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1.1. INTRODUCTION

Modeling has been used to characterize and map 
 natural hazards and hazard susceptibility for decades. 
Uncertainties are pervasive in natural hazards analysis, 
including a limited ability to predict where and when 
extreme events will occur, with what consequences, and 
driven by what contributing factors. Modeling efforts 
are challenged by the intrinsic variability of  natural 
and human systems, missing or erroneous data, para-
metric uncertainty, model‐based or structural uncer-
tainty, and knowledge gaps, among other factors. 
Further, scientists and engineers must translate these 
uncertainties to inform policy decision making, which 
entails its own set of  uncertainties regarding valuation, 
understanding limitations, societal preferences, and 
cost‐benefit analysis. Thus, it is crucial to develop 
robust and meaningful approaches to characterize and 
communicate uncertainties.

Only recently have researchers begun to systematically 
characterize and quantify uncertainty in the modeling of 
natural hazards. Many factors drive the emergence of 
these capabilities, such as technological advances through 
increased computational power and conceptual develop-
ment of the nature and complexity of uncertainty. These 
advances, along with increased sophistication in uncer-
tainty analysis and modeling, are currently enabling the 
use of probabilistic simulation modeling, new methods 
that use observational data to constrain the modeling 

approaches used, and other quantitative techniques in the 
subdisciplines of natural hazards. In turn, these advances 
are allowing assessments of uncertainty that may not 
have been possible in the past.

Given the expanding vulnerability of human popula-
tions and natural systems, management professionals are 
ever more frequently called upon to apply natural hazard 
modeling in decision support. When scientists enter into 
predictive services, they share professional, moral, legal, 
and ethical responsibilities to account for the uncertain-
ties inherent in predictions. Where hazard predictions are 
flawed, limited resources may be unjustifiably be spent 
in  the wrong locations, property may be lost, already 
stressed ecosystems may be critically damaged, and 
potentially avoidable loss of human life may occur. These 
essential concerns for reliable decision support compel 
thorough characterization of the uncertainties inherent 
in predictive models.

1.2. ORIGINS AND OBJECTIVES OF THIS VOLUME

This volume is an outcome of the 2013 American 
Geophysical Union (AGU) Fall Meeting session entitled 
“Uncertainty in Natural Hazard Assessment: Volcanoes, 
Earthquakes, Wildfires, and Weather Phenomena,” which 
was a combination of two AGU Focus Group Sections: 
Natural Hazards and Volcanology/Geochemistry/
Petrology. The session was inspired in part by the AGU 
SWIRL program, which encourages interdisciplinary 
research. In 2013, the SWIRL program offered a theme 
“Characterizing Uncertainty.” In the session, researchers 
from volcanology, wildfire, landslide analysis, and other 
fields were brought together to compare results in charac-
terizing uncertainties and developing methods for spatial 
and temporal understanding of event probability. 
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2 NATURAL HAZARD UNCERTAINTY ASSESSMENT

This  monograph focuses largely on the work presented 
at this AGU session, as well as other presentations from 
across the 2013 AGU fall meeting that had a focus 
 associated with the AGU SWIRL theme, “Characterizing 
Uncertainty.”

The principal objectives of this monograph are to 
 provide breadth in terms of the types of natural hazards 
analyzed, to provide depth of analysis for each type of 
natural hazard in terms of varying disciplinary perspec-
tives, and to examine emerging techniques in detail. As a 
result, the volume is largely application focused and tar-
geted, with an emphasis on assorted tools and techniques 
to address various sources of uncertainty. An additional 
emphasis area includes analyzing the impacts of climate 
change on natural hazard processes and outcomes. 
We chose studies from various continents to highlight the 
global relevance of this work in mitigating hazards to 
human life and other natural and socioeconomic values 
at risk. In assembling studies across types of natural 
 hazards, we illuminate methodologies that currently cross 
subdisciplines, and identify possibilities for novel applica-
tions of current methodologies in new disciplines.

To our knowledge, this volume is unique in that it 
brings together scientists from across the full breadth of 
the AGU scientific community, including those in real‐
time analysis of natural hazards and those in the natural 
science research community. Taken together, the chapters 
provide documentation of the common themes that cross 
these disciplines, allowing members of the AGU and 
broader natural hazards communities to learn from each 
other and build a more connected network.

We hope this will be a useful resource for those inter-
ested in current work on uncertainty classification and 
quantification and that it will encourage information 
exchange regarding characterization of uncertainty 
across disciplines in the natural and social sciences and 
will generally benefit the wider scientific community. 
While the work does not exhaustively address every 
 possible type of hazard or analysis method, it provides a 
survey of emerging techniques in assessment of uncer-
tainty in natural hazard modeling, and is a starting point 
for application of novel techniques across disciplines.

1.3. STRUCTURE

The remainder of this chapter introduces the contents 
of each part and chapter, and then distills emergent 
themes for techniques and perspectives that span the 
range of natural hazards studied. The monograph is 
composed of three main parts: (1) Uncertainty, 
Communication, and Decision Support (4 chapters);  
(2) Geological Hazards (7 chapters); and (3) Biophysical 
and Climatic Hazards (10 chapters). Specific types of 
natural hazards analyzed include volcanoes, earthquakes, 

 landslides, wildfires, storms, and nested disturbance 
events such as postfire debris flows.

1.3.1. Part I: Uncertainty, Communication, 
and Decision Support

Here we provide a broad, cross‐disciplinary overview 
of issues relating to uncertainty characterization, uncer-
tainty communication, and decision support. Whereas 
most chapters in the subsequent two sections address 
 specific quantitative analysis and modeling techniques, 
we begin with more qualitative concerns. We address 
questions related to various facets of uncertainty, intro-
duce some basic tenets of uncertainty analysis, discuss 
challenges of clear communication across disciplines, and 
contemplate the role of uncertainty assessment in deci-
sion processes as well as at the science‐policy interface.

In Chapter  2, Thompson and Warmink provide an 
overarching framework for identifying and classifying 
uncertainties. While they focus on uncertainty analysis in 
the context of modeling, the basic framework can be 
expanded to consider sources of uncertainty across the 
stages of decision making and risk management. While 
other typologies and frameworks exist and may be more 
suitable to a specific domain, the main point is the impor-
tance of beginning with the transparent and systematic 
identification of uncertainties to guide subsequent 
 modeling and decision processes.

In Chapter 3, Rauser and Geppert focus on the problem 
of communicating uncertainty between disciplines. The 
authors bring to bear perspectives from the Earth system 
science community, leveraging insights from a series of 
workshops and conferences focused on understanding 
and interpreting uncertainty. Like natural hazards analy-
sis, the field of Earth system science integrates a wide 
range of scientific disciplines, and so lessons on develop-
ing a common language of uncertainty across disciplines 
are highly relevant. As with Thompson and Warmink 
[Chapter  2, this volume], the authors stress the impor-
tance of being clear and explicit regarding the types and 
characteristics of uncertainties faced.

Last, Thompson et al. [Chapter  4, this volume] and 
Webley [Chapter 5, this volume] provide examples of opera-
tional decision support systems that incorporate uncer-
tainty and probability. Thompson and coauthors focus on 
the context of wildfire incident management, and discuss 
the use of  stochastic fire simulation to generate probabilis-
tic information on possible fire spread, how this informa-
tion can facilitate strategic and tactical decision making, 
and future directions for risk‐based wildfire decision sup-
port. Webley focuses on the context of volcanic‐ash cloud 
 dispersal, and discusses the different types of uncertainties 
that play a role in assessing volcanic‐ash hazard, and how 
the research community is working with operational 
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volcanic‐ash advisory groups to improve decision making 
and the application of probabilistic modeling in the real‐
time hazard assessment and  development of ash advisories 
for the aviation community.

In summary, this opening section introduces a frame-
work for identifying and classifying uncertainty, presents 
insights on communicating uncertainty across disciplines, 
and illustrates two current examples of operational deci-
sion support systems that incorporate uncertainty and 
probability. Consider using this section as a lens through 
which to view subsequent sections: for example, examine 
the types of uncertainties the authors address, how the 
authors characterize the uncertainties, how they describe 
and communicate the uncertainties, how they tailor their 
analysis to match the uncertainties faced, and the types 
of decisions the analyses might support.

1.3.2. Part II: Geological Hazards

The type, size, and magnitude of hazards from geologi-
cal processes are highly variable. Therefore, operational 
organizations as well as research scientists need to be able 
to classify the uncertainty and quantify the potential 
range of possible scenarios for hazard magnitude and tim-
ing. Being able to quantify the uncertainty can then lead 
to increasing confidence in the assessment of hazards and 
reducing the risk of exposure to hazards. The chapters in 
this section cover work currently occurring in uncertainty 
quantification of volcanic, earthquake, and landslide pro-
cesses. Assessment of geological hazards is further com-
plicated by the fact that they are sometimes nested. For 
example, a volcanic eruption may spawn lahars. Chapters 
in this section address topics regarding natural hazard 
patterns in both space and time, the role of physical and 
probabilistic analyses for forecasting and risk assessment, 
and novel methods for event early warning and response.

Webley et al. [Chapter 6, this volume] focus on develop-
ing a  volcanic‐ash dispersion modeling framework that 
accounts for uncertainties in the initial source parameters 
and variability in the numerical weather prediction 
(NWP) data used for the ash dispersal. The authors illus-
trate that in building a probabilistic approach, where a 
one‐dimensional plume model is coupled to a Lagrangian 
ash‐dispersion model, the uncertainty in the downwind 
ash concentrations can be quantified. Outputs include 
estimates of the mean ash concentrations, column mass 
loading, and ash fallout, along with the probability of 
mass loading or concentration exceeding a defined 
threshold. Comparison of their probabilistic modeling 
with observational data further constrains the uncertain-
ties. The authors identify the need for new research 
 projects to work with the end users to ensure that prod-
ucts are developed for transition to the operational 
environment.

Gong et al. [Chapter 7, this volume] highlight the uncer-
tainties in estimating the magma source beneath volca-
noes using spaceborne Interferometric Synthetic Aperture 
Radar (InSAR) measurements. The authors use InSAR 
data to estimate the volcanic source parameters, and sub-
sequently illustrate how the accuracy in the inversion 
method is influenced by radar phase measurements. 
By  using a Mogi source model approach, they discuss 
how different components of the InSAR deformation 
measurements, such as topography, orbital location, 
decorrelation, and tropospheric variability, can impact 
the estimation of the volcanic source parameter, such as 
magma storage depth and change in volume with time. 
When several parameters can be constrained, such as 
magma compressibility and topographical variability, the 
accuracy of estimates of magma depth and volume over 
time can be improved and increase our understanding of 
the volcanic system.

Kristiansen et al. [Chapter 8, this volume] focus on uncer-
tainties that exist in volcanic emission clouds, including 
both ash and sulfur dioxide concentrations. Observational 
data are used to constrain the source terms using inversion 
modeling approaches, data assimilation, and ensemble 
modeling (consisting of inputs, numerical weather predic-
tion [NWP], and multimodel ensemble approaches). One 
eruption, Grimsvötn volcano in 2011, is used as a case 
study to illustrate how an integrated approach that couples 
modeling with observations and compares multiple disper-
sion models can reduce uncertainties in the downwind vol-
canic emissions and increase confidence in forecasts for use 
in real‐time hazard assessment.

Tierz et al. [Chapter 9, this volume] continue the focus 
on volcanoes, assessing the uncertainty in pyroclastic 
density  currents (PDCs) through simulated modeling. A 
Monte Carlo modeling approach is applied to a study site 
on Mt. Vesuvius, Italy, to assess which parameters have 
the greatest influence on the simulated PDCs. The analy-
sis specifies the different uncertainties that exist in mod-
eling PDCs and quantifies their impact on the PDC 
simulations and predictability. Results demonstrate that 
the theoretical uncertainties in the Monte Carlo mode-
ling outweigh, by up to a factor of 100, the uncertainties 
in the initial observations that drive the model.

Kang and Kim [Chapter 10, this volume] estimate losses 
from an earthquake using a site classification map, and 
demonstrate how improved knowledge of local site con-
ditions can reduce uncertainty in predicting losses from 
future earthquakes. The authors present a new earth-
quake hazard classification map for different regions in 
South Korea, which enables them to better constrain the 
impacts of the underlying soil and ground structure to 
local buildings, thus producing improved estimates of 
potential loss from different earthquake scenarios. Impact 
to infrastructure ranging from residential buildings to 
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essential facilities such as hospitals, schools, and fire sta-
tions is estimated. The authors discuss how the improved 
site classification map could be used in decision making 
and provide more reliable estimates of earthquake loss in 
developing emergency plans.

Anderson et al. [Chapter  11, this volume] assess how 
different preprocessing techniques applied to digital 
 elevation models (DEMs) could influence the delineation 
of debris flow inundation hazard zones. Results show 
that use of globally applicable DEMs and specific pre-
processing techniques can impact the accuracy of the 
extent of the debris flows and reinforces need for DEMs 
with higher spatial resolution. Errors in the processed 
global DEMs propagate into the lahar modeling, leading 
to inaccurate debris flow maps, and thus reduce confi-
dence in the modeling needed for critical decision  making. 
The authors propose that continued conversations with 
the end users of the modeling are needed so end users can 
better understand the limitations of the modeling and 
potential errors in the debris flow maps.

The final chapter in the section comes from Caballero 
et al. [Chapter 12, this volume] who focus on evaluating 
lahar simulation flow modeling for two active volcanoes 
in Mexico. The authors analyze the impact of input 
parameter selection on the model’s capability to match 
the observations of a real world lahar. While the results 
illustrate that the approach is an excellent tool for lahar 
modeling, several inputs (such as input hydrograph and 
rheologic coefficients) can have a significant impact on 
the spatial and temporal accuracy of the simulations as 
well as the predicted magnitude of the lahar. Retrospective 
analysis of well‐studied volcanoes can be used to con-
strain the uncertainties in these input parameters, but 
there is a need to specifically improve the rheologic coef-
ficient measurements or at least better understand how 
the variability impacts the modeling results.

In summary, the chapters in this section focus on 
 prediction of volcanic ash clouds, using deformation to 
estimate changing volcanic magma sources, earthquake 
loss estimations, modeling of pyroclastic density cur-
rents, lahars, and debris flows. Each chapter highlights 
the uncertainties that can impact modeling of these geo-
logic hazards and the need for observational data to both 
constrain the uncertainties and potentially be used with 
inversion methods to initialize future simulations.

1.3.3. Part III: Biophysical and Climatic Hazards

This part focuses on advancements in uncertainty and 
risk assessment for natural hazards driven by biological, 
physical, and climatic factors. Similar to the previous 
 section, chapters address a variety of topical issues 
related to understanding and forecasting hazards across 
 spatiotemporal scales, germane to both research and 

management communities. Methods range from ensemble 
forecasting to scenario analysis to formal quantification 
of parameter uncertainty, among others. A key theme in 
this section is the consideration of future climatic condi-
tions and their relationship to natural hazard processes.

In the first chapter, Riley and Thompson [Chapter 13, 
this volume] systematically identify and classify model‐
based uncertainties in current wildfire modeling 
approaches, in order to contribute to understanding, 
evaluation, and effective decision‐making support. For 
each source of uncertainty identified, their analysis char-
acterizes the nature (limited knowledge or variability), 
where it manifests in the modeling process, and level on a 
scale from total determinism to total ignorance. 
Uncertainty compounds and magnifies as the time frame 
of the modeling effort increases from the incident level to 
the 10 yr planning period to a 50 yr period, during which 
climate change must be incorporated into analyses.

Ichoku et  al. [Chapter  14, this volume] evaluate the 
implications of measuring emissions from fires using sat-
ellite imagery of different resolutions from various 
remote sensing platforms. Their methodology includes a 
literature review and meta‐analysis of the uncertainty 
ranges of various fire and smoke variables derived from 
satellite imagery, including area burned, flaming versus 
smoldering combustion, and smoke constituents. 
Findings indicate that as satellite resolution decreases, 
uncertainty increases. The authors note that most of the 
variables are observed at suboptimal spatial and tempo-
ral resolutions, since the majority of fires are smaller 
than the spatial resolution of the satellites, resulting in 
inaccuracy in estimation of burned area and fire radiative 
power. Discrepancies are smaller where satellite observa-
tions are more complete. As a result of this study, the 
authors recommend further research that combines 
ground‐based, airborne, and  satellite measurements with 
modeling in order to reduce uncertainty.

Kennedy and McKenzie [Chapter  15, this volume] 
couple a regional GIS‐based hydroecologic simulation 
system with a new fire model, at a level of aggregation 
and process detail commensurate with the inputs. The 
new fire model (WMFire_beta) expands the exogenously 
constrained dynamic percolation (ECDF) model by vary-
ing the probability of fire spread from a burning cell to 
each of its orthogonal neighbors based on vegetation, 
weather, and topographic parameters. The authors utilize 
fractal dimension (complexity of the fire perimeter) and 
lacunarity (measure of unburned space within the fire 
perimeter) to assess which combinations of the model 
parameters produced a run with similar characteristics to 
the Tripod Fire in Washington state. Findings indicate 
that the model is not sensitive to fuel moisture, meaning 
that the equation for assigning it was not sufficient to 
capture the role of fuel moisture. This methodology 
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 enables the authors to falsify or verify components of 
model structure, and suggests development of a new rep-
resentation that would improve the model and reduce 
uncertainty.

Terando et al. [Chapter 16, this volume] project changes 
in the  frequency of extreme monthly area burned by wild-
fires for a study area in coastal Georgia at the end of the 
21st century. A statistical model based on aggregated 
monthly area burned from 1966 to 2010 is used to predict 
the number of months with extreme area burned under 
future  climate conditions. Uncertainty in future climate is 
addressed by the use of ensemble datasets, which weight 
the contribution of each general circulation model 
(GCM) based on performance during the recent historic 
period. Sources of uncertainty include variation in out-
puts from GCMs, the effects of different methods for 
weighting GCM outputs in ensemble models, sparse 
observations of months with extreme area burned, pos-
sible future changes in fuel characteristics over time, and 
changes in fire suppression actions. By the end of the 21st 
century, the model indicates increased probability of 
more frequent months with extreme area burned, likely 
due to longer and hotter wildfire seasons. However, 95% 
projection intervals for the three emissions scenarios all 
span zero. The authors conclude that while there is large 
uncertainty in these projections, the results give a more 
informative depiction of the current state of knowledge, 
and suggest that the increase in the projection of number 
of months with extreme area burned indicates the need 
for future large damages to be considered in risk 
assessments.

Bachelet et  al. [Chapter  17, this volume] utilize the 
dynamic global vegetation model MC2 with fire enabled 
in order to simulate vegetation distribution and carbon 
storage under a suite of climate futures from the Coupled 
Model Intercomparison Project 5 (CMIP5), including 
two greenhouse gas concentration trajectories and the 
outputs of 20 general circulation models. All models pre-
dict a warmer future (although the magnitude varies), but 
large differences exist in magnitude and seasonality of 
precipitation. Large shifts in vegetation toward warmer 
types are predicted by the results (e.g., temperate to sub-
tropical forest), with the shifts sometimes being rapid 
because they are driven by fire. Some results are not intui-
tive, for example, area burned was episodically larger 
under the lower greenhouse gas emission trajectory (RCP 
4.5 versus 8.5) because the milder climate promotes fuel 
buildup under lower drought stress, leading to subse-
quently larger area burned. Uncertainties in projected 
area burned and areal extent of vegetation type are large 
across general circulation models and greenhouse gas tra-
jectories (for example, change in areal extent of decidu-
ous forest ranged from −95% to 1453% from the time 
periods 1972–2000 to 2071–2100).

Le Page [Chapter 18, this volume] examines the sensi-
tivity of fires to climate, vegetation, and anthropogenic 
variables in the Human‐Earth System FIRE (HESFIRE) 
model, a global fire model, which runs at 1 degree grid 
resolution. Because HESFIRE includes a suite of varia-
bles including climate (e.g., ignition probability from 
lightning, relative humidity) and human variables (e.g., 
ignition probability from land use, fragmentation), it has 
the potential to project fire activity under future climate 
or societal scenarios. In this study, a set of model param-
eters were varied in order to evaluate model sensitivity. In 
addition, the study evaluates the sensitivity of the model 
outputs to alternative input data (two land cover datasets 
and two climate datasets). Results indicate that the model 
is most sensitive to fuel limitation in arid and semiarid 
ecosystems, with sensitivity to landscape fragmentation 
being dominant in most grasslands and savannahs. Use 
of alternative  climate and land cover datasets produces 
changes in projected area burned as large as 2.1 times. 
Le Page concludes that model evaluations should include 
sensitivity analyses, as well as investigations of how mod-
els represent fundamental aspects of fire ecology, in order 
to characterize model performance and uncertainties.

Hyde et al. [Chapter 19, this volume] review the current 
status of debris flow prediction following wildfires, and 
present a conceptual model of the general sequence of 
conditions and processes leading to these hazardous 
events. Six components constitute the postfire debris‐
flow hazard cascade: biophysical setting, fire processes, 
fire effects, rainfall, debris flow, and values at risk. 
Current knowledge and predictive capabilities vary 
between these components, and no single model or pre-
diction approach exists with capacity to link the sequence 
of events in the postfire debris‐flow hazard cascade. 
Defining and quantifying uncertainties in predicting 
postfire debris flows requires addressing knowledge gaps, 
resolving process contradictions, and conducting new 
research to develop a comprehensive prediction system.

Haas et al. [Chapter 20, this volume] couple two wild-
land fire models with a debris flow prediction model to 
assess which watersheds on a landscape in New Mexico, 
USA, are most susceptible to a combination of moder-
ate‐to‐high severity fire followed by debris flows. The 
methodology allows for prefire estimation of the proba-
bility of a postfire debris flow based on a storm of a set 
of certain recurrence intervals and a set of simulated fire 
events. A  primary innovation of the approach is an 
improved ability to capture variability surrounding the 
size, shape, and location of fire perimeters with respect to 
watershed boundaries. The authors note that identifying 
watersheds with highest probability and volume of post-
fire debris flows could assist land managers in evaluating 
potential mitigation measures such as fuel reduction 
treatments or retention dams.
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Nikolopoulos et al. (Chapter 21) investigate implications 
of using thresholds in storm intensity and duration 
recorded at rain gauges to predict debris flows, which 
often occur at remote locations away from the sparse net-
work of rain gauges. The study utilizes radar data of 10 
storms in northern Italy that spawned 82 debris flows. 
Several different spatial interpolation methods were used 
to estimate rainfall at remote debris flow locations. All 
methods underpredict rainfall at debris flow locations, 
due in part to the localized nature of the rainfall, and in 
part to statistical properties of interpolation methods. In 
this study, uncertainty results largely from sparse data, 
and the authors suggest that uncertainty in predicting 
debris flows might be reduced by using radar data to 
refine models that predict debris flow occurrence.

Markuzon et  al. [Chapter  22, this volume] address the 
limitations of using precipitation measurements to predict 
landslides and test the effect of using a combination of 
precipitation and longer‐term atmospheric conditions (i.e., 
temperature, atmospheric pressure, and winds) on land-
slide  predictions. Current methods rely on often limited 
and faulty precipitation data and coarse‐scale precipita-
tion estimates, such as those derived from general circula-
tion models, that result in smoothed rainfall estimates and 
underprediction of landslide events. The need to forecast 
landslide probability under different climate change 
 scenarios requires new methods to overcome the effects of 
uncertainty in precipitation measurements and estimations 
on the accuracy of landslide predictions. The authors dem-
onstrate that a combination of antecedent and concurrent 
weather conditions effectively detects and predicts land-
slide activity and therefore can be used to estimate changes 
in landslide activity relative to changing climate patterns.

In summary, the chapters in this section address an 
assortment of biophysical and climatic hazards, ranging 
from wildfire to precipitation‐induced landslides to 
 coupled hazards such as postfire debris flows. Chapters 
acknowledge uncertainty present in natural hazard pre-
diction for the current time period, often due to sparse 
data, with uncertainty compounding as climate change is 
expected to produce alterations in vegetation and distur-
bance regimes. The capability to assess uncertainty varies 
across different disciplines based on the current state of 
knowledge. Collectively, this section reveals knowledge 
gaps in modeling of biophysical and climatic hazards.

1.4. A SYNTHESIS: LEARNING FROM THIS 
MONOGRAPH

This overview of the chapters illustrates how natural 
hazard sciences and modeling efforts vary across multiple 
dimensions in terms of data availability, sufficiency, and 
spatiotemporal scale, the relative amount and cumulative 
expertise of scientists working in each field, and the state 
of the science in quantitative uncertainty assessment. 

Chapters vary widely in content and focus, as well as how 
each set of authors characterizes, quantifies, and assesses 
uncertainty. The intended applications of individual 
chapters also vary, ranging from informing future 
research [e.g., Ichoku et al., Chapter 14, this volume] to 
informing decision making and land management [e.g., 
Haas et al., Chapter 20, this volume] among others. These 
observations speak as strongly as anything to the state of 
uncertainty science: assessment of uncertainty is robust 
in some areas and arguably nascent or even nonexistent 
in others. As Hyde et al. [Chapter 19, this volume] offered in 
their assessment of postfire debris flow hazards, where 
information and methods are not consistent, there can be 
no comprehensive assessment of uncertainty. Synthesis 
of these similarities and  differences in scope and state of 
the science across chapters in this monograph highlights 
important synergies and opportunities for cross‐hazard 
collaboration and learning. See Tables 1.1 and 1.2 for 
summaries of themes, techniques, and methods.

In compiling this volume, we learned that systematic 
identification of sources of uncertainty is a research 
endeavor in its own right; we present a framework that can 
be used in natural hazards [Thompson and Warmink, 
Chapter 2, this volume], and give an example for wildfire 
modeling [Riley and Thompson, Chapter 13, this volume]. 
Because of the resources required to perform systematic 
identification of uncertainty, the effort to do so can be pro-
hibitive to researchers in the natural hazards, since limited 
resources are often available to produce natural hazard pre-
diction models and outputs. In addition, once sources of 
uncertainty have been identified, quantifying each often 
requires further research. Because quantification of many 
sources of uncertainty has not been undertaken in many 
disciplines, it’s challenging at this point for researchers to 
assess how the combination of multiple uncertainties might 
affect their model projections. As the body of knowledge on 
uncertainty grows, this task should become easier. We hope 
this monograph is a step toward accomplishing that goal.

Uncertainty can be broadly classified into two natures: 
knowledge and variability. Knowledge uncertainty can be 
reduced by further research, for example, by improving input 
data [e.g., Webley et  al., Chapter  6, this volume and 
Kristiansen et al., Chapter 8, this volume]. Variability uncer-
tainty is based on inherent variability in a system, and can’t 
be eliminated, with weather and future climate being a recur-
ring example [e.g., Bachelet et al., Chapter 17, this volume]. 
Uncertainty manifests at different locations in the modeling 
process, for example in inputs or model structure. 
Understanding the nature and location of uncertainty can 
help researchers choose methods for addressing uncertainty.

We observe that the language used to describe uncertainty 
is still nascent. The term “uncertainty” itself is often used 
somewhat generically, without an attempt to define or clas-
sify it. Throughout the monograph, the use of terms (for 
example “structural uncertainty,” which appears in both 
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Table 1.1 Emergent Themes Based on Synthesis of This Volume

Uncertainty is often due to sparse data, for example, due to sparse rain gauge locations [Nikolopoulos et al., Chapter 21, this 
volume], fire records from documentary or satellite sources [Terando et al., Chapter 16, this volume; Ichoku et al., 
Chapter 14, this volume], or DEMs [Anderson et al., Chapter 11, this volume]

When predicting a phenomenon, uncertainty can often be fairly well constrained in some aspects but not in others, due to 
gaps in data and knowledge, as in post‐wildfire debris flow prediction [Hyde et al., Chapter 19, this volume]

Uncertainty can stem from future events, for example, climate change effects on vegetation and fire [Le Page, Chapter 18, this 
volume; Bachelet et al., Chapter 17, this volume], climate change effects on area burned [Terando et al., Chapter 16, this 
volume], post‐fire debris flows on a pre‐fire landscape [Haas et al., Chapter 20, this volume], uncertainty in fire extent for a 
given incident due to upcoming weather [Thompson et al., Chapter 4, this volume]

Uncertainty is often driven by a combination of factors, necessitating broad uncertainty analysis of a phenomenon as a first 
step. Several chapters focused on such broad assessments, including fire modeling [Riley and Thompson, Chapter 13, this 
volume], post‐fire debris flows [Hyde et al., Chapter 19, this volume], and volcanic ash clouds [Webley et al., Chapter 6, this 
volume; Kristiansen et al., Chapter 8, this volume].

Assessing model complexity is important; when linking models, complexity should be proportional to other models. 
Uncertainty should be possible to assess, which is more difficult with complex models [Kennedy and McKenzie, Chapter 15, 
this volume].

Uncertainty can derive from scale of measurement relative to temporal and spatial scale of phenomena, for example in 
satellite measurements of fire extent and emissions [Ichoku et al., Chapter 14, this volume] and DEM spatial resolution for 
debris flow prediction [Anderson et al., Chapter 11, this volume].

Uncertainty is often introduced by input data, and it’s important to address the sensitivity of the model to uncertainty in inputs. 
Many chapters mentioned this, and some addressed it quantitatively [Terando et al., Chapter 16, this volume; Le Page, 
Chapter 18, this volume; Webley et al., Chapter 6, this volume; Anderson et al., Chapter 11, this volume].

Uncertainty can also exist in the model structure, which can be tested by field validation as in Kennedy and McKenzie 
[Chapter 15, this volume] or by varying model coefficients, as in Le Page [Chapter 18, this volume].

Observations can be used to constrain uncertainties, and to initialize future modeling, as in Webley et al. [Chapter 6, this 
volume] and Kristiansen et al. [Chapter 8, this volume].

Assessment of uncertainty in natural hazards is applicable across spatiotemporal scales. Spatial extents of chapters ranged 
from study areas in specific locales, such as Terando et al. [Chapter 16, this volume] in coastal Georgia, USA, up to global 
scale, as in Le Page [Chapter 18, this volume]. Temporal extents also varied widely, from that of a single natural hazard, 
such as a single wildfire incident as in Thompson et al. [Chapter 4, this volume], up to the expected effects of climate 
change, as in Bachelet et al.’s [Chapter 17, this volume] examination of vegetation and wildfire regimes.

Uncertainty compounds as spatial and temporal scales expand, as in wildfire modeling [Riley and Thompson, Chapter 13, this 
volume].

Table 1.2 Selected Techniques and Methods for Handling Uncertainty in the Natural Hazards

Statistical models, e.g. Terando et al. [Chapter 16, this volume]
Monte Carlo simulation, e.g. Gong et al. [Chapter 7, this volume], Tierz et al. [Chapter 9, this volume]
Process models and dynamic global vegetation models, e.g. Bachelet et al. [Chapter 17, this volume]
Spatial techniques
Hazard propagation from cell to cell, e.g. Kennedy and McKenzie [Chapter 15, this volume] and Haas et al. [Chapter 20, 

this volume]
Interpolation, e.g. Nikolopoulos et al. [Chapter 21, this volume]
Use of remotely sensed data
Satellite imagery, e.g. Ichoku et al. [Chapter 14, this volume]
Radar data, e.g. Nikolopoulos et al. [Chapter 21, this volume]
Sensitivity testing as a means to quantify uncertainty, especially where uncertainty is high due to large spatiotemporal 

scales, e.g. Le Page [Chapter 18, this volume], Kang and Kim [Chapter 10, this volume], and Anderson et al. [Chapter 11, 
this volume]

Probabilistic outputs as a way to convey uncertainty, as in fire models in Haas et al. [Chapter 20, this volume] and 
Thompson et al. [Chapter 4, this volume], and volcanic ash clouds as in Webley et al. [Chapter 6, this volume]. In fact, 
probabilistic outputs from fire models and volcanic ash cloud models were markedly similar, raising the question of 
whether similar techniques might be applicable in other disciplines where they are not yet used.

Scenario planning is a useful approach where uncertainty is high, as for precipitation delivery from storms [Haas et al., 
Chapter 20, this volume], future climate (e.g. Terando et al. [Chapter 16, this volume]), earthquakes (e.g. Kang and Kim 
[Chapter 10, this volume]), and topographic mapping for debris flow generation [Anderson et al., Chapter 11, this 
volume].

Integrated approaches, for example, comparison of statistical modeling and observational data, e.g. Webley et al. 
[Chapter 6, this volume], Gong et al. [Chapter 7, this volume], Kristiansen et al. [Chapter 8, this volume], and Anderson 
et al. [Chapter 11, this volume].
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Terando et  al. [Chapter  16, this volume] and Riley and 
Thompson [Chapter 13, this volume], varies across chapters. 
We have not attempted to resolve the use of terms, but 
instead find that it  emphasizes the current state of uncer-
tainty sciences, and articulately argues for the need for 
defining a common terminology, as proposed by Rauser and 
Geppert [Chapter 3, this volume].

This monograph identifies the need for techniques to 
transition from the research domain to the operational 
domain for effective decision making, as well as the need 
to involve end users in developing probabilistic approaches 
[Webley et al., Chapter 6, this volume]. There is also the 
need to open discussions between the research commu-
nity and end users in order to foster understanding of the 
limitations of the methods used so the data can be applied 
to make more informed decisions [Anderson et  al., 
Chapter  11, this volume] and to ensure that new 
approaches can transition into operations. The objective 
of such collaborative efforts will be to improve confi-
dence in the interpretation of final model simulations 
and the application of model results for improved deci-
sion support.

In closing, we recommend several directions for future 
work. Uncertainty assessment would benefit from 
increased attention to systematic identification, classifi-
cation, and evaluation of uncertainties. In addition, need 
exists for increased emphasis on clear communication of 
uncertainties, their impact on modeling efforts, and their 
impact on decision processes. As natural hazard and 
modeling efforts become increasingly interdisciplinary, 
an emphasis on targeting common language and under-
standing across disciplines becomes necessary. With a 
number of techniques now available to researchers, uncer-
tainty can be constrained and the confidence in modeling 
of natural hazards increased. The concept of value of 
information can be brought to bear to inform decisions 
across contexts, ranging from determining the merit of 
investing in long‐term research and monitoring to post-
poning time‐pressed decisions to gather more informa-
tion. This process will entail linking the field of 

uncertainty analysis with tools and concepts of decision 
analysis to characterize how and whether reduced uncer-
tainty might influence decisions and outcomes. Last, and 
related to decision support, future work could consider 
involvement of end users for real‐time hazard assessment 
during probabilistic workflow development, which will 
ensure end users can confidently apply new tools and 
understand derived products.

1.5. CONCLUSION

This volume arguably presents evidence that there is not 
yet a comprehensive recognition of the need for thorough 
uncertainty assessment nor consistent approaches to con-
duct these assessments. Yet, the need for uncertainty assess-
ment has never been greater. Some natural hazards, such as 
wildfire, are on the rise, and the effect of others, such as 
landslides, is growing due to expanding human popula-
tions. The combined effect may strain already impaired 
natural resources. Inherent in the predictive  services are 
professional, moral, legal, and ethical responsibilities to 
account for uncertainties inherent in predictions. The con-
sequences of inaccurate predictions can be high: limited 
resources may be spent in the wrong locations, property 
may be lost, and human casualties can occur. We therefore 
advocate for a coordinated development of the science and 
practice of uncertainty assessment.
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