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1
MATHEMATICAL OPTIMIZATION 
FUNDAMENTALS

This chapter reviews the fundamentals of mathematical optimization and modeling. 
It starts with a biological network inference problem as a prototype example to high-
light the basic steps of formulating an optimization problem. This is followed by a 
review of some basic mathematical concepts and definitions such as set and function 
properties and convexity analysis.

1.1  MATHEMATICAL OPTIMIZATION AND MODELING

Mathematical optimization (programming) systematically identifies the best solution 
out of a set of possible choices with respect to a pre‐specified criterion. The general 
form of an optimization problem is as follows:

	

minimize or maximize

subject to

f

h

g

S

x

x

x

x

0

0

	

where

•• x is a N‐dimensional vector referred to as, the vector of variables.

•• S is the set from which the elements of x assume values. For example, S can be 
the set of real, nonnegative real or nonnegative integers. In general, variables in 
an optimization problem can be continuous, discrete (integer) or combinations 
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2� MATHEMATICAL OPTIMIZATION FUNDAMENTALS

thereof. The former is used to capture the continuously varying properties of a 
system (e.g., concentrations), whereas the latter is used for discrete decision 
making (e.g., whether or not to eliminate a reaction).

•• f(x) is referred to as the objective function and serves as a mathematical description 
of the desired property of the system that should be optimized (i.e., maximized or 
minimized).

•• h h h hL( ) ( ), ( ), , ( )x x x x1 2

T
 and g g g gMx x x x1 2( ), ( ), , ( )

T
 are con-

straints that must be satisfied as equalities or one‐sided inequalities, respec-
tively, and represent the feasible space of decision variables.

Any vector x that lies in S and satisfies h(x) and g(x) is called a feasible solution. 
In addition, if vector x minimizes (maximizes) the objective function, it is an optimal 
solution point to the optimization problem with an associated optimum solution 
value f(x). There are different classes of optimization problems depending on the 
(non)linearity properties of the objective function and constraints as well as the 
presence or absence of discrete (i.e., binary or integer) and/or continuous variables. 
Standard classes of optimization problems that generally require different solution 
techniques are as follows:

(i)  Linear programming (LP) problems involve a linear objective function f(x) 
and constraints h(x) and g(x) as well as only continuous variables x (Chapter 2).

(ii)  Mixed‐integer LP (MILP) problems are LP problems with some of the variables 
assuming only discrete values (Chapter 4).

(iii)  Nonlinear programming (NLP) problems involve a nonlinear objective 
and/or some nonlinear constraints while all variables are continuous 
(Chapter 9).

(iv)  Mixed‐integer nonlinear programming (MINLP) problems are NLPs with some 
variables assuming only discrete values (Chapter 11).

Mathematical optimization has been used extensively to model a wide variety of 
problems in science and engineering. The development of an optimization formula-
tion modeling a real‐life problem often needs to be traversed multiple times as new 
data, modified problem descriptions and re‐interpretations due to unanticipated 
optimal solutions come to play. This book concentrates on mathematical optimiza-
tion applications for the analysis and redesign of biological systems, with a special 
emphasis on metabolic networks. Example 1.1 describes the basic steps for formu-
lating a biological network inference task as an optimization problem.

Example 1.1
Given a set of genes and time‐course DNA microarray data, formulate an optimi-
zation problem to identify the regulatory interaction coefficients between genes 
best explaining the observed gene expression levels. The schematic representation 
of time‐course DNA microarray data for a sample gene interaction network is 
given in Figure 1.1.
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MATHEMATICAL OPTIMIZATION AND MODELING� 3

Solution: A stepwise description is provided that codifies the sequence of tasks 
carried out for constructing the optimization model whose solution answers the 
problem.

Sets:
The first task in deriving the optimization formulation of a problem is defining a 
number of sets indicating the essential elements of the problem over which the 
parameters, variables and/or constraints are defined. Two sets can be defined for this 
problem as follows:

	

Set of genes

Set of time points f

: | , , ,

: | , , ,

I

T

i i N

t t T

1 2

1 2 	

Here, N denotes the number of genes in the network.

Parameters:
Parameters (some of which are indexed over sets) encode the available data for the 
problem. The parameters that can be defined for this problem include the following:

X
it
: Expression level of gene i I  at time point t T .

LB
ij
: Lower bound on the interaction coefficient C

ij
 (see the next section for the 

definition of C
ij
). Subscript j assumes values from set I.

UB
ij
: Upper bound on the interaction coefficient C

ij
.

Δt: Sampling interval assuming that it is constant throughout the experimental 
DNA microarray data. For convenience we set Δt = 1.

Variables:
In contrast to parameters that have known values, variables typically only have initial 
values and/or lower/upper bounds, and their optimal values are obtained upon solving 
the optimization problem. As was the case with parameters, the introduction of sets 
allows for the grouping of multiple unknowns under the same variable name. For the 
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Cij
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Figure 1.1  (a) An example of a simple gene regulatory network. Nodes and edges represent 
genes and interactions between genes, respectively. C

ij
 denotes the interaction coefficient of 

genes i and j (i.e., how gene j is affecting gene i). (b) A schematic representation of time‐course 
DNA microarray expression data for two genes. These data are usually presented as the log ratio 
of the expression level of a gene at each time point with respect to a reference.
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4� MATHEMATICAL OPTIMIZATION FUNDAMENTALS

problem in hand, we define two different categories of variables including a continuous 
and a discrete set of variables. The continuous variable set is defined as follows:

C
ij
: Interaction coefficient between genes j I  and i I  (effect of gene j on gene i), 

where

	

C j i

C j i

C

ij

ij

ij

0

0

0

if gene activates gene

if gene represses gene

iff gene has no effect on genej i 	

The binary variables y
ij
 capture the presence or absence of an interaction between 

genes i and j as follows:

	
y

j i
ij

1

0

if gene affects gene

otherwise 	

Constraints:
Constraints are defined to enforce the conditions that need to be satisfied for the 
problem. A constraint for this example is needed to impose the assumption that the 
rate of change in the expression level of each gene is a linear function of the contri-
butions of all genes in the network (including itself):

	

dX

dt
C X i I t Tit

j I
ij jt , , 	 (1.1)

Here, we approximate the derivative terms with algebraic linear constraints using 
a finite (forward) difference approximation:

	
, 1 ,

f, , 1, , 1i t i tit
X XdX

i I t T
dt t

	 (1.2)

This implies that the identification of C
ij
 requires solving the following under‐

determined set of linear equalities (note that the system of equations is under‐determined 
because the number of pairwise interactions is much larger than the number of equations):

	
X X t C X i I t Ti t i t

j I
ij jt, , , , , ,1 1 1f 	 (1.3)

An additional constraint is introduced to model the presence or absence of an 
interaction for each pair of genes enforcing the definition of binary variables y

ij
 :

	 LB y UB yij ij ij ij ijC i j I, , 	 (1.4)

Observe that if y
ij
 is equal to zero, then C

ij
 is forced to assume a value of zero; whereas 

when y
ij
 is equal to one, then C

ij
 is free to assume any value between LB

ij
 and UB

ij
.

Objective function:
Given that this is an under‐determined system of equations, there can be infinite sets 
of C

ij
 all satisfying the given constraints. Optimization can be used to select one out 
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MATHEMATICAL OPTIMIZATION AND MODELING� 5

of the many feasible values for C
ij
 that satisfies an optimality criterion. Here, we invoke 

the parsimony assumption whereby we accept as the most relevant solution the one that 
minimizes the total number of regulatory interactions. The total number of regulatory 
coefficients can be obtained by summation over all binary variables.

Optimization model (formulation):
By collecting all the constraints described earlier, the optimization problem is stated 
as follows:

	
, 1 , f

minimize 1

subject to

, 1, , 1,

ij
i I j I

i t i t ij jt
j I

y P

X X t C X i I t T

	

(1.3)

	

LB UBij ij ij ij ij

ij ij

y C y i j I

y C i j I

,

,

,

, ,0 1, ℝ �

(1.4)

The solution of this problem will provide the presence or absence of a regulatory 
interaction between each pair of genes in the network (captured by binary variable 
y

ij
) and the magnitude and sign (i.e., activation vs. inhibition) of these interactions 

(captured by the continuous variables C
ij
).

Exploring trade‐offs between prediction error and model complexity:
It is important to emphasize that the solution of an optimization problem always 
needs to be scrutinized in terms of both mathematical accuracy and the relevance to 
the problem. For example, a key concern for this example is whether the obtained 
coefficients indeed capture biologically relevant interactions or are simply artifacts 
of the parameter fitting process. In addition, one might be interested to know whether 
the identified regulatory coefficients are unique or there exists alternate optimal sets. 
Optimization provides ways to address these types of questions by trading‐off accu-
racy versus model complexity (i.e., parsimony in this case). This can be accom-
plished for this example by exploring how the total number of non‐zero C

ij
’s decrease 

upon allowing for some degree of violation in the equality constraints. Introducing 
slack variables Sit  and S S Sit it itwith , 0  for Constraint 1.3 allows for both positive 
and negative departures from equality:

	
X X t C X S S i I t Ti t i t ij

j I
jt it it, , , , , ,1 1 1f

	 (1.5)

In addition, since we would like to identify a regulatory network with fewer 
interactions (e.g., one less than the interactions identified for the original problem 
represented by ymax), we can add the following constraint:

	 i I j I
ijy ymax 1	 (1.6)
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6� MATHEMATICAL OPTIMIZATION FUNDAMENTALS

The re‐formulated optimization problem aims to identify a more compact 
regulatory interaction network while minimizing the departure from experimental 
data and is described as follows:

	

minimize

subject to
fi I t T T

it it

i t i t

S S P

X X

2

1, , tt C X S S i I t Tij
j I

jt it it , , , ,1 1f

	

(1.5)

	 LB UBij ij ij ij ijy C y i j I, , 	 (1.4)

	

i I j I
ij

ij ij it it

y y

y C S S i j I

max

,

1

0 1 0, , , , ,ℝ
	

(1.6)

Note that in contrast to [P1], [P2] minimizes the total violation of the Constraint 
1.3. By solving [P2] for different network sizes specified by the right‐hand side of 
Constraint 1.6 and by subsequently plotting the total error in prediction (i.e., the 
objective function value of [P2]) against the number of nonzero regulatory interac-
tions (i.e., sum of the binary variables), a monotonically decreasing curve is obtained, 
as shown in Figure 1.2. The error will be quite high for very sparse models, but will 
approach zero as the total number of regulatory interactions approaches ymax. In gen-
eral, there tends to be a break point in the curve beyond which additional nonzero 
regulatory interactions improve the error only slightly as shown in Figure  1.2. 
This implies that once this point (or a desired accuracy threshold) is reached, addi-
tional parameters are likely to “overfit” rather than capture information in the data.

Break point

ymax – 1 ymax

E
rr

or
 (∑

   
∑

 (S
+ it

 +
 S

– it
) )

i∈
I

t∈
T

–{
T

f}

Network complexity (∑ ∑ yij)i∈I j∈I

Figure 1.2  Schematic representation of the error as a function of the number of nonzero 
regulatory coefficients for the problem of Example 1.1.
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BASIC CONCEPTS AND DEFINITIONS� 7

In general, by adopting an optimization‐based description of the problem, 
significant versatility is afforded in tailoring the solution to the specifics of the 
problem and/or exploring various trade‐offs. For example, certain regulatory interac-
tions can be excluded or pre‐postulated (e.g., the interaction of known transcription 
factors with known genes) by setting the related binary variable y

ij
 to zero or one, 

respectively. Similarly, the total number of genes affecting the expression of a gene i 
can be restricted to a pre‐specified number M using the following constraint:

	 j I
ijy M 	 (1.7)

Alternate representations of this problem can be explored to account for nonlinear 
interactions, noise in gene expression data, time delay in regulatory interactions, 
and more. Interested readers are referred to the related articles [1–7] for details.� □

The purpose of this illustrative example was to provide an introduction to the itera-
tive process of formulating optimization problems, assessing their output and modi-
fying their structure to address the follow‐up questions when dealing with a real‐life 
problem. Next, basic definitions and concepts necessary for correctly describing 
optimization models and assessing the existence of local and/or global optimal solu-
tion points are introduced.

1.2  BASIC CONCEPTS AND DEFINITIONS

We start by introducing basic properties of sets and functions necessary for establishing 
conditions for the (i) existence and (ii) uniqueness of a global optimum value. These 
definitions also introduce formal mathematical language and reasoning used in optimi-
zation textbooks and articles.

Let S be an arbitrary subset of ℝN. The concepts and properties for S are defined 
in the text.

1.2.1  Neighborhood of a Point

Given a point x in set S (i.e., x S), an ‐neighborhood around x (denoted by B(x,  )) 
is defined as follows (see Fig. 1.3):

	 B Sx y y x y, and| 	

B(x,  ) is in essence the set of points in set S within an N‐dimensional sphere centered 
at point x with a radius of .

1.2.2  Interior of a Set

A point x is in the interior of a set S (denoted by int(S)) if and only if there exists an 
‐neighborhood around x with B Sx,  for some 0.
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8� MATHEMATICAL OPTIMIZATION FUNDAMENTALS

This qualitatively means that a “ball” of nonzero size can be constructed around 
point x so as all points within it belong to set S. This implies that interior of sets 
exclude “boundary” points.

1.2.3  Open Set

A set S is open if and only if int( ) .S S
This implies that for an open set, nonzero neighborhoods can be constructed 

around each point so as every point in the neighborhood belongs to the original set. 
Thus, open sets are identical to their interior as no boundary points are included. For 
example, set (0,1) is an open set as neighborhoods can be constructed for every point 
in it that are fully contained within the set by making  appropriately small.

1.2.4  Closure of a Set

A point x is in the closure of set S (denoted by cl(S)) if and only if S B x,  
for every 0.

The closure of a set can be thought of as all the points in a set and all adjacent 
boundary points irrespective of whether they are part of the original set.

1.2.5  Closed Set

A set S is closed if and only if cl S S.
In essence, a closed set contains all of its boundary points, and therefore its clo-

sure is identical with the original set. For example, set [1,2] is a closed set, whereas 
set (1,2] is neither open nor closed.

1.2.6  Bounded Set

A set S is bounded if and only if for every two points x x1 2, S there exists M 0 
such that x x1 2 M.

A set is bounded if any two points within it are only a finite distance apart. This 
implies that the set of all real numbers ℝ is unbounded.

1.2.7  Compact Set

The set S is said to be compact if and only if it is both closed and bounded.

x

Figure 1.3  Schematic representation of the ‐neighborhood of a point x S  in a two‐
dimensional space.
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BASIC CONCEPTS AND DEFINITIONS� 9

Set compactness is important because it guarantees the existence of an optimum 
solution point when an objective function (that is continuous) is optimized over it. 
Next, we transition from set properties to function properties underlying optimality 
conditions for an optimization problem.

1.2.8  Continuous Functions

Function f S: ℝ is continuous at a point x S0 , if for every 0 there exists 0 

such that x x x0 for S implies that f f x( ) ( )x 0 .
The definition of function continuity implies that no matter how small an arbitrary 

number ε is chosen, a point x close to x
0
 (i.e., in the δ‐neighborhood of x

0
) can be 

found such that the difference between the function values at x
0
 and x is less than ε. 

Function continuity can be thought of as the absence of any “breaks” in the line that 
plots the function. As mentioned before, continuous functions optimized over com-
pact, nonempty sets are guaranteed to have an optimal solution value and point.

1.2.9  Global and Local Minima

Let f S: ℝ, where S is a nonempty subset of ℝN.

•• A point x* S is a global minimum point of f if for every point  
x x xS f f, ( ) ( )* . f(x*) is referred to as the global minimum value of f over set S.

•• A point x* S is a local minimum point of f, if there exists 0 such that for 
every point x xN S( )*,  we have f ( ) ( )x xf * .

Therefore, local minimality applies only around a neighborhood N S( * )x ,  of 
the minimum point, whereas global minimality applies over the entire set S. It is pos-
sible to have multiple local optimum points and values; however, there is a unique 
global minimum value. This value may be attainable at multiple points (alternate 
global minimum points). If we have strict inequalities in the earlier definitions, 
the point x* is referred to as a strict global or local minimum, respectively. Note that 
global and local maxima are defined in a similar manner.

1.2.10  Existence of an Optimal Solution

After introducing concepts related to set compactness, function continuity and 
definitions of optimality, the following optimum solution existence criterion can be 
formally stated. Consider the following general unconstrained optimization problem:

	
min maxor

x S

f x
	

where S Nℝ  and f S: ℝ is continuous on S. An optimal solution x* exists if S is 
a nonempty and compact set.
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10� MATHEMATICAL OPTIMIZATION FUNDAMENTALS

This implies that unconstrained optimization problems over compact sets are 
guaranteed to have an optimal solution. In practice, many (constrained or uncon-
strained) optimization problems are originally described over unbounded or open 
sets with sometimes discontinuities in the objective function. It is a good practice 
to set finite lower and upper bounds on all variables (i.e., set compactness) and 
eliminate discontinuities in the objective function to ensure the existence of an 
optimal solution.

The derivation of uniqueness criteria for an optimum solution value (i.e., a single 
local optimum that is also a global optimum) hinges upon the concept of convexity. 
Testing for convexity is facilitated by the establishment of differentiability properties 
for the objective function (and constraints).

1.3  Convex Analysis

The concept of convexity is central in optimization because it provides the means for 
proving the existence of a global optimal solution value (or point). Here, we provide 
a brief description of convexity of (i) a set, (ii) a function at a point and (iii) a function 
over an entire set. Interested readers are encouraged to refer to optimization text-
books such as Refs. [8.14] for more details.

1.3.1  Convex Sets and Their Properties

Convex Combination of Two Points  Let x x1 2, S. Any point ( )1 1 2x x  with 
[ ]0 1,  is referred to as a convex combination of x

1
 and x

2
. If ( )0 1, , then it is a 

strict convex combination.

Convex Set  Set S is convex if the line segment connecting any two points in the set 
also lies completely within the set. In mathematical language, S is a convex set if and 
only if for every two points x x1 2, S their convex combinations ( )1 1 2x x  for 
every [ ]0 1,  is also within S. If this condition holds for every strict convex 
combination of x

1
 and x

2
, then the set S is a strict convex set. Any set not satisfying 

these requirements is a nonconvex set. Examples of convex and nonconvex sets are 
shown in Figure 1.4.

Special cases of convex sets frequently arise in the treatment of LP problems 
(i.e., extreme points, hyperplanes, half‐spaces, rays, extreme directions and convex 
cones). The following provides their definitions.

Extreme Points  A point x S  where S is convex, is an extreme point of S if it 
cannot be represented as the strict convex combination of two distinct points in S. 
Therefore, if x x x( )1 1 2 for ( )0 1,  and x x1 2, S, then x x x1 2 [8].

Hyperplanes  Hyperplanes are an extension of straight lines in ℝ2. A hyperplane H 
in ℝN is defined as H kN{ | , }x x a xℝ T , where 0a  and k ℝ. The vector a is 
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CONVEX ANALYSIS� 11

called the normal of H as it is the gradient of the linear function f ( )x a xT  and is 
thus normal to the hyperplane (see Fig. 1.5). Hyperplanes are a central concept in LP 
(Chapter 2) and in the analysis of metabolic networks arising in metabolite balances 
under steady state (Chapter 6).

Half‐Spaces  Each hyperplane divides ℝN into two half‐spaces. If H is a hyperplane, as 
defined earlier, then sets H kN{ | , }x x a xℝ T  and H kN{ | , }x x a xℝ T  are the 
corresponding half‐spaces and are convex (see Fig. 1.5). Sets H kN{ | , }x x a xℝ T  
and H kN{ , }x x a x | ℝ T  are open half‐spaces. The  imposition of any bounds 
(lower or upper) on the total metabolic flow through a metabolite (see Chapter 6) gives 
rise to a half‐space constraint.

Disc One point

Two pointAnnulus

Polyhedron

Nonconvex sets

Convex sets

Figure 1.4  Examples of convex and nonconvex sets.

H

a

a T
 x = k

H+

H–

x2

x1

Figure 1.5  A schematic representation of a hyperplane and its corresponding half‐spaces 
in a two‐dimensional space.
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12� MATHEMATICAL OPTIMIZATION FUNDAMENTALS

Example 1.2

H as defined in the following is an example of a hyperplane:

	

H

x

x

x

x

x

x

x x x

x

x
1

2

3

1

2

3

3
1 2 3

1

10 1 1 1ℝ , 22

3

10

x
	

The normal for H is as follows:

	

a

1

1

1 	

The half‐spaces defined by H are as follows:

	

H

x

x

x

x

x

x

x x x

x1

2

3

1

2

3

3
1 2 3

1

10 1 1 1ℝ , xx

x

H

x

x

x

x

x

x

2

3

1

2

3

1

2

3

10

ℝ3
1 2 3

1

2

3

10 1 1 1 10, x x x

x

x

x
� ◻

Rays  A ray is a set of points on a line defined as y y x d d| , ,0 0 0 , 
where x

0
 and d are the vertex and direction of the ray, respectively. It is easy to verify 

that the set describing a ray is convex.

Direction of a Convex Set  A nonzero vector d is called a direction of the convex set 
S, if a ray with vertex x

0
 and direction d is contained in S for every x S0 . Obviously, 

if the set S is bounded, it has no directions.

Extreme Direction and Extreme Ray of a Convex Set  The concept of an extreme 
direction is similar to that of an extreme point. A direction of a convex set S is called 
an extreme direction if it cannot be represented as a positive combination of any two 
distinct directions of S, that is, if d d d1 1 2 2, 1 2 0,  then d d d1 2 
(see Fig. 1.6). Any ray whose vertex is an extreme point and direction is an extreme 
direction is called an extreme ray.

Convex Cone  A convex set C is called a convex cone if x C for each x C for 
all 0 (see Fig. 1.7). Each cone contains the origin (for 0) and at least one ray 
with vertex at the origin. A convex cone can be viewed as a convex set where all 
points on a line linking the origin and any point in the set also belongs to the set. 
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CONVEX ANALYSIS� 13

The concepts of the extreme direction/ray of a convex cone are cornerstones in the 
extreme pathway analysis of metabolic networks [9–13].

Polyhedral Set and Polyhedral Cone  A polyhedral set is the intersection of a finite 
number of half‐spaces. A polyhedral cone is a polyhedral set, whose half‐spaces pass 
through the origin.

For example, set S N{ | , }x x Ax b xℝ , 0  is a polyhedral set as it is the inter-
section of N half‐spaces defined by Ax b and the half‐space defined by x 0. 
Extreme points of this polyhedral set are the intersections of the half‐spaces [8]. 
The feasible regions of LP problems correspond to polyhedral sets. As we will see 
in Chapter 2, the solution of LP problems always lies on an extreme point of this 
polyhedral set.

1.3.2  Convex Functions and Their Properties

Set convexity is important as it ensures that every point within the set (except extreme 
points) is reachable as a linear combination of others. This has implications for the 
design of algorithms that search for the optimum within convex sets. Proving set 
convexity is cumbersome as every two point combination must be tested. Functions 
provide a way of circumventing this challenge by testing for set convexity through an 
equivalent function convexity criterion.

Convex and Concave Function Definitions  A function defined over a convex set 
S is convex over set S if a line connecting any two points on the function lies above 

x2

x1

e2

e1

d

S

Figure 1.6  Examples of a direction (i.e., d) and extreme directions (i.e., e1 and e2) of a 
convex set S.

x2

x1

x

λx

Figure 1.7  An example of a convex cone. For any x C  and 0, we have x C.
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14� MATHEMATICAL OPTIMIZATION FUNDAMENTALS

the function. Stated formally, function f S: ℝ is convex in S if and only if for 
every two points x x1 2, S and every [ ]0 1,  we have:

	 f f fx x x x1 2 1 21 1 	 (1.8)

•• Function f is strictly convex if we have a strict inequality in Equation 1.8.

•• A function f S: ℝ is concave if and only if f  is convex.

•• A function f is convex at the point x S, if f f( ( ) ) ( )x x x1
( ) ( )1 f x  for each ( )0 1,  and each x S .

Figure 1.8 illustrates some examples of convex and nonconvex functions. It is 
possible for a function to be nonconvex over a set but convex within a defined 
subset. For example, the function shown in Figure 1.9 is nonconvex in set S

2
, but 

is convex within set S
1
. Another example is f x x( ) 3, which is nonconvex in ℝ, but is 

convex for x 0.

Nonconvex functions

Convex functions

Figure 1.8  Examples of convex and nonconvex functions.

x2

S1

S2

x1

Figure 1.9  Convexity of a function within different sets. This function is nonconvex in S
2
 

but is convex within S
1
 and at the point indicated on the graph.
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CONVEX ANALYSIS� 15

Properties of Convex and Concave Functions  If f g S, : ℝ are convex functions 
in S:

•• f g is convex in S.

•• λf is convex in S if 0.

•• max ( f(x), g(x)) is convex.

•• min ( f(x), g(x)) is generally nonconvex.

Connection of Set Convexity with Function Convexity  Let f(x) be a convex 
function in set S, then set S S f cc { ( ) }|x x , where c is an arbitrary scalar, is a 
convex set. The statement is true in the reverse direction as well. Set S

c
 is also referred 

to as the level set of function f.

Proof:  To prove that S
c
 is convex, we need to show that for any two arbitrary points 

x
1
 and x

2
 in S

c
 we have x x1 21( ) S for [ ]0 1, . In other words, we need to 

show that f c( ( ) )x x1 21 . Since x x1 2, Sc, we have 1( )f cx  and 2( )f cx . 
Therefore, f f c c c( ) ( ) ( ) ( )x x1 21 1 . Also, since x x1 2, S and f is 
convex, f f f( ( ) ) ( ) ( ) ( )x x x x1 2 1 21 1 . The proof then follows directly 
from the last two inequalities. The proof for the reverse direction is derived in a 
similar fashion.� ◻

This is a very important result because it allows testing for set convexity by testing 
the convexity properties of the functions defining the set as their level set. Note that 
since the intersection of convex sets is a convex set, the feasible region described by 
a number of constraints corresponding to convex level sets is also a convex set. This 
implies that the convexity of the region defined by a set of inequality constraints can 
be inferred by testing the convexity of each individual function. Figure 1.10 illustrates 
convex sets arising from level sets associated with convex functions.

Testing for the convexity of a function based on the definitions already provided 
is often cumbersome. Much more tractable representations of convexity can be drawn 
by using the partial (first and second‐order) derivatives of the function.

Differentiable Functions  Let S be a nonempty subset of ℝN. A function f S: ℝ 
is differentiable at x int( )S  if and only if f is continuous at x and for each Δx, 

x2 x2

x2 = c

f (x1)

x1

x1

Sc

Sc

f (x1, x2) = x1
2 + x2

2 ≤ c

Figure 1.10  Examples of convex level sets associated with convex functions.

0002603584.indd   15 12/11/2015   6:01:06 PM



16� MATHEMATICAL OPTIMIZATION FUNDAMENTALS

where  x x S, there exists a vector f ( )x  (called the gradient vector) and a 
function :ℝ ℝN  such that

	 f f f xx x x x x x xT 	 (1.9)

where

	
f

f

x

f

x

f

xN
x

x x x

1 2



T

	 (1.10)

and lim ( )x 0 0x x . This definition implies that the linear approximation 
(or first‐order Taylor expansion) of the function f at any point x x becomes equal 
to f ( )x x  as Δx approaches zero from any direction. Function f is differentiable 
on an open set S So  if it is differentiable for every point in S

o
. The gradient of a 

function points to the direction of greatest increase (steepest ascent). Similarly, the 
negative of the gradient vector represents the direction of the steepest descent (see 
Fig. 1.11). In addition, the gradient of a function at any given point is normal to the 
level sets of the function at that point.

Twice Differentiable Functions  Let f S: ℝ, where S is a nonempty set in ℝN. 
f is twice differentiable at x int S( ) if and only if f is continuous at x and for each 
Δx, where x x S, there exists a gradient vector T f ( )x , a N N  (symmetric) 
matrix H x( ) (Hessian matrix) and a function a N:ℝ ℝ such that

	 f f fx x x x x x H x x x x xT T1

2
2
� (1.11)

x2

x1

f (x) = 70
f (x) = 90

f (x) = 100f (x) = 80

∇f ( x )–

–∇f ( x )–

( x )–

Figure 1.11  The gradient vector at any given point is normal to the level set of the function 
at that point and represents the direction of the steepest ascent.
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where

	

H x

x x x

( )

( ) ( ) ( )

x

f

x x

f

x x

f

xN1 1 1 2 1

�

x

f

x x

f

x x

f

xN2 1 2 2 2

( ) ( ) ( )x x x�

�� � � �

�
x

f

x x

f

x x

f

xN N N N

( ) ( ) ( )x x x

1 2

	 (1.12)

and lim ( )x 0 0x x . As was the case for first‐order differentiability, second‐
order differentiability implies that the quadratic approximation (or second‐order 
Taylor expansion) of the function f at any point x x becomes equal to f x x( ) 
as Δx approaches zero from any direction.

Convexity Check for Differentiable Functions  Let f S: ℝ, where S is a non-
empty open convex set in ℝN. If f is differentiable for every point x in S, then it is 
convex at a point x S if and only if:

	 f f f Sx x x x x xT , 	 (1.13)

Similarly, f is concave at a point x S if and only if

	 f f f Sx x x x x xT , 	 (1.14)

In other words, a convex (concave) function always lies above (below) its first‐
order (linear) approximation at any point x S, respectively. Strict convexity or 
concavity can be established in a similar manner by converting the inequality signs 
in Constraints 1.13 and 1.14 to strict inequalities. Convexity or concavity of a 
function f at a given point x S can be extended for set S, if Constraints 1.13 or 1.14, 
respectively, apply for every point x S.

Convexity Check for Twice Differentiable Functions Based on Hessian Matrix  If a 
function f is twice differentiable within a set S, then the information contained within 
the second‐order partial derivatives can be used to test/prove the convexity of function 
f over the set. Let f S: ℝ, where S is a nonempty open convex set in ℝN and f is 
twice differentiable in S. Function f is convex in S if and only if its Hessian matrix 
H(x) is positive semidefinite (psd) for every point in S. (Note that a matrix M is psd 
if x xTM 0 for all x xS Nℝ , 0.)

Proof:  (a) We first provide the proof in the forward direction, that is, we show that 
if f is convex, then H(x) is psd for every point in S. Let x be an arbitrary point in S. 
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18� MATHEMATICAL OPTIMIZATION FUNDAMENTALS

It  follows from the convexity of f that f f f S( ) ( ) ( ),( )x x x x x x xT  
(see Equation 1.13). Also, since f if twice differentiable, we have (see Equation 1.11):

	
f f fx x x x H x x x x xT T

x x x x x
1

2
2

	

Therefore, by combining the last two expressions, we have 
1

2
( ) ( )( )x x H x x xT

( )x x x
2

0. As x approaches x, function ( )x x  approaches zero implying 

that ( ) ( )x x H x x xT 0 which completes the proof. (b) The proof in the reverse 
direction proceeds in a similar fashion.� ◻

A concave, strictly convex or strictly concave function is associated with a negative 
semidefinite (nsd), positive definite (pd) or negative definite (nd) Hessian matrix, respec-
tively. A matrix is psd, nsd, pd or nd if all of its eigenvalues are nonnegative, nonpositive, 
positive or negative, respectively. A matrix that is neither psd nor nsd is called indefinite. 
This result enables checking the convexity properties of a function (and consequently of 
a set) by inspecting the eigenvalues of the corresponding Hessian matrix.

Example 1.3
Check whether the following function is concave or convex:

	 f x x x x x x x x1 2 3 1
2

2
2

3
2

1 22, , 	

Solution: This Hessian matrix for this quadratic function is as follows:

	

H

2 2 0

2 2 0

0 0 2 	

The eigenvalues of the Hessian matrix can be obtained by solving the characteristic equation 
det( )H I 0, where det represents the determinant of a matrix. The eigenvalues of the 
Hessian matrix are 0 2 4 0, ,  implying that it is psd and the function is convex.� ◻

The convexity properties of the following frequently encountered functions can be 
established by checking the eigenvalues of their Hessian matrix:

•• f x x( ) log( ) is concave.

•• f x y xy( ),  is neither convex nor concave.

•• f x y z xyz( ), ,  is neither convex nor concave.

•• f x y z
x

y
( ), ,  is neither convex nor concave.

•• f x y
x

y
( ),

2

 is convex.

•• f x y xy( ),  is concave.

•• f x y
xy

( ),
1

 is convex.
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As described earlier, the multiplication of a convex function with a positive scalar 
and the sum of convex functions yield convex functions. Therefore, complex expres-
sions can be analyzed for their convexity by disassembling them into smaller terms 
and analyzing each one separately. For example, function f x y x y x x( ) / log( ), 2  is 
convex as the sum of two convex functions. In some cases, establishing (or refuting) 
convexity may require the recombination of various terms. For example, the convexity 
of function g x y x y xy( ) ( ), 2 2  as the sum of a convex ( )x y 2 and a nonconvex 
( )2xy  function cannot be initially determined. However, upon combining the two 
functions, a single convex function ( )x y 2 emerges.

1.3.3  Convex Optimization Problems

Upon establishing a connection between set convexity and function convexity and an 
eigenvalue‐based test, the following optimum solution value uniqueness test can be 
applied. An optimization problem is convex if the objective function and all inequality 
constraints are convex and all equality constraints are linear. It can be schematically 
represented as follows:

	

minimize convex function

subject to

convex function

linear f

0

uunction

compact set

0

x 	

A key attribute of convex optimization problems is that there exists a unique local 
(and thus global) minimum value (see Chapter  9). In addition, if the objective 
function is strictly convex, then the point associated with the global minimum value 
is also unique (global minimum point). Consequently, LP problems described by 
linear objective functions and constraints are convex optimization problems. 
This implies that the optimal solution value of an LP problem (if one exists) is unique 
(see also Chapter 2).

Example 1.4
The following optimization problem is an example of a convex problem where the 
objective function is convex and all constraints are linear and thus are convex.

	

minimize

subject to

x y

x y

y
x

x

2 2

3

1

0 	

A graphical presentation of the feasible space and the objective function is given in 
Figure 1.12.� ◻
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1.3.4  Generalization of Convex Functions

Generalized forms of convexity such as quasi‐ and pseudoconvexity suffice to guar-
antee global minimality even if the function is nonconvex under certain conditions 
(see Chapter 9). In the following, we provide only the definitions of these generalized 
forms. Interested readers are encouraged to refer to standard nonlinear optimization 
textbooks (e.g., Ref. [14]) for more details.

Quasiconvex Functions  f is quasiconvex in S if for every two points x x1 2, S and 
each ( )0 1, , we have

	 f f fx x x x1 2 1 21 max , 	 (1.15)

This definition implies that a function is quasiconvex within a set, if for any two 
points within the set the value of the function at any of the points in the line segment 
connecting the two points, is less than or equal to the larger of the values that the 
function attains at the two examined points.

Pseudoconvex Functions  A function f (differentiable within S) is pseudoconvex 
if for every two points x x1 2, S with T f ( )( )x x x2 1 2 0, we have f f( ) ( )x x1 2 , 
or equivalently for every two points x x1 2, S with 1 2( ) ( )f fx x , we have 

T f ( )( )x x x2 1 2 0.

Exercises

1.1	 Show whether the following functions are convex, concave or neither:

(a)	 f x x x( ) sin( ), [ ]0, .

(b)	 f x x x kk( ) , ,0 0.

(c)	 f x x x x( ) ln( ), 0.

x

y
x2 + y2 = k

x + y = 3

xy = 1

Figure 1.12  Graphical representation of the convex optimization problem in Example 1.4. 
The convexity of the problem implies that we have a global minimum.
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1.2	 Consider a single‐period inventory model where demand is a random variable 

with density f; that is, P x f x dx
x

( ) ( )demand
0

.
 Also, all stock‐outs are lost 

sales, C is the unit cost of each item, p is the loss due to inability to fulfill orders 
(includes loss of revenue and customer goodwill), r is the selling price per unit 
and l is the salvage value of each unsold item at the end of the period. The 
problem is to determine the optimal order quantity Q that will maximize the 
expected net revenue for the season. The expected net revenue, denoted by 
Π(Q), is given by the following equation:

	
Q r l Q x f x dx p r x Q f x dx CQ

Q

Q

x

0 	

 where μ is the expected demand as follows:

	 0

x

x x xf d
	

(a)	 Show that Π(Q) is a concave function in Q( )0 .

(b)	 Based on the result of (a) explain how you will find the optimal ordering 
policy.

(c)	 Compute the optimal policy for the following data:

	

C r l p

f x
x

$ . $ . $ .2 50 5 00 0 2 50

1

400
100 500

0 otherwise 	

 Hint: Use Leibniz rule for differentiation under the integral sign.

1.3	 Identify the relations that constants a and b must satisfy so that the function

	 f a bx y x y x y, , 0	

	� is (a) convex and (b) concave for every x y, 0. Generalize the result for the 
n‐dimensional case:

	
f x x x

i

N

i
a

i
i

1

0
	

1.4	 Let g N:ℝ ℝ be a concave function, and let function f be defined by 

f x
g x

( )
( )

1
. Show that f is convex over S g[ | ( ) ]x x 0 .
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