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1
Definitions, Units, and Geometric
Properties

1.1 Definitions

Acceleration The rate of change of velocity. The second derivative of
displacement with respect to time.

Added mass The mass of fluid entrained by a vibrating structure immersed in
fluid. The natural frequency of vibration of a structure
surrounded by fluid is lower than that of the structure vibrating
in a vacuum owing to the added mass of fluid (Tables 6.9
and 6.10).

Amplitude The maximum excursion from the equilibrium position during a
vibration cycle.

Antinode Point of maximum vibration amplitude during free vibration in a
single mode. See node.

Attenuation,
acoustic

Difference in sound or vibration between two points along the
path of energy propagation. Also see damping, insertion loss.

Bandwidth The range of frequencies through which vibration energy is
transferred.

Beam Slender structure whose cross section and deflection vary along a
single axis. Beams support tension, compression, and bending
loads. Shear deformations are negligible compared to bending
deformations in slender beams.

Boundary condition Time-independent constraints that represent idealized structural
interfaces, such as zero force, displacement, velocity, rotation,
or pressure.

Broad band A process consisting of a large number of component
frequencies, none of which is dominant, distributed over a
broad frequency band, usually more than one octave. Also see
narrow band and tone.
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2 Formulas for Dynamics, Acoustics and Vibration

Bulk modulus of
elasticity

The ratio of the hydrostatic stress, equal in all directions, to the
relative change in volume it produces. B = E∕[3(1 − 𝜈)] for
elastic isotropic materials where E is the modulus of elasticity
and 𝜈 is Poisson’s ratio. B = 𝜌c2 for fluids where 𝜌 is the mean
density and c is the speed of sound.

Cable A uniform, one-dimensional structure that can bear only tensile
loads parallel to its own axis. A cable is a massive string. It has
zero bending rigidity and it stretches in response to tensile
loads. Also see chain.

Cable modulus The change in longitudinal stress (axial force divided by
cross-sectional area) divided by the change in longitudinal
strain produced by the stress. A solid rod has a cable modulus
equal to the modulus of elasticity of the rod material. The
cable modulus of a woven cable is typically about 50% of that
of the modulus of its fibers.

Center of gravity The point on which a body balances. The center of mass. The
sum of the gravitational moments created by the elements of
mass is zero about the center of mass.

Center of
percussion

The point on a rigid body that does not accelerate when the body
is impulsively loaded.

Centrifugal force Outward reaction of a mass on a rotating body away from the
axis of rotation. Centrifugal (adjective) means “outward from
center.”

Centripetal
acceleration

Acceleration of a point on a rotating body toward the center of
rotation. Centripetal (adjective) means “toward the axis of
rotation.”

Centroid Volumetric center of a volume or area. The center of mass and
centroid are the same for a homogeneous body.

Chain A uniform, massive one-dimensional structure that bears only
tensile loads parallel to its own axis. No bending or shear loads
are borne. In contrast to cables, ideal chains do not extend
under tensile loads.

Concentrated mass
(point mass)

A point in space with finite mass and zero rotational inertia.

Consistent units A unit system in which Newton’s second law, force equals mass
times acceleration, is identically satisfied without additional
dimensional factors. See Table 1.2.

Coriolis
acceleration

Accelerations induced on a moving particle in a rotating system,
after the French engineer-mathematician Gustave-Gaspard
Coriolis.

Crest factor See peak-to-rms ratio.
Damping The ability of a system to absorb vibration energy. Damping

limits resonant vibration amplitude and causes free vibrations
to decay with time.
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Damping factor A nondimensional measure of the damping of a system equal to
1∕(2𝜋) times the natural logarithm of the ratio of the amplitude
of one cycle to the amplitude of the following cycle during free
vibration.

Decibel (dB) Sound pressure level in decibels is 10 times the logarithm, to the
base 10, of the ratio of the mean square sound pressure to a
reference mean square sound pressure.

Deformation The displacement of a structure from its reference or equilibrium
position.

Density Mass per unit volume.
Divergence (1) Unstable torsion motion caused by aerodynamic forces that

overcome structural stiffness, and, (2) spreading of sound
waves propagating from a source.

Dynamic
amplification
factor

Also called dynamic load factor (DLF), and magnification factor.
The maximum dynamic response amplitude of a single degree
of freedom elastic system to a dynamic force divided by the
static response to a steady force with the same magnitude.

Eigen German for “own characteristic.” Eigenvalue is a scalar solution
to a homogeneous linear equation of motion. Natural
frequency is eigenvalue. Eigen vector is the associated spatial
mode shape.

Elastic A material or structure whose deformations increase linearly with
increasing load. Most practical structures are elastic, or
approximately elastic, for loads below the onset of yielding or
buckling.

Flutter Unstable divergent oscillation caused by aerodynamic forces.
Force As defined by Newton, force is proportional to mass times

acceleration, Equation 1.1.
Forced vibration Vibration of a system in response to an external periodic force.
Free vibration Vibrations in the absence of external loads. Free vibrations take

place after an elastic system is released from a displacement.
Frequency The number of times a periodic motion repeats itself per unit

time. Vibration frequency is the number of sinusoidal periods
per unit times in either units of cycles per second, called Hertz,
or in cycles per minute, which is rpm, or in radians per second.

Fundamental mode The lowest natural frequency and mode shape of an elastic
system.

Harmonic motion Simple harmonic motion is sinusoidal in time about an
equilibrium point.

Harmonics Motion at integer multiples of a frequency.
Hertz Hertz as the unit of cycles per second was adopted by the General

Conference on Weights and Measures in 1960. Its name honors
Heinrich Hertz, a pioneer investigator of electromagnetic
waves.
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4 Formulas for Dynamics, Acoustics and Vibration

Impedance (1) Fluid mechanic impedance is ratio of pressure to fluid
velocity, (2) mechanical impedance is ratio of force to velocity,
(3) step impedance is the ratio of pressure differential across to
velocity through a component.

Impulse The force multiplied by the time increment and integrated over
the time interval during which the force acts. It has units of
force-seconds. Impulse produces change in momentum.
Rotational impulse is torque integrated over time and has units
of force-length-seconds.

Inertial frame A set of coordinates that does not accelerate; a frame in which
Newton’s second law holds.

Insertion loss The change in sound pressure level between two points in an
acoustic circuit when a component is inserted between the two.
Also see transmission loss. Generally expressed in decibels.

Jerk The rate of change of acceleration.
Kinematics Motion within geometric constraints.
Kinetic energy The energy of mass in motion. 1∕2MV2 is the kinetic energy of a

mass M with velocity V .
Mass ratio The weight of a structure divided by the weight of a

circumscribed cylinder of the surrounding fluid.
Membrane A thin, massive, elastic uniform sheet that can support only

tensile loads in its own plane. A membrane can be flat like a
drumhead or curved like a soap bubble. A one-dimensional
membrane is a cable. A massless, one-dimensional, membrane
is a string. The term membrane is also used for elastic systems
without bending.

Modal density The number of modes of vibration with natural frequencies in a
specified frequency band. See Table 6.6.

Mode shape
(eigenvector)

A dimensionless shape function defined over the space of a
structure that describes the relative displacement of any point
as the structure vibrates in a single mode. A mode shape is
independent of time. There is a unique mode shape for each
natural frequency of the structure. Any deformation of the
structure, consistent with the boundary conditions, can be
expressed as a linear sum of mode shapes.

Modulus of
elasticity
(Young’s
modulus)

The ratio of normal stress to the normal strain it produces in a
material. The modulus of elasticity has units of pressure. A
material is isotropic if the modulus of elasticity is independent
of direction. Also see bulk modulus.

Moment See torque.
Momentum Mass times its velocity vector. Rotational momentum is the polar

mass moment of inertia of a body times its rotational velocity
about an axis.
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Moment of inertia
of a body

The sum of the products obtained by multiplying each element of
mass within a body by the square of its distance from a
given axis.

Moment of inertia
of an area

The sum of the products obtained by multiplying each element of
area by the square of its distance from a given axis.

Narrow band Vibration or sound process whose frequency components fall
within a narrow band, generally less than one-third octave, so
that a single peak follows each zero crossing with positive
slope. Also see broad band and tone.

Natural frequency
(eigenvalue)

The frequency at which a linear elastic structure will freely
vibrate in free vibration. Continuous or multimass structures
have multiple natural frequencies. The lowest of these is the
fundamental natural frequency. See Section 3.3.

Neutral axis The axis of zero bending stress through the cross section of a
beam. The neutral axis of homogeneous beams passes through
the centroid of the cross section. See Section 4.1.

Node Point on a structure that does not deflect during vibration in a
mode. Antinode is a point on a structure with maximum
deflection during vibration in a single mode. Also, a point
in space.

Noise Multifrequency acoustic pressure.
Nonstructural mass Mass without a corresponding stiffness. See particle.
Octave, one-third

octave
A logarithmic frequency scale originating in musical notation.

The octave band is a frequency range where the upper
frequency is twice the lower frequency. The octave bands are
subdivided into three one-third-octave bands, with the ratio
between the upper and lower limits of each one-third-octave
band being 21∕3.

Orthotropic A material whose properties have two mutually perpendicular
planes of symmetry. The material properties are direction
dependent. A lamina of parallel fibers has orthotropic material
properties.

Particle, point mass,
concentrated
mass

A point in space with finite mass and zero rotational inertia.

Peak-to-rms ratio The ratio of the maximum value above the mean to the root-mean
square value, about the mean, of a data time history. The
peak-to-rms ratio of a sine wave is 21∕2 and the peak-to-rms
ratio of a Gaussian time history approaches infinity. Also
called crest factor.

Period of vibration The reciprocal of frequency. Period is the time in seconds to
complete one cycle of oscillation.

Phase angle The angle, relative to 360∘, at a point in time between two
harmonic waves with the same frequency.
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Plate A thin, flat, two-dimensional elastic structure that conforms to a
two-dimensional surface. A plate has mass and supports
bending loads. A plate without bending rigidity is a membrane.

Poisson’s ratio The ratio of the lateral shrinkage to the longitudinal expansion of
a bar of a given material that has been placed under a uniform
axial load. Poisson’s ratio is often near 0.3 for metals and 0.4
for rubber-like materials. It is dimensionless. A material with a
Poisson’s ratio of 0.5 has constant volume during loading.

Potential energy Stored energy. Potential energy is the negative of work. Mgh is
the potential energy created by raising mass M by height h
where g is the acceleration due to gravity.

Power spectral
density

The mean square value of a process, within a specified frequency
band, divided by the width of that band. Also see octave.

Product of inertia of
a body

The sum of the products obtained by multiplying each element of
mass of a body by the product of its distances from two
mutually perpendicular axes. Table 1.6.

Product of inertia of
an area

The sum of the products obtained by multiplying each element of
area of a section by the product of its distances from two
mutually perpendicular axes. Table 1.5.

Radius of gyration
of a body

The square root of the quantity formed by dividing the mass
moment of inertia of a body by the mass of the body.

Radius of gyration
of an area

The square root of the quantity formed by dividing the area
moment of inertia of a section by the area of the section.

Random vibration A multifrequency process, described by its statistical properties.
Resonance Response to an external periodic force having the same frequency

as the natural frequency of the system. The amplitude of
vibration will become larger than the static response to the
same force for dampine factors less than 1/21/2.

Response The response of a system is the motion, or other output, resulting
from dynamic excitation of a system.

Response spectrum Maximum response to a given transient load, often plotted as a
function of the natural frequency and damping.

Restitution
coefficient

The ratio of the velocity of two objects after a collision to their
velocity ratio before the collision, relative to the center of
mass. The restitution coefficient is zero for a perfectly plastic
collision. It is maximum of two for elastic collision.

Rigid body A body whose deformations are negligible.
Root-mean-square The square root of the average, over many cycles of vibration, of

the square of a time history of vibration.
Rotary inertia The inertia associated with rotation of a structure about an axis.

The sum of the products of elements of mass of a body times
their velocity times the distance from the axis of rotation.

Rotor A body that spins about a fixed axis.
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Seiching The system of waves in a harbor produced as the harbor responds
sympathetically to waves in the open sea. Also see sloshing.

Sidereal day 86,164 s (23.93 h) Earth’s period of rotation with respect to
distant stars, which is 4 min shorter than the sun’s 24-h solar
day because of the earth’s daily advance in its orbit about
the sun.

Shear beam A beam whose deformation in shear substantially exceeds the
flexural (bending) deformation.

Shear coefficient A dimensionless quantity, dependent on the shape of the cross
section of a beam that is introduced into beam theory to
account for the nonuniform distribution of shear stress and
shear strain over the cross section. See Section 4.1, Table 4.11.

Shear modulus The rate of change in shear stress of a material that produces a
unit shear strain. For isotropic elastic material the shear
modulus is G = E∕[2(1 − 𝜈)].

Shell A thin elastic structure defined by a curved surface. A curved
plate is a shell. A shell without bending rigidity is a curved
membrane.

Shock Vibration imposed suddenly and over a period of time
comparable to or shorter than the natural period of vibration.

Sloshing Surface waves in a liquid-filled basin, Table 6.7.
Sonic fatigue The vibration of plate and shell structures induced by fluctuating

pressure on their surfaces, Tables 7.3, 7.4, 7.5.
Sound pressure

level (SPL)
Twenty times the logarithm to base 10 of the rms acoustic

pressure relative to a reference pressure, decibels. See
Appendix C.

Specific impulse The thrust produced by a rocket motor, divided by the initial
weight of fuel, times the time in seconds the fuel burns. It is a
function of the fuel composition and combustion temperature.
See Section 2.2.

Spectrum The distribution of vibration amplitude or energy versus
frequency.

Speed of sound The speed at which small pressure fluctuations propagate through
an infinite fluid or solid. See Table 6.1.

Spring constant The change in load on a linear elastic structure divided by the
change in deformation that results. The torsional spring
constant is the change in torque divided by the change in
angular position in radians. See Table 3.2.

Spring-mass system A body or mass on a massless elastic suspension.
Stress Force on a unit area. Stress has units of pressure.
String A massless one-dimensional structure defined by a straight line

that bears a uniform tension. A string cannot bear bending or
compression. A massive string is a cable.
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Tone (pure) A sound or vibration at a single frequency. Also see broad band
and narrow band.

Torque Torque, or moment, is the vector cross product of force with a
vector from a reference axis of rotation. It has units of
force-length. Torque produces angular acceleration. See
section 2.3.

Torsion coefficient Change in torque on a linear elastic shaft divided by the change
in angular deformation, in radians, that results, per unit length
of shaft. See Tables 3.2, 4.15.

Transient vibration Vibration that develops over a limited time.
Transmission loss The change in sound pressure level of a forward propagating

sound wave between two points along its path. Also see
insertion loss.

Vector Quantity with magnitude and direction such as velocity.
Vibration Oscillation in time. See free vibration, pure tone, and random

vibration.
Viscosity The ability of a fluid to resist shearing deformation. The viscosity

of a Newtonian (linear) fluid is defined as the ratio between the
shear stress applied to a fluid and the shearing strain that
results. Kinematic viscosity is defined as viscosity divided by
fluid density; it has units of length squared over time.

Wave length The distance in space that a propagating wave travels in one
period of oscillation. Wave length is the speed of propagation
divided by the frequency.

White noise A noise or vibration whose spectral density is constant over all
frequencies. Pink noise is distributed over a finite frequency
range.

Work The integral of the scalar dot product of force vector and
incremental displacement vector during the force application.
Work has units of force times length (energy). Rotational work
is the integral of torque times the incremental angle of rotation.
See Section 2.2.

1.2 Symbols

General nomenclature for the book is in Table 1.1. In addition the heading of each table
contains the nomenclature that applies to that table. These symbols and abbreviations are
consistent with engineering usage and technical literature. Vectors are written in bold face
type (B). Mode shapes have an over tilde (∼) to denote that they are independent of time.

The Greek letter 𝜆 is used for wave length and longitude; it is also used for the dimension-
less natural frequency parameters of beams, plates, and shells, where it generally appears
with a subscript. The symbol I is used for area moments of inertia and J is used for mass
moments of inertia. The overworked symbols t and T are used for time, oscillation period,
transpose of a matrix, tension, and thickness. Definitions in the tables clarify usage.



Trim Size: 170mm x 244mm Blevins c01.tex V3 - 09/30/2015 2:08 P.M. Page 9

Definitions, Units, and Geometric Properties 9

Table 1.1 Nomenclature
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Table 1.1 Nomenclature, continued
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1 unit
force

1 unit
acceleration

M
1 unit mass

F a

Figure 1.1 Newton’s second law in consistent units, F = Ma

1.3 Units

The change in motion [of mass] is proportional to the motive force. – Newton [1].
The formulas presented in this book give the correct results with consistent sets of units.

In Consistent Units, Newton’s second law is identically satisfied without factors: One unit
of force equals one unit of mass times one unit of acceleration, Figure 1.1.

F = Ma (1.1)

Table 1.2 presents sets of consistent units that identically satisfy F = Ma. These units
are used internationally in professional engineering. They are recommended for use with
this book.

Table 1.2 Consistent sets of engineering units

(Refs [2, 3, 4, 5] Section 1.4).

Tables 1.3, 1.4.
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Mass and force have different consistent units. In SI units (Systeme International of
the International Organization for Standardization), meter is the unit of length, the unit of
mass is kilogram, and second is the unit of time [2, 3, 4]. The SI consistent unit of force
called Newton is kilogram-meter/second squared. Substituting these units in Equation 1.1
shows that 1 N force accelerates 1 kg mass at 1 m/s2. The General Conference of Weights
and Measures defined the Newton unit of force in 1948 and the Pascal unit of pressure,
1 N/m2, in 1971.

It is the author’s experience that inconsistent units are the most common cause of errors
in dynamics calculation. See Refs [5–8]. While lack of an intuitive feel for dyne, Newton, or
slug may be the reason to convert the final result of a calculation to a convenient customary
unit in which mass and force have same customary units, it is important to remember that
formulas derived from Newton’s laws discussed in this book and most engineering software
require the consistent units shown in Table 1.2 to produce correct results.

One Newton force is about the weight of a small apple. If this apple is made into apple
butter and spread over a table 1 m2 then resultant pressure is 1 Pa, which is a small pressure.
There is a plethora of pressure units in engineering. Zero decibels (dB) pressure at 1000 Hz
is the threshold of human hearing (Section 6.1); it is 20 μPa (20 × 10−6 Pa, 2.9 × 10−9 psi),
which is a very small pressure. Stress in structural materials is measured in units of ksi
(1000 psi, 6.894 × 106 Pa), MPa(106 Pa), decaNewton∕mm2, and hectobar (both 107 Pa),
which are all large pressures. One hectobar stress is 500 billion times greater than 0 dB
pressure.

Standard prefixes for decimal unit multipliers and their abbreviations are in Table 1.3.
Table 1.4 has conversion factors; ASTM Standard SI 10-2002 [3], Taylor [4], and Cardarelli
[9] provide many more.

Example 1.1 Force on mass

A 1 gram mass accelerates at 1 ft∕s2. What force is on the mass?

Solution: Newton’s second law (Eq. 1.1) is applied. Consistent units are required.
Gram-foot-seconds is not a consistent set of units. To make the calculation in SI units,
case 1 of Table 1.2, grams are converted to kilograms and feet are converted to meters.
The conversion factors in Table 1.4 are 1 gram = 0.001 kg, and 1 ft = 0.3048 m so in SI
1 ft∕s2 is 0.3048 m∕s2. Equation 1.1 gives the force that accelerates 1 g at 1 ft∕s2.

F = Ma = 0.001 kg (0.3048 m∕s2) = 0.0003048 kg–m∕s2 = 0.0003048 N

Table 1.3 Decimal unit multipliers
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Table 1.4 Conversion factors
cc= cubic centimeter; DecaNewton= 10 Newtons; mile=US statute mile, unless
otherwise noted; Pascal= 1 N/m2; pound mass= pound, avoirdupois. Refs [3, 4, 5, 9].
See Table 1.2 for consistent sets of units.
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Table 1.4 Conversion factors, continued
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Table 1.4 Conversion factors, continued
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Table 1.4 Conversion factors, continued



Trim Size: 170mm x 244mm Blevins c01.tex V3 - 09/30/2015 2:08 P.M. Page 17

Definitions, Units, and Geometric Properties 17

Table 1.4 Conversion factors, continued
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For calculation in US customary lb-ft-s units, case 6 in Table 1.2, grams are converted to
slugs by converting grams to pounds then pounds to slugs.

1 g = 0.0022045 lb (1 slug ∕ 32.17 lb) = 0.00006852 slug

F = Ma = 0.00006852 slug (1 ft∕s2) = 0.00006852 lb

The results imply the relationship between Newtons and pounds: 1 N∕1 lb = 0.00006852∕
0.0003049 = 0.2248. See Table 1.4.

1.4 Motion on the Surface of the Earth

The earth can be modeled as a spinning globe with a 6380 km (3960 miles) equatorial radius
(Figure 1.2) that revolves daily about its polar axis. (Geophysical models of earth are dis-
cussed in Refs [5] and [10–14].) Owing to its rotation, the earth’s surface is not an inertial
frame of reference. As one walks in a line on the surface of the earth, one is actually walking
along a circular arc because the surface of the earth is curved. Further, the earth is rotating
under one’s feet. Accelerations induced by the earth’s curvature and rotations are important
for predicting weather, weighing gold, and launching projectiles.

Point P is on the surface of the earth at radius r= 6,380,000 m, longitude 𝜆 and polar
angle 𝜃 as shown in Fig. 1.2. Its circumferential angular velocity is the sum of the rotation
of the earth about polar axis (Ω= 7.272× 10−5 rad/s) and d𝜆/dt. When P is stationary with
respect to the earth’s surface, d𝜆/dt= d𝜃/dt= 0. The velocity and acceleration of P with
respect to the center of the earth are given in spherical coordinates in case 4 of Table 2.1
with these values.

v = r(d𝜃∕dt)n𝜃 + r(Ω + d𝜆∕dt) sin 𝜃n𝜆

vp = 464.0 sin 𝜃n𝜆, m∕s

a = −[r(d𝜃∕dt)2 + r(Ω + d𝜆∕dt)2sin2𝜃]nr
+ [rd2𝜃∕dt2 − r(Ω + d𝜆∕dt)2 sin 𝜃 cos 𝜃]n𝜃
+ [rd2𝜆∕dt2 sin 𝜃 + 2r(Ω + d𝜆∕dt) cos 𝜃d𝜃∕dt]n𝜆

ap = −0.03374 sin2𝜃nr − 0.01687 sin 2𝜃n𝜃, m∕s2 (1.2)

On the equator, 𝜃 = 90 degrees, the earth’s surface velocity is 464.0 m/s (1670 km/hr,
1520 ft/s, 1038 mph). The inward radial acceleration of 0.03374 m/s2 towards the center
of the earth results in a 0.34% reduction in gravity. This explains the popularity of the
equator for launching satellites. Objects weigh less on the equation than near the poles. For
example, gold weighs 0.12% more at the mine in Nome Alaska (65.4 degrees N latitude,
𝜃 = 24.6 deg) than at the bank in San Francisco (35.7 degrees N latitude, 𝜃 = 54.3 deg).

Now consider that particle P moves freely at constant radius with an initial west-to-east
velocity v𝜆 = r d𝜆/dt n𝜆 and north-to-south velocity v𝜃 = r d𝜃/dt n𝜃, with respect to the
surface of the earth. The polar and latitudinal components of accelerations are set to zero,
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Figure 1.2 Motion of the surface of rotating earth and Coriolis deflection of moving particles relative to the
earth. Latitude is zero at the equator.

a𝜃 = a𝜆 = 0 for the freely moving particle. The previous kinematic equations are solved for
the latitudinal and longitudinal angular accelerations relative to the earth.

d2𝜃∕dt2 = (Ω + d𝜆∕dt)2 sin 𝜃 cos 𝜃

d2𝜆∕dt2 = −2(Ω + d𝜆∕dt)(d𝜃∕dt) cos 𝜃∕ sin 𝜃 (1.3)

These equations show that an initial west-to-east angular velocity (d𝜆/dt) induces a
north-to-south acceleration (d 2𝜃/dt2) and a north-to-south velocity (d𝜃/dt) produces an
east-to-west acceleration (−d 2𝜆/dt2) in the northern hemisphere. Thus, freely moving
particles veer to their right in the Northern Hemisphere (𝜃 < 90∘) and to the left in
the Southern Hemisphere (𝜃 > 0∘), as seen by an earth-based observer. These induced
motions are named Coriolis accelerations, after the French engineer-mathematician
Gustave-Gaspard Coriolis.

Figure 1.2 shows Coriolis accelerations spin air flowing inwards toward a region of low
pressure. As a result hurricanes spin counterclockwise in the northern hemisphere and
typhoons spin clockwise in the southern hemisphere. Coriolis forces affect ocean currents.
Coriolis deflected tides carry migrating shad fish counterclockwise around Canada’s Bay
of Fundy [15].

1.5 Geometric Properties of Plane Areas

Table 1.5 has formulas for the geometric properties of plane areas [16–19]. Figure 1.3a
shows a bounded plane area in the x–y plane with area A and centroid C at point xc, yc.

A = ∫A
dxdy, xc =

1
A∫A

xdA, yc =
1
A∫A

ydA (1.4)
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Table 1.5 Properties of plane sections
Notation: A= cross-sectional area; C= centroid of area; K(x), E(x)= complete elliptical integrals of first and
second kind; Ix = area moment of inertia about x-axis; Iy = area moment of inertia about y-axis; Ixy = area
product of inertia about x and y axes; Ip = Ix + Iy = polar area moment of inertia about z-axis; Ixc, Iyc,
Ixcyc = area moment of inertia about axes through centroid; t= thickness; P= perimeter; xC = distance from
x-axis to centroid; yC = distance from y-axis to centroid; 𝜃 = angle, radian. Also see Table 1.6 and Eqs 1.4
through 1.11 Refs [16–19].
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Table 1.5 Properties of plane sections, continued
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Table 1.5 Properties of plane sections, continued
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Table 1.5 Properties of plane sections, continued
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Table 1.5 Properties of plane sections, continued
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Table 1.5 Properties of plane sections, continued
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Table 1.5 Properties of plane sections, continued
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Table 1.5 Properties of plane sections, continued
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Figure 1.3 A plane section with centroid (C) and rotated and translated coordinate systems and a solid body
with a translated coordinate system and a rotated vector r

The z-axis is perpendicular to the x–y plane. The element of area is dA = dxdy. Area
moments of inertia about the x-axis (Ix) and y-axis (Iy), the area product of inertia (Ixy)
about the x–y-axes, and the polar area moment of inertia about the z-axis (Ip = Izz) are
integrals over the area.

Ix = ∫A
y2dA, Iy = ∫A

x2dA, Ixy = ∫A
xydA,

Ip = Izz = Ix + Iy = ∫A
(x2 + y2)dA

(1.5)

The symbol I is used for area moments of inertia and J is used for mass moments of inertia.
Ix is the integral of the square of distance (y2) along the y-axis from the x-axis times the
elemental area. The radius of gyration for each axis is defined.

rx = (Ix∕A)1∕2, ry = (Iy∕A)1∕2 (1.6)

Ixc, Iyc, and Ipc are the area moments of inertia about axes with origin at the centroid C,
Figure 1.3a. Ixy = 0 if the body is symmetric about either axis.
Parallel axis theorem transforms moments of inertia about the centroid, Ixc, Iyc, and Ixcyc,

to moments of inertia about the offset parallel axes x, y, Figure 1.3a.

Ix = Ixc + y2
cA, Iy = Iyc + x2

cA, Ixy = Ixcyc + xcyc A

Ip = Ix + Iy = Ipc + (x2
c + y2

c)A
(1.7)

Translation away from the centroid increases the moment Ix and Iy [20].
The r-axis and the orthogonal s-axis shown in Figure 1.3a are rotated counterclockwise

by the angle 𝜃 with respect to the x- and y-axes. The area moments of inertia about rotated
axes are,

Ir = Ixcos2𝜃 + Iysin2𝜃 − Ixy sin 2𝜃

Is = Iycos2𝜃 + Ixsin2𝜃 + Ixy sin 2𝜃

Irs = Ixy cos 2𝜃 − (1∕2)(Iyy − Ixx) sin 2𝜃

(1.8)
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The sum of the area moments of inertia about two perpendicular axes is independent of the
rotation of the axes.

Iz = Ip = Ix + Iy = Ir + Is (1.9)

More coordinate transformations are in Table 2.2.
Principal axes are two mutually perpendicular axes about which the product of inertia

is zero. The angle of the principal axes is found from Equation 1.8 with Irs = 0.

𝜃 =
(1

2

)
arc tan

[
2Ixy(

Iy − Ix
)] (1.10)

Substituting this 𝜃 into Equation 1.8 gives the principal area moments of inertia, which are
the maximum and minimum moments of inertia about rotated axes.

Imax =
(1

2

)
(Ix + Iy) +

(1
2

)
[(Ix − Iy)2 + 4I2

xy]1∕2

Imax =
(1

2

)
(Ix + Iy) −

(1
2

)
[(Ix − Iy)2 + 4I2

xy]1∕2
(1.11)

If the two principal area moments of inertia are equal, then the moments of inertia are
independent of axis rotation.

Geometric properties of complex areas are obtained by subdividing (meshing) the areas
into elementary sections, usually triangles or rectangles, and summing their properties in
space about the global coordinate system. See Equations 1.7, 1.8, and Example 1.3. Areas
and moments of inertia of standardized aluminum, steel, and timber sections are presented
in Refs [21–23]. Section 4.1 discusses application to beam bending theory.

Example 1.2 Area and moment of inertia of pipe section

Compute the area and area moment of inertia about the axis A-A through the centroid of the
pipe section on the left-hand side of Figure 1.4.

A 6 mm
0.25 in.

0.09 in. (2.29 mm)

20 mm
A 14 mm 1.1 in. (28 mm)

Figure 1.4 Geometric sections for Examples 1.3 and 1.4

Solution: The area and moment of inertia of the pipe section with an axis through its cen-
troid are in case 27 of Table 1.5.

A = 𝜋(a2 − b2), Ixc =
(
𝜋

4

)
(a4 − b4)
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Figure 1.4 shows the outer diameter a = 20 mm (0.7874 in.) and the inner diameter
b = 14 mm (0.5512 in.). The radii are half these values, a = 10 mm (0.3937 in.), b = 7 mm
(0.275 in.). Substituting these values into the above formulas gives,

A = 160.2 mm2 (0.2483 in.2), Ixc = 5968 mm4(0.01434 in.4)

The pipe section can also be computed with the thin annulus approximation given in case
30 of Table 1.5.

A = 2𝜋Rt, IxC = 𝜋R3t

The thickness t = a − b = 3 mm is half the difference in the diameters. The average radius
R = (a + b)∕2 = 8.5 mm (0.335 in.). Substituting into the previous formulas gives approx-
imate values: A = 150.2 mm2 (0.2328 in.2), Ixc = 5788 mm4 (0.0139 in.4).

Example 1.3 Area and moment of inertia of a triangle

A triangle with a hole in it is shown on the right-hand side of Figure 1.4. Compute the
cross-sectional area and area moment of inertia about the axis along the base of the triangle.

Solution: The area and area moment of inertia of the triangle with a hole are equal to the
area and area moment of inertia of the triangle less the area and area moment of inertia of
the hole. The area and moment of inertia of the triangle for an axis along its base are in case
2 of Table 1.5.

A = (1∕2)bh2, Ix = (1∕12)bh3

For our case, b = 0.9 in. (22.80 mm) and h = 1.1 in. (27.94 mm),

A = 0.4950 in.2 (287.7 mm2), Ixc = 0.09982 in.4 (41548 mm4)

The area of the 0.25 in. (6.35 mm) diameter hole is computed from case 23 of Table 1.5
using a radius R = 0.25 in.∕2 = 0.125 in.: Ahole = 𝜋R2 = 0.04909 in.2 (31.67 mm2). The
net area is the difference between the triangle and the hole: Anet = 0.4950 − 0.04909 =
0.4459 in.2 (287.7 mm2).

The area moment of inertia of the triangle with the hole is the area moment of inertia of the
triangle less the area moment of inertia of the hole, which is offset by yC = 0.09 + 0.125 =
0.215 in. (5.46 mm), cases 23 and 45 of Table 1.5.

Ixhole = IxC + y2
cA =

(1
4

)
𝜋R4 + y2

c𝜋R
2 = 0.0001917 + 0.002269 = 0.002461 in.4

Inet = 0.09982 − 0.002461 in.4 = 0.09736 in.4 (40520 mm4)

1.6 Geometric Properties of Rigid Bodies

Table 1.6 [16–18] has formulas for geometric properties of homogeneous rigid bodies.
These are based upon classical solutions, such as Ref. 16; also see Section 1.7.
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Table 1.6 Properties of homogeneous solids
Notation: A= cross sectional area; C= centroid (center of mass); Jx =mass moment of inertia about axis
parallel to x axis; Jy =mass moment of inertia about axis parallel to y axis; Jz =mass moment of inertia about
axis parallel to z axis through center of mass; Jxy =mass product moment of inertia; Jxc, Jyc, Jzc, Jxcyc =mass
moments of inertia about axes through centroid; M=mass=ρV; P= perimeter of section; t= thickness;
S= lateral surface area; V= volume; xC = distance from x axis to center of mass; yC = distance from y axis to
center of mass; zC = distance from z axis to center of mass; t=mass density. Also see Table 1.7
Refs [16, 17, 19].
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Table 1.6 Properties of homogeneous solids, continued
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Table 1.6 Properties of homogeneous solids, continued
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Table 1.6 Properties of homogeneous solids, continued
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Table 1.6 Properties of homogeneous solids, continued

19
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The mass M, volume V, and location of the center of mass C, also the center of gravity,
or centroid, are found by integrating element of mass dM = 𝜌dV = 𝜌dxdydz over the body.

M = ∫V
𝜌dV , V = ∫V

dV = ∫V
dxdydx (1.12a)

xc =
1
M∫V

𝜌xdV , yc =
1
M∫V

𝜌ydV , zc =
1
M∫V

𝜌zdV (1.12b)

The mass moments of inertia Jxx, Jyy, Jzz and the mass products of inertia about the x-, y-,
and z-axes are

Jx = ∫ 𝜌(y2 + z2)dV Jy = ∫V
𝜌(x2 + z2)dV Jz = ∫V

𝜌 (x2 + y2)dV (1.13a)

Jxy = ∫V
𝜌xydV Jxz = ∫V

𝜌xzdV Jyz = ∫V
𝜌yzdV (1.13b)

The reader is cautioned that some authors (Refs [12, 13] and see Eq. 2.36) define the mass
products of inertia (Jxy, Jxz, Jyz) as the negative of these expressions. The density 𝜌 has
units of mass per unit volume. If 𝜌 is constant, as is the case in Tables 1.5, 1.6, and 1.7, the
center of mass coincides with the centroid of the volume, density can be taken outside the
integrals, the centroid is center of mass and mass is density times volume, M = 𝜌V .
Radius of gyration is the square root of the moment of inertia divided by the mass.

rx =
(
Jx
M

)1∕2

, ry =
(
Jy
M

)1∕2

, rz =
(
Jz
M

)1∕2

(1.14)

Parallel axis theorem transforms mass moments of inertia about the center of mass, Jxc,
Jyc, Jzc, Figure 1.3b, to mass moments of inertia about the parallel axes offset by xc, yc, zc.

Jx = Jxc +M(y2
c + z2

c), Jy = Jyc +M(x2
c + z2

c), Jz = Jzc +M(x2
c + y2

c) (1.15a)

Jxy = Jxcyc +Mxcyc, Jxz = Jxczc +Mxczc, Jyz = Jyczc +Myczc (1.15b)

Translation of axes away from the center of mass increases the moments of inertia Jx, Jy,
Jz, (Eq. 1.15a); products of inertia (Eq. 1.15b) may increase or decrease.

Rotated unit vector r with origin O (Fig. 1.3b) is defined relative to unit-magnitude vec-
tors i, j, and k in the x-, y-, and z-directions, respectively.

r = axi + ayj + azk, a2
x + a2

y + a2
z = 1 (1.16)

The coefficients ax, ay, az are cosines of the angles between the rotated vector and the
base coordinates. Look ahead to Equation 1.22. Mass moments of inertia about the rotated
axis are

Ja = a2
xJx + a2

yJy + a2
z Jz − 2axay Jxy − 2axaz Jxz − 2ayazJyz (1.17)

The unit magnitude vector s,

s = bxi + byj + bzk, b2
x + b2

y + b2
z = 1 (1.18)
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Table 1.7 Properties of elements described by points and vectors
Notation: A= cross sectional area; C= centroid; OC= vector from origin to center of mass (centroid of
volume); Jn =mass moment of inertia about axis through origin in the direction of the unit vector n;
M=mass, ρV; n= unit length vector through point O in direction of reference axis; O= origin of axes;
OP= vector from point O to point P, etc.; P, Q, R, T, etc.= nodes (points) in space with Cartesian coordinates
(xP, yP, zP) etc.; S= surface area; t= thickness of plate; V= volume of body; |X|=magnitude or determinant
of X; ρ=mass density; •= vector dot product, Eq. 1.25; ×= vector cross product, Eq. 1.24 Refs [16, 24–27]
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Table 1.7 Properties of elements described by points and vectors, continued
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is perpendicular to a so r • s = axbz + ayby + azbz = 0 (see Eq. 1.25). The mass product of
inertia with respect to the rotated r–s-axes is [19].

Jrs = −axbxJx − aybyJy − azbzJz + (axby + aybx) Jxy + (axbz + azbx) Jxz + (aybz + azby)Jyz
(1.19)

The general expression for the six mass moments of inertia in a rotated coordinate system
(Eqs 1.19 and 1.22) is a tensor summation [19].
Principal axes of a solid body ([19], p. 558) are found by solution of the cubic equation

that results from setting the determinant (|..|) of the matrix on the left-hand side of the
following eigenvalue problem to zero.⎡⎢⎢⎢⎣

(Jx − J) Jxy Jxz
Jyx (Jy − J) Jyz
Jzx Jyz (Jz − J)

⎤⎥⎥⎥⎦
⎧⎪⎨⎪⎩
a

b

c

⎫⎪⎬⎪⎭ = 0 (1.20)

The three principal moments of inertia are J1, J2, and J3. Products of inertia are zero about
principal axes. Substituting these into the equation and solving gives the associated axis
vector direction cosines (Eq. 1.16) of the principal axis.

The mass moments of inertia of thin planar slices from a homogeneous body are equal to
their two-dimensional area moments of inertia (Table 1.5) times density. Two-dimensional
areas times density extrude into the third dimension to create mass moments of inertia,
cases 16 and 17 of Table 1.6 and the following example. Also see Section 1.7.

Example 1.4 Geometric properties of a steel pipe

A steel pipe made with density 𝜌 = 8 g∕cc (0.289 lb∕in.3) extends along the x-axis from x =
0 to x = 250 mm (9.843 in.). The center of the cross section, shown in Figure 1.4, coincides
with the x-axis. Compute the pipe mass and its mass moments of inertia about its center of
gravity.

Solution: Case 14 of Table 1.6 has the mass and mass moments of inertia of a tube that
extends out the y-axis in terms of its outer radius R = 10 mm (0.3934 in.), the inner diame-
ter, r = 7 mm (0.276 in.), and length h = 250 mm (9.84 in.). Substituting the x-axis for the
y-axis, these formulas give

M = 𝜌𝜋(R2 − r2)h = 320.4 g = 0.3204 kg = 0.706 lb

Jx =
M
2
(R2 + r2) = 23870 gm − mm2 = 2.387 × 10−5 kg − m2 = 0.08152 lb − in2

Jy =
M
12

(3R2+3r2+h2) = 1.681×106 g−mm2 = 1.681×10−3 kg−m2 = 5.744 lb− in2

The pipe extends out the x-axis from x = y = 0; y is perpendicular to x. This solution is in
case 16 of Table 1.6.
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1.7 Geometric Properties Defined by Vectors

Table 1.7 has the geometric properties of straight-sided polygonal planar areas and homoge-
neous volumes in terms of vectors to nodes at their vertices rather than relative dimensions.
These formulas are based on Refs [16, 24–27].

A one-node object is a point mass. A two-node object is a rod. A three-node object is a
triangle. A four-node solid is a tetrahedron, which is a pyramid-like solid with four vertices
(nodes) and four triangular sides. A wedge is a six-node solid. A brick is an eight-node
solid. The brick can be subdivided into two wedges each of which is further subdivided
into three tetrahedrons (cases 4–6 of Table 1.7 [27]).
Vectors have magnitude and direction. Boldface (r) denotes vector. i, j, and k are the unit

vectors in the x-, y-, and z-directions, respectively. The vector R can be defined by its start-
ing coordinates (x1, y1, z1) and ending coordinates (x2, y3, z2), by its Cartesian components
(rx, ry, rz), or by its magnitude (d2 = rx

2 + ry
2 + rz

2) times a unit vector r.

R = rxi + ryj + rzk (1.21)

r = R
d

=
(rx
d

)
i +

(
ry
d

)
j +

(rz
d

)
k

=
(x2 − x1)

d
i +

(y2 − y1)
d

j +
(z2 − z1)

d
k

= cos 𝛼 i + cos 𝛽 j + cos 𝛾 k (1.22)

R and rmake angles 𝛼, 𝛽, and 𝛾 with respect to the positive x-, y-, and z-axes, respectively.
Direction cosines are the cosines of these angles and cos2𝛼 + cos2𝛽 + cos2𝛾 = 1.

The vectors R and S are defined by their Cartesian components.

R = Rxi + Ry j + Rzk, S = Sxi + Sy j + Szk (1.23)

Cross product of two vectors is a vector [25].

R × S = (RySz − RzSy) i + (RzSx − RxSz) j + (RxSy − RySx)k =
|||||||
i j k

Rx Ry Rz

Sx Sy Sz

||||||| (1.24)

Here “| ⋅ |” means determinant. The magnitude of the vector cross product is |r ||s | sin 𝜃,
where 𝜃 is the acute angle between vectors; it is the area of the parallelogram defined by
bringing the bases of the vectors together. The cross product direction is perpendicular to the
plane of the two vectors using the right-hand rule: vectors r, s, and r × s are a right-handed
orthogonal triad r × s=−s × r. If r × s= 0 then r and s are parallel.
Scalar product, or dot product, of two vectors is the scalar sum of the product of their

components [12].
R • S = RxSx + RySy + RzSz (1.25)

The magnitude of the dot product is |r | ⋅ |s | cos 𝜃, where 𝜃 is the acute angle between the
two vectors; if R • S = 0 then the vectors are perpendicular. The dot product is commu-
nicative, R • S = S • R. The magnitude of R is (R • R)1∕2.
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The angle between two vectors is 𝜃 = cos−1 (R • S)∕(|R ||S |).
Straight line is defined by the Cartesian coordinates (x,y,z) of a point x0, y0, z0 on the

line and the vector a = axi + ayj + azk in the direction of the line. Equations of the line are
([16], p. 243).

canonical (x − x0)∕ax = (y − y0)∕ay = (z − z0)∕ax
parametric x − x0 = axt, y − y0 = ayt, z − z0 = azt, −∞ < t < ∞
vector r − r0 = at, with r0 = x0i + y0j + z0k −∞ < t < ∞

(1.26)

The minimum distance from a straight line to a point off the line is |u × a |∕ |a | ([16],
p. 245), where a is the line vector with direction cosines ax, ay, ay, and u is a vector from a
point on the line to the point off the line.
Equation of a Plane. If nonparallel vectors a, b, and c lie in a plane then the vector

equation of the plane is a • (b × c) = 0. If vectors x1, x2, and x3, are to points on the plane
then n = (x1 − x2) × (x2 − x3) is a vector perpendicular to the plane. If r is a vector on the
plane then equation of the plane is r • n = D, which is equivalent to the scalar equation
ax + by + cz = d. The minimum distance from a plane to an off-plane point is D = n •
(xo − x)∕ |n | where x is a vector to a point on the plane and xo is the vector to the off-plane
point [16].
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