
Chapter 1

Introduction to Systems
Engineering

1.1 INTRODUCTION

A system is commonly defined to be “a collection of hardware, software, people,
facilities, and procedures organized to accomplish some common objectives.” The
stakeholders for the system hold these objectives. Never forget that the system being
addressed by one group of engineers is the subsystem of another group and the
supersystem of yet a third group. The objective of the engineers for a system is to
provide a system that accomplishes the primary objectives set by the stakeholders,
including those objectives associated with the creation, production, and disposal of
the system. To accomplish this engineering task, the engineers must identify the
system’s stakeholders throughout the system’s life cycle and define the objectives of
all of these stakeholders. These objectives typically address the triad of cost, schedule,
and performance – cheaper, faster, and better.

A major characteristic of the engineering of systems is the attention devoted to the
entire life cycle of the system. This life cycle has been characterized as “birth to
death,” and “lust to dust.” That is, the life cycle begins with the gleam in the eyes of the
users or stakeholders, is followed by the definition of the stakeholders’ needs by the
systems engineers, includes developmental design and integration, goes through
production and operational use, usually involves refinement, and finishes with the
retirement and disposal of the system. Ignoring any part of this life cycle while
engineering the system can lead to sufficiently negative consequences, including

3

The Engineering Design of Systems: Models and Methods, Third Edition.
Dennis M. Buede and William D. Miller.
 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/go/engineeringdesignofsystems3e

CO
PYRIG

HTED
 M

ATERIA
L



failure at the extreme. In particular, developing a system that has not adequately
addressed the stakeholders’ needs leads to failures such as the “highway to nowhere”
near San Francisco, which was stopped by political pressure brought to bear by
homeowners on the surrounding hills overlooking the bay. The view of the bay that
these homeowners enjoyed and thought was an associated right of the property they
owned would have been blocked by the highway. Similar commercial failures that did
not consider the needs of the stakeholders in sufficient detail include the personal
computers IBM PC Jr. and the Apple LISA. This is not to say that the adherence to
methods and models put forth in this book or any other will guarantee success or even
the absence of failure. Rather the methods and models proposed here do attend to the
entire life cycle of the system and provide a process that makes sense, can be tailored
to various levels of detail as dictated by the complexity of the system being addressed,
and attend to all of the details that many engineers during years of practice in systems
engineering have determined to be useful.

The concepts of design and integration are critical to the methods addressed in this
chapter and the book. The word design is used bymany professions (artists, architects,
all disciplines of engineering) and is claimed by each.

The American Heritage Dictionary [Berube, 1991] defines design as follows:

de-sign (di-zin’) v. - signed, - sign.ing, - signs.—tr. 1. To conceive in the mind; invent:
designed his dream vacation. 2. To form a plan for: designed a marketing strategy for the
new product. 3. To have a goal or purpose; intend. 4. To plan by making a preliminary
sketch, outline, or drawing. 5. To create or execute in an artistic or highly skilled manner.
–intr. 1. To make or execute plans. 2. To create designs. –n. 1. A drawing or sketch. 2.
The invention and disposition of the forms, parts, or details of something according to a
plan. 3. A decorative or artistic work. 4. A visual composition; pattern. 5. The art of
creating designs. 6. A plan; project. 7. A reasoned purpose; intention. 8. Often designs. A
sinister or hostile scheme: He has designs on my job. . . .

All but the third and eighth definitions for the noun usage will apply at various
times during the course of this book. Design during the engineering of a system as
discussed in this book is the preliminary activity that has the purpose of satisfying
the needs of the stakeholders, begins in the mind of the lead engineer but has to be
transformed into models employing visual formats in a highly skilled manner for
success to be achieved. While this book addresses the engineering methods and
models used during the design process, there is always an element of artistry that
is required for the design process and the system to be successful.

Integration brings all of the detailed elements of the overall design together through a
process of testing (or qualification) to achieve a valid system formeeting the needs of the
stakeholders. Engineers of appropriate disciplines perform integration according to the
specifications defined by the design of the systems engineers. The integration process
involves testing or qualification of both the elements of the system and the system itself
to ensure that the system meets the ultimate needs of the stakeholders.

This chapter first provides an overview of the issues and process associated with
the engineering of a system. This overview addresses the phases of the system’s life
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cycle, describes the importance of performing the engineering of a system well,
provides a definition for the engineering of a system, introduces the key process
model for the engineering of a system called the Vee model, describes the richness of
decisions that are inherent in the engineering process, and discusses the diversity of
expertise required for this engineering process. Section 1.3 describes process models
that have been adopted by the systems engineering community. Architectures play a
key role in the engineering of systems and are introduced next. Requirements, Section
1.6, play a major role in the engineering of a system because they serve the role of
defining the engineering design problem and capturing the key information needed to
describe design decisions. The life cycle of the system is next examined in more
detail. Then, the Vee model for engineering a system is described in more detail.

The key method addressed in this chapter is the process used to perform the
engineering of systems. Supplementing this discussion of the engineering method are
discussions of the key concepts needed to understand the method at an introductory
level. This method is presented as a process model; models and modeling are
discussed in detail in Chapter 3, so the reader is asked to accept the notion of the
process discussion as a discussion of a model until more details on models can be
provided in Chapter 3.

1.2 OVERVIEW OF THE ENGINEERING OF SYSTEMS

The development process in systems engineering is commonly viewed [Forsberg and
Mooz, 1992; Lake, 1992] as a decomposition (or design) process followed by a
recomposition (or integration) process (see Sidebar 1.1). During the decomposition
process, the stakeholders’ requirements are analyzed and defined in engineering terms
and then partitioned into a set of specifications (or specs) for several segments, elements,
or components. It is critical that this design process be broad in perspective so that
nothing is left out and every contingency is considered. Systems engineers must be “big
picture” people. Depth is achieved only bymuch iteration through the design process, as
many as are needed until the system’s specifications are sufficiently detailed for
individual configuration items (CIs) to be built or purchased. This design process defines
what the systemmust do, howwell the systemmust do it, and how the system should be
tested to verify and validate the system’s performance. To do this, the systems engineers
must maintain a very clear focus on the objectives that the system’s stakeholders (users,
owners, manufacturers, maintainers, trainers, etc.) have defined for the system.

One of many possible representations of the life cycle of a system is shown in
Figure 1.1, beginning with the identification of the need for the system and
progressing through the retirement of the system. Some of the phases of the life
cycle are accomplished in parallel, as the diagram tries to depict; exactly which phases
occur in parallel depends upon the type of system, the organization, and the context.
For additional details, see Driscoll [2007].

As shown in Figure 1.1, design includes the preliminary system design as well as
parts of the identification of need and concept definition. Parts of the identification of
need and concept definition include the development of a basic idea and the first
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embodiment of the idea; these two initial activities are often called invention and are
usually not part of the engineering of a system. Invention has a heavy technological
and scientific focus. The last portions of the identification of need and concept design
phases, plus preliminary system design, address the initial or follow-on commerciali-
zation of the idea based upon a specific statement of stakeholders’ needs.

The products of the design process serve as the inputs to the hardware and software
design of detailed configuration item design. The CIs then re-enter the systems
engineering process during system integration for integration testing, verification, and
validation. Further adjustments to the design occur during the refinement phase. The
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FIGURE 1.1 Phases of the system life cycle.

SIDEBAR 1.1

The term systems engineering dates back to Bell Telephone Laboratories in the
1940s [Schlager, 1956; Hall, 1962; Fagen, 1978]. Fagen [1978] traces the
concepts of systems engineering within Bell Labs back to early 1900s and
describes major applications of systems engineering during World War II. RCA
used the “systems approach” during the research and development of the
electronically scanned black and white television [Engstrom, 1957]. In 1943,
the National Defense Research Committee established a Systems Committee
with Bell Laboratories support to guide a project called C-79, the first task of
whichwas to improve the communication systemof theAirWarning Service.An
unpublished chapter on systems engineering in the Bell system suggested that the
first use of the phrase “systems engineering” within the Bell system was in a
memo in the summer of 1948. Systems engineering was identified as a unique
function in the organizational structure of Bell Laboratories in 1951. Personnel at
Massachusetts Institute of Technology (MIT) worked with Bell Labs on radars
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duringWorldWar II. Ivan Getting at MIT discovered that electrical noise caused
two components of a fire control system to behave differently when they worked
together than when they worked independently. His group at MIT became a
systems integrator for the Navy after the war. As a result of these efforts, the
following statement appeared in what is called the Ridenour Report (Research
andDevelopment in the United States Air Force dated September 21, 1949: “The
role of systems engineering should be substantially strengthened, and systems
projects should be attacked on a ‘task force’ basis by teams of systems and
components specialists organized on a semi-permanent basis.” [Johnson, 2002]

Involvement in the earliest intercontinental ballistic missile (ICBM) pro-
gram, starting with Atlas, is the most well known of early systems engineering
activities. Simon Ramo and Dean Wooldridge formed a company (R-W) in
1954 to perform systems engineering for the Air Force’s ICBM program. In
1956 R-W and the Air Research and Development Command (under direction
from Bernard Schriever) reached a legal definition of systems engineering:
(1) The solution of interface problems among all weapon system subsystems to
ensure technical and schedule compatibility of the systems as a whole. (2) The
surveillance over detailed subsystem and over all weapon design to meet Air
Force required objectives. (3) The establishment and revision of program
milestones and schedules, and monitoring of contractor progress in maintaining
schedules, consistent with sound technical judgment and rapid advancement of
the state of the art [Johnson, 2002]. R-W later became TRW.

Hall [1962] asserts that the first attempt to teach systems engineering as we
know it today came in 1950 at MIT by Mr. Gilman, Director of Systems
Engineering at Bell. The first book on Systems Engineering was written by
Goode and Machol in 1957, titled System Engineering – An Introduction to the
Design of Large-Scale Systems.

Hall [1962] defined systems engineering as a function with five phases: (1)
system studies or program planning; (2) exploratory planning, which includes
problem definition, selecting objectives, systems synthesis, systems analysis,
selecting the best system, and communicating the results; (3) development
planning, which repeats phase 2 in more detail; (4) studies during development,
which includes the development of parts of the system and the integration and
testing of these parts; and (5) current engineering, which is what takes place
while the system is operational and being refined.

TheRANDCorporationwas founded in 1946 by theU.S.Air Force and created
systems analysis, which is certainly an important part of systems engineering.

The Department of Defense entered the world of systems engineering in the
late 1940s with the initial development of missiles and missile-defense systems
[Goode and Machol, 1957].

Paul Fitts addressed the allocation of the system’s functions to the physical
elements of the system in the late 1940s and early 1950s [Fitts, 1951].

There is special bibliography at the end of the book devoted to historical
references.
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life cycle phases associated with the engineering of the system are shaded in
Figure 1.1. The term concurrent engineering simply means that the systems engineer-
ing process should be done with all of the phases (and their associated requirements)
of the system life cycle in mind [Prasad, 1996]. This notion of concurrent engineering
is a key concept addressed in this book.

The importance of systems engineering is highlighted by examining a generally
accepted relationship between the phases of the system life cycle and the commitment
versus the incursion of costs. The time associated with the system’s life cycle is plotted
on the x-axis; note that the time increments are notional and should not be interpreted as
equal to the relative length of the four stages being addressed. See Prang [1992] for an
illustration based on computer boards. (Prang is also referenced in Scheiber [1995].)
Figure 1.2 shows the major phases of the system life cycle on the horizontal axis. The
curves represent the cost committed, based upon engineering design decisions, and the
cost incurred, based upon actual expenditures. As can be seen, about 80% of the cost of
the system is committed by the end of design and integration, while only about 20% of
the actual cost for the system has been spent. Obviously, mistakes made in the front end
of the system life cycle can have substantially negative impacts on the total cost of the
system and its success with the users and bill payers.

There have been many definitions of systems engineering put forward since the
1950s when systems engineering became a profession. Table 1.1 provides several of
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FIGURE 1.2 Cost commitment and incursion in the system life cycle.
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TABLE 1.1 Definitions of Systems Engineering

Source Definitions of Systems Engineering

Mil-Std 499A,
1974

The application of scientific and engineering efforts to (1) transform
an operational need into a description of system performance
parameters and a system configuration through the use of an
iterative process of definition, synthesis, analysis, design, test, and
evaluation; (2) integrate related technical parameters and ensure
compatibility of all related, functional, and program interfaces in a
manner that optimizes the total system definition and design; (3)
integrate reliability, maintainability, safety, survivability, human,
and other such factors into the total technical engineering effort to
meet cost, schedule, and technical performance objectives

Sailor, 1990 Both a technical and a management process; the technical process is
the analytical effort necessary to transform an operational need into
a system design of the proper size and configuration and to
document requirements in specifications; the management process
involves assessing the risk and cost, integrating the engineering
specialties and design groups, maintaining configuration control,
and continuously auditing the effort to ensure that cost, schedule,
and technical performance objectives are satisfied to meet the
original operational need

Sage, 1992 The design, production, and maintenance of trustworthy systems
within cost and time constraints

Forsberg and
Mooz, 1992

The application of the system analysis and design process and the
integration and verification process to the logical sequence of the
technical aspect of the project life cycle

Wymore, 1993 The intellectual, academic, and professional discipline, the primary
concern of which is the responsibility to ensure that all
requirements for a bioware/hardware/software system are satisfied
throughout the life cycle of the system

Mil-Std 499B
Draft, 1993

An interdisciplinary approach encompassing the entire technical effort
to evolve and verify an integrated and life-cycle-balanced set of
system people, product, and process solutions that satisfy customer
needs. Systems engineering encompasses (a) the technical efforts
related to the development, manufacturing, verification,
deployment, operations, support, disposal of, and user training for
system products and processes; (b) the definition and management
of the system configuration; (c) the translation of the system
definition into work breakdown structures; and (d) development of
information for management decision making

INCOSE, 1999 An interdisciplinary approach and means to enable the realization of
successful systems

INCOSE is the International Council on Systems Engineering, a professional society of systems
engineers. INCOSE’s definition of a system is an interacting combination of elements, viewed in
relation to function.
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these definitions. There are two important trends to note over the 20-year span of these
definitions. First, the role of management in the systems engineering process is made
explicit in the definitions from the 1990s. Second, the three pillars of engineering
success (cost, schedule, and technical performance) from the 1970s evolve to
concerns over the life cycle, namely, concurrent engineering.

The American Heritage Dictionary [Berube, 1991] defines engineering as follows:

The application of scientific and mathematical principles to practical ends such as the
design, construction, and operation of efficient and economical structures, equipment,
and systems.

The following definitions of engineering and the engineering of systems are
adopted here:

Engineering: discipline for transforming scientific concepts into cost-effective
products through the use of analysis and judgment.

Engineering of a System: engineering discipline that develops, matches, and trades
off requirements, functions, and alternate system resources to achieve a cost-
effective, life-cycle-balanced product based upon the needs of the stakeholders.

Figure 1.3 shows the design and integration process as a “Vee” with the emphasis
of this model of the engineering process for a system being on the activities that the
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FIGURE 1.3 Systems engineering “Vee.” (After Forsberg and Mooz [1992].)
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engineers perform. The left or decomposition side of the Vee coincides with the three
phases at the beginning of the life cycle from Figure 1.1. Time proceeds from left to
right in Figure 1.3, just as it did in Figure 1.1. The process is initiated at the top left of
the Vee with the definition of the operational need of the stakeholders. The focus of
the decomposition and definition process (or design) is the movement from an
operational need to system-level requirements to specifications for each component
to the specifications (or specs) for each CI. Since time is moving from left to right in
Figure 1.3, parallel work on high- and low-level design activities is not only permitted
but also encouraged. The iterative nature of this design process, from high-level issues
such as stakeholders’ requirements to low-level issues such as component and CI
design, is accomplished by moving vertically in the Vee over short increments of
time. This vertical movement during the design process is critical to success and has
been observed in studies of expert designers [Guindon, 1990]. Note that this Vee
model does not emphasize the interaction with the stakeholders even though that
interaction is assumed to occur in order to enable the engineering processes depicted
in the Vee model.

The horizontal line, drawn just under themiddle intersection of theVee in Figure 1.3,
depicts the hand off of the final products of the design process, the CI specs, to the
discipline (or design) engineers, those engineers whose orientation is electrical,
mechanical, chemical, civil, aerospace, computer science, and the like and whose
job is to produce a physical entity. This dividing line can be drawn higher or lower to
signify decreasing or increasing overlap between design and integration activities. As
the dividing line is drawn inFigure 1.3, the sloping lines of themiddle portion of theVee
can be extended until theymeet the dividing line,with the resulting verymodest overlap
between design and integration. If the dividing line is raised above the intersection of the
sloping lines of the Vee, there would be no intersection of design and integration. This
complete separation of design and integration is often sought in practice to enhance
contractual relationships between procurer and supplier of the system; however, this
separation negatively impacts the schedule and cost associated with the development of
the system. There is significant integration and qualification activity that should take
place during design, as is discussed in Chapter 11. In many systems engineering
activities, the horizontal dividing line between systems engineering and the discipline
engineers is drawn significantly lower than shown in Figure 1.3.

The right-hand side of the Vee depicts the integration and qualification activities of
the engineering of a system. Integration involves the assembly of the CIs into
components, the assembly of lower level components into higher level components,
and the assembly of high-level components into the system. All of this assembly
involves testing (or qualification) of the newly assembled system elements to determine
whether the assembled element meets the set of requirements (or spec) that the design
phase had established for that element; this qualification is called verification. Finally,
after the system is verified against the system requirements, the system must be
validated.After validation, the stakeholders determinewhether the system is acceptable.
Naturally, there are problems throughout this process that require modifications to be
made either to the design of the elements of the system or to the requirements that were
developed during design. Recall that time is running from left to right in Figure 1.3; the
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Vee process allows for the low level of verification of CIs to be happening in parallel
with some high-level validation and even acceptance activities.

A sample of the movement from operational need to CI specs is given for a race car
in Table 1.2. The first column states the operational need or mission requirement: Win
the Indianapolis 500. Associated with this need are stakeholders’ requirements
concerning the pretrial average speed and the average speed during the race with
the expected number of yellow flags and pit stops (note that the numbers in Table 1.2
are notional and are not accurate reflections of race conditions). System-level
requirements can then be derived that are more meaningful during engineering.
As an example, the key system-level requirement involves the g–g space of a vehicle
[Milliken and Milliken, 1995]. Race cars, when driven by experienced drivers, are
always changing velocity in speed or direction. (Recall that speed is the velocity you
are traveling in your direction of travel. But when traveling around a curve, you also
have a component of velocity perpendicular to your direction of travel.) Therefore, the
acceleration ability of the car in both longitudinal and lateral directions (see Fig. 1.4)
is critical in the design process. Figure 1.4 portrays the g–g curve for a single car
driven by three racers (charts a–c); the bottom right space (chart d) is the inferred g–g
space of the vehicle. Finally, each of these system-level requirements is “flowed-
down” to component-level requirements, such as the engine’s horsepower and the
drag coefficient of the body of the race car. (Note that the true values of these
parameters are closely guarded secrets of racing teams.) This process continues until
the requirements for CIs are defined, establishing a hierarchy of requirements, from
mission or need down to the CIs.

The system integration process starts during the decomposition and definition (or
design) process. As part of design, the integration and qualification plans are
developed. The purpose of qualification is the verification and validation of the
system’s design. Verification addresses the following question: Does the compo-
nent, element, segment, or system meet its requirements, or have we built the
component, . . . , system right?On the other hand, validation, which is often combined
with acceptance testing, demonstrates that the system satisfies the users’ needs, or have

TABLE 1.2 Race Car Example of Requirements and Tests

Operational Need or Mission
Requirements: Partially
Validated by Operational Test
(Proven by Real-World
Experience)

System-Level
Requirements: Verified
by System-Level Tests

Component-Level
Requirements: Verified by
Component-Level Tests

• Win the Indianapolis 500

• Pretrial average speed of
215 mph

• Average speed in the “500”
of 190 mph

• Top speed of X mph

• Acceleration in all
directions, “g–g”
space

• Average standard pit
time of Y s.

• Engine horsepower of
x Btu

• Body’s drag coefficient
of y

• Range per tank of gas of
z mi
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webuilt the right system?Note that as verificationmoves farther from theCIs and closer
to the system, it is not possible to conduct enough testing to prove anything statistically.
Demonstration is often the best that can be done. It is expected, though not desired, that
there will be issues and problems that arise as part of this qualification process.
Decisions must be made concerning relaxation of requirements versus design changes
to specific CIs and components. During the design phase, integration activities should
be planned to maximize the effectiveness of qualification within the resources and time
available. These planned activities are then carried out during integration, with

FIGURE 1.4 “g–g” design region for a race car. (From Milliken and Milliken [1995].)
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adaptations as needed. There should have been some thought given during design about
what the most likely adaptations would be so that the integration phase has sufficient,
built-in flexibility.

To be successful, the engineering design of systems must embrace the notion that
many decisions are made during the development process. This is not a controversial
position to take. However, adopting the notion that these decisions should be made via

TABLE 1.3 Sample of Decisions Made during System Design

Development Phase Examples of Decisions in Systems Engineering

Conceptual design • Should a conceptual design effort be undertaken?

• Which system concept (or mixture of technologies) should be the basis
of the design?

• Which technology for a given subsystem should be chosen?

• What existing hardware and software can be used?

• Is the envisioned concept technically feasible, based on cost, schedule,
and performance requirements?

• Should additional research be conducted before a decision is made?
Preliminary design • Should a preliminary design effort be undertaken?

• Which specific physical architecture should be chosen from several
alternatives?

• To which physical resource should a particular function be allocated?

• Should a prototype be developed? If so, to what level of reality?

• How should validation and acceptance testing be structured?
Full-scale design • Should a full-scale deign effort be undertaken?

• Which configuration items should be bought instead of manufactured?

• Which detailed design should be chosen for a specific component
given that one or more performance requirements are critical?

Integration and
qualification

• What is the most cost-effective schedule for implementation activities?

• What issues should be tested?

• What equipment, people, and facilities should be used to test each
issue?

• What models of the system should be developed or adapted to enhance
the effectiveness of integration?

• How much testing should be devoted to each issue?

• What adaptive (fallback testing in case of a failure) testing should be
planned for each issue?

Product refinement • Should a product improvement be introduced at this time?

• Which technologies should be the basis of the product improvement?

• Which redesign is best to meet some clearly defined deficiency in the
system?

• How should the refinement of existing systems be implemented given
the schedule, performance, and cost criteria?
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a rational, explicit process is not consistent with much of the current practice in the
engineering of systems. Table 1.3 lists a sample of the many categories of develop-
ment decisions. Chapter 14 provides a method for addressing these decisions. An
important philosophical point in decision making is that decisions have to be made
with the best information available at the time, realizing that the outcomes associated
with the decision remain uncertain when the decision is made. Therefore, distin-
guishing between a good decision and a good outcome is important. The material in
this book will also distinguish between the level of details needed to make decisions in
the engineering of a system and the level of details needed to ensure proper
implementation of the system’s components and CIs.

In order to accomplish this difficult job of engineering a system, people with
many different specialties must be involved on the systems engineering team. The
stakeholders are central to the success of this effort and need to be represented on
the systems engineering team. Discipline engineers with knowledge of the tech-
nologies associated with the system’s concept are needed to provide the expertise
needed for design and integration decisions throughout development. Discipline
engineers come not only from traditional engineering fields such as electrical,
mechanical, and civil but also from the social sciences to address psychological,
informational, physical, and cultural issues. In addition, systems engineers who
model and estimate system-level parameters such as cost and reliability fall in the
category of discipline engineers. Analysts skilled in modeling and simulation, more
and more of which is done on the computer rather than with scaled-down mock-ups
of the system, are also important members of this team. Engineers skilled in the
processes (or methods) of systems engineering form the nucleus of this collection of
skills. These processes and associated models are the nucleus of this book. Finally,
managers that are in charge of meeting cost and schedule milestones need to be
present. These five disciplines are depicted in the Venn diagram in Figure 1.5.
Sidebar 1.2 describes Joe Shea, who was hired by the National Aeronautics and
Space Administration (NASA) in 1961 to take charge of systems engineering for
the Office of Manned Space Flight.

Management
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FIGURE 1.5 Expertise required on the engineering team for a system.
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SIDEBAR 1.2

It was 1943 when he graduated (from high school), wartime, and Shea heard
about a special Navy program that would send him to college. . . . Then the
Navy sent him to M.I.T., and after that to the University of Michigan. . . .

For the next several years Shea moved back and forth between Michigan,
where he eventually obtained his engineering doctorate, and Bell Labs. It was
an educational odyssey that took him from engineering mechanics to electrical
engineering to theoretical mathematics to physics to inertial guidance. “The
nouns change but the verbs remain the same” became one of Shea’s sayings as
he went from one specialty to another.

Then in 1956 Shea found out how it all fit together. At the age of twenty-nine,
Shea was named systems engineer for the radio guidance project connected with
the Titan I. “I didn’t know what ‘systems engineer’ meant,” Shea said, but he
learned quickly, traveling around to the subcontractors on the Titan I, becoming a
member of the small fraternity of engineers who were coming of age in this new
field. At night after work they gather at a bar near the plant where they had been
working that day. They didn’t even drink that much, Shea recalled, they were so
busy talking—about testing, grounding, vibrational spectrums,weights, stability,
electrical interfaces, guidance equations, all the myriad elements of the system
that some lucky guy, like a systems engineer, got to orchestrate.

By 1959 Shea had acquired enough of a reputation within the ballistic
missile fraternity for General Motors to hire him to run the advanced develop-
ment operation for its A.C. Sparkplug Division, which was trying to wedge its
way into the missile business. Shea was in charge of preparing a proposal for
the inertial guidance contract for the Titan II. After the proposal won, Shea went
back to administering the advanced development office. But a year later, in
September 1960, the contract he had won was six months behind and Shea was
called away to rescue it.

Sheabegan todiscover that hehad aknack for leading.Hiswasnot a gentle style,
but if hewas toughonpeoplewho fell short, hewasgenerous and loyal to thosewho
didn’t. . . . It didn’t make any difference what your specialty was. Shea’s maxim
was that if you understood it, you could make him understand it—and once he did,
you never had to explain it again. The only problem was keeping up.

It was about this time that Shea discovered the uses of what he would come to
call his “controlled eccentricity.”When he was still at Bell, his wife had bought
him a pair of red socks as a joke. One day in ameeting he absentmindedly put his
feet up on the table, getting some laughs and loosening up the meeting. So Shea
started wearing red socks, not all the time, but to important meetings. Eventually
the socks were accepted as a good-luck charm to wear to presentations. Even
senior management at General Motors, where putting one’s feet on a desk was
discouraged and wearing red socks was unthinkable, got used to the idea. . . .

Armed with his red socks and his puns and an emerging sense of how good
he was getting to be at this sort of engineering, Shea set out to rescue the lagging
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1.3 APPROACHES FOR IMPLEMENTING SYSTEMS ENGINEERING

We have just provided a description of what happens inside the process associated
with the design of an engineered system and are about to describe several approaches
for organizing that process. But let us step back a minute to look at the bigger picture,
as summarized in Figure 1.6. The system that we have been tasked to design exists in a

Titan contract. He moved into the plant, and for five days a week, all three
shifts, he was there, catching catnaps on a cot set up in his office. It was a pattern
he would repeat later, during Apollo. The reasons were partly motivational—
people work harder when they see the boss working all three shifts. “But it also
lets you find out everything that’s going on,” Shea said. “Things I’d find out at
night, I’d get corrected during the daytime.” Shea began handing out red socks
as an award for good performance. His enthusiasm and energy were infectious.

Shea pulled it off, making up the six months. [Murray and Cox, 1989,
pp. 121–123]

FIGURE 1.6 Characterizing the broader systems’ design problem. (After Martin [2004].)
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broader system, called the meta-system. This meta-system contains other systems and
is purposefully pursuing some objectives. There is likely a sustainment system that is
part of this meta-system that is providing supplies and support to one or more of the
systems that comprise the meta-system.

Some group has identified a problem with the achievement of the objectives being
attained by the meta-system and has tasked a development system (organization) to
design a system that will replace or upgrade one or more of the systems in the meta-
system. In order to understand how to design this new or upgraded system, the people in
the development system must understand the meta-system or else they will have little
chance of success. Understanding themeta-system includes the interaction between the
system to be replaced and other systems in the meta-system as well as the context or
environment in which that meta-system operates.Wewill refer many times in this book
to the creation of meta-system (or mission) requirements and an operational concept as
approaches to achieving this understanding of the meta-system.

At some later time, after the meta-system has gone through many changes for
which the development system must be tracking and making adjustments, the
designed system will be deployed and become an operational system within the
changed meta-system first studied. Not only will the context of the meta-system have
changed, but many of the systems inside the meta-system will also have changed. In
fact, there may well be other development systems working on some of these other
systems in the meta-system, including the sustainment system. The introduction of the
operational system may in fact introduce new problems into the meta-system. Such
potential problems should be imagined as part of the development process and
avoided or minimized via the design.

A final caution to the reader is that the development system (an organization of
systems engineers and other engineers and experts) must design itself to have any
chance of success. This design of the development system must emphasize adapta-
bility to the inevitable change going on in the meta-system as described in Figure 1.6
as well as in another meta-system in which the development system exists.

The traditional, top-down systems engineering (TTDSE) process has evolved
from the 1950s. Software engineers have evolved several approaches, starting
with a waterfall process, moving to spiral development, and currently focused on
object-oriented design (OO). Object-oriented software design gained popularity
in the early 1990s shortly after object-oriented programming languages became
available.

1.3.1 TTDSE

TTDSE (described in the overview in Section 1.2 and shown in Figure 1.7) is a
process for systems engineering that begins a thorough analysis of what the problem is
that needs to be solved; this is usually done with an analysis of the current meta-
system (the system of interest and its peers (external systems)) performing one or
more missions for the primary stakeholders. The result of this analysis is a statement
of the problem to be solved. Based on this statement of the problem to be solved,
several potential, competing concepts for implementing the system of interest are
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defined; this set of concepts should initially include a very broad range of ideas, some
of which are relatively inexpensive while others are very expensive. Next there will be
an analysis of the competing concepts, resulting in the selection of the most favorable
concept for implementation. Note that this analysis could really be many analyses.
(Note that this book does not address the problem definition and evaluation of
concepts. This material is covered by most texts on problem solving for defining the
problem to be solved. See Checkland [1993], Klir [1985], and Warfield [1990].
Decision analysis (Chapter 14) addresses the evaluation of concepts.)

On the basis of this selection, an operational concept and system-level require-
ments are defined for that solution concept. These two products (operational concept
and system-level requirements) are a statement of the problem being solved. Next a
layered (or onion peeling) iterative process begins for creating an architecture,
deriving requirements, and refining the needed test system and associated data
collection requirements. This layered process can have as many layers as are needed;
the bottom layer addresses the configuration items that the discipline engineers will
design. Each layer repeats the same process (defined in detail in Chapters 6–10).
Systems engineers commonly perform a great deal of analysis and modeling at each
layer of this process; trade studies are often conducted to examine alternate ways to
proceed or solutions that optimize some objective (e.g., cost, reliability, and weight)
while minimizing the impact on all other objectives.

Once the CIs have been designed and delivered for integration, the verification,
validation, and acceptance testing process begins. Each layer of the decomposition
process is verified against the associated derived requirements. During the process,
requirements may be adjusted or the architecture and design of the system may be
modified as needed. At the system level, validation against the concept of operations
and acceptance testing (as defined by the stakeholders) is conducted. Chapter 11
defines this process. If a positive result is obtained, the system is deployed and
systems engineering continues by analyzing the usage of the system for needed
modification and selecting upgrades that will be implemented in the future. The actual
upgrading of the system should follow the same process as defined by the Vee-like
structure in Figure 1.7.

TTDSE is primarily a process for designing the many pieces of a system in such a
way that many different organizations can be tasked to design one or several pieces
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FIGURE 1.7 Traditional top-down systems engineering.
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and all of the pieces can be integrated easily and effectively to achieve the desired
system. Other references for TTDSE are Blanchard and Fabrycky [1998], Hatley and
Pirbhai [1988], Sage [1992], and Wymore [1993].

1.3.2 The Waterfall Model of Software Engineering

One of the earliest concepts of the software engineering process was called the
“waterfall” model by Boehm [1976], but introduced by Royce [1970]. The waterfall
model (Fig. 1.8) is characterized by the sequential evolution of typical life cycle
phases, allowing iteration only between adjacent phases. The waterfall model is
known and discussed throughout the software and systems engineering communities
and was the basis for Military Standard 2167A for software development. The major
problem with the waterfall process is that iteration between phases that are widely
separated is all too common.

Systems

Requirements

Software

Requirements

Preliminary

Design

  Detailed

Design

Coding and

Debugging

Integration

and Testing

Operations and

Maintenance

FIGURE 1.8 Waterfall model.
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1.3.3 The Spiral Model of Software Engineering

The spiral model (Fig. 1.9), developed in the 1980s [Boehm and Papaccio, 1988] and
then modified several times [Boehm, 1986, 1988], addressed the need to shorten the
time period between the users’ statement of requirements and the production of a
useful product with which the users could interact. Too many systems and software
implementations were being produced and rejected because the development life
cycle took too long; valid requirements at the beginning of the cycle were no longer
valid at the time of delivery. In addition, new systems were degraded because the
vestiges of learning about the system domain tainted the early designs.

The spiral model has four major processes, starting in the top left of Figure 1.9 and
moving clockwise: design, evaluation and risk analysis, development and testing, and
planning with stakeholder interaction and approval. These four processes are repeated
as often as needed. The radial distance to any point on the spiral is directly
proportional to the development cost at that point. The spiral model views require-
ments as objects that need to be discovered, thus putting requirements development in
the last of the four phases as part of planning. The early emphasis is on the
identification of objectives, constraints, and alternate designs. These objectives
and constraints become the basis for the requirements in the fourth step. There is
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also a major emphasis on evaluation and risk analysis as part of the management
activities. This management activity is to identify which requirements are most
important to discover early in order to minimize problems associated with cost,
schedule, and performance. The development effort is composed of prototyping
activities, which provide mock-ups of the software or system that will enable the
stakeholders to define their requirements. This third step ends with evaluation and
testing. The fourth step involves documenting requirements gleaned from the intense
prototyping interaction with the users during the current trip around the spiral and
planning the next trip around the spiral. The number of iterations around the spiral is
variable and defined by the software or systems engineers. The final cycle integrates
the stakeholders’ needs into a tested and operational product.

Shortly after the spiral model was introduced, various authors [e.g., Boar, 1984]
spoke of rapid prototyping as a development process. The rapid prototyping process is
meant to produce early, partially operational prototypes. The use of these operational
prototypes by stakeholders generates new and improved requirements, as well as
provides the stakeholders with increased functionality via early releases of the system.
Thus, one could view rapid prototyping through the spiral process model in which the
prototypes were partially operational.

1.3.4 Object-Oriented Design

OO design followed from object-oriented programming in the 1970s. OO design is a
bottom-up process that begins by defining a set of objects that need to be part of the
system in order to achieve the system-level functionality desired. Objects are thought to
be basic building blocks that can perform functions (methods) and contain information.
Key properties of OO design are inheritance and information hiding. Inheritancemeans
that a general object can be specialized by adding special characteristics; the specialized
object will “inherit” all of the properties (methods and data) not overridden by the
specialization. Information hiding means that an object does not need to know how
another project is producing the information being sent to it, just what that information
is. Systems engineers had referred to this idea asmodularity for years. Besides being the
basic buildingblocks of a system, objects are seen to promote reusability, testability, and
maintainability. For more information, see Ambler [1997].

1.4 MODELING APPROACHES FOR SYSTEMS ENGINEERING

Modeling techniques for designing systems were created as early as the early 1950s.
These techniques addressed the connection of system components, the decomposition
of system functions, and dynamic behavior of the system. The Unified Modeling
Language (UML)was created by several of the OO gurus who had developed their own
approaches to modeling and decided an integrated approach was needed. The U.S.
Department of Defense Architecture Framework (DoDAF) was developed within the
Command, Control, Communications, Computers, Intelligence, Surveillance and
Reconnaissance (C4ISR) community and then extended to all of DoD. The Object
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Management Group’s Systems Modeling Language (OMG SysMLTM) was defined
using UML 2.0 and moves the TTDSE process toward a goal desired by many of a
model-based version of systems engineering.

1.4.1 Modeling Approaches for TTDSE

The first modeling approach of TTDSE was the block diagram. Each block repre-
sented a system component. Lines between the blocks represented the exchange of
information, energy, or physical entities. Next, N-squared (N2) diagrams were created
to capture a high-level view of the flow of information, energy, and physical entities
among the components at a given level of abstraction for the system (see Lano [1990a,
1990b]). Next, the N2 diagram was transformed to a functional perspective, the
components being exchanged for major system functions. Function flow block
diagrams were then developed to capture the dynamics of the system’s behavior.
Meanwhile, software designers were creating data flow diagrams to model software
systems. Manufacturing designers were creating the Structured Analysis and Design
Technique (SADT) that was later transformed into Integrated Computer-Aided
Manufacturing (ICAM) Definition or IDEF0. Data flow diagrams, N2 charts, and
IDEF0 diagrams all capture the same basic time-lapsed flow of information, energy,
and physical items among functions. State transition diagrams (or state machines)
were developed and enhanced by several engineering disciplines to capture dynamic
behavior; these techniques have been applied for some TTDSE efforts. Finally, Petri
nets have been developed to model the dynamics of systems. Many TTDSE
practitioners use some subset of these modeling techniques. All of these techniques
are covered in later chapters of this book.

1.4.2 UML

The Unified Modeling Language is a specification language for modeling objects that
is approved by the Object Manage Group. UML 2 was adopted in 2004 and is often
described as a graphical modeling language. Critical ideas underlying object-oriented
modeling are multiple views at varying levels of abstraction, object, class, inheritance,
and extensibility. All useful approaches to systems and software engineering use
modeling approaches that enable modeling a system at multiple levels of abstraction.
An object is a basic building block of OO programming that can receive messages,
process data, and then send messages to other objects. An object can be viewed as a
component or actor that has the resources to receive, process, and send data. A class in
object-oriented terminology is a grouping of related variables or functions; this is a
key to addressing a system at multiple levels of abstraction. Inheritance (now often
called generalization) is the process of creating instances of a class based upon
specializations of class parameters; this is often the key to software reuse. Exten-
sibility is a way of extending the UML modeling language. For example, stereotypes
permit extending elements of UML to a specific problem domain.

UML 2.0 contains 13 different diagram categories that can be aggregated into 3
diagram types (see Table 1.4). Structure diagrams address those issues or elements
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that are part of the system being modeled. Concepts for structure diagrams include
actor, attribute, class, component, interface, object, and package. Behavior diagrams
examine the activities that must happen in the system being modeled. Behavior
diagram concepts include activity, event, message, method, operation, state, and use
case. Interaction diagrams (considered by some to be a subset of behavior diagrams)
address the flow of data and control among the elements in the system being modeled.
Concepts for interaction diagrams include aggregation, association, composition,
depends, and generalization (or inheritance).

Some important ideas in UML are the use case diagram, which is a high-level view
of the use cases; the class diagram, which describes the relationship between structural
elements of the system and the external domain; and a set of object diagrams, which
are more definitive than the class diagram about the structural elements of the system
and their relationships over time. Sequence diagrams are a representation of scenarios
or use cases, something that traces back decades. The key design elements are the
software objects.

The use case diagram and sequence diagrams define the requirements in a
qualitative way; there are seldom any quantitative performance requirements and
there are no nonfunctional requirements. Similarly, there is no top-level functional
analysis; each object contains operations that can be performed and data that can be
used for those operations. UML is primarily a graphical modeling language for
creating abstractions or generalizations so that the resulting software system will be
more flexible and adaptable.

This UML process is more of a bottom-up design process in which the components
of the software are derived from more specific software objects that are designed to be
adapted from existing code or coded from scratch. Useful references on UML are
Ambler [2004] and Eriksson and Penker [1998]. Software engineers believe the
appropriate model of their design is the code itself, so very little modeling and analysis
is performed during this process.

1.4.3 DoDAF

The DoDAF provides three integrated views needed for a system architecture; each of
the three views is composed of subviews using graphical, tabular, and textual
descriptions. A data model is defined that defines entities and relationships among

TABLE 1.4 Diagram Types for UML 2.0

Structure Diagrams Behavior Diagrams Interaction Diagrams

Class
Component
Composite structure
Deployment
Object
Package

Activity
State machine
Use case

Collaboration – communication
Interaction overview
Sequence diagram
Timing
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the data elements that are part of these integrated views. This effort began in 1995,
produced versions 1 and 2 of the C4ISR Architectural Framework in 1996 and 1997,
respectively, and yielded versions 1 and 2 of the DoDAF in 2003 and 2009,
respectively. The Ministry of Defence (MOD) of the United Kingdom and the North
Atlantic Treaty Organization (NATO) have adopted similar architecture frameworks:
MODAF and NAF, respectively.

In DoDAF 1, there were three top-level views: operational, systems, and technical.
The operational view addresses the organizational and human context in which the
systemwill be utilized. The systems view switches to the physical and functional world,
starting outside the system andmoving inside the system. The technical view addresses
standards and conventions. In DoDAF 2, seven viewpoints were adopted: capability,
data and information, operation, project, services, standards, and systems. These
viewpoints are oriented to supportingDoD decisionmakers associatedwith the systems
engineering activities. The capability viewpoint serves the needs of capability portfolio
managers. Business activities are supported by the data and information viewpoint. The
operational viewpoint is used to describe the tasks and activities, operational elements,
and operational resource flows. The project viewpoint enables the description of
contributions by programs, projects, portfolios, or initiatives. The services viewpoint
is used to describe the satisfaction ofDoD functions via services, as opposed to systems.
The set of rules governing themanagement, interaction, and interdependence of parts or
elements is defined by the standards viewpoint. The systems viewpoint describes the
systems and other interconnections providing DoD functions.

Each of the viewpoints has a number of products, which capture a subset of the
concepts, associations, and attributes relevant to the view. It is important to conceive
of the DoDAF as containing a central database of all of the entities and relationships.
Each product of each view is then a representation of a subset of that central database.
The developers of the DoDAF continue to strive to make this structure useful to
decision makers and systems engineers. References include Levis and Wagenhals
[2000] and Dam [2006].

1.4.4 SysML

There has been a push among some systems engineers for an approach to systems
engineering that is less text based and, therefore, more model based. The arguments
against text-based processing are its inefficiencies for finding errors and stress points,
testing both performance and timing behavior in one or more competing designs, and
providing actionable information for trade studies and design reviews. Ultimately,
there is a need to examine performance issues and conduct tests before the first
prototype is completed. Software engineers, for the most part, seem to have no
problem with waiting until the code is written to find out that there are major timing
and latency problems. Hardware has traditionally taken much longer time to redesign,
so systems engineers prefer to get the bad news early. This emphasis has led to model-
based systems engineering efforts, the most visible of which is SysML.

SysML is a visual modeling language that was adapted from UML 2.0 and
enhances the traditional top-down systems engineering process. SysML extends the
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modeling language of traditional, top-down systems engineering; this extension
should make the traditional approach to systems engineering less prone to errors
and more efficiently implemented. Table 1.5 shows which UML 2.0 diagrams have
been dropped (strikethrough), adopted (new), or modified (modified) for SysML. The
first thing to notice in Table 1.5 is that there is a new column for requirements with a
single diagram type. The column with the most changes is the first column for
structure diagrams. Here the class diagram has been renamed to capture two different
concepts associated with the physical architecture: block definition and internal block
connectivity of parts. A new diagram was created for modeling performance, called
the parametric diagram. The package diagram was kept as is from UML 2.0. Within
the category of behavior diagrams, the activity diagram has been modified, while the
state machine and use case diagrams have been kept as is. Finally, most of the
interaction diagrams have been dropped; the only remaining interaction diagram is the
sequence diagram. The implication of these changes is that SysML places much
greater emphasis on behavior compared to interaction than UML does.

These diagram concepts will be introduced in later chapters of this book.
The real challenge for SysML (and every other model-based approach) is to

include easily understood descriptions of the system design and the associated
requirements for nonengineering stakeholders. References for SysML are Bock
[2006], Friedenthal and Moore [2014], and Delligatti [2013].

1.5 INTRODUCING THE CONCEPT OF ARCHITECTURES

Levis [1993] has defined an analytical systems engineering process (for the left side of
the Vee process) that begins with the system’s operational concept and includes the
development of three separate architectures (functional, physical, and allocated) as
part of this decomposition. The functional (or logical) architecture defines what the
system must do, that is, the system’s functions and the data that flows between them.
The physical architecture represents the partitioning of physical resources available to

TABLE 1.5 Diagram Types for SysML

Structure Diagrams Behavior
Diagrams

Interaction
Diagrams

Requirement
(New)

Class – renamed to be
Block definition
Internal block

Component
Composite structure
Deployment
Object
Package
Parametric design (new)

Activity (modified)
State machine
Use case

Collaboration –

communication
Interaction overview
Sequence diagram
Timing

Requirement
(new)
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perform the system’s functions. The allocated architecture (see Fig. 1.10) is the
mapping of functions to resources in a manner that is suitable for discrete-event
simulation of the system’s functions and is analogous to Alford’s [1985] approach
with behavior diagrams. Figure 1.10 suggests that the functional and physical
architectures are developed independent of each other and then combined to form
the allocated architecture. This suggestion is inaccurate, rather the two architectures
are developed in parallel, but with close interaction to ensure that the allocated
architecture is meaningful when the functional and physical architectures are com-
bined. Chapters 7–9 address these three architectures and their development in detail
and discuss the interactive development of them.

Critical to this multiple-architecture approach is the balancing of information
among them. To be complete, three separate models must be developed: data, process,
and behavior models. The functional architecture includes the first two (data and
process) models and the initial behavioral model, as discussed in Chapter 7. The
behavioral model should be finished and exercised as part of the allocated architecture
(see Chapter 9). Each of these three models must be integrated to define the three
architectures properly.

Figure 1.11 shows an organization chart representation of a physical architecture of
the F-22 fighter. Note that this physical architecture includes more than the F-22; the

FIGURE 1.10 Architecture development in the engineeringof a system. (After Levis [1993].)
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FIGURE 1.11 Sample physical architecture (F-22 Type A Spec). (From Reed [1993].)
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training and support systems are included as well. For a life-cycle-balanced (concur-
rent engineering) definition of the F-22, the physical architecture should have been
decomposed, as shown in Figure 1.12.

Graphical techniques, such as Figures 1.11 and 1.12, are invaluable because they
serve as an excellent communication medium; communication is one of the most
important functions of systems engineers. A physical architecture subdivides the
problem into manageable parts, permitting and encouraging an iterative process and
providing excellent documentation.

Figure 1.13 depicts the systems engineering design process in terms of require-
ments and architectures in a similar manner as the waterfall process, a sequential
decomposition of requirements and the allocated architecture (functions mapped to
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physical resources) by moving from left to right and top to bottom. A question often
asked by new students is: What is the difference between a requirement and a
specification. A requirement is one of many statements that constrain or guide the
design of the system in such a way that the system will be useful to one or more of its
stakeholders. A specification is a collection of requirements that completely define the
constraints and performance requirements for a specific physical entity that is part of
the system. The systems engineering design process involves defining all of the
system’s requirements and then bundling them by segmenting and refining into a
specification for each of the system’s segments, elements, components, and CIs.

1.6 REQUIREMENTS

Requirements for a system address the needs and objectives of the stakeholders. Just
as there is a hierarchy associated with the physical components of the system, there is
a hierarchy of requirements. At the top of the hierarchy are mission requirements,
which relate to needs associated with missions or activities that are important to one or
more groups of stakeholders. These mission requirements typically involve the
interaction of several systems, one or more of which include individuals or groups
of people and are therefore stated in the context of the operation of the system in
question with these other systems, called the meta-system or supersystem or system of
systems. Mission requirements represent stakeholder preferences for the increased
ability to perform their activities with the introduction of the system in question at a
lower cost and in a faster time than the existing capability.

Stakeholders’ requirements are statements by the stakeholders about the sys-
tem’s capabilities that define the constraints and performance parameters within
which the system is to be designed. Systems engineers take these high-level,
stakeholders’ requirements and derive a consistent set of more detailed engineering
statements of requirements as the design progresses. For the purposes of this
introduction, requirements are divided into constraints and performance indices.
Some constraints are simple, for example, the system must be painted with a
specific shade of green. Other constraints are the minimally acceptable level
associated with a performance requirement. A performance requirement defines
a desired direction of performance associated with an objective of the stakeholders
for the system. For an elevator system (which is used throughout this book), a
performance requirement might be to minimize passengers’ waiting time. For any
performance requirement, there must also be a minimum acceptable performance
constraint or threshold and a design goal associated with the index; this threshold
dictates that no matter how wonderful a design’s performance is on other objec-
tives, performance below this threshold on this requirement makes the design
unacceptable. This is a very strong statement of needs, and so minimal acceptable
thresholds must be established very carefully.

Every major organization, governmental or commercial, has established its own
guidelines for system or product development. The names and organizations of the
several requirements documents vary somewhat but cover similar material. Table 1.6
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TABLE 1.6 Typical Requirements Documents

Document Titles Document Contents

Problem Situation or Mission Element
Need Statement, and Systems
Engineering Management Plan
(SEMP)

• Definition of stakeholders and their
relationships

• Stakeholders’ description of the problem and
its context

• Description of the current system

• Definition of mission requirements

• Definition of the systems engineering man-
agement structure and support tools for
developing the system

Stakeholders’ Need or Stakeholders’
Requirements Document (StkhldrsRD)

• Definition of the problem needing solution by
the system (including the context and external
systems with which the system must interact)

• Definition of the operational concept on which
the system will be based

• Creation of the structure for defining
requirements

• Description of the requirements in the stake-
holders’ language in great breadth but little
depth

• Trace of every requirement to a recorded
statement or opinion of the stakeholders

• Description of trade-offs between perform-
ance requirements, including cost and opera-
tional effectiveness

System Requirements Document
(SysRD)

• Restatement of the operational concept on
which the system will be based

• Definition of the external systems in engi-
neering terms

• Restatement of the operational requirements in
engineering language

• Trace of every requirement to the previous
document

• Justification of engineering version of the
requirements in terms of analyses, expert
opinions, stakeholder meetings

• Description of test plan for each requirement
System Requirements Validation
Document

• Documents analyses to show that the require-
ments in the SysRD are consistent, complete,
and correct, to the degree possible

• Demonstrates that there is at least one feasible
solution to the design problem as defined in
the SysRD
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summarizes the common major requirements documents that are produced during the
beginning of the design phase. The Problem Statement (or Mission Element Need
Statement in the military) gets the process rolling and identifies a problem for which a
solution in the form of a system (new or improved) is needed. This document supports
and documents a decision-making process to start a system development effort. The
Systems EngineeringManagement Plan (SEMP) then defines the systems engineering
development system.

Stakeholders’ requirements are found in the Stakeholders’ Requirements Docu-
ment (StkhldrsRD). This document is produced with or by the stakeholders and is
written in their language(s). Systems engineers need to be involved in a substantial
way in this activity, although not all systems engineers share this view. Experience
has shown that if this document is left to the stakeholders, the document will be very
incomplete. The systems engineers can play a major facilitation role among the
various groups of stakeholders as well as bring an assortment of tools to bear on a
difficult problem, the creation of this document. These tools (a major focus of this
book) ensure a greater completeness and consistency. The methods and tools
presented here are equally applicable in the rest of the systems engineering process.

The systems engineer then begins restating and “deriving” requirements in
engineering terms, called system requirements, so that the systems engineering design
problem can be solved. This derivation of the StkhldrsRD becomes the Systems
Requirements Document (SysRD).

It is critical that the requirements in all of these documents address “what” and
“how well” the system must perform certain tasks. Requirements do not provide
solutions but rather define the problem to be solved.

The Systems Requirements Validation Document defines requirements associated
with the verification, validation, and acceptance of the system during integration.
These requirements are high-level requirements that state the needs of the stake-
holders for qualifying the design of the system. These requirements form the basis of
the problem definition for creating the qualification system that will be used during
integration. In addition to defining the high-level qualification requirements, this
document should demonstrate that if the systems engineering process continues, an
acceptable solution is possible. Unfortunately, this “existence proof” of a feasible
solution is seldom produced in practice, leading to a major downfall of many systems
engineering efforts. Namely, the realization that many months (or years) later not all
of the requirements can be satisfied, and the stakeholders must relax the requirements
that the engineers promised could be met.

Systems engineers have always desired to demonstrate the importance of require-
ments and getting the requirements right, for example, complete, consistent, and
correct. In the mid-1970s, three organizations (GTE [Daly, 1977], IBM [Fagan,
1974], andTRW[Boehm, 1976]) conducted independent studies of software projects.
These studies addressed the relative cost to fix a problem based upon where in the
system cycle the problem was found. Boehm [1981] and Davis [1990, p. 25]
compared the results of the three studies (see the first row of Table 1.7). The costs
have been normalized so that the relative cost to repair an average problem found in
the coding phase is 10 units. These results stood for 20 years. The next eight rows of
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Table 1.7 show results from recent studies, summarized in Haskins et al. [2004]. As
can be seen, the results have held up well. Getting the requirements right is a very
difficult task, and therefore a task that is fraught with errors. An error that is caught
during requirements development can be fixed for about 10% of the cost associated
with an error caught during coding. Errors caught duringmaintenance in the operation
of the system cost about 20 times that of an error caught during coding and 200 times
the cost of an error caught during requirements development. Unfortunately, many of
these errors are not caught until late in the life cycle, causing the expenditure of
significant money.

1.7 SYSTEM’S LIFE CYCLE

There are many ways to define a system’s life cycle. However, the common phases
associated with a system are development, manufacturing, deployment, training,
operations and maintenance, refinement, and retirement. Systems engineers have
activities in all of these phases, but the primary phases of concern to the systems
engineers are development and refinement. Stakeholders use and maintain the system
in the operation and maintenance phase. A common mistake is to envision these
phases as distinct and separate in time. In fact, it is common (though not required) to
have four distinct periods: development only, preinitial operational capability devel-
opment and testing, operational use and refinement, and retirement. All but the first
period have multiple phases occurring in parallel, as shown in Figures 1.14–1.17.

In the development period, the systems engineering team receives resources from the
bill payer and begins the development of the system. This period involves heavy
interaction with the stakeholders as the requirements process is begun, and the

TABLE 1.7 Comparison of the Relative Cost to Fix Software in Various Life Cycle
Phases

Source Phase Requirements Issue Found

Requirements Design Code Test

Boehm (1981) 1 5 10 50
Hoffman (2001) 1 3 5 37
Cigital (2003) 1 3 7 51
Rothman (2000) 5 33 75
Rothman-Case B (2000) 10 40
Rothman- Case C 10 40
Rothman (2002) 1 20 45 250
Pavlina (2003) 1 10 100 1000
McGibbon (2003) 5 50
Mean 1 7.3 25.6 177
Median 1 5 10 50.5
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architectures and models for simulation and analysis are initiated. However, this period
ends when the manufacturing, deployment, and training teams begin preparation for the
system.

Development, manufacturing, deployment, and training activities are pursued
concurrently during the second period, after concurrent design occurred in the first
period. Specifications flow from the development process to the other three. Manu-
factured, deployed, and training equipment flow to development for testing. Interac-
tion continues with the stakeholders as final testing occurs, leading to the acceptance
of the system by the stakeholders. This period ends just as the first operational systems
are being delivered to the users.

The third period begins as users receive the first operational items. This period also
contains continued production of the system, as well as deployment of and training on
the system. Refinement of the design begins here. Manufactured items are sent to the
deployment system, which delivers them to users. One of the most difficult problems
to solve adequately from the perspective of the users is how to deploy upgraded items
while the existing items are being phased out. Training items are sent to the training
system (if needed), which produces trained operators and maintainers (O/M). Users
and maintainers provide feedback about what they like and do not like, which is used
during the refinement phase to make changes to the design, leading to upgrades of the
system.

Finally, the bill payer of the system decides when the useful life of the system is
over, beginning the initiation of the last period. The retirement phase may take
considerable time. As the system is removed from service, the deployment system is
used to transport the system from users to retirers. Note that this retirement process
can be very orderly, as is the case with military systems. Alternatively, the retirement
can be user-driven as is the case with most commercial products such as cars and
computers.

Wenzel et al. [1997] describe the cycle model (see Fig. 1.18) that attempts to
capture many of the issues discussed in this chapter. The cycle model stresses five
cycles that include the elements of design and integration that have already been
discussed as well as the management aspects of systems engineering. Table 1.8
describes these cycles in some detail. The first cycle satisfies the key elements of
stakeholder satisfaction, beginning with the determination of the need and ending
with the delivery of the system to satisfy those needs. The development functions
on this first cycle include requirements development and creation of the system
design. The second cycle (verification) addresses the modeling, prototyping, and
testing, which must be part of the development process; these cycles within the
verification cycle enable the requirements and the solution to be refined and
verified. The third cycle enables management to insert technologies and external
resources into both the development and the manufacturing processes to improve
the chances of stakeholder satisfaction, subject to the constraints faced by man-
agement. The controlling cycle provides configuration management throughout
development and enables product releases and updates throughout the system’s life
cycle. Finally, top-level management and stakeholder review and approval are
included in the final cycle.
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FIGURE 1.18 Cycle model of systems engineering. (After Wenzel et al. [1997].)

TABLE 1.8 The Cycles of the Cycle Model

Design and Integration Cycles Management Cycles

1. Core Cycle: realization of stakeholder
needs, followed by requirements
development, design, manufacturing and
product delivery

3. Technologies and External Resources
Cycle: insertion of the appropriate
technologies and resources into the systems
engineering process

2. Verification Cycle: analysis, simulation,
prototyping, integration, and testing

4. Controlling Cycle: configuration
management of the design process and
multiple product releases and updates

5. Strategic Check Cycle: management
assessment and approval of product
development
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1.8 DESIGN AND INTEGRATION PROCESS

Recall the design and integration Vee as identified by Forsberg and Mooz [1992]. The
Vee model defines five major functions for the design or decomposition phase, as
shown in Figure 1.19. Note that these functions must be repeated for each stage of the
decomposition process. A modification of the more detailed design functions, as put
forth by Forsberg and Mooz [1992], is shown in Figure 1.20. This figure also shows
how the Forsberg andMooz [1992] functions are grouped to be comparable to the five
analytical systems engineering functions.

The five detailed functions that comprise the design phase must address up to five
different dimensions of data (see van den Hamer and Lepoeter [1996]): (1) system
variants when the system is a member of a product family (e.g., personal computers
and automobiles), (2) system versions when the system is a product that evolves over
time (e.g., operating systems), (3) views of the system (e.g., data and process), (4)
hierarchical details or onion peels (e.g., system and subsystem), and (5) status of the
data (e.g., stable and approved versus tentative or draft).

For many systems, five modeling views [Karangelen and Hoang, 1994] are
critical for capturing the totality of a system: environment, data or information,
process, behavior, and implementation. The environmental view captures the
system boundary, the operational concept, and the objectives of the system’s
performance. The data or information view addresses the relationships among
the data elements that cross the system’s boundary and those that are internal to the
system; this view can be critical for information and software systems, but
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FIGURE 1.19 Five major functions of the engineering design of a system.
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incidental to mechanical systems. The process view examines the functionality of
the system and is used to create the functional architecture. The behavior view
addresses the control structures in which the system’s functions are embedded. The
implementation view examines the marriage of the physical architecture with the
process and behavior views; the allocated architecture represents the implementa-
tion view. In later chapters, these views and the tools that are used to execute them
will be addressed.

Figure 1.21 shows a modification of the Forsberg and Mooz [1992] integration
functions. Most of this activity is dedicated to the verification that the integrated
components, elements, and segments meet the derived requirements (specifica-
tions) of the systems engineering process. The final iteration of the integration
functions is devoted to the validation of the system – Is this system the system
the stakeholders wanted? Will they accept the system? The answer to this
question is substantially determined by the extent to which the systems engineers
have kept the stakeholders involved throughout the process. The greater the
involvement, the more the stakeholders understand what trade-offs were made
and why.

There are four primary methods for testing the system to complete the verification
and validation process: instrumented test using calibrated equipment, analysis and
simulation using equations and computers, demonstration or functional test using
human judgment, and examination of documentation using human judgment. As
integration moves from CIs and approaches the system level, human judgment must
be relied upon more and more because the cost of instrumented testing on the system
as a whole is prohibitive.
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FIGURE 1.21 Functions of the systems engineering integration process.
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1.9 TYPES OF SYSTEMS

There are many possible ways to categorize systems:

natural vs. man-made

closed vs. open

static vs. dynamic

simple vs. complex

reactive vs. nonreactive

precedented vs. unprecedented

safety-critical vs. not safety-critical

high reliability vs. not high reliability

high precision vs. not high precision

human-centric vs. non-human centric

high durability vs. not high durability

However, the process described in this book should work for all “man-made” systems,
with some tailoring. Clearly, a great deal of more engineering and systems engineer-
ing is required for an unprecedented system (the Shuttle) than for a precedented one
(new automobile).

Magee and de Weck [2004] propose a two-dimensional classification structure of
systems that was derived from the work of several other authors. The two dimensions
include the character (energy, matter, etc.) of the major output of the system and the
type of operation or process being employed to produce this major output. The major
outputs of Magee and de Weck were broadened to include the following:

• Matter (M): physical objects, including organisms that exist unconditionally

• Energy (E): stored work that can be used to power a process in the future

• Information (I): anything that can be considered an informational object

• Value (Monetary) (V): monetary and intrinsic value object used for exchange

Magee and de Weck [2004] also broadened the list of operands or process
manipulators to include the following:

• Transformation Systems: transform objects into new objects

• Distribution Systems: provide transportation, that is, change the location of
objects

• Storage Systems: act as buffers in the network and hold/house objects over time

• Market Systems: allow for the exchange of objects mainly via the Value layer

• Control Systems: seek to drive objects from some actual state to a desired state

Table 1.9 provides an example for each of the 20 combinations in the Magee and de
Weck structure.
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1.10 SUMMARY

Engineering involves the practice of applying scientific theories to the development,
production, deployment, training, operation and maintenance, refinement, and retire-
ment of a system or product and its parts. The engineering discipline that addresses the
creation of a system that meets the needs of defined stakeholders is systems
engineering. The engineering of a system involves both the design of the system’s
components and configuration items and the integration of those CIs and components
into a qualified system acceptable to the stakeholders across the life cycle of the
system.

The Vee model of the engineering of a system defines the design and integration
processes of TTDSE and form the basis for this book. These processes are iterative.
As illustrated in Figure 1.22, design starts as a top-down process and is analogous to
peeling an onion to uncover the specifications associated with increasingly detailed
components of the system. However, the trade-offs and decisions associated with the
design process are so complex and intertwined that there is significant movement
between low- and high-level design issues. The key to successful design is the
isolation of design decisions using sound engineering principles so that this move-
ment between low- and high-level design issues is consistent with the needs of the
development process. There are logical arguments for decreasing development costs
by spending the money to conduct a reasonable, systematic engineering effort of the
total system.

Multiple types of architectures are introduced to differentiate between what the
system does (its functions) and what the system is (its resources) and how the
functions are allocated to the resources to enhance the cost-effectiveness of the system
in the eyes of the stakeholders. The functional and physical architectures are
developed in parallel to enhance their integration into the allocated architecture.

TABLE 1.9 System Classification by Magee and de Weck [2004]

Major Process
and Operand

Major Output

Matter Energy Information Value

Transform or
process

Manufacturing
plant

Power
plant

Computer chip Mint

Transport or
distribute

Package
delivery
company

Power grid
system

Telecommunication
network

Banking
network

Store or house Dam Dam Public library Bank
Exchange or
trade

Internet auction
company

Energy
market

News agency Stock
trading
market

Control or
regulate

Health care
company

Energy
agency

International
Standards
Organization

Monetary
regulator
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Requirements are used to define the design problem being solved at various levels
of detail. Mission requirements define the problem in terms most meaningful to the
stakeholders, terms that relate to enabling the stakeholders to accomplish tasks better,
faster, and cheaper. Stakeholders’ requirements are the next level of details that
constrain specific characteristics of the system so as to achieve the mission require-
ments. Derived requirements relating to the system and specific components are even
more detailed constraints upon the system. In addition to the requirements related to
the system, qualification system requirements must be developed to address the
verification, validation, and acceptance of the system during integration.

The integration process receives less attention than the design process and is often
viewed as the yin (weaker, passive side) of development, design being the yang
(stronger, active side). However, integration cannot be passive after an active design
process. Rather, design and integration must proceed in harmony; integration, if done
well, actually improves as well as checks the design process.

There are at least five ways that good systems engineering adds value. First is
defining the problem clearly and well and then finding a good solution that balances
the needs of varying segments of stakeholders and the multiple engineering disci-
plines. Second, systems engineers serve as a communication interface among stake-
holders and engineers. Finding showstoppers that are present in the design and getting
them fixed is the third value adding element. Finding design errors early when these
errors are still relatively cheap to fix is the fourth. Fifth, systems engineers help
identify high-risk elements of the design and develop risk mitigation strategies.
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System
Requirements

Configuration Item
Requirements

Derived
Requirements

Allocated
Architecture

Operational

Concept

System

Components

Configuration Items

Integration and Qualification Systems

FIGURE 1.22 Summary of TTDSE.
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CASE STUDY: HUBBLE TELESCOPE TESTING DECISIONS

Lyman Spitzer of PrincetonUniversity (1946) suggested that a telescope in space
would eliminate the atmospheric effects that blurred images seen on Earth. The
National Academy of Sciences proposed launching a telescope into space in
1972. NASA began the Hubble Space Telescope in 1977. After many project
mishaps, theHubblewas ready to be launched in1986.However, the explosionof
the shuttleChallenger delayed the launch by 4 years. InApril of 1990, theHubble
was launched; onMay 20, themoment of truth arrived. At first the scientists were
thrilled with the data that were arriving from space; after further work the
scientists however noticed a spherical aberration. The Hubble was providing a
resolution of 3 times that available with telescopes on the ground, but the
originating requirement for Hubble had been 10 times Earth-based telescopes. In
June 1993, the shuttleEndeavor carried a repair team to the hobbled Hubble. The
astronauts spent 3 days of painstaking efforts to install a corrective “contact lens,”
replace the original Wide-Field and Planetary Camera, and replace the original
solar panels to eliminate jitter twice each orbit as the satellite crossed from
daylight to darkness. These repairs cost over $50 million.

When the first images from Hubble were examined, the scientists knew that
Hubble needed some adjustment. Several focusing tests were proposed. The
telescope was taken completely out of focus and then brought slowly back into
focus; this is a common approach to check for errors in any optical device.
Meanwhile, another scientist wrote a software program to simulate the images
from a telescope with a spherical aberration in its mirrors. The test images were
amazingly similar to the simulated images, leading to a devastating conclusion.

The Hubble telescope is a two-mirror reflecting telescope, a special type of
Cassegrain telescope called a Ritchey–Chretien telescope. The primary mirror (96
inches) and secondary mirror were to be hyperbolic in shape; the manufacturing
process is to grind the mirror as close as possible to this shape and then polish the
mirror to remove all possible aberrationswithin the specified tolerances.During the
grinding and polishing processes, tests were conductedwith a computer-controlled
optical device, a reflective null corrector consisting of two small mirrors and a tiny
lens. Unfortunately, the spacing between the lens and the mirrors was off by 1.3
millimeters. The aberration, 0.001 arcseconds from the design specification,
resulted in an error 100,000 times the size of the desired 1/50 wavelength of light.

Why was a mistake this large not detected? Photos taken during the
manufacturing process in 1981 showed the flaw, but the flaw was not noticed
in the photos or other testing. A knife-edge test was conducted on the main
mirror. This sophisticated and complex test produced results showing that the
null corrector results were incorrect. Either Perkin-Elmer (the prime contractor)
thought these results invalid and did not report them to NASA, or NASA
managers ignored them on the grounds that the knife-edge test results were not
correct. Two other tests could have been conducted but were not. Eastman-
Kodak was a competing contractor and had built an identical primary mirror.
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PROBLEMS

1.1 Compare and contrast thewaterfall, spiral, cycle, andVeemodels of the systems
engineering process. In particular, what (e.g., functions performed, time
sequence of functions, outputs produced, interaction with stakeholders) is
the same in each of these processes and what is different? Are there some
categories of systems forwhichoneprocesswouldbebetter than theothers?Use
outside references to gain more information on the waterfall and spiral models.

1.2 Describe your personal experience with a system whose capability disap-
pointed you. In your opinion, was this disappointment a design mistake made
by the system’s designers or the result of a trade-off decision that had to be
made during the system’s design. For example, a keyboard that is too small to
be as usable as you would like on a laptop computer is the result of a trade-off
decision. However, a keyboard with a poor touch for typing is a design
mistake. Consider the following examples:

Example Design Mistake Trade-Off Decision

Alarm Clock/Radio – The
requirements are to show
the time, to provide radio
reception and listening
capabilities, and to serve as
an alarm clock. On this
particular unit, there are two

This is a design flaw.
Requirements development
should have established
this as a design issue.
Testing should have
identified the problem

The primary mirrors could have been swapped and the null corrector tests rerun.
The second test was an end-to-end test conducted on the assembled mirrors and
other components. This test was deemed too expensive; NASA claimed the test
would have cost more than $100 million, but soon had to back down when
independent estimates were 10 times lower, and the Air Force could possibly
have conducted tests using existing equipment.

This testing situation was aggravated and explained by management con-
flicts and mistakes within NASA and by cost overruns. NASA devised a
management structure that included two centers, Goddard and Marshall.
Marshall was given primary responsibility even though Goddard had more
experience in systems of this type. Lockheed Aerospace was awarded the prime
contract. Eastman-Kodak and Perkin-Elmer competed for the job of the primary
mirror. Eastman-Kodak had more experience, but Perkin-Elmer provided a
lower bid. Eastman-Kodak was given a contract to produce a backup primary
minor, a risk mitigation strategy that could have been proven very insightful if
the flaw in the Perkin-Elmer mirror had been detected [Feinberg, 1990;
Petersen and Brandt, 1995; Sinnott, 1990].
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(Continued )

Example Design Mistake Trade-Off Decision

buttons on the top to adjust
the time. The buttons can be
depressed easily, both on
purpose and accidentally.
Accidental depressions will
cause the alarm to activate
at the wrong time

Alarm Clock/Radio – The
sleep timer, timed play and
record, and clock display
are only available via the
remote control. If the
remote is lost, these
features cannot be changed

This may have been a
design flaw if not
consciously addressed

This may have been a
trade-off decision if
placing controls on the
unit was too costly

Digital Audio System – The
user wants a repeat button
that causes the repetition of
a track from a CD; the
current repeat button replays
the entire CD. The user also
wants a means to fast
forward or rewind a few
seconds of a track on a CD

A repeat button for a track
of a CD is quite common,
so this was probably a
design mistake

Fast forwarding or
rewinding a few seconds
could have been a trade-
off decision

Stereo System – The
components of the system
can be turned on
separately, but there is only
one power off button that
controls the entire system

This is a design flaw; if the
components can be turned
on separately, they should
be able to be turned off
separately

1.3 More often than desired, engineers are required to estimate quantities related to
some aspect of a system because the necessary data are not available. Systems
engineers often have to estimate quantities related to the meta-system. There has
been quite a bit of attention to estimation in K-12; a common example is to
estimate thenumber of gas stations in the48continental states of theUnitedStates.

(a) How would you go about this? What are several ways to estimate this
quantity? Besides information about how many people or how many cars
there are in the United States, what other information do you know that
might be related to the number of gasoline stations?

(b) Search the web and make a list of ways that other people have tackled this
problem. Does this list give you any new ideas? What are they?
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