the point p1. We can then write M2 as

M2 = {x ∈ Rn : x = p1 + μv2, −∞ < μ < ∞}.

Again, using the fact that M1 ⊂ M2, the point p1 +v1 of M1 must also belong
to M2, and from the previous equation, there must be a number μ0 such that

p1 + v1 = p1 + μ0v2,

so that v1 = μ0v2. But this means that in the last equation for M2, we can
replace the vector v2 with the parallel vector v1, that is,

M2 = {x ∈ Rn : x = p1 + μv1, −∞ < μ < ∞},

and the right-hand side of this equation is precisely M1.

Theorem 1.2.5. Let M be the straight line given by

M = {x ∈ Rn : x = p + μv, −∞ < μ < ∞}.

If x1 and x2 are distinct points on M , then the vector x1 −x2 is parallel to v.

Proof. To prove this, one only needs to write down what x1 and x2 are in
terms of p and v and then perform the subtraction. Since each of the two
points is on M , there must be numbers μ1 and μ2 such that

x1 = p + μ1v and x2 = p + μ2v,
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and, therefore,

x1 − x2 = (p + μ1v) − (p + μ2v)
= (μ1 − μ2)v.

Since x1 and x2 are distinct, (μ1 − μ2)v �= 0, and if μ1 = μ2, then

(μ1 − μ2)v = 0 · v = 0.

Therefore, μ1 �= μ2, so that x1−x2 is a nonzero multiple of v, that is, x1−x2

is parallel to v.

Another way to describe a line is to specify points on it.

Theorem 1.2.6. A straight line in Rn is completely determined by any two
distinct points on the line.

Proof. This is proved using Theorem 1.2.5 and Corollary 1.2.3.

If p and q are distinct points on M , then M must be parallel to the vector
q − p by Theorem 1.2.5. Since p is on M , Corollary 1.2.3 now implies that
M must be the line

{x ∈ Rn : x = p + μ(q − p), −∞ < μ < ∞}.

In other words, p and q completely determine M .

In the proof of the previous theorem, we showed that if p and q are two distinct
points in Rn, then the line determined by p and q will have the equation

x = p + μ(q − p), −∞ < μ < ∞.

p

0

q

x
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This equation may be rearranged to get the more usual form

x = (1 − μ)p + μq, −∞ < μ < ∞.

Note that if μ = 0, then x = p, while if μ = 1, then x = q. Since p and q are
on the line, then the vector q − p must be parallel to the line.

Other equations that also describe the same line are

x = ηp + μq, η + μ = 1

and
x = μp + (1 − μ)q, −∞ < μ < ∞.

Example 1.2.7. If p = (−1,−1) and q = (1, 1), find the equation of the line
passing through p and q.

Solution. The equation of the line M passing through p and q can be written
as

(x1,x2) = (1 − μ)(−1,−1) + μ(1, 1)
= (−1 + 2μ,−1 + 2μ)

or parametrically as

x1 = −1 + λ

x2 = −1 + λ

for −∞ < λ < ∞.

As in R2 or R3, two distinct lines in Rn either do not intersect or they meet
in exactly one point.

Theorem 1.2.8. Two distinct lines in Rn meet in at most one point.

Proof. Suppose that

M1 = { p + μv : −∞ < μ < ∞}

and
M2 = { q + μw : −∞ < μ < ∞}

are distinct lines in Rn and M1 ∩ M2 �= ∅.
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We may assume that the vectors v and w are not parallel. If they are parallel
and M1 ∩ M2 �= ∅, then by Theorem 1.2.2, M1 and M2 coincide, which
contradicts the fact that they are distinct.

Suppose that x0 and x1 are in M1 ∩ M2, then

x0 − p = λ0v

x0 − q = μ0w

for some real numbers λ0 and μ0. Also,

x1 − p = λ1v

x1 − q = μ1w

for some numbers λ1 and μ1.

Therefore,
p − q = −λ0v + μ0w = μ1w − λ1v,

so that
(μ1 − μ0)w = (λ1 − λ0)v.

If μ0 �= μ1, then

w =
(

λ1 − λ0

μ1 − μ0

)
v,

which is a contradiction. Thus, μ0 = μ1.

Similarly, if λ0 �= λ1, then

v =
(

μ1 − μ0

λ1 − λ0

)
w,

which is a contradiction. Thus, λ0 = λ1.

Therefore,
x1 = p + λ1v = p + λ0v = x0.

1.2.3 Segments

The part of a straight line between two distinct points p and q in Rn is called
a straight line segment, or simply a line segment.
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x

0

p

q

• [p, q] denotes the closed line segment joining p and q

[p, q] = {x ∈ Rn : x = (1 − μ)p + μq : 0 ≤ μ ≤ 1 }.

• (p, q) denotes the open line segment joining p and q

(p, q) = {x ∈ Rn : x = (1 − μ)p + μq : 0 < μ < 1 }.

• [p, q) and (p, q] denote the half open line segments joining p and q

[p, q) = {x ∈ Rn : x = (1 − μ)p + μq : 0 ≤ μ < 1 },
(p, q] = {x ∈ Rn : x = (1 − μ)p + μq : 0 < μ ≤ 1 }.

Note that as the scalar increases from μ = 0 to μ = 1, the point x moves
along the line segment from x = p to x = q.

1.2.4 Examples

Example 1.2.9. Show that the points

a = (−2,−2), b = (−1, 1), c = (1, 7)

are collinear.

Solution. Note that

b − a = (−1, 1) − (−2,−2) = (1, 3)
c − a = (1, 7) − (−2,−2) = (3, 9) = 3(1, 3)

so that c − a = 3(b − a) and b − a and c − a are parallel.

Therefore,
x = a + λ(b − a), −∞ < λ < ∞
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and
x = a + λ(c − a), −∞ < λ < ∞

are the same line.

For λ = 0, x = a is on the line from the first equation, while for λ = 1, x = b
and x = c are on the line from the first and second equation, respectively.
Therefore, a, b, and c are collinear.

Example 1.2.10. Let a and b be distinct points in Rn and let μ and ν be
scalars such that μ + ν = 1. Show that the point c = μa + νb is on the line
through a and b.

Solution. Note that

c − a = μa + νb − a

= νb − (1 − μ)a
= νb − νa

= ν(b − a).

Therefore, c − a is parallel to b − a, and the points a, b, and c are collinear.

Example 1.2.11. Given distinct point a1 and a2 in Rn, the midpoint of the
segment [a1, a2] is given by

1
2a1 + 1

2a2.

Solution. Since 1
2 + 1

2 = 1, then the point

1
2a1 + 1

2a2

is on the line joining a1 and a2.

Also,

1
2a1 + 1

2a2 − a1 = 1
2a1 − 1

2a2

= 1
2 (a2 − a1)

so that
1
2a1 + 1

2a2 = a1 + 1
2 (a2 − a1).
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Also,

a2 −
(

1
2a1 + 1

2a2

)
= 1

2a2 − 1
2a1

= 1
2 (a2 − a1).

0

1
2a1 + 1

2a2

a2

a1

Therefore,
1
2a1 + 1

2a2

is the midpoint of the segment [a1, a2].

Exercise 1.2.12. Given three noncollinear points a, b, and c in Rn, show that
the medians of the triangle with vertices a, b, and c intersect at a point G, the
familiar centroid from synthetic geometry, and that

G = 1
3a + 1

3b + 1
3c.

In general, if a1, a2, . . . , ak are k points in Rn, where n > 2, we may define
the point

1
ka1 + 1

ka2 + · · · + 1
kak

to be the centroid of the set { a1, a2, . . . , ak }. It is then obvious from the
previous examples that this definition agrees with the notion of the centroid of
a segment or a triangle, that is, for n = 1 or n = 2.

Example 1.2.13. Show that the point of intersection of the lines joining the
midpoints of the opposite sides of a plane quadrilateral is the centroid of the
vertices of the quadrilateral.

Solution. Let a, b, c, and d be the vertices of the quadrilateral.
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a

w

b

y z

d

x

c

The centroid of the vertices is
1
4
(a + b + c + d).

The midpoints of the sides, in opposite pairs, are

w = 1
2a + 1

2b, x = 1
2c + 1

2d

y = 1
2a + 1

2d, z = 1
2b + 1

2c.

The midpoint of the segment [w,x] is

1
2w + 1

2x = 1
4 (a + b + c + d),

and the midpoint of the segment [y, z] is

1
2y + 1

2z = 1
4 (a + b + c + d).

Thus, the segments [w,x] and [y, z] intersect at 1
4 (a + b + c + d), the centroid

of the vertices of the quadrilateral.

Example 1.2.14. Given a triangle with vertices 0, a, b, as shown in the figure
below,

1
2
(a + b)

1
2
b

a

1
2
a

0 b

show that there exists a triangle whose sides are equal in length and parallel
to the medians of the triangle.
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Solution. The medians of the triangle are the following line segments:

from 0 to 1
2 (a + b), from b to 1

2a, from a to 1
2b

and the (free) vectors corresponding to these sides are

u = 1
2 (a + b), v = 1

2a − b, w = 1
2b − a

and we need only show that these vectors can be positioned to form a
triangle.

Let one vertex of the triangle be 0, let a second vertex be the point u, and let
the third vertex be the point u + v.

v

u

0

w

• Clearly, the edge from 0 to u is parallel to and equal in length to u, the
first median.

• The second edge from u to u + v is parallel to and equal in length to v,
the second median.

• The third edge from u + v to 0 is parallel to and equal in length to the
vector u + v, but

u + v = 1
2 (a + b) + 1

2a − b = a − 1
2b = −w,

so that the third side of the triangle is parallel to and equal in length to
w, the third median.

Example 1.2.15. Given the quadrilateral [a, b, c, d] in the plane, the sides
[a, b] and [c, d], when extended, meet at the point p. The sides [b, c] and [a, d],
when extended, meet at the point q. On the rays from p through b and c
are points u and v so that [p,u] and [p, v] are of the same lengths as [a, b]
and [c, d], respectively. On the rays from q through a and b are points x
and y so that [q,x] and [q, y] are of the same lengths as [a, d] and [b, c],
respectively.
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x

d c

y

v
p

q

u
b

a

Show that [u, v] is parallel to [x, y].

Solution. In the figure, we have

u = p + (a − b)
v = p + (d − c)
x = q + (a − d)
y = q + (b − c),

so that

u − v = (a − b) − (d − c) = a + c − (b + d)
x − y = (a − d) − (b − c) = a + c − (b + d),

and [u, v] is parallel to [x, y].

Example 1.2.16. Let a, b, c, and d be the vertices of a tetrahedron in R3.

a

b

c

d

Show that the three lines through the midpoints of the opposite sides are
concurrent.
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Solution. Note that in each case, the centroid of the tetrahedron

1
4 (a + b + c + d)

is the midpoint of the segment.

For example, consider the opposite edges [a, b] and [c, d], their midpoints are
1
2 (a+b) and 1

2 (c+d), and the midpoint of the segment
[
1
2 (a + b), 1

2 (c + d)
]
is

1
2

(
1
2 (a + b) + 1

2 (c + d)
)

= 1
4 (a + b + c + d).

1.2.5 Problems

A remark about the exercises is necessary. Certain questions are phrased as
statements to avoid the incessant use of “prove that.” See Problem 1, for
example. Such statements are supposed to be proved. Other questions have a
“true–false” or “yes–no” quality. The point of such questions is not to guess,
but to justify your answer. Questions marked with ∗ are considered to be
more challenging. Hints are given for some problems. Of course, a hint may
contain statements that must be proved.

1. Let S be a nonempty set in Rn. If every three points of S are collinear,
then S is collinear.

2. In R2, there are two different types of equations that describe a straight
line:
(a) A vector equation: (x1,x2) = (α1,α2) + μ(β1,β2).
(b) A linear equation: μ1x1 + μ2x2 = δ.
Given that the line L has the vector equation

(x1,x2) = (4, 5) + μ(−3, 2),

find a linear equation for L.
3. Given that the line L has the linear equation

μ1x1 + μ2x2 = δ,

show that the point (
μ1δ

μ2
1 + μ2

2

,
μ2δ

μ2
1 + μ2

2

)
is on the line and that the vector (−μ2,μ1) is parallel to the line.
Hint. If p is on the line and if p + v is also on the line, then v must be
parallel to the line.
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4. Prove Theorem 1.2.2. In the definition of the line

M = {x ∈ Rn : x = p + μv, −∞ < μ < ∞}

the vector v may be replaced by any nonzero multiple of v.

5. The centroid of three noncollinear points a, b, and c in Rn is defined to
be

G = 1
3 (a + b + c).

Show that this definition of the centroid yields the synthetic definition of
the centroid of the triangle with vertices a, b, and c, namely, the point
at which the three medians of the triangle intersect. Prove also that the
medians do indeed intersect at a common point.

1.3 DISTANCE IN N-SPACE

1.3.1 Metrics

In Rn, several distance functions are used, the most common being the
Euclidean distance.

If x = (α1,α2, . . . ,αn) and y = (β1,β2, . . . ,βn), then the Euclidean distance
between x and y is given by

d(x, y) =
√

(α1 − β1)2 + (α2 − β2)2 + · · · + (αn − βn)2.

When Rn is equipped with the Euclidean distance, it is called Euclidean
n-space.

The word “metric” is synonymous with “distance function.” A metric has the
three basic properties that one expects a distance to have, namely, it is never
negative, it is symmetric (the distance from Calgary to Edmonton is the same
as the distance from Edmonton to Calgary), and the triangle inequality holds
(the total length of two sides of a triangle is never smaller than the length of
the third side).

Formally, a metric on a set X is any mapping d( · , · ) from X ×X into R that
has the following properties:

(M1) d(x, y) ≥ 0, with equality if and only if x = y (nonnegativity)
(M2) d(x, y) = d(y,x) (symmetry)
(M3) d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality)

for all x, y, z ∈ X . The pair (X, d) is called a metric space.
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Besides the 
2 or Euclidean metric defined above, two other metrics that are
occasionally used in Rn are:

• the 
1 or “Manhattan” metric given by

d(x, y) = |α1 − β1| + |α2 − β2| + · · · + |αn − βn|,

• the 
∞ or “sup” or “supremum” metric given by

d(x, y) = max{ |α1 − β1|, |α2 − β2|, . . . , |αn − βn| }.

The metrics that are used on the linear space Rn are almost always derived
from a norm.

1.3.2 Norms

A norm on a linear space X is any mapping ‖ · ‖ from X to R that has the
following properties:

(N1) ‖x‖ ≥ 0, with equality if and only if x = 0 (nonnegativity)
(N2) ‖λx‖ = |λ| · ‖x‖ (positive homogeneity)
(N3) ‖x + y‖ ≤ ‖x‖ + ‖y‖ (triangle inequality)

for all x, y ∈ X and λ ∈ R. The pair (X, ‖ · ‖) is called a normed linear
space. The norm of a vector is always thought of as being the length of the
vector.

If x = (α1,α2, . . . ,αn) ∈ Rn, the norms of x corresponding to the three
metrics that we defined above are:

• ‖x‖2 =
√

α2
1 + α2

2 + · · · + α2
n Euclidean norm or 
2 norm

• ‖x‖1 = |α1| + |α2| + · · · + |αn| 
1 norm

• ‖x‖∞ = max{ |α1|, |α2|, . . . , |αn| } 
∞ norm.

Note. Every norm ‖ · ‖ on a linear space always has a corresponding metric
(although the converse is not true). The metric is derived from the norm by
defining

d(x, y) = ‖x − y‖.
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In addition to the three properties of nonnegativity, symmetry, and the triangle
inequality, a metric that is derived from a norm satisfies the following:

(M1) d(x, y) ≥ 0, with equality if and only if x = y (nonnegativity)
(M2) d(x, y) = d(y,x) (symmetry)
(M3) d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality)
(M4) d(x + v, y + v) = d(x, y) (translation invariance)
(M5) d(λx,λy) = |λ| · d(x, y) (positive homogeneity)

for all x, y, z, v ∈ Rn and λ ∈ R.

The property of translation invariance means that a “ruler” does not stretch
or shrink when it is moved parallel to itself from one part of the space to
another.∗

Example 1.3.1. If p and q are points in Rn with ‖p − q‖ = δ, and if

x = (1 − λ)p + λq,

find the distance between x and p and the distance between x and q.

p

0

q

x

Solution. Note that we do not have to specify which distance function we are
using, since the points p, q, and x are collinear.

The distance from x to p is

‖x − p‖ = ‖(1 − λ)p + λq − p‖ = ‖p − λp + λq − p‖
= ‖λ(q − p)‖ = |λ| · ‖q − p‖
= |λ| · δ.

∗ However, you might wonder what happens to a ruler when it is rotated, especially when a non-
Euclidean norm is being used.
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The distance from x to q is

‖x − q‖ = ‖(1 − λ)p + λq − q‖ = ‖p − λp + λq − q‖
= ‖(1 − λ)p + (−1 + λ)q‖ = ‖(1 − λ)p − (1 − λ)q‖
= ‖(1 − λ)(p − q)‖ = |(1 − λ)| · ‖ − p + q‖
= |1 − λ| · ‖q − p‖ = |1 − λ| · δ.

Note that if 0 ≤ λ ≤ 1, then the point x is on the line segment between p and
q; if λ < 0, then the point x is on the line joining p and q beyond p; while if
λ > 1, the point x is on the line joining p and q beyond q.

Example 1.3.2. Find all points on the line through p and q that are twice as
far from p as they are from q.

Solution. A point x on the line through p and q can be expressed as

x = (1 − λ)p + λq

for some scalar λ.

From the previous example,

‖x − p‖ = |λ| · ‖q − p‖ and ‖x − q‖ = |1 − λ| · ‖q − p‖,

so we must have
|λ| · ‖q − p‖ = 2|1 − λ| · ‖q − p‖.

It follows that
|λ| = 2|1 − λ|,

which implies that
λ2 = (2(1 − λ))2 .

Expanding and rearranging, we have

3λ2 − 8λ + 4 = 0

or
(3λ − 2)(λ − 2) = 0.

The solutions
λ = 2

3 and λ = 2,

give us two points that are twice as far from p as they are from q:

x1 = 1
3p + 2

3q and x2 = −p + 2q.
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Remark. As we noted earlier, in the previous two examples, the answers did
not depend on the actual distance function but only on the general properties
of the norm. When working with distances and norms, one should use the
general properties whenever possible. Of course, the actual numerical value
of ‖x‖ depends on the particular norm that is involved, as illustrated by the
next example.

Example 1.3.3. Find the distance between the points p = (1, 1) and
q = (−1, 2) using the three different metrics described earlier.

Solution. This is just a matter of straightforward computation.

For the 
2 or Euclidean norm, we have

‖p − q‖2 =
√

(1 − (−1))2 + (1 − 2)2 =
√

5.

For the 
1 norm, we have

‖p − q‖1 = |1 − (−1)| + |1 − 2| = 3.

For the 
∞ or supremum norm, we have

‖p − q‖∞ = max{ |1 − (−1)|, |1 − 2| } = 2.

1.3.3 Balls and Spheres

In Rn with the 
2 norm, the closed ball cen-
tered at x with radius ρ is the set

B(x, ρ) = { y ∈ Rn : ‖x − y‖2 ≤ ρ }.
x

ρ

If we omit the boundary, the open ball centered
at x with radius ρ is the set

B(x, ρ) = { y ∈ Rn : ‖x − y‖2 < ρ }.
x

ρ
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The boundary itself is called a sphere (or a
circle in R2) centered at x with radius ρ and is
the set

S(x, ρ) = { y ∈ Rn : ‖x − y‖2 = ρ }.
x

ρ

For the particular case when x = 0 and ρ = 1, the sets are called the closed
unit ball, the open unit ball, and the unit sphere, respectively.

The shape of a ball will depend on the norm being used. The previous three
figures show a closed ball, an open ball, and a sphere in R2 using the Euclidean
norm.

The figure below shows the corresponding balls and sphere in R2 centered at
0 with radius ρ in the 
1 norm and the 
∞ norm.

x ∞ ≤ ρ x ∞ = ρ

x 1 ≤ ρ x 1 < ρ x 1 = ρ

x ∞ < ρ

00 0

0 0 0

It should be mentioned that the closed unit ball in the 
∞ norm is often called
the unit cube, that is, the unit cube is the set

S(0, 1) = { (α1,α2, . . . ,αn) : |αi| ≤ 1, i = 1, 2, . . . ,n }.

Example 1.3.4. Find the points where the line through the origin parallel to
the vector v = (2, 0,−3, 6) intersects the unit sphere.

Note. Whenever a specific distance is to be calculated but no distance function
is specified, we always assume that the Euclidean distance is to be used.
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Solution. The line has the equation

x = μv, −∞ < μ < ∞,

and for x = (x1,x2,x3,x4), this can be written as

(x1,x2,x3,x4) = μ(2, 0,−3, 6), −∞ < μ < ∞.

This line intersects the unit sphere at the points where

‖(x1,x2,x3,x4)‖ = ‖μ(2, 0,−3, 6)‖ = 1,

that is, where

|μ| · ‖(2, 0,−3, 6)‖ = |μ|
√

4 + 0 + 9 + 36 = 7|μ| = 1,

so we must have μ = 1
7 ,− 1

7 . Therefore, the line intersects the unit sphere at

x1 = (2
7 , 0,− 3

7 , 6
7 ) and x2 = (− 2

7 , 0, 3
7 ,− 6

7 ).

If A is a subset of Rn and if v is a vector from Rn, the set A + v defined by

A + v = {x + v ∈ Rn : x ∈ A }

is called a translate of A.

Note that the set A + v is obtained from the set A by adding the vector v to
every point in A. The key to working with translates is to use the fact that

x ∈ A + v if and only if x − v ∈ A.

Example 1.3.5. Show that the translate of a closed ball is a closed ball.

Note that in this case, no specific distance has to be calculated, so we will
attempt to solve the problem using only the general properties of the norm.

Solution. Let

A = B(q, ρ) = {x ∈ Rn : ‖x − q‖ ≤ ρ }.

If A + v is indeed a closed ball, then we should expect that it has the same
radius as A and that its center is at q + v. Thus, we will try to show that

A + v = B(q + v, ρ) = {x ∈ Rn : ‖x − (q + v)‖ ≤ ρ }.

As usual, we will show that the two sets are equal by showing that each is a
subset of the other.
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(i) We will show first that B(q + v, ρ) ⊆ A + v, so we let x ∈ B(q + v, ρ),
then

‖x − (q + v)‖ ≤ ρ,

so that
‖(x − v) − q‖ ≤ ρ,

that is,
z = x − v ∈ A = B(q, ρ).

Therefore,
x = z + v ∈ A + v,

and since x ∈ B(q + v, ρ) is arbitrary, then B(q + v, ρ) ⊆ A + v.
(ii) Conversely, if x ∈ A + v = B(q, ρ) + v, then x = z + v, where

z ∈ B(q, ρ), so that
‖z − q‖ ≤ ρ,

that is,
‖(x − v) − q‖ ≤ ρ,

so that
‖x − (q + v)‖ ≤ ρ,

and x ∈ B(q + v, ρ). Since x ∈ A + v is arbitrary, then A + v ⊆
B(q + v, ρ).

Therefore,

A + v = B(q + v, ρ) = {x ∈ Rn : ‖x − (q + v)‖ ≤ ρ }.

Exercise 1.3.6. Show that

B(q, ρ) + v = B(q + v, ρ)

and

S(q, ρ) + v = S(q + v, ρ).

If A is a subset of Rn and λ is a real number with λ > 0, the set

λA = { z ∈ Rn : z = λx, where x ∈ A }

is called a positive homothet of A.

Note that the set λA is obtained from the set A by multiplying each vector in
A by the positive scalar λ. In fact, the definition of λA applies to all scalars
λ ∈ R, not just λ > 0.
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Theorem 1.3.7. The positive homothet of a closed ball is a closed ball.

The proof of this theorem is left as an exercise. What about a positive homothet
of an open ball? A sphere?

The 
1, 
2, and 
∞ norms are not the only useful norms on Rn. One sometimes
encounters the 
p norm.

Given any real number p with 1 < p < ∞, the 
p norm on Rn is defined to be

‖x‖p =

(
n∑

k=1

|xk|p
) 1

p

for x = (x1,x2, . . . ,xn) ∈ Rn.

Even though the proof that the 
p norms are indeed norms is beyond the scope
of this text, we can still determine what the balls and spheres look like in R2.

Example 1.3.8. Sketch the closed ball B(0, a) in R2 when it is equipped with
the 
p norm, where 1 < p < ∞.

Solution. The closed ball is the set

B(0, a) = { (x1,x2) ∈ R2 : (|x1|p + |x2|p)
1
p ≤ a },

and since this is symmetric about the x1 and x2 axes, it is sufficient to sketch
the curve

xp
1 + xp

2 = ap

for 0 ≤ x1 ≤ a and 0 ≤ x2 ≤ a.

Differentiating implicitly, it is easy to see that this curve has a horizontal
tangent at the point (0, a) and a vertical tangent at the point (a, 0) and is
concave down on the interval 0 < x1 < a.

Using the symmetry of the curve, we get the figure below.

a

x2

0

a

x1



28 Introduction to N-Dimensional Geometry

The figure shows the 
1, 
2, 
p, and 
∞ balls. In the figure, 2 < p < ∞. For
the case 1 < p < 2, the 
p ball would be contained in the 
2 ball and would
contain the 
1 ball.

As p increases without bound, it would appear that the 
p balls expand to
approach the 
∞ ball, and this is indeed the case, as the next example shows.

Example 1.3.9. Show that

lim
p→∞

‖x‖p = ‖x‖∞

for each x ∈ Rn.

Solution. If we let x = (x1,x2, . . . ,xn) be any point in Rn, then there is an
index n0 such that

|xn0 | = max{ |xk| : 1 ≤ k ≤ n } = ‖x‖∞,

and, therefore,

‖x‖∞ = |xn0 | = (|xn0 |p)
1
p ≤

(
n∑

k=1

|xk|p
) 1

p

= ‖x‖p,

that is,
‖x‖∞ ≤ ‖x‖p

for all p ≥ 1.

Also,

‖x‖p =

(
n∑

k=1

|xk|p
) 1

p

=

(
n∑

k=1

∣∣∣∣ xk

‖x‖∞

∣∣∣∣p
) 1

p

· ‖x‖∞,

and since |xk| ≤ ‖x‖∞ for 1 ≤ k ≤ n, then

‖x‖p ≤ ‖x‖∞ · n 1
p

for all p ≥ 1.

Combining these two inequalities, we obtain

‖x‖∞ ≤ ‖x‖p ≤ ‖x‖∞ · n 1
p

for all p ≥ 1.

Letting p → ∞, since

lim
p→∞

n
1
p = lim

p→∞
e

1
p log n = e0 = 1.
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Since ‖x‖p is stuck between two quantities approaching ‖x‖∞, the limit
exists and

lim
p→∞

‖x‖p = ‖x‖∞

for all x ∈ Rn.

1.4 INNER PRODUCT AND ORTHOGONALITY

An inner product∗ on Rn is a mapping 〈 · , · 〉 : Rn × Rn −→ R such that
for all x, y, z in Rn and all λ in R,

(i) 〈x,x〉 ≥ 0 and 〈x,x〉 = 0 if and only if x = 0,
(ii) 〈x, y〉 = 〈y,x〉,
(iii) 〈x, y + z〉 = 〈x, y〉 + 〈x, z〉 and 〈x + y, z〉 = 〈x, z〉 + 〈y, z〉,
(iv) 〈λx, y〉 = 〈x,λy〉 = λ〈x, y〉.

The standard or Euclidean inner product on Rn is given by

〈x, y〉 = x1y1 + x2y2 + · · · + xnyn

for x = (x1,x2, . . . ,xn) and y = (y1, y2, . . . , yn) in Rn.

Exercise 1.4.1. Show that the Euclidean inner product is an actual inner
product as defined above.

The standard inner product is intimately related to the Euclidean norm, since
it is immediately apparent from the definition of the inner product that

‖x‖2
2 = 〈x,x〉,

that is,

‖x‖2 =
√

〈x,x〉 =
(
x2

1 + x2
2 + · · · + x2

n

) 1
2 .

This is just the Euclidean norm on Rn and is the usual Euclidean distance
from the origin 0 to the point x, that is, it is the Euclidean length of the
vector x.

∗ Also called a scalar product or a dot product on Rn, and from properties (i), (ii), (iii), and (iv), it
is also called a nondegenerate, positive definite, symmetric, bilinear mapping.
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x2

x

0 x1

Note that in the definition of the inner product, property (i) says that ‖x‖ = 0
if and only if x = 0.

It is very common to approach the notion of distance in Rn by first discussing
the inner product. However, we have elected to discuss the notion of distance
first because there are many different distance functions for Rn that cannot be
derived from an inner product.

In two or three dimensions, orthogonality is synonymous with perpendicularity.
In fact, in the Euclidean plane, we have the following notion of orthogonality
or perpendicularity.
Theorem 1.4.2. If x and y are vectors in R2, then x ⊥ y if and only if
〈x, y〉 = 0.

Proof.

If x and y are perpendicular vectors in the
plane, then from the Pythagorean theorem and
its converse, we have x ⊥ y if and only if

‖x − y‖2
2 = ‖x‖2

2 + ‖y‖2
2.

0

y

x

x − y

However,

〈x − y,x − y〉 = ‖x‖2
2 + ‖y‖2

2

if and only if

〈x,x〉 − 2〈x, y〉 + 〈y, y〉 = ‖x‖2
2 + ‖y‖2

2,

that is, if and only if

‖x‖2
2 − 2〈x, y〉 + ‖y‖2

2 = ‖x‖2
2 + ‖y‖2

2,

if and only if

〈x, y〉 = 0.
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A similar argument holds for orthogonal vectors in R3, so we may use this as
a definition of orthogonality in higher dimensions.

In Rn, the vectors x and y are orthogonal,∗ denoted by x ⊥ y, if and only if
〈x, y〉 = 0. Note that this is the standard or Euclidean inner product on Rn.

The Pythagorean theorem is easily extended to Rn, as shown in the following
theorem.

Theorem 1.4.3. If x, y ∈ Rn, then x ⊥ y if and only if ‖x+y‖2
2 = ‖x‖2

2+‖y‖2
2.

Proof. The points 0, x, and y form a triangle in Rn which lies in a plane (that
is, a two-dimensional subspace of Rn). Now the usual Pythagorean theorem
in this plane gives the result.

Note that we could have stated the previous theorem as x ⊥ y if and only if

‖x − y‖2
2 = ‖x‖2

2 + ‖y‖2
2.

Example 1.4.4. (Packing the Elephant)
Show that a three-dimensional elephant can be packed inside the unit cube of
Rn if n is sufficiently large. In fact, our sun can be packed inside the unit
cube if n is large enough.

Solution. We assume that distance in Rn and R3 is being used with the same
units. For example, we assume that the length of the vector (1, 0, 0, . . . , 0)
is 1 m in both Rn and R3.

Let pi, for i = 1, 2, 3 , be the following three points in R3k:

p1 = ( 1, 1, . . . , 1︸ ︷︷ ︸
k times

, 0, 0, . . . , 0︸ ︷︷ ︸
2k times

)

p2 = ( 0, 0, . . . , 0︸ ︷︷ ︸
k times

1, 1, . . . , 1︸ ︷︷ ︸
k times

, 0, 0, . . . , 0︸ ︷︷ ︸
k times

)

p3 = ( 0, 0, . . . , 0︸ ︷︷ ︸
2k times

, 1, 1, . . . , 1︸ ︷︷ ︸
k times

).

∗ Some people like to exclude the zero vector from considerations of perpendicularity. From the
definition of orthogonality, the zero vector is always orthogonal to every other vector.
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It is easily checked that

〈p1, p2〉 = 〈p1, p3〉 = 〈p2, p3〉 = 0,

so that the segments

[0, p1], [0, p2], and [0, p3]

are mutually orthogonal. Thus, they form three of the edges of a three-
dimensional tetrahedron with vertices 0, p1, p2, and p3.

This tetrahedron is entirely contained in the unit cube of R3k, and so it suffices
to show that for sufficiently large k, we can pack an elephant inside this
tetrahedron.

For i = 1, 2, 3, the length of each of the edges [0, pi] is
√

k. Thus, we can
make the tetrahedron as large as we like by simply increasing the magnitude
of k.

The notion of orthogonality can also be extended to arbitrary sets.

We say that a vector v is orthogonal to a set A if v is orthogonal to every
vector determined by every pair of points p and q in A, that is, for every p
and q in A, we have 〈v, p − q〉 = 0.

Note that if a vector v is orthogonal to a set A, then every multiple of v is
also orthogonal to A and v is orthogonal to every translate of A.

1.4.1 Nearest Points

With the Euclidean metric on R2, we know from the Pythagorean theorem
that the hypotenuse of a right triangle is the longest side of the triangle. Thus,
the line L is perpendicular (that is, orthogonal) to the segment joining 0 to its
nearest point p in L, as in the figure below.

p

0

L

In fact, this is true no matter what the dimension of the space is.
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Theorem 1.4.5. Let L be a line in Rn and let p be a point on L, then p is the
closest point of L to 0 if and only if p is orthogonal to q − p for every other
point q on L.

Proof. If we let q be any point on L with q �= p, then L is the line through p
parallel to v = q − p, that is, the line through p whose equation is

x = p + λv, −∞ < λ < ∞.

Note that
‖p‖2 ≤ ‖p + λv‖2 for all λ

if and only if
‖p‖2

2 ≤ ‖p + λv‖2
2 for all λ,

that is, if and only if

‖p‖2
2 ≤ ‖p‖2

2 + 2λ〈p, v〉 + λ2‖v‖2
2 for all λ.

Therefore,
‖p‖2 ≤ ‖p + λv‖2 for all λ

if and only if

0 ≤ 2λ〈p, v〉 + λ2‖v‖2
2 for all λ. (∗)

Thus, we need to show that the last inequality is true if and only if p ⊥ v.

(i) Suppose first that 〈p, v〉 = 0, then (∗) becomes

λ2‖v‖2
2 ≥ 0,

which is true for all λ.
(ii) Conversely, suppose that 〈p, v〉 �= 0, then if we let

λ = −〈p, v〉
‖v‖2

2

,

then
2λ〈p, v〉 + λ2‖v‖2

2 = −|〈p, v〉|2
‖v‖2

2

< 0

and (∗) is not true. Hence, if (∗) is true, then 〈p, v〉 = 0.

Corollary 1.4.6. A line in Rn has a unique point of minimum Euclidean norm.
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Proof. If both p and q were points on the line with minimum norm, the
previous theorem implies that

〈q, q − p〉 = 0 and 〈p, q − p〉 = 0.

Subtracting, we would get 〈q − p, q − p〉 = 0, which means that ‖q − p‖2 = 0
so that p = q.

Example 1.4.7. Given the line L : 3x1 + 4x2 = 12 in R2, find the closest
point on the line L to the origin using

(a) the 
2 norm,
(b) the 
1 norm,
(c) the 
∞ norm.

Solution. As can be seen from the figure below,

(x1, x2)

L

(0, 0)

x2

x1(4, 0)

(0, 3)

L⊥

the vector equation of the line L is

x = (x1,x2) = (0, 3) + μ ((4, 0) − (0, 3)) = (0, 3) + μ(4,−3)

for −∞ < μ < ∞.

(a) Using the 
2 norm, the point on the line L closest to the origin is the
point of intersection of L with the line L⊥ through the origin in the
direction (3, 4). The vector equation of L⊥ is
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x = (x1,x2) = 0 + μ(3, 4) = μ(3, 4), −∞ < μ < ∞,

and these lines intersect when

(0, 3) + μ(4,−3) = λ(3, 4),

that is, when
4μ = 3λ and 3 − 3μ = 4λ.

Solving this system of equations, we get λ = 12
25 , and therefore, the point

(x1,x2) = 12
25 (3, 4) =

(
36
25 , 48

25

)
is the point on the line L, which is closest to the origin when we use the
Euclidean norm.

(b) Using the 
1 norm, the closest point on L to the origin is the point at
which the 
1 balls centered at (0, 0) first hit the line. That is, the 
1 ball
centered at 0 with radius 3 touches L at the point (0, 3) and nowhere
else, and any other 
1 ball centered at 0 with a different radius either
misses L or else contains (0, 3).

(4, 0)

(0, 3)

(0, 0)

L

x2

x1

In this case, the closest point is (0, 3).
(c) Using the 
∞ norm, the closest point on L to the origin is the point where

the 
∞ balls centered at (0, 0) first hit the line. That is, the smallest 
∞
ball centered at 0 touches L at the point (x1,x2) where x1 = x2, as
shown in the following figure. In other words, the nearest point is where
the line

M = {x ∈ R2 : x = λ(1, 1), −∞ < λ < ∞}

meets L.
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(0, 0)

(0, 3)

(x1, x2)

(4, 0)

L

x2

x1

In this case, the closest point is
(

12
7 , 12

7

)
.

From the examples given above, it should be clear now that the geometry
in Rn depends heavily on the norm used to measure distances, and many of
the familiar notions from Euclidean geometry may not look so familiar now.
However, in the majority of this text, we will use the Euclidean norm, and we
will see that many geometrical properties of Rn for n > 2 are the same as the
familiar properties for R2 or R3.

1.4.2 Cauchy–Schwarz Inequality

An approach similar to that used in the proof of Theorem 1.4.5 yields one
of the most useful relationships between the inner product and the Euclidean
distance.

Theorem 1.4.8. (The Cauchy–Schwarz Inequality)∗
If u and v are vectors in Rn, then

|〈u, v〉| ≤ ‖u‖2 ‖v‖2,

and equality holds if and only if one of u or v is a multiple of the other.

Proof. If |〈u, v〉| = 0, we have

0 = |〈u, v〉| ≤ ‖u‖2 ‖v‖2

with equality if and only if at least one of u or v is zero. Thus, the Cauchy
inequality is true in this case.

∗ Also known as the Cauchy inequality, the Schwarz inequality, the Bunyakovsky inequality, or as the
Cauchy–Bunyakovsky–Schwarz inequality.
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If |〈u, v〉| �= 0, then for any scalar λ, we have

0 ≤ ‖u + λv‖2
2 = ‖u‖2

2 + 2λ〈u, v〉 + λ2‖v‖2
2,

and taking

λ = −〈u, v〉
‖v‖2

2

,

we get

0 ≤ ‖u‖2
2 − 2

|〈u, v〉|2
‖v‖2

2

+
|〈u, v〉|2
‖v‖2

2

= ‖u‖2
2 −

|〈u, v〉|2
‖v‖2

2

,

so that
|〈u, v〉|2 ≤ ‖u‖2

2 ‖v‖2
2.

Cauchy’s inequality follows by taking nonnegative square roots.

Now note that equality holds if and only if u + λv = 0, that is, if and only if
one of u or v is a multiple of the other.

Remark. The equality is sometimes stated as

〈u, v〉 ≤ ‖u‖2 ‖v‖2,

and in this case, equality holds if and only if one of u or v is a nonnegative
multiple of the other.

Now that we have the Cauchy–Schwarz inequality, we can give a simple proof
of the triangle inequality in Rn with the Euclidean distance.

Theorem 1.4.9. (The Triangle Inequality)∗
For any vectors u and v in Rn, we have

‖u + v‖2 ≤ ‖u‖2 + ‖v‖2

with equality if and only if one of u or v is a nonnegative multiple of the other.

Proof. If u and v are vectors from Rn, then

‖u + v‖2
2 = ‖u‖2

2 + 2〈u, v〉 + ‖v‖2
2

≤ ‖u‖2
2 + 2‖u‖2 ‖v‖2 + ‖v‖2

2

= (‖u‖2 + ‖v‖2)
2 ,

∗ Sometimes known as Minkowski’s inequality.
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so that
‖u + v‖2 ≤ ‖u‖2 + ‖v‖2.

Note that equality holds in the inequality above if and only if equality holds
in the Cauchy inequality, that is, if and only if one of u or v is a nonnegative
multiple of the other.

Note. If u = (u1,u2, . . . ,un) and v = (v1, v2, . . . , vn) are points in Rn, then
the coordinatized versions of the Cauchy–Schwarz inequality and Minkowski’s
inequality are given by

Cauchy–Schwarz Inequality:

n∑
k=1

|ukvk| ≤
(

n∑
k=1

|uk|2
) 1

2
(

n∑
k=1

|vk|2
) 1

2

.

Triangle Inequality:

(
n∑

k=1

|uk + vk|2
) 1

2

≤
(

n∑
k=1

|uk|2
) 1

2

+

(
n∑

k=1

|vk|2
) 1

2

.

The next example shows when we can have equality in the triangle inequality
in each of the usual norms.

Example 1.4.10. Given p = (1, 1) and q = (−1,−1), find all points x in R2

such that

(a) ‖p − x‖2 + ‖q − x‖2 = ‖p − q‖2,
(b) ‖p − x‖1 + ‖q − x‖1 = ‖p − q‖1,
(c) ‖p − x‖∞ + ‖q − x‖∞ = ‖p − q‖∞.

Solution.

(a) Clearly, if x is any point on the line segment joining p and q, then

x = (1 − μ)p + μq
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for some 0 < μ < 1, and, therefore,

‖p − x‖2 + ‖q − x‖2 = μ‖p − q‖2 + (1 − μ)‖p − q‖2 = ‖p − q‖2.

Conversely, suppose that x ∈ R2 is a point in the plane for which

‖p − q‖2 = ‖p − x + x − q‖2 = ‖p − x‖2 + ‖q − x‖2,

then we have equality in the triangle inequality, which can happen if and
only if one of p − x and x − q is a nonnegative multiple of the other,
that is, if and only if

p − x = μ(x − q)

for some μ ≥ 0, that is, if and only if

x =
1

1 + μ
p +

μ

1 + μ
q.

Thus, we have equality in the triangle inequality if and only if x is on
the line segment between p and q, so the set we want is the line segment
[p, q].

(b) If x = (x1,x2) ∈ R2 is any point with p1 ≤ x1 ≤ q1 and p2 ≤ x2 ≤ q2,
then

‖p − x‖1 + ‖q − x‖1 = |p1 − x1| + |p2 − x2| + |q1 − x1| + |q2 − x2|
= (x1 − p1) + (x2 − p2) + (q1 − x1) + (q2 − x2)
= q1 − p1 + q2 − p2

= |p1 − q1| + |p2 − q2|
= ‖p − q‖1,

that is,
‖p − x‖1 + ‖q − x‖1 = ‖p − q‖1.

On the other hand, if x = (x1,x2) ∈ R2 is any point such that

‖p − x‖1 + ‖q − x‖1 = ‖p − q‖1,

then from the triangle inequality for real numbers, we have

|p1 − q1| ≤ |p1 − x1| + |q1 − x1| (∗)

and

|p2 − q2| ≤ |p2 − x2| + |q2 − x2|. (∗∗)

Suppose that either x1 �∈ [p1, q1] or x2 �∈ [p2, q2], then at least one of the
following is true (the reader should check this!)

|p1 − x1| > |p1 − q1|, |q1 − x1| > |p1 − q1|,
|p2 − x2| > |p2 − q2|, |q2 − x2| > |p2 − q2|,
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and we would have strict inequality in at least one (or both) of the
inequalities (∗) and (∗∗) above. Adding (∗) and (∗∗), we would have

|p1 − q1| + |p2 − q2| < |p1 − x1| + |p2 − x2| + |q1 − x1| + |q2 − x2|,

that is, ‖p − q‖1 < ‖p − x‖1 + ‖q − x‖1, which is a contradiction.
Therefore, x1 ∈ [p1, q1] and x2 ∈ [p2, q2], and in this case, the set we
want is the closed box

B = {x = (x1,x2) : p1 ≤ x1 ≤ q1, p2 ≤ x2 ≤ q2}.

(c) If x ∈ [p, q], then x = (1 − μ)p + μq for some 0 < μ < 1, so that

‖x − p‖∞ = μ‖p − q‖∞ and ‖x − q‖∞ = (1 − μ)‖p − q‖∞,

and adding, we get

‖x − p‖∞ + ‖x − q‖∞ = μ‖p − q‖∞ + (1 − μ)‖p − q‖∞ = ‖p − q‖∞.

Conversely, if x �∈ [p, q], since the line joining p = (−1,−1) and
q = (1, 1) is the line x2 = x1, then the smallest 
∞ balls centered
at p and q containing x overlap, as in the figure below.

p − q ∞

p − x ∞

p − q ∞p

q − x ∞ q

x

It is clear from the figure that

‖p − x‖∞ + ‖q − x‖∞ > ‖p − q‖∞.

In fact,
‖p − x‖∞ + ‖q − x‖∞ = ‖p − q‖∞
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if and only if the point x lies on the line segment between p and q, that
is,

x = (1 − μ)p + μq

for some 0 ≤ μ ≤ 1. The set we want is the line segment [p, q].

1.4.3 Problems

In the following exercises, assume that “distance” means “Euclidean distance”
unless otherwise stated.

1. (a) The unit cube in Rn is the set of points

{x = (α1,α2, . . . ,αn) : |αi| ≤ 1, i = 1, 2, . . . ,n }.

Draw the unit cube in R1, R2, and R3.
(b) What is the length of the longest line segment that you can place in

the unit cube of Rn?
(c) What is the radius of the smallest Euclidean ball that contains the

unit cube of Rn?
2. (a) Let L be the straight line through 0 parallel to the vector

v = (1, 3,−1, 2). Find the two points where the line enters and
exits the unit cube.
Hint. Solve a similar problem in R2 first.

∗(b) Let L be the straight line through the point p = ( 1
3 , 1

2 ,− 1
3 , 1

2 ) parallel
to the vector v = (2,−1, 2, 1). Find the two points where the line
enters and exits the unit cube.

3. Find the distance between the points (1,−2) and (−2, 3) using
(a) the 
1 metric,
(b) the “sup” metric,
(c) the Euclidean metric.

4. Let ‖ · ‖1, ‖ · ‖2, and ‖ · ‖∞ denote, respectively, the 
1, Euclidean, and
“sup” norms. Identify all those points x in Rn that have the property

‖x‖1 = ‖x‖2 = ‖x‖∞.

Hint. Try this for R2 first.
5. Show that a positive homothet of a closed ball is a closed ball.

1.5 CONVEX SETS

In this section, we give a brief introduction to convex sets, plus some examples.
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A subset A of Rn is said to be convex if and only if whenever x and y are two
points from A, then the entire segment [x, y] is a subset of A; equivalently, A
is convex if and only if x, y ∈ A and 0 < λ < 1 imply that (1−λ)x+λy ∈ A
also.

Note that a convex set does not have any holes, dimples, or bumps.

Not convexConvex

The sets depicted on the left in the above figure are convex, while those on
the right are not convex.

Note. In order to verify that a set is convex using the definition, we use the
following strategy:

Choose two arbitrary points in the set and show that the segment joining the
points is in the set.

Example 1.5.1. The closed unit ball in Rn

B(0, 1) = {x ∈ Rn : ‖x‖ ≤ 1 }

is a convex set.

Proof. Note that we did not specify any particular norm, so we should be able
to prove this for any norm on Rn.

Let x, y ∈ B(0, 1), then for any point
z ∈ [x, y], we have

z = (1 − λ)x + λy

for some scalar λ with 0 ≤ λ ≤ 1.
We also want to show that z ∈ B(0, 1); that is,
‖z‖ ≤ 1.

z

1

B(0, 1)

0

y

x
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This follows from the triangle inequality:

‖z‖ = ‖(1 − λ)x + λy‖
≤ ‖(1 − λ)x‖ + ‖λy‖
= |1 − λ| · ‖x‖ + |λ| · ‖y‖,

and since 0 ≤ λ ≤ 1, then |1 − λ| = 1 − λ and |λ| = λ, so that

‖z‖ ≤ (1 − λ)‖x‖ + λ‖y‖ ≤ (1 − λ) · 1 + λ · 1 = 1.

Exercise 1.5.2. Show that the open unit ball in Rn

B(0, 1) = {x ∈ Rn : ‖x‖ < 1 }

is a convex set.

Note. It is not difficult to see that the two extreme cases A = ∅ and A = Rn

are both convex. In fact, if ∅ were not convex, then from the definition, we
could find x, y ∈ ∅ such that [x, y] �⊆ ∅. Since there are no points in ∅, we
cannot find such an x and y, so ∅ must be convex. We say that ∅ is convex
vacuously.

The next theorem shows that convexity is preserved under intersection and will
give us another method for showing that a set is convex. Note that the family
F in the theorem may be finite or infinite.

Theorem 1.5.3. Suppose that F is a nonempty family of convex subsets of Rn,
then the set

C =
⋂

{A : A ∈ F }

is convex.

Proof. Let x, y ∈ C. We will show that [x, y] ⊂ C.

Since x ∈ C, then x ∈ A for every A ∈ F , and since y ∈ C, then y ∈ A for
every A ∈ F .

Since each A ∈ F is convex, then [x, y] ⊂ A for each A ∈ F , and, therefore,

[x, y] ⊂
⋂

{A : A ∈ F }.
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Remark. As mentioned earlier, this theorem provides another method of show-
ing that a set is convex, namely, we show that the set is the intersection of a
family of sets, all of which are known to be convex. At this point, illustrative
examples would be highly contrived, and we give one such example.
Example 1.5.4. If p and q are distinct points in Rn, show that the segment

[p, q] = {x ∈ Rn : x = (1 − λ)p + λq, 0 ≤ λ ≤ 1 }
is convex.

Proof. Let X be the subset of Rn formed by intersecting all of the closed
Euclidean balls that contain p and q. We will show that X = [p, q].

Suppose that p and q are contained in a closed Euclidean ball centered at x0

with radius r > 0, and let

z = (1 − μ)p + μq,

where 0 ≤ μ ≤ 1, be any point on the line segment joining p and q, then

‖z − x0‖2 = ‖(1 − μ)p + μq − x0‖2

= ‖(1 − μ)p + μq − (1 − μ)x0 − μx0‖2

≤ (1 − μ)‖p − x0‖2 + μ‖q − x0‖2

≤ (1 − μ)r + μr

= r.

That is, z is in the closed ball also. Therefore, any closed Euclidean ball that
contains p and q also contains the line segment joining p and q, that is, [p, q].
Hence, the intersection of all such closed Euclidean balls contains the entire
segment [p, q], and [p, q] ⊆ X .

Now suppose that x is a point that is not on the line segment [p, q]. If
p, q, and x are collinear, then by taking the center on a line bisecting [p, q]
and a small enough radius, as in the figure below on the left, we can find a
closed Euclidean ball containing p and q, but not containing x. Similarly, if
p, q, and x are not collinear, then by taking the center on a line in a plane
bisecting [p, q] and a large enough radius, as in the figure below on the right,
we can find a closed Euclidean ball containing p and q, but not containing x.

x

pp
x

qq
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In either case, since x is not in this closed ball, it cannot possibly be in the
intersection of all closed Euclidean balls containing p and q. Thus, if x �∈ [p, q],
then x �∈ X, and the contrapositive of this statement is true, that is, if x ∈ X ,
then x ∈ [p, q]. Therefore, X ⊆ [p, q].

Combining these two containments, we get X = [p, q], and since X is the
intersection of a family of convex sets, then [p, q] is convex.

Exercise 1.5.5. Show [p, q] is convex directly from the definition of convexity.

1.6 HYPERPLANES AND LINEAR FUNCTIONALS

1.6.1 Linear Functionals

Let f : Rn −→ R, then we say that f is a linear functional on Rn if and
only if

(i) f(x + y) = f(x) + f(y) for all x, y ∈ Rn, and
(ii) f(λx) = λf(x) for all λ ∈ R, x ∈ Rn.

Thus, a linear functional is a real-valued function on Rn that is both additive
and homogeneous.

Note. The notation f = 0 means that f(x) = 0 for all x ∈ Rn, that is, f is
identically zero. Thus, if f is a linear functional such that f �= 0, then there
is an a ∈ Rn such that f(a) �= 0.

Example 1.6.1. The following are examples of linear functionals:

(1) f(x1,x2) = 3x1 + 4x2

(2) f(x, y, z) = 3x +
√

2y − 52z
(3) f(u1,u2,u3,u4) = −1.0u1 + 2.5u2 − 7.3u3 − 9.9u4

(4) f(w,x, y, z) = 0
(5) f(x1,x2,x3,x4) = x1 − x3.

Any missing terms are understood as being zero, so (5) is the same as

f(x1,x2,x3,x4) = x1 + 0x2 − x3 + 0x4.
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The following are not linear functionals:

(1) f(x1,x2) = 3x1 + 4
√

x2

(2) f(x, y, z) =
3
x

+
√

2
y

− 52
z

(3) f(u1,u2,u3,u4) = −1.0u2
1 + 2.5u2

2 − 7.3u2
3 − 9.9u2

4

(4) f(x1,x2,x3,x4) = x1(1 − x3).

Representation of Linear Functionals

The notion of a linear functional occurs in many places in mathematics, and
it is often very important to describe every possible type of linear functional
that can arise in a given setting. Clearly, any function f : Rn −→ R of the
form

f(x1,x2, . . . ,xn) = α1x1 + α2x2 + · · · + αnxn,

where α1,α2, . . . ,αn are scalars, is a linear functional on Rn. We will show
in the following theorem∗ that these are the only ones!

Theorem 1.6.2. If f is a nonzero linear functional on Rn, then there is a
unique vector a ∈ Rn, a �= 0, such that

f(x) = 〈a,x〉

for all x ∈ Rn.

Proof. Let { e1, e2, . . . , en } be the standard basis vectors for Rn, that is,

e1 = (1, 0, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), . . . , en = (0, 0, 0, . . . , 1),

where for k = 1, 2, . . . ,n, the basis vector ek has a 1 in the kth coordinate
and 0 elsewhere.

Let x = (x1,x2, . . . ,xn) be an arbitrary vector in Rn, then we can write

x =
n∑

k=1

xkek,

and since f is a linear functional, then

f(x) =
n∑

k=1

f(ek)xk = 〈a,x〉,

∗ This theorem is called the Riesz Representation Theorem.
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where a is the vector

a = (f(e1), f(e2), . . . , f(en)).

Also, since f is nonzero, then at least one of the scalars f(ek) is nonzero, that
is, a �= 0.

Now we note that the vector a depends only on the linear functional f , so we
have

f(x) = 〈a,x〉
for all x ∈ Rn.

The fact that this representation of f is unique, that is, there is only one vector
a that represents it, stems from the fact that there is only one way to write a
vector x as a linear combination of the basis vectors.

It is usual to identify a linear functional with the vector of constant terms that
are used to define it. For example, if f is defined by the equation

f(x1,x2,x3) = 3x1 − 2x2 + 7x3,

then we will say that f is represented by (3,−2, 7). If g is the linear functional

g(u1,u2,u3,u4) = u1 − 2u3 + u4,

then we would say that g is represented by (1, 0, 2, 1).

Thus, every n-dimensional vector (α1,α2, . . . ,αn) gives rise to a unique linear
functional on Rn, and conversely, given any linear functional on Rn, there is
a unique n-dimensional vector that represents it.

Sums and Multiples of Linear Functionals

If f and g are two linear functionals on Rn, we define the sum of f and g to
be the function f + g whose value is

(f + g)(x) = f(x) + g(x)

for all x ∈ Rn, and if λ is a scalar, we define the scalar multiple λf to be the
function whose value is

(λf)(x) = λ · f(x)

for all x ∈ Rn.

It is easily verified that f + g and λf are linear functionals on Rn and that
with these pointwise definitions of addition and scalar multiplication, the set
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of all linear functionals on Rn is a real vector space (called the dual space).
The next theorem shows that we can identify it with Rn, and the proof is left
as an exercise.

Theorem 1.6.3. If the linear functional f is represented by a ∈ Rn and the
linear functional g is represented by b ∈ Rn, and if λ is any scalar, then the
linear functional f + g is represented by a + b and the linear functional λf is
represented by λa.

Example 1.6.4. If f and g are defined by

f(x, y, z) = 3x + y − 4x

g(x, y, z) = −x + 2y + z,

find the vectors that represent the functionals f , g, and 2f − g.

Solution. From the definitions of f and g,

f is represented by (3, 1,−4) and
g is represented by (−1, 2, 1),

so that 2f − g is represented by

2(3, 1,−4) − (−1, 2, 1) = (6, 2,−8) − (−1, 2, 1)
= (6 − (−1), 2 − 2,−8 − 1)
= (7, 0,−9).

Because the identification between vectors and linear functionals is so strong,
it is usual to abuse the language and say that f is (3, 1,−4) instead of saying
that f is represented by the vector (3, 1,−4).∗

Example 1.6.5. Let S be the set of all points in R4 whose fourth coordinate
is zero. Find a linear functional f on R4 and a scalar β such that x is in S
if and only if f(x) = β.

Solution. We have to produce the linear functional

f(x1,x2,x3,x4) = α1x1 + α2x2 + α3x3 + α4x4

and the scalar β such that x ∈ S if and only if f(x) = β. We will try to guess
what f and β should be, and then we will show that our guess is correct.

∗ Woe is us! Now we can think of (3, 1,−4) in three different ways.
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First, we note that the zero vector is in S because its fourth coordinate is 0.
Thus, no matter what f we try, we will always get f(0) = 0, and it seems
reasonable to guess that β = 0.

Next we are going to guess what each αi should be. Notice that S contains
the vector (1, 0, 0, 0) so that f(1, 0, 0, 0) = α1. Since f(x) = 0 for all x in S,
we have α1 = 0. If we repeat this argument using the points (0, 1, 0, 0) and
(0, 0, 1, 0), we find that α2 and α3 must also be zero. However, we cannot use
the same argument for α4 because (0, 0, 0, 1) is not in S. In fact, we cannot
determine what α4 must be, so we will guess that it can be any nonzero
number.

Thus, we conclude that

f(x1,x2,x3,x4) = α4x4

where α4 is any nonzero number and that β = 0.

This does not finish the solution—all we have done so far is to produce what
seems like a reasonable guess. To complete the solution, we have to show that
the guess is correct.

Note. A comment is worthwhile here. When you are actually writing a
solution, you do not need to tell the reader how you guessed the answer. You
are only obliged to show that your guess is correct. Here is a completely
acceptable solution.

We will show that f = (0, 0, 0,α4) and that β = 0. To check this, note that
every point in S is of the form (x1,x2,x3, 0), so that

f(x1,x2,x3, 0) = 0x1 + 0x2 + 0x3 + α4 · 0 = 0

for any real number α4, which completes the proof.

Geometry of Linear Functionals

If f is a linear functional on Rn and α is a scalar, then the set of all points
x ∈ Rn such that f(x) = α is denoted by f−1(α), that is,

f−1(α) = {x ∈ Rn : f(x) = α }.

The set f−1(α) is called the counterimage of α under f or the inverse image
of α under f .
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Note that f−1(α) consists of all points x ∈ Rn such that f(x) = α, and it
should be stressed that f−1(α) is a set. The notation is not meant to imply that
f is invertible! In particular, one must avoid thinking that f−1 (f(x)) = x.∗

If f is a nonzero linear functional on Rn, then the kernel of f , denoted by
ker(f), is the set of all x ∈ Rn such that f(x) = 0, that is,

ker(f) = f−1(0) = {x ∈ Rn : f(x) = 0 }.

The next theorem shows that this is actually a subspace of Rn.

Theorem 1.6.6. If f is a linear functional on Rn and f �= 0, then

f−1(0) = ker(f) = {x ∈ Rn : f(x) = 0 }

is a subspace of Rn.

Proof. If x, y ∈ f−1(0), then

f(x + y) = f(x) + f(y) = 0 + 0 = 0,

so x + y ∈ f−1(0).

If λ ∈ R and x ∈ f−1(0), then

f(λx) = λf(x) = λ · 0 = 0,

so λx ∈ f−1(0).

Therefore, f−1(0) is closed under addition and scalar multiplication and hence
is a subspace.

Note. If f is a linear functional on Rn and f �= 0, then there is an a ∈ Rn

such that f(a) �= 0, so that a �∈ f−1(0) and f−1(0) � Rn, that is, f−1(0) is
a proper subspace of Rn.

f−1(0)

a

0

∗ The only thing that you can say is that x ∈ f−1 (f(x)) .
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The next theorem is reminiscent of the orthogonal projection theorem in linear
algebra.

Theorem 1.6.7. Let f be a nonzero linear functional on Rn and let a ∈ Rn

be a vector such that f(a) �= 0, then any point p ∈ Rn can be written uniquely
as

p = λa + x

where λ ∈ R and x ∈ f−1(0).

Proof. Consider the vector x = p − λa. Since f is a linear functional,

f(x) = f(p) − λf(a),

and since f(a) �= 0, then f(x) = 0 when λ =
f(p)
f(a)

. Therefore,

x0 = p − f(p)
f(a)

a ∈ f−1(0),

so that
p =

f(p)
f(a)

a + x0,

where x0 ∈ f−1(0).

To show that this representation is unique, suppose that

p = x1 + μa,

where μ ∈ R and x1 ∈ f−1(0), then

f(p) = f(x1) + μf(a) = 0 + μf(a) = μf(a),

so that
μ =

f(p)
f(a)

and μ = λ.

Therefore,
p = x1 +

f(p)
f(a)

a,

and since
p = x0 +

f(p)
f(a)

a,

then x1 = x0.
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Note that in the theorem, a can be any fixed vector with f(a) �= 0.

Now let
B = { e1, e2, . . . , ek }

be a basis for the subspace f−1(0), then the set

B′ = { a, e1, e2, . . . , ek }

is linearly independent since a �∈ f−1(0), and the set also spans Rn by the
previous theorem. Therefore, it forms a basis for Rn, and hence, n = k + 1,
that is, k = n − 1. Thus, we have shown the following theorem.

Theorem 1.6.8. If f is a nonzero linear functional on Rn, then f−1(0) is a
subspace of dimension n− 1, that is, f−1(0) is a subspace of codimension 1.

1.6.2 Hyperplanes

In R2, the set of points satisfying a linear equation such as

3x1 + 4x2 = 7

is a straight line.

In R3, the set of points satisfying a linear equation such as

2x1 − 6x2 − x3 = 5

is a plane.

More generally, if α1,α2, . . . ,αn and β are constant scalars and if at least one
αi is nonzero, then the set of all points (x1,x2, . . . ,xn) ∈ Rn that satisfy the
linear equation

α1x1 + α2x2 + · · · + αnxn = β (∗)

is called a hyperplane in Rn.

In other words, a hyperplane is a set Hβ in Rn defined by

Hβ = { (x1,x2, . . . ,xn) ∈ Rn : α1x1 + α2x2 + · · · + αnxn = β }. (∗∗)

In terms of linear functionals, we can rewrite equation (∗) as

f(x) = β
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and we can rewrite equation (∗∗) as

Hβ = f−1(β) = {x ∈ Rn : f(x) = β }

where x is the point (x1,x2, . . . ,xn) and f is a nonzero linear functional on
Rn represented by the vector (α1,α2, . . . ,αn).∗

Thus, in R2, a hyperplane is a line, and in R3, a hyperplane is a plane. The
hyperplane in Example 1.6.5 is readily identified with R3.

In all three cases, the hyperplane is one dimension less than the dimension
of the space in which it lives. We know from Theorem 1.6.8 that in Rn, the
hyperplane

f−1(0) = {(x1,x2, . . . ,xn) : α1x1 + α2x2 + · · · + αnxn = 0 }

is actually a subspace of dimension n − 1.

Note. We can also see this as follows: in Rn, let H be the hyperplane f−1(0),
where f is a nonzero linear functional.

To see that the subspace H has dimension n− 1, note that by definition, H is
the set of all solutions (x1,x2, . . . ,xn) to the equation

α1x1 + α2x2 + · · · + αnxn = 0,

where at least one αk is nonzero.

However, we know from the theory of linear equations in linear algebra that
the solution space to this equation contains n− 1 linearly independent vectors
and no more than n − 1 linearly independent vectors, which is to say that H
has dimension n − 1.

Example 1.6.9. Show that if S = {v1, v2, . . . , vn−1} is a linearly independent
set of vectors in Rn, then the linear subspace V spanned by S is a hyperplane.

Solution. Perhaps the quickest way to see this is to use determinants. Suppose
that the vectors vk are

v1 = (α1,1,α1,2, . . . ,α1,n)
v2 = (α2,1,α2,2, . . . ,α2,n)

...
vn−1 = (αn−1,1,αn−1,2, . . . ,αn−1,n).

∗ Note that the hyperplane Hβ depends on both the vector (α1, α2, . . . , αn) ∈ Rn and the
scalar β.
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Let x be the vector (x1,x2, . . . ,xn), and consider the determinantal equation∣∣∣∣∣∣∣∣∣∣∣

x1 x2 · · · xn

α1,1 α1,2 · · · α1,n

α2,1 α2,2 · · · α2,n

...
...

. . .
...

αn−1,1 αn−1,2 · · · αn−1,n

∣∣∣∣∣∣∣∣∣∣∣
= 0. (∗)

When we expand this in terms of cofactors of the first row, we obtain

A11x1 + A12x2 + · · · + A1nxn = 0,

where Aij denotes the cofactor of the ith row and jth column. Since the
cofactors Aij are constants, we recognize (∗) as the equation of a hyperplane.
It is clear that this hyperplane contains the vectors vk. For example, to see
that v1 satisfies (∗), we substitute v1 for x in the left side of (∗) and get∣∣∣∣∣∣∣∣∣∣∣

α1,1 α1,2 · · · α1,n

α1,1 α1,2 · · · α1,n

α2,1 α2,2 · · · α2,n

...
...

. . .
...

αn−1,1 αn−1,2 · · · αn−1,n

∣∣∣∣∣∣∣∣∣∣∣
which must be zero, since it contains two identical rows.

In the next theorem, we prove that the hyperplane

Hβ = f−1(β),

where β �= 0, is a translate of the subspace f−1(0) and so f−1(β) must have
the same “dimension” as f−1(0).

Theorem 1.6.10. Let f be a nonzero linear functional on Rn, β ∈ R, with
β �= 0, and let

Hβ = f−1(β).

If a ∈ Rn is any point such that f(a) = β, then

Hβ = a + f−1(0), ∗

that is, the hyperplane Hβ is just a translate of a subspace of dimension n−1.

∗ Because {a} ∩ f−1(0) = ∅, this is sometimes written as a ⊕ f−1(0) and called a direct sum.
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Proof. Let x ∈ Hβ , then

f(x) = β = f(a),

so that

f(x − a) = β − β = 0,

that is,

x − a ∈ f−1(0).

Therefore, Hβ ⊆ a + f−1(0).

Conversely, if x ∈ a + f−1(0), then

x = a + z,

where z ∈ f−1(0), that is, f(z) = 0. Therefore,

f(x) = f(a) = β.

Hence, x ∈ Hβ and a + f−1(0) ⊆ Hβ .

Remark. Hyperplanes in infinite dimensional spaces are defined as being
maximal proper subspaces, or translates of maximal proper subspaces. The-
orems 1.6.8 and 1.6.10 show that in Rn at least, this definition and the one we
gave are equivalent.

Note. Summarizing all this, any hyperplane

Hβ = {x ∈ Rn : f(x) = β }

can be written as

Hβ = {x ∈ Rn : 〈p,x〉 = β }

for some fixed p �= 0 in Rn,

and

f−1(0) = {x ∈ Rn : 〈p,x〉 = 0 }.
Thus, f−1(0) is the subspace of all vectors orthogonal to p, and Hβ is just a
translate of this subspace, as shown in the following figure.
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p

xa
f−1(0)

Hβ

0

Here
Hβ = a + f−1(0),

where 〈p, a〉 = β, so that x ∈ Hβ if and only if

f(x) = f(a + x − a) = f(a) + f(x − a) = 〈p, a〉 + 〈p,x − a〉 = β + 0 = β.

Example 1.6.11. If p = (4,−2) and β = 1, sketch the hyperplane in R2

determined by p and β.

Solution. The hyperplane is the set

Hβ = { (x, y) ∈ R2 : 4x − 2y = 1 },

since in R2, a hyperplane is just a line, a translate of a subspace of dimension
1. The line passes through the point a = ( 1

4 , 0) and is perpendicular to the
vector p = (4,−2). The hyperplane is sketched below.

p

Hβy

x

Example 1.6.12. If p = (4,−2, 3) and β = 1, sketch the hyperplane in R3

determined by p and β.
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Solution. The hyperplane is the set

Hβ = { (x, y, z) ∈ R3 : 4x − 2y + 3z = 1 },

since in R3, a hyperplane is just a plane, a translate of a subspace of dimension
2. The plane passes through the point a = ( 1

4 , 0, 0) and is perpendicular to the
vector p = (4,−2, 3). The portion of the hyperplane in one octant is sketched
below.

z

x

Hβ

p

y

Halfspaces

A hyperplane determines two halfspaces, one on each side of the hyperplane,
and the most fundamental property of the hyperplane is that it divides the
space Rn into three disjoint parts:

• the hyperplane itself

H = {x ∈ Rn : f(x) = β }

• an open halfspace to one side of the hyperplane

H+ = {x ∈ Rn : f(x) > β }

• the open halfspace on the other side of the hyperplane

H− = {x ∈ Rn : f(x) < β }.

If the hyperplane is adjoined to either of the open halfspaces, the result is a
set of the type

{x ∈ Rn : f(x) ≤ β } or {x ∈ Rn : f(x) ≥ β }.

Such sets are called closed halfspaces.

A hyperplane H separates Rn in the following sense.
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Theorem 1.6.13. If the point x is in one of the open halfspaces determined
by a hyperplane H and y is in the other open halfspace, then the line segment
(x, y) intersects the hyperplane H at precisely one point z.

y

H

z

x

Proof. Suppose that the hyperplane H is given by

H = { z ∈ Rn : 〈p, z〉 = λ }

for some scalar λ and some nonzero vector p ∈ Rn. Since x and y are in
different halfspaces, we may assume that

α = 〈p,x〉 < λ < 〈p, y〉 = β.

We have to show that there is a point w ∈ (x, y) such that 〈p,w〉 = λ.

Let w = (1 − μ)x + μy be a typical point on the line through x and y. We
want to find a scalar μ with 0 < μ < 1 such that

〈p, (1 − μ)x + μy〉 = λ,

that is,
(1 − μ)〈p,x〉 + μ〈p, y〉 = λ,

or
(1 − μ)α + μβ = λ.

Solving this equation for μ, we have

μ =
λ − α

β − α
,

and since α < λ < β, then 0 < μ < 1, that is, w is in the line segment (x, y).
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Example 1.6.14. Given f = (1,−2,−1, 4), show that the hyperplane f−1(10)
misses the closed unit ball.

Solution. Since the norm has not been specified, we assume that we are
dealing with the Euclidean ball. We will solve this problem by showing that
the ball lies to one side of the hyperplane, that is, we will show that the ball
is contained in the open halfspace {x ∈ R4 : f(x) < 10 }.∗

Now, a typical point of the unit ball x = (x1,x2,x3,x4) has

x2
1 + x2

2 + x2
3 + x2

4 ≤ 1.

Consequently, we know for certain that for each coordinate xk, the absolute
value |xk| must be no greater than 1. Thus,

f(x) = x1 − 2x2 − x3 + 4x4

≤ |x1| + 2|x2| + |x3| + 4|x4|
≤ 1 + 2 + 1 + 4,

which shows that f(x) < 10 and

B(0, 1) � {x ∈ R4 : f(x) < 10 }.

Example 1.6.15. Given that f = (3,−1, 0, 2), find the point where the line
through (1, 0, 0, 2) parallel to (1, 1,−1, 3) intersects the hyperplane f−1(1).

Solution. The problem asks us to find the point x on the line for which
f(x) = 1.

A typical point x = (x1,x2,x3,x4) on the line can be written as

(x1,x2,x3,x4) = (1, 0, 0, 2) + μ(1, 1,−1, 3) = (1 + μ,μ,−μ, 2 + 3μ)

for some scalar μ.

Therefore,

f(x) = f(1 + μ,μ,−μ, 2 + 3μ) = 3(1 + μ) − 1μ + 0 + 2(2 + 3μ) = 7 + 6μ,

and setting this equal to 1 yields μ = −1. Hence, the point of intersection of
the line and hyperplane is

x = (1 + μ,μ,−μ, 2 + 3μ) = (0,−1, 1,−1).

∗ Can you see why we know immediately that the unit ball cannot be contained in the other open
halfspace?
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Example 1.6.16. Given that x and y are points in Rn and that f is a linear
functional with f(x) = 3 and f(y) = 9, find the hyperplane determined by f
that contains the midpoint of the straight line segment joining x and y.

Solution. The midpoint of the segment is

z = 1
2x + 1

2y,

and hence, the value of the linear functional f at the midpoint is

f(z) = f
(

1
2x + 1

2y
)

= 1
2f(x) + 1

2f(y) = 1
2 · 3 + 1

2 · 9 = 6.

Therefore, the hyperplane is f−1(6).

We will need the following theorem. Although it is possible to prove it at this
point, a simpler proof will be given later in the text.

Theorem 1.6.17. Given the hyperplane H = f−1(β) in Rn, where f is rep-
resented by p, the point on H that has minimum Euclidean norm is the point
where the straight line through 0 in the direction of p intersects H .

Proof. Suppose that the line through 0 in the direction of p intersects the
hyperplane H at x0, as depicted in the figure below.

p

0

H = f−1(β)

x0

x

Let x be an arbitrary point in H , then

〈p,x − x0〉 = 〈p,x〉 − 〈p,x0〉 = β − β = 0,

so that the vector x−x0 is orthogonal to p, and from the Pythagorean theorem,

‖x‖2
2 = ‖x0‖2

2 + ‖x − x0‖2
2 ≥ ‖x0‖2

2,
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so that
‖x‖2 ≥ ‖x0‖2

for all x ∈ H .

Therefore, x0 is the point in the hyperplane H that has minimum Euclidean
norm.

Corollary 1.6.18. In the hyperplane H = f−1(β), where f is represented by
p, the point closest to 0 is

x0 =
β

‖p‖2
2

p

and ‖x0‖2 =
|β|
‖p‖2

.

Proof. Since
f(x0) =

β

‖p‖2
2

f(p) =
β

‖p‖2
2

〈p, p〉 = β,

by the previous theorem, the point x0 is precisely the point in H = f−1(β),
which is closest to 0.

Also,
‖x0‖2 =

|β|
‖p‖2

2

‖p‖2 =
|β|
‖p‖2

.

The word “normal” in geometry is also synonymous with perpendicularity.
If H is the hyperplane f−1(β), the vector p representing the nonzero linear
functional f is often called a normal vector to the hyperplane. Of course, any
nonzero multiple of p is also a normal vector.

For example, recall that for the plane

ax + by + cz = d

in R3, the distance from the plane to the origin is given by the formula

ρ =
|d|√

a2 + b2 + c2
,

as in the corollary above. You may also recall that the equation

ax + by + cz√
a2 + b2 + c2

=
d√

a2 + b2 + c2
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is sometimes called the normal form of the equation of the plane
ax + by + cz = d.

Example 1.6.19. Find the point z0 = (x0, y0) on the line

L = { z = (x, y) ∈ R2 : 3x − 2y = 1 }

in R2 that is closest to the origin and find the norm of z0.

Solution. Since no distance function is specified, we assume that the Euclidean
distance is to be used, and, hence, the previous theorem will apply.

The line L is really the hyperplane H = f−1(1), where f is represented by
the vector p = (3,−2). According to the theorem, the point z in question is
where the line through 0 = (0, 0) and p = (3,−2) intersects H .

Now, a typical point on the line through (0, 0) and (3,−2) is

z = (x, y) = (0, 0) + μ(3,−2) = (3μ,−2μ)

and we are looking for a value of μ ∈ R such that

f(x, y) = 〈p, z〉 = 3 · (3μ) − 2 · (−2μ) = 13μ = 1.

This yields μ = 1
13 , and the point z0 we want is

z0 = (3μ,−2μ) =
(

3
13 ,− 2

13

)
,

with norm

‖z0‖2 =
∥∥(

3
13 ,− 2

13

)∥∥ =
√(

3
13

)2 +
(
− 2

13

)2 = 1√
13

.

Remark. In the preceding example, the distance from z0 to 0 is 1√
13
. This

means that the hyperplane H is tangent to the closed ball B(0, 1√
13

) at the
point

(
3
13 ,− 2

13

)
. The next example uses the correspondence between tangency

and points of minimum 
2 norm.

Example 1.6.20. Let f be the linear functional on R4 with the Euclidean norm
represented by the vector p = (−1, 2,−1, 1). Find the point on the closed unit
ball in R4, where f attains its maximum value and find that maximum value.

Solution. First, we make sure the question is clear. For every point x in
B(0, 1), f(x) has a specific value. What we want to find is the point where
this value is a maximum.
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Next, we interpret this geometrically. Suppose that the maximum happens to
be β and that it occurs at the point x0. Then f(x0) = β, and for every other
point y in B(0, 1), we must have f(y) < β.

However, this would mean that the hyperplane H , whose equation is f(x) = β,
touches the closed unit ball at precisely x0. Furthermore, we know that in
this situation, the point x0 is where the line through 0 would intersect the
hyperplane H . Thus, if we can find x0, then we will have found the solution.

There is something else about x0 that we can exploit. Since x0 is the point of
tangency to the unit ball, it cannot be inside the ball, and therefore, ‖x0‖2 = 1.
Thus, the problem reduces to the following: find the point where the line
through 0 and p intersects the unit sphere. There will be two such points, and
one of them will be the one we want.

Now we proceed with the solution. We want to find the points x in R4 where
the line through 0 = (0, 0, 0, 0) and p = (−1, 2,−1, 1) pierces the unit sphere

S = {x ∈ R4 : ‖x‖2 = 1 }.
The line has the equation

x = (1 − μ)0 + μ(−1, 2,−1, 1) = μ(−1, 2,−1, 1), −∞ < μ < ∞
and we want to find values of μ such that ‖x‖2 = 1.

Now,

‖x‖2 = ‖μ(−1, 2,−1, 1)‖ = |μ|
√

(−1)2 + 22 + (−1)2 + 12

so that

‖x‖2 =
√

7 |μ|,

and, therefore, ‖x‖2 = 1 when |μ| = 1√
7
. The two places where the line

intersects the sphere are
1√
7
(−1, 2,−1, 1) and − 1√

7
(−1, 2,−1, 1).

Checking the value of f at each of these points, we have

f

(
1√
7
(−1, 2,−1, 1)

)
=

√
7 and f

(
− 1√

7
(−1, 2,−1, 1)

)
= −

√
7.

Therefore, f attains a maximum value of
√

7 on the closed unit ball, and it
attains that value at the point

x0 =
1√
7
(−1, 2,−1, 1).



64 Introduction to N-Dimensional Geometry

Example 1.6.21. If p is a point in the unit sphere in Rn, then the hyperplane
H whose equation is 〈p,x〉 = 1 is tangent to the unit sphere at p, and only at
the point p (here the Euclidean norm is being used).

Solution. Since p is on the sphere, then ‖p‖2 = 1. Taking x = p in the
equation of the hyperplane, we have

〈p,x〉 = 〈p, p〉 = ‖p‖2 = 1,

and thus p ∈ H .

Now let q ∈ S
(
0, 1

)
, where q �= p. We want to show that x = q does not

satisfy the equation for H . We recall that in the triangle inequality

〈x, y〉 ≤ ‖x‖2 · ‖y‖2,

and equality holds if and only if one of x or y is a nonnegative multiple of
the other.

The only nonnegative multiple of p that belongs to S
(
0, 1

)
is p itself, and

hence, neither p nor q is a nonnegative multiple of the other, so that

〈p, q〉 < ‖p‖2 · ‖q‖2 = 1 · 1 = 1.

Therefore, q �∈ H .

Example 1.6.22. Let S be the unit sphere (in the Euclidean norm) in Rn.
Suppose that H is the hyperplane whose equation is 〈p,x〉 = α, where
0 < α < 1. Let T = S ∩ H. Show that T is a sphere in H , that is, show that
there is some point q in H and some constant δ such that ‖x − q‖2 = δ for
all x ∈ T .

Solution. The vector p is orthogonal to the hyperplane H , and if
x ∈ T = S ∩ H , then

α = 〈p,x〉 ≤ ‖p‖2 · ‖x‖2 = ‖p‖2,

so that ‖p‖2 ≥ α.

The equation of the line L through 0 in the direction of p is

L : x = μp, 0 < μ < ∞

and this line intersects H at the point x = μp where

〈p,x〉 = μ〈p, p〉 = α,
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so that
μ =

α

〈p, p〉 =
α

‖p‖2
2

.

Thus, the point in H closest to 0 is the point

q =
α

‖p‖2
2

· p

so that ‖q‖2 =
α

‖p‖2
, and hence, ‖q‖2 ≤ 1.

Now let x ∈ T = S ∩ H and let z = x − q, then z is orthogonal to p, since

〈z, p〉 = 〈x − q, p〉 = 〈x, p〉 − 〈q, p〉 = α − α = 0,

xT

H

p

S

q

0

and from the Pythagorean theorem, we have

‖x − q‖2
2 + ‖q‖2

2 = ‖x‖2
2 = 1,

that is, ‖x − q‖2
2 = 1 − α2

‖p‖2
2

for all x ∈ T = S ∩ H . Taking

δ =

√
1 − α2

‖p‖2
2

,

then 0 ≤ δ < 1 and
‖x − q‖2 = δ

for all x ∈ T = S ∩ H , that is, T is a sphere in H .
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1.6.3 Problems

In the following exercises, unless otherwise stated, assume that the closed unit
ball is the closed unit ball in the Euclidean norm.

*1. Find a hyperplane H = f−1(1) in R4 that is tangent to the unit cube at
the point

(
1, 1

2 , 1
3 , 1

4

)
. Verify your answer.

2. Draw each of the following hyperplanes in R2:
(a) The hyperplane through the point (1, 3) that is perpendicular to the

line through (0, 0) and (1, 3),
(b) The hyperplane that is tangent to the unit sphere at the point

(√
3

2 , 1
2

)
,

(c) The hyperplane whose equation is −α1 + 2α2 = 3,
(d) f−1(0) where f is represented by p = (3, 1),
(e) f−1(1) where f is represented by p = (3, 1),
(f) f−1(2) where f is represented by p = (3, 1).

3. Find an equation for the hyperplane of
(a) Problem 2 (a),
(b) Problem 2 (b).

4. Find the point of intersection of the plane

H = { (x1,x2,x3) ∈ R3 : 2x1 − 3x2 + x3 = 2 }

with the line through (1, 0, 1) and (−2, 1, 2).

5. Given the linear functional f(x1,x2) = 4x1 − 3x2, find
(a) the point x on the closed unit ball where f(x) is a maximum,
(b) the point x in the hyperplane f−1(2) that is closest to the origin,
(c) the point x in the hyperplane f−1(3) that is closest to the origin.

6. Given the linear functional f(x1,x2,x3) = 2x1 − 3x2 + x3, find
(a) the point x on the unit ball where f(x) is a maximum,
(b) the point x in the hyperplane f−1(2) that is closest to the origin,
(c) the point x in the hyperplane f−1(3) that is closest to the origin.

7. Let f be the linear functional on R3 represented by the vector
p = (3,−2,−3) and let S be the set

S = { (1, 1,−2), (−3, 4, 1), (60, 10, 15), (−8,−2, 4), (0, 1, 1) }.

(a) Determine which points of S are on the same side of f−1(0),
(b) Which point or points of S are closest to f−1(0)?
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(c) Which points of S are on the same side of f−1(8) as the origin?
(d) Find the point or points of S that are closest to f−1(8).

8. Given the line L = { (x, y) : 3x + 4y = 5 } in R2, find the point on
L of minimum norm in each of the following cases, and draw a figure
with the appropriate unit ball:
(a) for the Euclidean norm,
(b) for the 
1 norm,
(c) for the 
∞ norm.

9. Given that H is the hyperplane f−1(2), and given that g = 4f , find β
such that g−1(β) is exactly the same as H .

10. Let L be the line

L = {x ∈ Rn : x = p + μq, −∞ < μ < ∞},

where p and q are distinct points in Rn, and let f be a linear functional
on Rn such that f(p) = 3 and f(q) = −1. Find
(a) the point where L intersects the hyperplane f−1(1); in other words,

find the scalar μ such that f(p + μq) = 1,
(b) the scalar β such that the hyperplane f−1(β) intersects the line at

the point x = p + μq where μ = 3.4.

11. Let L be the line

L = {x ∈ Rn : x = μp + (1 − μ)q, −∞ < μ < ∞},

where p and q are distinct points in Rn, and let f be a linear functional
on Rn such that f(p) = 6 and f(q) = 1. Find
(a) the point where L intersects the hyperplane f−1(−2),
(b) the scalar β such that the hyperplane f−1(β) passes through the

midpoint of the line segment joining p and q.

12. (a) If a hyperplane in Rn, where n > 1, meets a straight line at two
distinct points, show that the hyperplane contains the straight line.
Hint. Let H be the hyperplane f−1(α) and let L be a straight line
that intersects H at two distinct points p and q.

(b) Consequently, show that a hyperplane H and a straight line L must
be related in exactly one of the following ways:
(i) H and L intersect in exactly one point,
(ii) L ⊂ H ,
(iii) L misses H .

13. Given that H = f−1(1), where the linear functional f on R4 is repre-
sented by the vector p = (1, 0, 1,−1), find
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(a) a line L1 through 0 that intersects H in exactly one point,
(b) a line L2 through 0 that misses H .

14. If a hyperplane f−1(α) misses the straight line L, then for some scalar
β, the hyperplane f−1(β) contains L.
Hint. Let p and q be points on the line. If f(p) �= f(q), then for
every real number α, there is a unique solution δ to the equation
δf(p) + (1 − δ)f(q) = α (why?). Thus, f−1(α) would intersect L
(why?). Therefore, f(p) and f(q) must be the same. Let β = f(p).

15. If the hyperplane H = f−1(α) intersects the straight line L in exactly one
point, then for every scalar β, the hyperplane Hβ = f−1(β) intersects
L in exactly one point.
Hint. Conclude that this must happen because of what we know from
Problems 12 and 14.

*16. (a) In R3, the intersection of the closed unit ball with a plane is either
the empty set, a single point, or a disk (which is like a closed ball
from R2 embedded in R3).

(b) List (without proof) the possible intersections in R2 of the closed
unit ball with a straight line.

(c) List (without proof) the possible intersections in R4 of the closed
unit ball with a hyperplane.

17. Prove Theorem 1.6.3.

18. If the 
1 or 
∞ norm is used, show that a line may have infinitely many
points of minimum norm.

19. Show that a hyperplane in Rn has a unique point of minimum norm.

20. Use the Cauchy–Schwarz inequality to show that the triangle inequality
holds.
Hint. ‖u + v‖2 = ?

21. Show that if f is a linear functional on Rn and f is represented by the
vector p ∈ Rn, then

‖p‖ = max{ f(x) : x ∈ B } = max{ 〈p,x〉 : x ∈ B },

where B is the closed unit ball in Rn.

22. Let f be the linear functional on R4 represented by p = (−1, 1, 1,−3).
Find the point of the hyperplane f−1(0) that is closest to the point
x = (3,−2, 2, 1).

23. Develop a general formula for the point q on the hyperplane

Hβ = {x ∈ Rn : 〈p,x〉 = β }

that is closest to the point x0. Assume that p �= 0.


