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1
Transport through the Energy
Barriers: Transition Probability

In this chapter electron transport through energy barriers and wells is considered. Based on
transfer matrix technique, tunneling probability through different nanostructures, quantum
barriers, and quantum wells is described. Tunneling through triangular barrier at electron field
emission is considered as a special case. The effects of charge trapping in barrier and temper-
ature effect are also analyzed. Great attention is paid to resonant tunneling of electrons and
time parameters of this process.

1.1 Transfer Matrix Technique

In order to describe the electron transport through structure containing energy barriers and
wells the matrix method is commonly used [1–3]. The matrix method is based on the continu-
ity of the wave function and its first derivative at any heterostructures (Figure 1.1). It allows
determining the incidence energy dependence of transmission probability. Using the enve-
lope wave function under effective mass approximation the wave function of particle with the
incident and reflected waves amplitudes of An and Bn at any segment n is:

Ψn(x) = Aneiknx + Bne−iknx. (1.1)

with wave vector, kn

kn =
√

2m′∗
n(E − Un)∕ℏ2 (1.2)

where E is the incident electron energy and Un is the potential related to the reference n segment
(Figure 1.1).

The following matrix equation can be written:(
An+1

Bn+1

)
=

n∏
p=1

Mp

(
A1

B1

)
(1.3)
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Figure 1.1 Multilayer structure with barriers and wells at (a) zero and (b) applied bias

The matrix Mp is generated by invoking the continuity of the wave function Ψ(x) and its
first derivative by properly accounting for the effective mass,

1
m∗

n

dΨn

dx
(1.4)

at the interface n. The transmission probability at any energy T(E) is given as

T(E) =
m∗

1

m∗
n+1

kn+1

k1

||||An+1

A1

||||
2

. (1.5)

If we assume A1 = 1

T(E) =
m∗

1

m∗
n+1

kn+1

k1

||An+1
||2. (1.6)

To clarify the idea of transfer matrix technique let’s consider one obstacle (potential barrier
border) (Figure 1.2). Equation (1.3) for one barrier can be rewritten as(

A2

B2

)
= M(21)

1

(
A1

B1

)
=

(
M(21)

11 ,M(21)
12

M(21)
21 ,M(21)

22

)(
A1

B1

)
(1.7)
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Figure 1.2 Scattering of quantum particle on one obstacle
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Figure 1.3 Scattering of quantum particle on two obstacles

There are no advantages of transfer matrix technique for scattering process on one barrier.
But if we consider a more complicated process of subsequent scattering of particles on two
barriers (Figure 1.3), the transfer matrix technique has significant advantages. The amplitudes
of particle waves that move from region 1 into region 2 are given by wave amplitudes in region
1 and transfer matrix M(21). The wave amplitudes in region 3, in turn, are connected with wave
amplitudes in region 2 by matrix M(32). Accordingly(

A2

B2

)
= M(21)

1

(
A1

B1

)
,

(
A3

B3

)
= M(32)

2

(
A2

B2

)
(1.8)

Then it is easy to connect wave amplitudes in region 3 with wave amplitudes in region 1:(
A3

B3

)
= M(32)

2 M(21)
1

(
A1

B1

)
≡ M(31)

(
A1

B1

)
. (1.9)

Now it is easy to generalize the method of calculation of transmission coefficient of the
quantum particle moving through the multilayer structure. Particle movement in the struc-
ture containing n barriers with known transmission coefficient for each of them is shown in
Figure 1.4. Sequent consideration of scattering process on each barrier, as in the case of two
barrier structure, allows us to write(

An

Bn

)
= M(n,n−1)M(n−1,n−2) … M(32)M(21)

(
A1

B1

)
≡ M(n1)

(
A1

B1

)
. (1.10)
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Figure 1.4 Scattering of quantum particle on n obstacles

Thus, to find the amplitudes of waves with n time scattering process, it is necessary simply
to find corresponding transfer matrix, which is the product of n matrices for each scattering
process.

In this way we obtain the very important result that is the base of transfer matrix technique,
namely: transition coefficient in case of n barrier structure is the product of transition matrices
of each barrier.

Sometimes instead of M(n,n−1) matrix that connects the wave function amplitudes of the n
region from the wave function amplitudes of the n− 1 region it is useful to use the M(n−1,n)

matrix that connects the wave function amplitudes of the n− 1 region from the wave function
amplitudes of the n region. In that case Equation (1.3) can be written:(

A1

B1

)
=

n∏
l=1

M∕
l

(
An+1

Bn+1

)
(1.11)

(
A1

B1

)
= M∕

1M∕
2 … M∕

n

(
An+1

Bn+1

)
. (1.12)

The reverse matrix for wave amplitude can be obtained by changing the matrices of wave
vectors k1, k2, k3, … kn, kn+1 into kn+1, kn, … k3, k2, k1, respectively.

The full set of matrices includes the transition through barrier and well regions and borders
between regions. In addition to matrices in Equations (1.10) and (1.12) at description of wave
function transmission through the heterostructure it is necessary to use the additional matri-
ces which characterize the wave transition inside the barriers and wells. Because of the wave
function amplitude of the particle changes only at transition of the barrier border (obstacle) the
moving of the particle inside the barrier or well regions causes only the wave function phase
shift. The incident wave in point 0 of the barrier has view A2exp(ik2x), and in point d the wave
function is A2exp(ik2x) exp(ik2d). This can be represented by diagonal matrix

M(22)
1 =

(
M(22)

11 ,M(22)
12

M(22)
21 ,M(22)

22

)
=

(
eik2d, 0

0, e−ik2d

)
, (1.13)

and for reverse matrix

M∕(22)
1 =

(
e−ik2d, 0

0, eik2d

)
. (1.14)
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To demonstrate the transfer matrix method let’s consider some simple cases that are the
basis for the creation of more complicated multilayer structures. In the following description
of the electron transport through barriers and wells we will use reverse matrices.

1.2 Tunneling through the Barriers and Wells

The quantum description of the particle movement through barriers and wells includes the inci-
dent wave package, which represents the electron going from the left. This package will go
to the barrier and some of them will be reflected, and some will be transmitted. The reflected
part of the wave package will give the reflection probability of the electron, and the trans-
mitted part will be the probability of passing on. The package is assumed to be wide, that
the incident wave can be represented approximately by the wave function A1exp(ik1x), where

k1 =
√

2m∗
1E∕ℏ2 = 2𝜋

𝜆1
.

Then the incident wave will give a constant in time density of probability at which the
steady flow of electrons will be moving to the right. The average value of the flux density
of probability will be j0 = (ℏk1/m)× |A1|2. So, despite the presence of flow, to maintain the
constant density of probability there must be continuous addition of electrons from the left.

The integral of the normal component of the flux vector on a surface represents the proba-
bility that a particle crosses a specified surface in unit time. The flux densities of the incident,
reflected, and transmitted particles can be written respectively as

j0 =
ℏk1

m∗
1

||A1
||2, jr =

ℏk1

m∗
1

||B1
||2, jt =

ℏk2

m∗
2

||A2
||2. (1.15)

where A1, B1, A2 are the amplitudes of incident, reflected, and transmitted waves respectively,
k1, k2 are the wave-vectors in regions 1 and 2; and m∗

1, m∗
2 are the effective masses of electrons

in regions 1 and 2.
For simplicity we assumed m∗

1 = m∗
2 = m∗.

1.2.1 The Particle Moves on the Potential Step

A particle moving toward a finite potential step U2 at x= 0 illustrates the reflection and tun-
neling effects which are basic features of nanophysics. Suppose U= 0 for x< 0 and U=U2 for
x> 0 (Figure 1.5).

E − U2 =
U2 − E  =

U2

U

x0
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Figure 1.5 The particle moves on the potential step: E>U2 (a) and E<U2 (b)
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Let’s write a one-dimensional stationary Schrodinger equation for both regions.
For region 1 (x< 0)

d2Ψ1

dx2
+ 8𝜋2m

h2
EΨ1 = 0, (1.16)

for region 2 (x> 0)
d2Ψ2

dx2
+ 8𝜋2m

h2
(E − U2)Ψ2 = 0, (1.17)

where E is the total energy of the electron.
Then wave vectors of the particle moving in region 1 and region 2 are correspondingly

k1 =
√

2m∗
1E∕ℏ2 = 2𝜋

𝜆1
, (1.18)

k2 =
√

2m∗
2(E − U2)∕ℏ2 = 2𝜋

𝜆2
, (1.19)

where 𝜆1 and 𝜆2 are the length of de Broglie waves in regions 1 and 2, respectively.
Using Equations (1.18) and (1.19) Equations (1.16) and (1.17) take the form

d2Ψ1

dx2
+ k2

1Ψ1 = 0, (1.20)

d2Ψ2

dx2
+ k2

2Ψ2 = 0. (1.21)

General solutions of these equations can be written as

Ψ(x) =

(
A1eik1x + B1e−ik1x, ......... x ≤ 0

A2eik2x + B2e−ik2x, ......... x ≥ 0
(1.22)

The wave function of the particle can be considered as two plane waves that move in opposite
directions.

Let’s consider the features of the electron passing from region 1 to region 2 in two situations:
when the total electron energy E is higher than its potential energy U2 in region 2 (Figure 1.5a)
and when E<U2 (Figure 1.5b).

1.2.1.1 Case 1: E>U2

Since the motion of an electron is a plane de Broglie wavelength, then at the regions border
1–2 the wave should be partly reflected and partly penetrated in region 2, or, in other words,
moving from one region to another, the electron has a chance to reflect and a chance to go to
another region (Figure 1.5a). Determination of these probabilities is the answer to the question
about the peculiarities of the electron passing through a potential barrier. Remember that a
particular solution to Equation (1.20) exp(ik1x) characterizes the wave traveling toward the
positive axis of X, that is, the incident wave, and the particular solution exp(−ik1x) corresponds
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to the reflected wave. Similar assertions hold for partial solutions exp(±ik2x) Equation (1.22)
for the second region (x> 0). When x< 0 both the incident and reflected waves extend, so we
need to consider the general solution of Equation (1.22) where ||A1

||2 is the intensity of the
incident wave, and |B1|2 is the intensity of the reflected waves.

The physical constraints on the allowable solutions are essential for solving this prob-
lem. First, B2 = 0, since no particles are incident from the right (barrier). Second, at
x= 0 the required continuity of Ψ(x) implies A1 +B1 =A2. Third, at x= 0 the derivatives,
dΨ/dx=A1ik1exp(ik1x)−B1ik1exp(−ik1x) on the left, and dΨ/dx=A2ik2exp(ik2x), on the
right, must be equal. Thus

A1 + B1 = A2, (1.23)

and
k2A2 = k1(A1 − B1). (1.24)

Equations (1.23) and (1.24) are equivalent to

B1 =
k1 − k2

k1 + k2
A1 and A2 =

2k1

k1 + k2
A1. (1.25)

The reflection and transmission probabilities, R and T, respectively, for the particle flux are
then Equation (1.15)

R =
k1
||B1

||2
k1
||A1

||2 =
(

k1 − k2

k1 + k2

)2

(1.26)

and

T =
k2
||A2

||2
k1
||A1

||2 =
4k1k2

(k1 + k2)2
. (1.27)

The same results can be obtained with using transfer matrix technique. In this case(
A1

B1

)
= M12

1

(
A2

B2

)
. (1.28)

Taking into account the continuity of the wave function and its first derivative at the interface
we obtain

A1 + B1 = A2 + B2, (1.29)

k1(A1 − B1) = k2(A2 − B2). (1.30)

We can determine the connection between coefficients that determine the amplitude of wave
processes in region 1 (before barrier) and in region 2 (in the barrier).

A1 = 1
2

(
1 +

k2

k1

)
A2 +

1
2

(
1 −

k2

k1

)
B2 (1.31)

B1 = 1
2

(
1 −

k2

k1

)
A2 +

1
2

(
1 +

k2

k1

)
B2 (1.32)
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and

M1 =
(

M11,M12

M21,M22

)
= 1

2

⎛⎜⎜⎜⎝
1 +

k2

k1
, 1 −

k2

k1

1 −
k2

k1
, 1 +

k2

k1

⎞⎟⎟⎟⎠ . (1.33)

Taking into account that the particle moves from the left to the right and assume that ampli-
tude of falling wave is equal to 1 (A1 = 1) we obtain for refraction coefficient of wave amplitude

r =
B1

A1
= B1 =

M21

M11
=

k1 − k2

k1 + k2
(1.34)

and for transmission coefficient of wave amplitude

t =
A2

A1
= A2 = 1

M11
=

2k1

k1 + k2
. (1.35)

At this the transmission coefficient for the particles is the ratio of particles that go through
the barrier to the particles that fall on the barrier.

T =
(ℏk2∕m∗)
(ℏk1∕m∗)

|t|2 =
4k1k2

(k1 + k2)2
. (1.36)

So far as we assumed m∗
1 = m∗

2 = m∗.
The refractive coefficient for the particles is the ratio of particles that reflect from the barrier

to the particles that fall on the barrier.

R =
(ℏk1∕m∗)
(ℏk1∕m∗)

|r|2 =
(k1 − k2)2

(k1 + k2)2
. (1.37)

It is easy to see that
T + R = 1. (1.38)

Substituting in Equations (1.37) and (1.36) the wave vectors of de Broglie wave from
Equations (1.18) and (1.19), we determine the reflection R and transmission T coefficients
(Figure 1.6) depending on the ratio between the total energy E and potential U2:

R =
⎛⎜⎜⎜⎝

1 −
√

1 − U2
E

1 +
√

1 − U2
E

⎞⎟⎟⎟⎠
2

(1.39)

and

T = 4

√
1 − U2

E(
1 +

√
1 − U2

E

)2
. (1.40)
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Figure 1.6 Energy dependence of the transmission coefficient of quantum particle (1) at moving over
the potential step of 0.3 eV height. Curve 2 is the transmission coefficient in classical case

As can be seen from Equations (1.39) and (1.40), at E=U2 T= 0, that is, the particle does not
penetrate the barrier. At the electron energy E, twice the barrier, the reflection coefficient has
reached quite appreciable value about 3%. These results are very different from the classical
ones. In classical mechanics, a particle with energy E ≫ U2 always penetrate into the region
2 (at E=U2 kinetic energy Ek is zero). But according to quantum mechanics the particle with
E>U2 has finite probability of electron reflection from the barrier.

1.2.1.2 Case 2: E<U2

The only change is that now E−U2 is negative, making k2 an imaginary number (Figure 1.5b).
For this reason k2 is now written as k2 = i𝛼2, where

k2 = i𝛼2 = i
√

2m∗
2(U2 − E)∕ℏ2; (1.41)

𝛼2 is a real decay constant. Now the solution for the positive x becomes

Ψ(x) = A2 exp(−𝛼2x) + B2 exp(𝛼2x), (1.42)

where
𝛼2 =

√
2m∗

2(U2 − E)∕ℏ2. (1.43)

In this case, T= 0, to prevent the particle from unphysical collecting at large positive x.
Equations (1.36) and (1.37) and Equation (1.25) remain valid setting k2 = i𝛼2.

T =
(ℏk2∕m∗)
(ℏk1∕m∗)

|t|2 =
4k1i𝛼2

(k1 + i𝛼2)2
. (1.44)

R =
(ℏk1∕m∗)
(ℏk1∕m∗)

|r|2 =
(k1 − i𝛼2)2

(k1 + i𝛼2)2
. (1.45)
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It is seen that R= 1, because the numerator and denominator in Equation (1.45) are complex
conjugates of each other, and thus have the same absolute value.

Thus, when E<U2 reflection coefficient is 1, that is, the reflection is complete, however,
despite the fact that the transmission coefficient T= 0, there is a nonzero probability of finding
an electron in region 2. The solution for positive x is now an exponentially decaying function,
and is not automatically zero in the region of negative energy. In other words, reflection does
not occur at the boundary of two regions, while the electrons go at reflection at a certain depth
in region 2, then return to the region 1. Indeed, at the imaginary value of k2 the solution of
Schrödinger Equation (1.22) for region 2 becomes

Ψ(x) = A2 exp(ik2x) = A2 exp(−𝛼2x), (1.46)

and the probability of finding an electron per unit length in region 2 will be

Ψ2Ψ∗
2 = ||Ψ2

||2 = A2
2 exp(−2𝛼2x). (1.47)

Taking into account Equation (1.43) we obtain

||Ψ2
||2 = A2

2 exp

(
− 2
ℏ

√
2m

(
U2 − E

)
× x

)
, (1.48)

that is, there is a definite probability of finding the particle in region 2 at a depth of x from
the boundary of two regions. However, this probability decreases exponentially with distance
from the interface. Thus, when x= 0.1 nm and U2 −E= 1 eV the probability of finding an
electron is equal to about 0.3, while at x= 1 nm the probability is already an order of 10−8.
Electron passes into the barrier and turns back, so that the total flux of particles in region 2 is
zero. From the wave point of view, this effect is similar to the case of total internal reflection
of light, when even at angles greater than critical in the less dense medium is the wave field
with exponentially decreasing amplitude, but the flow of energy through the interface over a
sufficiently long period of time is equal to zero.

We can determine |A2|2 from Equation (1.35) assuming A1 = 1, setting k2 = i𝛼2, and forming
|A2|2 =A2A2*. It is the probability to find the particle at interface (x= 0).

||A2
||2 =

4k2
1

(k2
1 + 𝛼2

2)
= 4E

U2
, (1.49)

where E= (ℏ2k1
2/2 m)<U2. Note that |A2|2 = 0 for an infinite potential. Also, this expression

agrees in the limit E=U2 with Equation (1.35).
Thus, the probability of finding the particle in the forbidden region of positive x is

P(x > 0) = 4E
U2

∞

∫
0

exp(−2𝛼2x)dx = 4E
U2

∞

∫
0

exp

(
− 2
ℏ

√
2m

(
U2 − E

)
× x

)
dx = 2E

𝛼2U2
,

(1.50)
where E<U2.
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1.2.2 The Particle Moves above the Potential Barrier

In this case the structure is more complicated because the potential barrier has finite width
(Figure 1.7). In contrast to the infinitely wide barrier (potential step), the reflection of electrons
will take place both on the border of regions 1 and 2, and on the boundary of regions 2 and 3.
Solutions of Schrödinger equations for these regions can be written as

Ψ(x) =
⎛⎜⎜⎜⎝
A1eik1x + B1e−ik1x, .........x < x1

A2eik2x + B2e−ik2x, .........x1 < x < x2

A3eik3x + B3e−ik3x, .........x > x2

. (1.51)

The particle has energy E>U2. Then wave vectors of particle in region 1, region 2, and
region 3 are correspondingly

k1 =
√

2m∗
1E∕ℏ2 (1.52)

k2 =
√

2m∗
2(E − U2)∕ℏ2 (1.53)

k3 =
√

2m∗
1E∕ℏ2. (1.54)

To determine the reflection R and transmission T coefficients, we must first find the waves
amplitudes Aj and Bj. For this we use the boundary conditions: continuity of Ψ function and its
derivative at the boundaries of regions 1–2 and 2–3, that is, at x= x1 = 0 and x= x2 = L. These
conditions can be written as

(Ψ1)x=0 = (Ψ2)x=0,

(
dΨ1

dx

)
x=0

=
(

dΨ2

dx

)
x=0

, (1.55)

(Ψ2)x=L = (Ψ3)x=L,

(
dΨ2

dx

)
x=L

=
(

dΨ3

dx

)
x=L

. (1.56)

Solving the system Equations (1.55) and (1.56), we can find an expression for the A3 because
it determines the transmittance T (at A1 = 1):

A3 =
4k1k2eik1d

(k2 + k1)2e−ik2d − (k2 − k1)2eik2d
. (1.57)

U2

x2x1

U

x

E

Region 2Region 1 Region 3

Figure 1.7 The particle moves above the potential barrier
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Transmission coefficient is equal to

T =
k3
||A3

||2
k1
||A1

||2 = ||A3
||2 = A3A∗

3, (1.58)

where k1 = k3.
Transfer matrix method simplifies the procedure. In this case(

A1

B1

)
= M1M2M3

(
A3

B3

)
(1.59)

where matrix M1 describes the transition of the border 1–2 from region 2 to region 1 (point x1)

M1 =
(

M11,M12

M21,M22

)
= 1

2

⎛⎜⎜⎜⎝
1 +

k2

k1
, 1 −

k2

k1

1 −
k2

k1
, 1 +

k2

k1

⎞⎟⎟⎟⎠ . (1.60)

Diagonal matrix M2 describes the phase changing of Ψ2 during the transition of region 2
(barrier).

M2 =
(

e−ik2d, 0

0, eik2d

)
(1.61)

and M3 describes the transition of the border 2–3 from region 3 to region 2 (point x2)

M3 = 1
2

⎛⎜⎜⎜⎝
1 +

k3

k2
, 1 −

k3

k2

1 −
k3

k2
, 1 +

k3

k2

⎞⎟⎟⎟⎠ . (1.62)

Multiplication of the matrices gives such expression for the final matrix

M =

(
M(13)

11 ,M(13)
12

M(13)
21 ,M(13)

22

)

= 1
4k1k2

( (
k2 + k1

)2
e−ik2d − (k2 − k1)2eik2d, (k2

2 − k2
1)e

−ik2d − (k2
2 − k2

1)e
ik2d

−(k2
2 − k2

1)e
−ik2d + (k2

2 − k2
1)e

ik2d,−(k2 − k1)2e−ik2d + (k2 + k1)2eik2d

)
(1.63)

We assume k1 = k3. According to Equations (1.35) and (1.36) the transmission coefficient
can be represented as

T = 1||M11
||2 =

||||||
4k1k2(

k2 + k1

)2
e−ik2d − (k2 − k1)2eik2d

||||||
2

(1.64)
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It is possible to write the final result as

T =
⎛⎜⎜⎝1 +

(
k2

2 − k2
1

)2

4k2
1k2

2

sin2k2d
⎞⎟⎟⎠
−1

(1.65)

Note that for integer values of k2d/𝜋 the transmission coefficient, as can be seen from
Equation (1.65), equals to 1, that is, the above barrier reflection of the particle is absent.

In this case, twice the length of the potential barrier fits the de Broglie wavelength of the
particle 𝜆= 2𝜋/k2 an integer number of times. These waves cancel each other. At given particle
energy the transmission coefficient T as the function of barrier thickness d changes periodically
from Tmin = 4k1

2k2
2/(k1

2 + k2
2)2 to Tmax = 1 with a period of 𝜆/2.

In this case the refractive coefficient R is equal to

R =
(

M21

M11

)2

=
|||||
−
(
k2

2 − k2
1

)
e−ik2d + (k2

2 − k2
1)e

ik2d

(k2 + k1)2e−ik2d − (k2 − k1)2eik2d

|||||
2

(1.66)

and
T + R = 1 (1.67)

We rewrite the Equations (1.65) and (1.66) the using the Equations (1.52)–(1.54) in
energy view.

The transmission coefficient is equal to

T =

(
1 +

U2
2

4E
(
E − U2

) sin2k2d

)−1

, (1.68)

and the reflection coefficient

R = 1 − T =

(
1 +

4E
(
E − U2

)
U2

2sin2k2d

)−1

. (1.69)

Equations (1.68) and (1.69) show that at T=Tmin the reflection coefficient is R=Rmax.
The most interesting consequence of Equations (1.68) and (1.69) is the appearance of oscil-

lations of transmission and reflection coefficients in dependence on the electron energy E. The
oscillation period corresponds to the condition

sin2(k2d) = 0 or k2d = n𝜋, (1.70)

where n= 1, 2, 3, and so on.
At this condition the transmission coefficient of an electron with the wave vector k2 is T= 1,

and the reflection coefficient R= 0. In this case the integer of half de Broglie wave is placed on
the barrier width d for electrons with the wave vector k2, or with a given energy En =E−U2.
Indeed, substituting k2 = 2𝜋/𝜆2 in Equation (1.70) we have

2𝜋
𝜆2

d = n𝜋, or d = n
𝜆2

2
. (1.71)
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Semiclassically, this can be interpreted as the result of interference of waves reflected from
the boundaries of the barrier, and the incident waves. The last expression can be used to deter-
mine the electron energy above the potential barrier

En = E − U2 = mv2

2
= h2

2m𝜆2
2

, (1.72)

where 𝜆2 = h/mv. Substituting the 𝜆 from Equation (1.71), we have

En = n2h2

8md2
. (1.73)

The energy En, over the barrier coincides with the energy n-th level of an electron localized
inside the potential well of width d with infinitely high walls [1].

During the change of electron energy the transmission coefficient oscillates and the maxi-
mum value of Tmax (resonant values) occurs at the condition (1.70). The minimum values of
transmittance Tmin and the corresponding values of energy En

′ =E′ −U2, called antiresonant,
can be estimated from the condition

sin2(k2d) = 1. (1.74)

Hence

Tmin =

(
1 +

U2
2

4E′
(
E′ − U2

))−1

, (1.75)

and

E′
n = h2

8md2

(
n + 1

2

)2
, (1.76)

here n= 1, 2, 3, and so on.
With increasing the resonance number n and decreasing the barrier width d the minimum

transmission coefficient Tmin increases rapidly, so that the oscillations are smoothed out.
Increasing the barrier height U2, in contrast, reduces the transmission coefficient, increasing
the amplitude of the oscillation [5]. The transmission coefficient of electrons above the
potential barrier on their energy dependences at different values of n is shown in Figure 1.8.

It is quite difficult to observe the quantum oscillations of the above barrier electron transmis-
sion probability in semiconductor structures experimentally because the oscillation amplitude
decreases rapidly with the increasing of the energy, while at low energies the oscillations
become blurred due to thermal fluctuations.

1.2.3 The Particle Moves above the Well

In this case the particle also has energy E>U2 (Figure 1.9). Then wave vectors of particle in
region 1, region 2, and region 3 are correspondingly

k1 =
√

2m∗
1E∕ℏ2 (1.77)
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Figure 1.8 Transmission coefficient on energy dependences at moving of the particle above the barrier
at n= 1, 2, 3, 5

dw

U2

x2 = ax1 = −a

x

0

Region 1 Region 2 Region 3

U

E =
2m
h2k1

2

2m
h2k2

2

Figure 1.9 The particle moves above the well

k2 =
√

2m∗
2(E + U2)∕ℏ2 (1.78)

k3 =
√

2m∗
1E∕ℏ2, (1.79)

where E is the particle energy, U2 is the depth of potential well (with the thickness dw = 2a).
Using the procedure described in Section 1.2.2 we obtain

T =

(
1 +

(k2 − k1)
2

4k2
1k2

2

sin2k2dw

)−1

(1.80)

At integer values of k2dw/𝜋 the transmission coefficient becomes equal to 1.
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The refractive coefficient is
R = 1 − T .

The transmission coefficient in this case Equation (1.80) is described by the same formulas as
in case movement over the barrier Equations (1.65) and (1.68) by replacing U2 on −U2. As
in the case of the potential barrier, as well as in the case of the potential well the oscillations
of T have the same nature, namely, semiclassical oscillations can be interpreted as the result
of interference of electron waves reflected from the potential jumps at the boundaries of the
barrier or well. However, there is a noticeable difference. For equal values of thickness, d, for
the barrier and width, dw, for the well and the same potential energy |U2| the scale of oscillations
of T in the case of passage of the electrons above the barrier are significantly higher than during
the passage above the well.

It is possible to find wave functions for such structure in all regions Figure 1.10 [5].
As can be seen the wave function amplitude in region 2 (well) is significantly smaller. It

means that at small particle energy E=ℏ2k2/2m≪U2 the density of probability to find the
particle in the well region is significantly lower than outside.

It is more accessible to observe the oscillations of the transmission coefficient at an electron
moving above the potential well than at moving above the barrier on experiment, since in this
case it is possible to use electrons with relatively small energy.

1.2.4 The Particle Moves through the Potential Barrier

In this case (Figure 1.11) at E<U2 the wave function are

Ψ(x) =
⎛⎜⎜⎜⎝
A1eik1x + B1e−ik1x, ......... x ≤ x1

A2e−a2x + B2ea2x, ......... x1 ≤ x ≤ x2

A3eik2x + B3e−ik2x, ......... x ≥ x2

(1.81)

Region 1

Region 2

Region 3
Ψodd

x = −a x = a

x

Region 1

Region 2

Region 3
Ψeven

x = −a x = a

x

Figure 1.10 The waves of the particle moving above the well
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U2

x2 = x1 + dx1

d

U

x

1 2 3

Region 2Region 1 Region 3

E =
2m
h2k1

2

Figure 1.11 The particle moves through the potential barrier

Barrier

Transmitted
wave

Incident + reflected
waves

Figure 1.12 Transition of electron waves through the barrier

Then wave vectors of particle movement in region 1, region 2, and region 3 are,
respectively:

k1 =
√

2m∗
1E∕ℏ2 (1.82)

k2 = i𝛼2 = i
√

2m∗
2(U2 − E)∕ℏ2 (1.83)

k3 =
√

2m∗
1E∕ℏ2. (1.84)

The schematic image of electron waves at transition through the potential barrier is shown
in Figure 1.12.

The procedure for obtaining the transmission coefficient is as in Section 1.2.2 according to
Equations (1.59)–(1.63), but in this case we used k2 = i𝛼2.

As a result the transmission probability is

T = 1||M11
||2 =

16𝛼2
2k2

1

[(𝛼2 + ik1)2e−𝛼2
d − (𝛼2 − ik1)2e𝛼2d]2

(1.85)
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After additional transformation where we take into account that

sinh(x) = 1
2
[exp(x) − exp(−x)], cosh(x) = 1

2
[ exp(x) + exp(−x)], (1.86)

cosh2(x) − sinh2(x) = 1, (1.87)

we obtain

T =
⎛⎜⎜⎝1 +

(
𝛼2

2 + k2
1

)2

4k2
1𝛼

2
2

sinh2𝛼2d
⎞⎟⎟⎠
−1

(1.88)

The penetration of the particle with energy E through the potential barrier U at condition
E<U is the well-known tunnel effect. Electron transport through the potential barrier is not
associated with the loss of electron energy: the electron leaves the barrier with the same energy
with which entry into a barrier. As can be seen from Equation (1.88) in the case of significantly
thick and high barrier 𝛼2d≫ 1 the transmission probability T is small enough and exponentially
decreases with growth of 𝛼2d parameter:

T =
16k2

1𝛼
2
2

(𝛼2
2 + k2

1)2
e−2𝛼2d. (1.89)

In this case refractive coefficient R is equal to

R =
(

M21

M11

)2

=
|||||
−
(
−a2

2 − k2
1

)
e𝛼2d + (−𝛼2

2 − k2
1)e

−a2d

[(𝛼2 + ik1)2e−𝛼2d − (𝛼2 − ik1)2e𝛼2d]2
|||||
2

=
|||||

(
a2

2 + k2
1

)
× (e𝛼2d − e−a2d)

[(𝛼2 + ik1)2e−𝛼2d − (𝛼2 − ik1)2e𝛼2d]2
|||||
2

. (1.90)

Formula (1.89) for the transmission coefficient for rectangular barrier can be generalized to
the barrier of arbitrary shape (Figure 1.13)

T = T0 exp

⎡⎢⎢⎢⎣−
2
√

2m∗
2

ℏ

x2

∫
x1

√(
U2 (x) − E

)
dx

⎤⎥⎥⎥⎦ , (1.91)

where T0 is the constant, order of the unity.
The generalized dependence of transmission probability (through the barrier and above the

barrier) on particle energy is shown in Figure 1.14 [6].
In the general case the reverse transfer matrix can be presented as

M(p,p+1)
p =

(
M(p,p+1)

11 ,M(p,p+1)
12

M(p,p+1)
21 ,M(p,p+1)

22

)
= 1

2

⎛⎜⎜⎜⎜⎝
1 +

kp+1

kp
, 1 −

kp+1

kp

1 −
kp+1

kp
, 1 +

kp+1

kp

⎞⎟⎟⎟⎟⎠
. (1.92)
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Figure 1.13 Potential barrier of arbitrary shape

0
0
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1.0
2

1

T

0.3 0.6 E, eV

Figure 1.14 Energy dependence of the transmission coefficient of quantum particle (1) at moving
through the barrier (AlGaAs) of 0.3 eV height and 10 nm width in GaAs-AlGaAs-GaAs structure. Curve
2 is the transmission coefficient in the classical case

As was summarized in Ref. [7], to describe the transition of the particle through multilayer
structure containing barriers and wells based on the transfer matrix technique it is necessary to
know four different types of matrices, namely, those respective joint points: within classically
allowed regions (MA), below the barrier (MB), across discontinuity in the direction from a
classically allowed region into the barrier (Min), and across a discontinuity in the direction
from the barrier into a classically allowed region (Mout).

MA =
(

e−ikw, 0

0, eikw

)
, (1.93)

MB =
(

e−𝛼d, 0

0, e𝛼d

)
, (1.94)
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Min = 1
2

(
1 − i k

𝛼
, 1 + i k

𝛼

1 + i k
𝛼
, 1 − i k

𝛼

)
(1.95)

Mout =
1
2

(
1 + i 𝛼

k
, 1 − i 𝛼

k

1 − i 𝛼
k
, 1 + i 𝛼

k

)
. (1.96)

As can be seen the reverse matrix to Min is Mout and vice versa. It was pointed out that the
above matrices were particular cases of more general forms which could be derived by exploit-
ing the wave function properties with respect to conjugation and conservation of probability
current [3].

In reference [8] the authors approximated the arbitrary potential well by multistep func-
tion and then used a matrix method to determine the transmission coefficient. The position
dependence of electron effective mass, mn

*, and permittivity were also approximated by mul-
tistep functions. Despite the fact that the matrix method is straightforward, some authors have
applied other approaches during the calculation of transmission coefficient. In reference [9]
the arbitrary potential well was approximated by piecewise linear functions and then there
was used a numerical method to calculate the transmission coefficient. Another method was
applied in Ref. [10]. To determine the transmission probability and other parameters required
to investigate the system they used the method of logarithmic derivate.

1.3 Tunneling through Triangular Barrier at Electron
Field Emission

If we apply to a metal or semiconductor large electric field (∼107 V/cm) so that it is the cathode,
then such a field pulls the electrons: it generates an electric current. This phenomenon is called
electron field emission or “cold emission.” Let us consider, for simplicity, the emission from
the metal. We turn first to the picture of the motion of electrons in metal without an external
electric field. To remove an electron from the metal, we need to do some work. Consequently,
the potential energy of an electron in the metal is less than outside the metal. The simplest way
this can be expressed is if we assume that the potential energy U(x) inside the metal is equal
to zero, while outside the metal it is equal to U> 0, so that the potential energy has the form
shown in Figure 1.15. Simplifying in such manner the view of the potential energy, we actually
operate with the average field in the metal. In fact, the potential inside the metal varies from
point to point with a period equal to the lattice constant. Our approximation corresponds to
the hypothesis of free electrons, since, as U(x)= 0 inside the metal there are no forces acting
on an electron.

At such energy distribution of the electron gas the vast majority of electrons have the
energy E<U (at absolute zero temperature the electrons fill all the energy levels of E= 0 to
E=EF <U), where EF is Fermi level. Let us denote the flow of electrons of the metal, falling
from inside the metal on its surface, by J0. Since the electrons have an energy E<U, then the
flow is totally reflected by the jump in potential U, which takes place at the metal-vacuum
interface (see Section 1.2.1).

The applied electric field F is directed toward the metal surface. Then the potential energy
of an electron in the constant field of F, equal to qFx (electron charge equal to q) was added to
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EF

x2x1 = 0

U0 − qFx
U0

U

Metal Vacuum

0

EX

X

Figure 1.15 Band diagram of metal-vacuum interface without (solid line) and with (dashed line)
applied electric field

the potential energy U(x) (Figure 1.15). Now the full potential energy will be

U∗(x) = U(x) − qFx = U0 − qFx, (x > 0),

U∗(x) = 0, (x < 0). (1.97)

Potential energy curve now has another view. It is shown in Figure 1.15 with dashed line.
Note that large field cannot be created inside the metal, so the change of the U(x) takes place
only outside the metal.

As it can be seen the triangular potential barrier is created. According to classical mechan-
ics, an electron could pass through the barrier only if its energy is E>U. Such electrons are
very little (they cause small thermionic emission). Therefore, according to classical mechan-
ics the electron current is absent when the field is applied. However, if F is sufficiently large,
the barrier is narrow, we have to deal with abrupt change of potential energy and classical
mechanics is inapplicable: the electrons pass through the potential barrier.

Let us calculate the transmittance of the barrier for electrons with energy Ex moving along
the OX axis. According to Equation (1.91) we have to calculate the integral

S =

x2

∫
x1

√
2m[U∗(x) − Ex]dx, (1.98)

where x1 and x2 are the coordinates of the turning points. The first turning point is (see
Figure 1.15) obviously x1 = 0, since for every energy Ex <U the horizontal line Ex, represent-
ing the motion energy along OX, intersects the potential energy curve at x= 0. The second
turning point is obtained, as can be seen from the figure, at

Ex = U0 − qFx, (1.99)
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hence

x2 =
U0 − Ex

qF
, (1.100)

consequently,

S =

U0−Ex
qF

∫
0

√
2m[U0 − qFx − Ex]dx. (1.101)

Let us introduce the variable of integration

𝜉 =
qF

U0 − Ex
x. (1.102)

Then we get

S =
√

2m
(U0 − Ex)3∕2

qF

1

∫
0

√
1 − 𝜉d𝜉 = 2

3

√
2m

(U0 − Ex)3∕2

qF
= 2

3

√
2m

(Φ0 − Ex)3∕2

qF
.

(1.103)
Thus the transmission coefficient T for electrons with the energy of motion along the OX

axis, equal to Ex, is

T(Ex) = T0e
− 4

3

√
2m
ℏ

(Φ0−Ex)3∕2

qF . (1.104)

This is the well-known Fowler–Nordheim equation [11].
The transmission coefficient is somewhat different for the different Ex, but as Ex <U, the

average (in electrons energy) coefficient can be presented in the form

T = T0e−
F0
F , (1.105)

where T0 and F0 are the constants depending on the type of the metal.

1.4 Effect of Trapped Charge in the Barrier

The influence of trapped charge on electron tunneling through the barrier has been intensively
investigated in connection with the degradation of metal- oxide-semiconductor (MOS) struc-
tures with an ultra-thin oxide layer due to the carrier injection. The created charge in the oxide
causes instability of MOS devices and oxide breakdown [12–15]. In the case where charges
are trapped in the oxide with areal density Qox and centroid position Xb as referred to the cath-
ode interface, the effective oxide electric field (Fox) is no more equal to the cathode electric
field (F)

Fox = F +
Qox

𝜀ox

(
1 −

Xb

dox

)
. (1.106)

where 𝜀ox is the oxide permittivity and dox is the oxide thickness.
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ΔF

F

Figure 1.16 Schematic illustration of I-V curves shift due to charge trapping: (1) before charge trap-
ping and (2) after charge trapping. Reproduced with permission from Ref. [16]. Copyright (1977), AIP
Publishing LLC

Trapping of the charge will cause the shift of I-V characteristics (Figure 1.16).
Let’s assume that negative charge (electrons) has been trapped. Trapping of the charge modi-

fies the barrier shape significantly and as a result modifies the tunnel transparency (Figure 1.17)
[13, 17–19]. To analyze the changing transmission probability and tunneling current changing
due to charge we take into account that the trapped charge is localized at x=Xb in the barrier
(oxide) when Vg < 0 (Figure 1.17).

The transmission probability T(Ex) for an electron at energy Ex is given by the following
relationship [20]:

T(Ex) = T0 exp(−2

Xt

∫
X=0

√
2mox

ℏ2
(U(x) − Ex)dx), (1.107)

where Ex is the perpendicular to the barrier electron energy (E) component, Xt is the tunnel
distance in the oxide for the electron with energy (Ex), mox is the effective mass of the electron
in oxide, ℏ is the reduced Plank constant, q is the electron charge, and U(x) is the potential
barrier in oxide.

The Fowler–Nordheim (F–N) tunnel current density JFN, which crosses the structure for
given voltage Vg, is obtained by summing the contribution to the current of electrons at all
energies Ex. The current density is given by the following expression [20]:

JFN =
4𝜋qm0

ℏ3 ∫
Ex

T(Ex)dEx

∞

∫
Ex

f (E,T)dE, (1.108)
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Figure 1.17 Energy band diagram of MOS structures (a) with (solid lines) and without (dashed lines)
of the captured negative charge. Different location of trapped charge: (b) Xb <Xt and (c) Xb > Xt

where m0 is the mass of free electron and f(E,T) is the Fermi–Dirac distribution of electrons
that depends on the temperature T [21, 22].

With respect to the trapped charges with density N1 at X=Xb, there exist two fields for given
voltage Vg in the oxide: one F1 between the metal and Xb, the other F2 between Xb and silicon
[22]. Using the Gauss equation, one can determine the field E1 as the function of the charge
density N1 and field F2:

F1 =
qN1

𝜀ox
+ F2. (1.109)
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The potential barrier U(x) distribution can be obtained for given voltage Vg, by solving the
Poisson equation:

U(x) = −
q

𝜀0𝜀ox
(N1x) − qF2x + U(0). if 0 ≤ x ≤ Xb, (1.110)

U(x) = −
q

𝜀0𝜀ox
(N1Xb) − qF2x + U(0). if Xb ≤ x ≤ dox, (1.111)

where 𝜀0 is the permittivity of vacuum, 𝜀ox is the relative permittivity of the oxide, U(0) is the
metal/oxide interface barrier (input barrier Φm), q is the absolute value of electron charge.

The expressions for tunneling probability and tunnel current depend on trapped charge
location (Xb) in relation to length of tunneling path (Xt) (Figure 1.17). Taking into account
Equations (1.109)–(1.111), the transmission probability T(Ex) for an electron with energy Ex
can be expressed, as a function of the electric fields F1, by the expressions [17]:

1. if the charge centroid is localized in the tunnel distance Xt (Xt >Xb):

T(Ex) = T0 exp

[
−4

3

(
2mox

)1∕2

ℏqF1

×
{
(Φm − Ex)3∕2 +

(
qN1

𝜀oxF1 − qN1

)
(Φm−qF1Xb − Ex)3∕2

}]
;

(1.112)

2. if the charge centroid is localized outside the tunnel distance Xt (Xt <Xb):

T(Ex) = T0 exp

[
−4

3

(
2mox

)1∕2

ℏqF1
(Φm−Ex)3∕2

]
. (1.113)

For the given voltage Vg, Equations (1.107)–(1.113) yield the potential barrier distribution
in oxide, the transmission probability T(Ex) and the current density JFN.

In this case if the trapped charge is distributed on oxide thickness the shape of potential bar-
rier is complicated significantly and calculation of transmission probability and tunnel current
are more difficult.

The transient component of the current connected with charge trapping/detrapping processes
can be observed [23]. It was shown that positive oxide charge assisted tunneling current also
exhibits transient effect [24]. The transient behavior arises from the positive oxide charges,
which help electron to tunnel through oxide, and they can escape to the Si substrate. As a result,
the transient current should consist of three components in general, Ie, Ih, and It (Figure 1.18),
if both positive and negative oxide charges are created [25].

Ie represents the negative oxide charge detrapping induced current, Ih is the positive oxide
charge detrapping current, and It denotes the positive oxide charge assisted electron tunneling
current. Ie and Ih have t−1 time dependence on the tunneling front model [23] while It has t−n

time dependence in the certain range of the measurement field. The power factor n is dependent
on effective electron and hole tunneling barrier heights and tunneling carrier masses [24].
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Ie

It

Ih

O SS

Figure 1.18 The schematic illustration of three transient components, Ie, Ih, and It. Reproduced with
permission from Ref. [25]. Copyright (1999), AIP Publishing LLC

1.5 Transmission Probability in Resonant Tunneling Structures:
Coherent Tunneling

At resonance tunneling the tunneling electron goes through double barriers via quantized states
in the well [26]. Resonant tunneling of electrons represents sharp increase in the transmission
coefficient of the quantum structure for the electrons which energy E coincides with the energy
of one of the resonance levels En in the potential well. Despite the fact that at E=En ≪U1,
U2 the transmission coefficients of the barriers T1, T2 ≪ 1, the electron near the resonance
“ignores” the barriers, passing through the entire structure without reflections. Resonant tun-
neling appears due to the interference of electron waves reflected from the barriers. As a result
of interference at the resonance condition there are only the incident and transmitted bound-
ary electron waves, and the reverse wave is completely extinguished. During this process the
amplitude of the wave function inside the potential well is much greater than in the barriers.
The mechanism of resonant tunneling from corpuscular positions can be represented as a delay
of an electron inside the potential well on the time of its life 𝜏n (in the absence of scattering),
during which the electron 𝜈 = 𝜏n/L times encounter with barrier. Therefore, the probability of
electron tunneling from the well increases in the 𝜈 times.

In resonant tunneling, the Schrodinger equation has to be solved simultaneously in three
regions – emitter, well, and collector. Because of the quantized states within the well, the tun-
neling probability exhibits peak when the energy of the incoming particle coincides with one
of the quantized levels. In the structure with barriers of finite thickness d1 and d2, the electron
wave function is not located entirely within the well, but is smeared over the entire space. Nev-
ertheless, there are selected values of energy, similar in magnitude to discrete resonant levels
in completely isolated potential well, in which the amplitude of the wave function inside the
well due to the interference of reflected from the barriers electron waves is much higher than
the amplitude of the wave function outside the well. In this coherent-tunneling consideration,
if the incoming energy does not coincide with any of the quantized levels, the global tunneling
probably TG is a product of the individual probability between the well and the emitter T1, and
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that between the well and the collector T2,

TGnr = T1T2. (1.114)

However, when the incoming energy matches one of the quantized level, the wave function
builds up within the well similar to a Fabry-Perot resonator, and the transmission probability
becomes [7, 27].

TGres =
4T1T2

(T1 + T2)2
. (1.115)

Applying the transfer matrix method, it is possible to calculate the transmission probabil-
ity in resonant tunneling structures (RTSs) or double barrier resonant tunneling structures
(DBRTSs). The potential energy diagram of such a structure in the general case with rect-
angular barriers is shown in Figure 1.19. The exact analytical solution is possible in this case.

According to our consideration in this case(
A1

B1

)
= M1M2M3M4M5M6M7

(
A5

B5

)
, (1.116)

where M1, M5 are the input matrices Equation (1.95), M2, M6 are the barrier matrices
Equation (1.94), M3, M7 are the output matrices Equation (1.96), and M4 is well matrix
Equation (1.93).

The final result can be presented as

TG =
T1T2

1 − 2
√
R1R2 cos 𝜃 + R1R2

. (1.117)

where T1, T2 are the transmission coefficient for first and second barriers; correspondingly,
R1, R2 are the refractive coefficients for first and second barriers, respectively, and 𝜃 is the
round-trip phase shift in the quantum well.

𝜃 = 2kw (1.118)

where k is the wave vector in the well and w is the well width.

U4

U2U

U3

U1 U5

X

1 2 3 4 5

Figure 1.19 Potential-energy diagram of the double rectangular barrier case
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As can be seen, the global transmission coefficient TG through all structure is exactly
derived.

We can rewrite Equation (1.117)

TG =
T1T2

(1 −
√
R1R2)2 + 4

√
R1R2sin2(𝜃∕2)

. (1.119)

Here we use the trigonometric ratio

cos 𝜃 = 1 − 2sin2(𝜃∕2). (1.120)

The condition of resonance is 𝜃/2= n𝜋 or n𝜆 = 2w, where 𝜆 is the length of wave and n is
the integer number.

At resonance sin2(𝜃/2)= 0 and we obtain the next equation for transmission coefficient

TGres =
T1T2

(1 −
√
R1R2)2

. (1.121)

In real two barrier structures the transmission coefficients are small (T≪ 1). Then

(1 −
√
R1R2)2 = (1 −

√
(1 − T1)(1 − T2))2 = (1 −

√
(1 − T1−T2 + T1T2)2

= (1 −
√

(1 − T1−T2)2 = (1 − 1 + (T1−T2)∕2)2 =
(T1 + T2)2

4
. (1.122)

Here we used T1T2 = 0 and Tailor series expansion√
(1 − (T1 + T2)) = 1 − (T1 + T2)∕2. (1.123)

As a result in the case of resonant tunneling we have [7]

TGres =
4T1T2

(T1 + T2)2
. (1.124)

The global transmission coefficient for double barrier resonance tunneling structure
(Figure 1.19) can be put in the following general form [7, 28]:

TG =
C0

C1T1T2 + C2
T1

T2
+ C3

T2

T1
+ C4

1
T1T2

(1.125)

where T1 and T2 represent the transmission coefficients of the left and right barrier respec-
tively which are exponentially dependent on energy. The C coefficients in Equation (1.125)
are phase factors exhibiting much weaker energy dependence and, at first approximation, can
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be used as constants if T coefficients are small (T≪ 1) (“strong localization” case). Under these
conditions Equation (1.125) can be simplified, in the dominator the last term is dominated.

TGnr =
C0

C4
T1T2 = T1T2 (1.126)

In this case then, the presence of potential energy well between two barriers has, in practice,
little or no effect. The view of the transmission probability will be the same if the well is absent.
The effect produced by the well is the reduction of the phase changing path of the total barrier.

For some special energy C4 and C1 go to zero. The main term is, consequently, canceled
out and the resonance occurs. In this case, as easily seen from Equation (1.125), the global
transmission coefficient TGres becomes

TGres =
C0

C2
T1

T2
+ C3

T2

T1

=
C0T1T2

C2T2
1 + C3T2

2

=
T1T2

T2
1 + T2

2

. (1.127)

Here we have assumed C0 =C2 =C3= 1.
The more precise formula may be seen in Equation (1.115). For a symmetric structure,

T1 = T2, and TGres = 1. Away from the resonance, the value TG quickly drops by many orders
of magnitude.

If T1 ≫T2 or T2 ≫ T1 the relations (1.124) and (1.127) transform into

TGres = C
Tmin

Tmax
=

Tmin

Tmax
. (1.128)

where Tmin and Tmax represent the smaller and larger among T1 and T2, respectively, while C
is either C0/C2 or C0/C3 depending on whether or not Tmax = T1. In case of using as an initial
formula (1.125) C= 4.

The comparison of Equations (1.126) and (1.128) show that resonance always implies an
increased transmission coefficient since it is

TGres

TGnr
= 1

T2
max

, (1.129)

where TGnr represents the nonresonance (without resonance) value of TG, that is, if no well
has been presented between the two barriers.

Such an increase is, therefore, larger for smaller Tmax and has vanished in the limiting case
of Tmax → 1 (which, on the other hand, is incompatible with the assumption of strong localiza-
tion). Equation (1.128) shows that regardless of how small T1 and T2 are, TGres can be order of
unity under the only condition T1 = T2 while Equation (1.129) clearly indicates that the trans-
mission coefficient can easily increase at the several orders of magnitude for arbitrary small
changes in energy producing resonance.

Another important aspect of resonance concerns the wave function as schematically pre-
sented in Figure 1.20.

Without resonance the wave function Ψ(x) monotonically and exponentially decreases
within the classically forbidden regions thus reflecting the multiplication of the single barrier
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Figure 1.20 Schematic images of the wave function in the cases of resonance and without resonance.
Reprinted with permission from Ref. [7]. Copyright (1984) by the American Physical Society

transmission coefficient (Equation (1.126)). At resonance, instead, the tunneling particle
finds its eigenstate in the well where, consequently, the wave function has to be peaked
with an exponential decrease on both sides (Figure 1.20). Since we have assumed both T1
and T2 ≪ 1, this implies that the state is strongly localized. Because T1 and T2 are not zero,
the localized states are, strictly speaking, quasi eigenstates with finite lifetime and energy
width. The increase in transmission coefficient at resonance is a consequence of the wave
function being peaked within the well. The typical dependence of transmission probability at
tunneling through double-barrier resonant-tunneling structure is shown in Figure 1.21. The
sharp resonance peaks are observed at E=En.

1.6 Lorentzian Approximation

Analysis shows that transmission coefficients through double barrier resonance tunneling
structure are described by Equations (1.126) and (1.124) for nonresonant and resonant
conditions, respectively. The sharp peak is observed at specific value of En. It allows
performing above described approximations. For more precise description we have to use full
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Figure 1.21 (a) Double barrier resonant tunneling structure. (b) Transmission coefficient of electron
with energy E through a double barrier via coherent resonant tunneling. Transmission peaks occur when
E aligns with En

Equation (1.117) and additionally analyze the influence of the wave function phase 𝜃 in well.
We rewrite Equation (1.117), assuming R1, R2 = 1 [2]:

TG =
T1T2

1 − 2
√
R1R2 cos 𝜃 + R1R2

=
T1T2

(1 −
√
R1R2)2 + 2

√
R1R2(1 − cos 𝜃)

=
T1T2(

T1 + T2

2

)2

+ 2(1 − cos 𝜃)
. (1.130)

The sharpness of the resonance coefficient arises from the fact that R1, R2 = 1, T1 and T2
are very small, so that the denominator in Equation (1.130) is very small every time round-trip
phase shift 𝜃 is close to the multiple of 2𝜋.

At resonance cos𝜃 = 1 (see Equation (1.120)) we obtain Equation (1.124).
Close to resonance value we can expand the cosine function in Equation (1.130) in the Taylor

series

(1 − cos 𝜃) = 1
2
𝜃2 = 1

2

( d𝜃
dE

)2
(E − En)2 (1.131)

and rewrite the transmission coefficient (Equation (1.130)) as

TG =
T1T2[

T1 + T2

2

]2

+
( d𝜃

dE

)2
(E − En)2

. (1.132)
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Multiplying the denominator and numerator in Equation (1.132) on (dE/d𝜃)2 we obtain

TG =
Γ1Γ2[

Γ1+Γ2
2

]2
+ (E − En)2

, (1.133)

where
Γ1 ≡ dE

d𝜃
T1 and Γ2 ≡ dE

d𝜃
T2. (1.134)

This approximate result is often used (neglecting by energy dependence of Γ1 and Γ2) in
place of the exact result (Equation (1.117)) for analytical calculations.

Multiply the denominator and numerator in Equation (1.133) on (Γ1 +Γ2) we have

TG =
Γ1Γ2(Γ1 + Γ2)

(Γ1 + Γ2) ×

[(
E − En

)2 +
(
Γ1 + Γ2

2

)2
] =

Γ1Γ2

Γ1 + Γ2
×

(Γ1 + Γ2)

(E − En)2 +
(
Γ1 + Γ2

2

)2

=
Γ1Γ2

Γ1 + Γ2
× Γ

(E − En)2 +
(Γ

2

)2
=

Γ1Γ2

Γ1 + Γ2
× A(E − En), (1.135)

where A(E−En) is a Lorentzian function:

A(E − En) =
Γ

(E − En)2 +
(Γ

2

)2
, (1.136)

where Γ≡Γ1 +Γ2.
Total transmission function through n resonant energy levels can be presented as

TT =
∑

n

TGn =
Γ1Γ2

Γ1 + Γ2

∑
n

A(E − En). (1.137)

where n is the number of resonance level (Figure 1.21).
The magnitude of transmission is determined by the parallel combination of Γ1 and Γ2 while

the width of the peak depends on the sum of Γ2 and Γ2.
The Lorentzian approximation for the transition function is often used for analytical calcu-

lations. It is reasonably accurate close to the resonance, but should not be used far from the
resonance.

1.7 Time Parameters of Resonant Tunneling

In general, there are several time scales of importance in resonance tunneling structures: (1)
the traversal time, the time needed to tunnel through a barrier; (2) the resonant state lifetime;
and (3) the escape time [1]. All these factors influence the overall temporal response of the
device.
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A crucial aspect usually overlooked in experiments [29–35] is that, depending on initial
conditions, nonnegligible time might be required before the high conductivity resonant
state is fully established [7]. As a rule the analysis of resonant tunneling is based on the
time-independent Schrodinger equation, which hence describes the stationary situation. This
requires the carrier wave function at resonance to be strongly localized within the well. In this
case it is possible to obtain Equation (1.117) for description of the resonance.

In resonant tunneling the main contribution to the characteristic time is from the well region
of the device. In resonant tunneling, the electrons become trapped in a quasibound state and
persist for some time before they “leak” out of the well through the second barrier. Resonant
levels are metastable, that is, the average electron lifetime 𝜏 life on them is finite. As a result, the
resonant state lifetime can be appreciably larger than the barrier traversal time and the escape
time. Therefore, we estimate the characteristic time by calculating the resonant state lifetime
of the RTD (resonant tunneling diode).

The resonant state lifetime or, equivalently, the lifetime of the quasibound state can be esti-
mated as follows. For simplicity it is assumed that the quantization direction is along the z
axis. The velocity of the electron in this direction can be estimated as

vz =
√

2En

m
, (1.138)

where En is the energy level of the quantized state. An attempt frequency can be defined as

fatt =
vz

2L
, (1.139)

where L is the effective one-way distance the electron travels in the well. Notice that the attempt
frequency simply represents how often the electron encounters a boundary while reflecting
back and forth within the well. The effective length L is given as

L = w + 1
kb1

+ 1
kb2

, (1.140)

where w is the width of the well and kb1 and kb2 are the imaginary wave vectors within the bar-
riers. They represent the electron travel while partially penetrating the barriers. The probability
per unit time of the electron escaping depends on the product of the attempt frequency (how
often the electron encounters a boundary) and the transmissivity of each boundary, denoted
as T1 and T2 (how likely it is for the electron to tunnel through the boundary). The lifetime is
proportional to the inverse of the probability per unit time of the electron escaping from the
quasibound level. The lifetime 𝜏 life is then given as

𝜏life =
1

fatt(T1 + T2)
. (1.141)

If it is further assumed that the electron can escape only from the second barrier, which is
usually the case when the RTD is under high bias, then the lifetime becomes

𝜏life =
1

fattT2
. (1.142)
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The lifetime can also be estimated from the uncertainty principle, which states that

ΔEΔt ≥ ℏ

2
. (1.143)

Since the state is assumed to be quasibound, it has a finite lifetime. That lifetime is simply
Δt. Therefore, the resonant lifetime is given as

Δt = 𝜏life =
ℏ

2ΔE
, (1.144)

where ΔE is the half-maximum width of the transmission peak, Γr/2. Equating Equations
(1.144) and (1.141) yields

ℏ

2ΔE
= 1

fatt(T1 + T2)
. (1.145)

Using Equations (1.138)–(1.140), fatt can be written as

fatt =
vz

2(w + 1∕kb1 + 1∕kb2)
=

√
2En∕m

2(w + 1∕kb1 + 1∕kb2)
. (1.146)

Substituting Equation (1.146) into Equation (1.145) yields

Γr = 2ΔE =
ℏ
√

2En∕m(T1 + T2)
2(w + 1∕kb1 + 1∕kb2)

. (1.147)

Therefore, the resonant lifetime is simply

𝜏life =
2(w + 1∕kb1 + 1∕kb2)√

2En∕m(T1 + T2)
. (1.148)

It is interesting to note that the resonant state lifetime describes both fully sequential and
fully resonant conditions of good approximation. The resonant lifetime can be determined in
somewhat different manner using a wavelike picture of the electron [1, 2].

Let’s apply lifetime consideration to analysis of Γ1 and Γ2 parameters in Lorentzian approx-
imation. One advantage of this approximation is that the entire physics is now characterized
by just two parameters Γ1 and Γ2, which are defined in Equation (1.134). Physically Γ1 and Γ2
(divided by ℏ) represent the rate at which an electron placed between the barriers would leak
out through the barriers into emitter, Γ1/ℏ, and collector, Γ2/ℏ, respectively.

It is possible to write the round-trip phase shift as 𝜃 = 2kL where L is effective width of the
well (see Equation (1.140)) which includes also phase shifts associated with the reflections at
the barriers.Then

dE
d𝜃

= 1
2L

dE
dk

= ℏfatt, (1.149)

where v≡ dE/ℏdk is the velocity with which an electron moves back and forth between the
barriers. The quantity fatt means the number of times per second that the electron impinges on
one of the barriers (that is, attempt to escape). It is equal to the inverse of the time that the
electron takes to travel from one barrier to another and back.
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The physical significance of Γ1 and Γ2 is easy to see. From Equations (1.134) and (1.149)
we can write

Γ1 ≡ dE
d𝜃

T1 = ℏfattT1 =
ℏ
√

2En∕mT1

2(w + 1∕kb1 + 1∕kb2)
, (1.150)

Γ2 ≡ dE
d𝜃

T2 = ℏfattT2 =
ℏ
√

2En∕mT2

2(w + 1∕kb1 + 1∕kb2)
, (1.151)

Γ = Γ1 + Γ2 = 2ΔE = ℏfatt(T1 + T2) =
ℏ
√

2En∕m(T1 + T2)
2(w + 1∕kb1 + 1∕kb2)

. (1.152)

Fraction T1 of the attempts on barrier 1 is successful while fraction T2 of the attempts on
barrier 2 are successful. Hence Γ1/ℏ and Γ2/ℏ tell us the number of times per second that an
electron succeeds in escaping through barrier 1 and 2 respectively.

Finite lifetime of an electron at the resonance level causes broadening of the level (natural
broadening), equal to

Γn = ℏ

𝜏n
. (1.153)

Electron lifetime and broadening are strongly dependent on the height and thickness of
barriers and width of potential well, which determines the energy of the resonant level En,
relative to the bottom of the well (Figure 1.22).

Various electron scattering processes that violate the coherence of electron waves within the
layers and on the borders cause broadening of the resonance levels. This so-called collisional
broadening of Γ𝜑 is associated with relaxation time 𝜏𝜑 by relation similar to Equation (1.153):

Γ𝜑 ≡ ℏ

𝜏𝜑
. (1.154)
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Figure 1.22 The lifetime 𝜏1 and natural width Γ1 of low (the first) resonant level in quantum well on
width L and barrier thicknesses d1, d2 dependences
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Relaxation time 𝜏𝜑 (see Equation (1.154)) decreases with increasing of impurities concen-
tration, structural defects, and with increasing temperature. So, in pure gallium arsenide at
room temperature 𝜏𝜑 ∼ 3× 10−13 s, and Γ𝜑 ∼ 2 meV; at liquid nitrogen temperature (77 K)
𝜏𝜑 ≥ 10−11 s, and Γ𝜑 ≤ 0.10 meV.

1.8 Transmission Probability at Electric Fields

From an experimental point of view it is very important to consider the double barrier res-
onance tunneling structure subjected to applied external electric fields (Figure 1.23). Under
electric fields the potential barriers change their shape. And even the initial structure has the
same potential barriers as the applied voltage destroys the symmetry of the barriers whose
transmission coefficients are no longer equal. As can be seen, the shape of potential barriers
has changed from rectangular to trapezoidal.

We use the transmission coefficient for one rectangular barrier to obtain the coefficient for
trapezoidal barriers under an electric field. According to Equation (1.85) in the case of signif-
icantly thick and high barrier (𝛼d≫ 1):

T = 1||M11
||2 = 16𝛼2k2

[−(𝛼 − ik)2e+𝛼d]2
= 16𝛼2k2

(𝛼 − ik)4
e−2𝛼d = 16𝛼2k2

(𝛼2 + k2)2
e−2𝛼d = T0e−2𝛼d (1.155)

The barrier changes its shape under an electric field

𝛼 = 1
ℏ
[2m∗(U(x) − E)]1∕2. (1.156)

Denote
U(x) − E = Φ(x). (1.157)

Under an electric field
Φ = Φ(x) = Φ0 − qFx. (1.158)

We approximate the barrier by multistep function as some rectangular barriers with width
dx and height U(x). The transition coefficient for each element of barrier is

T∗ = T0
∗e−2𝛼dx (1.159)

Then for all barrier

T = T0e

x2∫
x1
−2𝛼dx

= T0e
− 2

ℏ

x2∫
x1
[2m∗(U(x)−E)]1∕2dx

= T0e
− 2

ℏ

x2∫
x1
[2m∗(Φ0−qFx)]1∕2dx

, (1.160)

where m* is the constant (in barrier) and F is the electric field in the barrier.
In our case x1 = 0; x2 = d.

T = T0e
− 2

ℏ

x2∫
x1
[2m∗(Φ0−qFx)]1∕2dx

= T0e
− 2

ℏ

√
2m∗

d∫
0
(Φ0−qFx)1∕2dx

. (1.161)
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Figure 1.23 Double barrier structure without (a) and with (b) applied field

Take the integral in Equation (1.161)

d

∫
0

[(Φ0 − qFx)]1∕2dx =
Φ3∕2

0 − (Φ0 − qFd)3∕2

3∕2qF
(1.162)

and we obtain the following equation for transmission probability of trapezoidal barrier.

T = T0 exp
⎡⎢⎢⎣−4

3

√
2m∗

ℏ

Φ3∕2
0 −

(
Φ0 − qFd

)3∕2

qF

⎤⎥⎥⎦ (1.163)
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In the case of triangular barrier the second member in exponent of the function is equal to
zero and we obtain a well-known Fowler–Nordheim equation [11].

T = T0 exp

[
−4

3

√
2m∗

ℏ

Φ3∕2
0

qF

]
. (1.164)

As can be seen from Equation (1.163) Φ0 is the height of barrier input and (Φ0 − qFd) is
the height of barrier output.

During the analysis of the transmission probability of two barrier resonance tunneling struc-
ture (Figure 1.23) we have to consider the transmission coefficients through the first (T1) and
the second (T2) barriers. In this case the heights of barriers for coming electrons are signif-
icantly changed under electric field. It is necessary to take into account voltage dropping on
each barrier and well. Based on Equation (1.163) we rewrite the transmission coefficients for
the first and second barrier correspondingly

T1 = T01 exp

[
−4

3

√
2m1

∗

ℏ

Φ3∕2
1 − Φ2

3∕2

qFb1

]
, (1.165)

T2 = T02 exp

[
−4

3

√
2m2

∗

ℏ

Φ3∕2
3 − Φ4

3∕2

qFb2

]
, (1.166)

where Φ1 is the first input barrier, Φ2 is the first output barrier, Φ3 is the second input barrier,
and Φ4 is the second output barrier.

They are expressed as:

Φ1 = Φ0 (1.167)

Φ2 = Φ0 − qFb1d1 (1.168)

Φ3 = Φ0 − qFb1d1 − qFww (1.169)

Φ4 = Φ0 − qFb1d1 − qFb2d2 − qFww, (1.170)

where Fb1, Fb2, and Fw represent the electric field in the barriers and well region, respectively,
and they are

Fb1 = Va∕
(

d1 +
𝜀b1

𝜀b2
d2 +

𝜀b1

𝜀w
w

)
(1.171)

Fb2 = Va∕
(

d2 +
𝜀b2

𝜀b1
d1 +

𝜀b2

𝜀w
w

)
(1.172)

Fw = Va∕(w +
𝜀w

𝜀b1
d1 +

𝜀w

𝜀b2
d2. (1.173)
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Here 𝜀b1, 𝜀b2, and 𝜀w denote the dielectric constants of the barriers and well material while
d1, d2, and w denote the barriers and well width, respectively, and Va is the applied electric
voltage.

Using Equations (1.165) and (1.166) it is possible to calculate the general transmission
probability through two barrier resonance tunneling structure according to Equations (1.114),
(1.115), or (1.135).

The dependence of the transmission coefficient, TG, on applied electric field for resonance
tunneling structure AlN-GaN-AlN calculated according to Equation (1.135) is shown in
Figure 1.24. During the calculation of such parameters the double barrier resonance tunneling
structure has been used: d1 = 2.5 nm, d2 = 2.5 nm, w= 10 nm, Φ0 =Φ1 =ΦGaN−AlN = 2.0 eV,
𝜀GaN = 10.4𝜀0, 𝜀AlN = 8.5𝜀0, 𝜀0 = 8.85× 10−14 F/cm [34].

The analysis shows that even in the case of symmetrical structure with the same barriers
the transmission coefficients of the first and second barriers are different. Using the nonsym-
metrical structure with the left (first) barrier thinner, then the right (second) one, the condition
for T1 =T2 might be recreated thus enhancing the resonance effects (see Equation (1.128))
looked for in experiments. But the possibility to realize the optimized condition (i.e., TG = 1)
is not guaranteed and even if this can be achieved, it would be true only for a particular reso-
nance peak.

At high electric fields or in the case of some special structures, for example, at emission
into vacuum (the second barrier is the vacuum) the shape of the second barrier is triangular
(Figure 1.25).

In this case Equation (1.164) is applied for calculation of transmission probability through
the second barrier.

0 1
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2 3
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1 × 10–16

1 × 10–14

1 × 10–12

1 × 10–10

1 × 10–8

1 × 10–6

1 × 10–4

1 × 10–20
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Figure 1.24 Calculated transmission coefficient for the AlN-GaN-AlN double barrier resonant tunnel-
ing structure
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Figure 1.25 Two-barrier resonant tunneling structure under high electric field

1.9 Temperature Effects

1.9.1 One Barrier

Temperature dependence on transmission probability (Equation (1.117)) and tunnel current is
caused by temperature induced carrier energy spreading. The Boltzmann distribution function
and Fermi–Dirac distribution function, respectively, include the temperature

f (E) =
√

E
𝜋kBT

exp

(
− E

kBT

)
. (1.174)

f (E) = 1∕{1 + exp[(E − EF)∕kBT]}. (1.175)

The F–N current density through the barrier (for example, SiO2) can be calculated, as a
function of temperature, under the assumption that the electrons in the emitting electrode (for
example, Si) can be described by three-dimensional Fermi gas, according to classical approach
while neglecting the Schottky effect as [11, 36]

JF−N(T) =
qm∗

SikBT

2𝜋2ℏ3

Φ

∫
0

ln

[
1 + exp

(
EF (T) − E

kBT

)]
× exp

(
−

4
√

2m∗
ox(Φ − E)3∕2

3ℏqF

)
dE,

(1.176)
where q is the absolute electron charge, m*

Si and m*
ox are the effective electron mass into the

Si and SiO2, respectively, kBT is the thermal energy, ℏ is the reduced Planck constant, F is the
electric field across the insulator, and EF is the Fermi level.
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In the low-temperature approximation the conventional temperature independent F–N ana-
lytical expression can be derived from relation (1.176) in the form [36]

J0
F−N = AF2 exp

(
−B

F

)
, (1.177)

where A and B are the so-called pre-exponential and exponential F–N coefficients defined as

A =
q3m∗

Si

16𝜋2ℏm∗
oxΦ

, (1.178)

B =
4
√

2m∗
oxΦ3∕2

3ℏq
. (1.179)

Although relation (1.177) has been derived under low-temperature approximation, it can be
used to empirically describe the temperature dependence of the F–N current in MOS structure
after extraction of the effective coefficients A(T) and B(T) [37].

As a rule the next analytical but approximate formula that has been proposed to account for
the variation with temperature of the F–N emission current are used [20, 38]

JF−N(T) =
𝜋ckBT

sin(𝜋ckBT)
J0

F−N , (1.180)

where c = 2
√

2moxΦ∕qℏF.
This analytical approximation is not applicable at high temperatures and/or low electric field

such that ckBT≥ 1.
In order to overcome this limitation in Ref. [37] the new series expansion (Sommerfeld

expansion) of the F–N current versus temperature derived in Equation (1.176) has been
obtained

JF−N(T)
JF−N(0)

= 1 + 𝜋2

6
T(EF)(kBT)2 + 7𝜋2

360
T∕∕(EF)(kBT)4 + … + C2nT (2n−2)(EF)(kBT)2n + ....

(1.181)
The advantage of the given analytical formula is that (1) it does not diverge for any critical

condition as it is in the case for relation (1.180), and (2) the desired accuracy of the analyti-
cal expression can be controlled by the polynomial order up to which the expansion is done.
Figure 1.26 illustrates the capability of the proposed in Ref. [37] analytical expression (1.181)
expanded to the sixth order and that of relation (1.180) to approximate the exact F–N cur-
rent Equation (1.174). In this example, the maximum error given by relation (1.181) does not
exceed 15% for 400 ∘C, whereas it is larger than a factor 2 for relation (1.180).

The experimental results on F–N tunneling [37] confirm (1) the strong impact of temperature
on the F–N current amplitude, especially for temperatures above 250 ∘C; and (2) the good
linearity of the F–N plots whatever the temperature is. The last point demonstrate that the low
temperature analytical model of relation (1.180) can still be applied up to 400 ∘C, but with the
temperature-dependent effective pre-exponential and exponential F–N coefficients A(T) and
B(T).

At electron injection from degenerated silicon into oxide the good agreement of experimen-
tal and calculated results has been achieved after the assumption on linear variation of Φ with
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Figure 1.26 Theoretical relative variations of the F–N currents as obtained using the exact formula
and analytical approximations: (1) exact dependence, (2) analytical approximation according to formula
(1.181), and (3) analytical approximation according to formula (1.180). Reproduced with permission
from Ref. [37]. Copyright (1995), AIP Publishing LLC

temperature with dΦ/dT = −2.4× 10−4 eV/∘C, but at emission from metal electrode dΦ/dT =
−2.67× 10−4 eV/∘C [20, 39, 40]. It is well established that temperature induces decrease in the
barrier height at the Si/SiO2 interface [41]. As the tunneling probability exponentially depends
on Φ this effect is large enough. For a given temperature, the decrease of 0.1 eV of Φ leads
to nearly one decade of increase in JFN for F= 8 MV/cm. The theoretical F–N coefficients A
and B have been extracted for different temperatures. They are in good agreement with the
experimental ones. This clearly demonstrates that the temperature behavior of the F–N tunnel
current can be reasonably well interpreted by the classical model of relation (1.176), which
accounts satisfactorily for the temperature-induced carrier energy statistical spreading. It is
worth noting that the effective barrier height is always found to be smaller than the “actual”
barrier height deduced from the relation, which takes into account the Fermi level variation
with temperature over the whole temperature range [37]:

EF(T) = EF0

[
1 − 𝜋2

12

(
kBT

EF0

)2
]
, (1.182)

where EF0 = ℏ2(3𝜋2Ns)2∕3∕(2m∗
Si).

This result clearly indicates that all the approaches based on only low-temperature F–N
approximation Equation (1.177) cannot explain the behavior with temperature of the F–N
emission by including only the temperature dependence through Fermi level variation.
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It is now clear that the temperature-induced carrier energy distribution accounted for
3D model is the dominant mechanism for the F–N current changing with temperature.
The strong effect of temperature experimentally observed [37, 42, 43] is rather due to the
temperature effect on the barrier height caused by carrier energy distribution.

1.9.2 Double-Barrier Resonance Tunneling Structure

The temperature can effect the resonance time. The key point is that the thermal motion of the
atoms in any sample contributes in making the potential energy time dependent. As far as this
effect is concerned, from a qualitative point of view different cases can be distinguished. If the
variations of potential energy Ep are very small or/and very slow (compare to 𝜏0), then Ep can
be considered not to depend on time to all practical purposes. If, instead, Ep significantly varies
in values on a time scale comparable or smaller than 𝜏0, then a more complicated analysis
is required.

Overall it is expected that the temperature will give rise to broadening of the resonance
peaks and decrease in their effects on the current measured in experiments.

It is very important to consider the effect due to the electron thermal population [7]. The
important conclusion is reached that at resonance a variety of current-versus-T relationship
can result depending on the relative position of the resonance state and the Fermi energy (EF).
In particular, currents increasing as well as decreasing with T and complicated nonmonotonic
temperature behavior are possible. Each state gives rise to its own (individual) J vs. T depen-
dence according to its energy position. In real samples where many such states are presented,
different (individual) current behavior is to be expected at each resonant peak. This is in agree-
ment with experiments showing that the conductance at peak is proportional to exp[(T0/T)1/2]
where T0 is individual for the considered peak [44].

As the temperature varies the cathode carrier concentration at the resonant energy also varies
and so does the current J measured in experiments. At the same time the carrier thermal veloc-
ity also increases with T and, with semiconductor or metal cathode, this implies an increase
in the electron flux hitting the barrier, hence J. This latter is, however, only a minor effect
(because the thermal velocity depends on T1/2) with respect to that mentioned earlier whose
temperature dependence comes from the exponential factor in the Fermi distribution function.

Because we essentially deal with the carrier concentration within the definite narrow energy
window (the width of the resonant eigenstate centered on En) the effects to be expected depend
on its position relative to En. If En and EF are close (compared with kBT), an increase of T
spreading out the distribution function can only lead to decrease of particle concentration at
the resonance energy, hence to decrease of tunneling current. In this case J exhibits a metallic
type of behavior.

In any case, for large increase of temperature a subsequent increase in current may occur
since, as the distribution function spreads out, the carrier concentration can become nonnegli-
gible at other, higher eigenstates whose contribution will rapidly become important. If, on the
other hand, the distance between En and EF is large, an increase of current is first expected to
occur as a consequence of the increase in carrier concentration available for resonant tunnel-
ing. Here too, however, a subsequent metallic type of behavior can arise for the same reasons
as given above [7].
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