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DENSITY INDEPENDENT
POPULATION MODELS

1.1 EXPONENTIAL GROWTH

1 Consider the flow diagram in Text Figure 1.21.

a. Find the corresponding DDS.

The flow diagram tells us how the population changes from one year to the
next. Inward pointing arrows represent additions while outward pointing
arrows represent subtractions. Here there is only one arrow, and it represents
an addition. Thus the DDS is given by

P t =P t−1 + 10 P t−1

We can also write the DDS as P t =P t−1 + 0 10P t−1 , or
P t = 1 10P t−1 .

Population
10%P(t– 1)

TEXT FIGURE 1.21 Flow diagram for Exercise 1.1.1.
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b. Use a calculator to predict the population after 2 years if P 0 = 50.

If P 0 = 50, then by using the DDS we can predict the population
1 year later:

P 1 =P 0 + 10 P 0

= 50 + 0 10 50

= 55

Applying the DDS once more gives us the model prediction for year 2:

P 2 =P 1 + 10 P 1

= 55 + 0 10 55

= 60 5

After 2 years we predict the population will be 60.5.

c. Use Excel to project the population in year 10.

Since the model in this problem is the exponential growth model, we can
save time by using the same spreadsheet we created for the Yellowstone
grizzly population. We only need to change the growth rate to r = 10
and the initial population to P 0 = 50. Figure 1.1 shows the result with the
projection for year 10 highlighted. The model predicts a population of about
129.7 in year 10.

FIGURE 1.1 Excel output for Exercise 1.1.1.
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3 Consider the flow diagram in Text Figure 1.23.

a. Find the corresponding DDS.

The flow diagram tells us how the population changes from one year to the
next. Inward pointing arrows represent additions while outward pointing
arrows represent subtractions. Here we have two arrows: one an addition
and one a subtraction. Thus the DDS is given by

P t =P t−1 + 8 P t−1 −5 P t−1

=P t−1 + 3 P t−1

We can also write the DDS as P t =P t−1 + 0 03P t−1 , or
P t = 1 03P t−1 .

b. Use a calculator to predict the population after 2 years if P 0 = 100.

If P 0 = 100, then by using the DDS we can predict the population 1
year later:

P 1 =P 0 + 3 P 0

= 100 + 0 03 100

= 103

Applying the DDS once more gives us the model prediction for year 2:

P 2 =P 1 + 3 P 1

= 103 + 0 03 103

= 106 09

After 2 years we predict the population will be about 106.1.

c. Use Excel to project the population in year 10.

We see from the DDS that this model is still an exponential growth model
with r = 3 . Thus we can use the Yellowstone grizzly spreadsheet with the
new growth rate and the initial population set to 100. The result is given in
Figure 1.2 with the projection for year 10 highlighted. The model predicts
a population of about 134.4 in year 10.

Population
8%P(t– 1) 5%P(t– 1)

TEXT FIGURE 1.23 Flow diagram for Exercise 1.1.3.
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5 Draw a flow diagram that corresponds to the following DDS:

P t =P t−1 + 4 P t−1

The addition of 4% of the previous year’s population is represented by an inward
pointing arrow in the flow diagram, given in Figure 1.3.

7 Draw a flow diagram that corresponds to the following DDS:

P t =P t−1 −0 30P t−1

The DDS indicates a subtraction of 30% of the previous year’s population. We
account for this subtraction with an outward pointing arrow in the flow diagram,
given in Figure 1.4. Note that there is no minus sign in front of the arrow label.

FIGURE 1.2 Excel output for Exercise 1.1.3.

Population
4%P(t– 1)

FIGURE 1.3 Flow diagram for Exercise 1.1.5.
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9 Give the flow diagram and corresponding DDS for a grizzly population that is
growing by 8% per year and has 5 bears illegally poached annually.

We represent the 8% growth by an inward pointing arrow and the poaching by
an outward pointing arrow. The result is Figure 1.5. Note that there is no minus
sign in front of the 5.

The corresponding DDS is given by P t =P t−1 + 0 08 P t−1 −5.

11 Suppose you know that the DDS for a population is given by

P t =P t−1 + 3 P t−1 −50

a. Draw a flow diagram that would lead to this DDS.

The 3% increase is represented by an inward pointing arrow while the
removal of 50 from the population is represented by an outward pointing
arrow. The result is given in Figure 1.6.

b. Explain in a complete sentence how the population is changing from year
to year.

The population is experiencing growth of 3% of the previous year’s popu-
lation while at the same time 50 members of the population are leaving
each year.

Population
8%P(t– 1) 5

FIGURE 1.5 Flow diagram for Exercise 1.1.9.

Population
3%P(t– 1) 50

FIGURE 1.6 Flow diagram for Exercise 1.1.11.

Population
30%P(t– 1)

FIGURE 1.4 Flow diagram for Exercise 1.1.7.
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13 Suppose that the 1993 Grizzly Bear Recovery Plan had never been implemented
and that the 1993 estimate of a 1% growth rate continued to hold. How long
would it have taken for the population to reach 416 bears?

We use the Yellowstone grizzly population Excel model with r = 1
and P 0 = 197. We are looking for the year that the population reaches 416
bears, so we drag the model formulas down until we see the population meet
or exceed 416 for the first time. This happens 76 years from the initial popula-
tion estimate, and the population of bears is projected to be about 419.7 at
that time.

15 Suppose that the numbers of adult females with cubs sighted in Yellowstone
were 52 in 2003, 60 in 2004, and 65 in 2005. Estimate the total grizzly popu-
lation in 2005.

The 3-year total of adult female grizzlies is 52 + 60 + 65 = 177. No known
deaths are mentioned, so we assume 0 known deaths. Thus we have 177 adult
females, representing about 27.4% of the total population of bears. This total is
given by 177

0 274≈645 99, or about 646 bears.

17 Text Table 1.2 contains more population data for the wild California condor
population from the 1996 Recovery Plan for the California Condor (U.S. Fish
and Wildlife Service, 1996).

a. Compare the population values in the table to what our model would predict
using the rate of decline found in Example 1.5 and an initial population of
50 condors. In general, how well did our model do?

Here we use the California condor Excel spreadsheet that we already created,
where P 0 = 50 in 1968, and the rate of decline from Example 1.5 is
r = 6 6 . Next we drag the model formulas down until we reach the year
1985, or t = 17. The projected values for years 1982-5 for our model are
19, 18, 17, and 16. We compare the model projections to the data in Text
Table 1.2, which recorded condor populations of 21, 19, 15, and 9 for the
years 1982-5. Our model seems to have done reasonably well, though from
the data it appears as though something happened in 1985 that caused a lar-
ger than predicted decline in the population.

TEXTTABLE 1.2 The Number of California Condors Remaining in
theWild between 1982 and 1985 (U.S. Fish andWildlife Service, 1996)

Year Number Wild California Condors

1982 21
1983 19
1984 15
1985 9
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b. Can you think of possible reasons for any discrepancies?

As noted above, the most striking difference between our model projections
and the actual population data seems to be for the year 1985. There could be
any number of reasons for the larger than predicted decline in 1985, includ-
ing accidents, poaching, or disease.

19 Recall that our estimate for the California condor’s rate of decline was based on
the lower population estimates given by Sibley, Mailed, and Wilbur. Re-
estimate the rate of decline from 1968 to 1978 using three other combinations
from the population estimates:

a. The lower value from 1960’s and the higher value from 1978.

The range of values for the California condor population was given as 50–60
in the late 1960’s and 25–30 in 1978. Taking the lower value from the 1960’s
(with the assumption of 1968 for our starting year), we use P 0 = 50. Using
the higher estimate, 30 condors, in 1978 gives us P 10 = 30. Thus we repeat
the trial-and-error approach from Example 1.5 in order to estimate the rate of
decline from 1968 to 1978. We use the already created California condor
Excel model and type in different values for r until we get 30 condors in
1978. The result is shown in Figure 1.7 with the value for r highlighted.
Our new estimate for the rate of decline is about 5% per year. Note that it
makes sense for the rate of decline to be lower than in Example 1.5 because
the assumed population in 1978 is higher – there was less of an assumed
decline.

b. The higher value from 1960’s and the lower value from 1978.

FIGURE 1.7 Excel output for Exercise 1.1.19.
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Here we need to use P 0 = 60 and P 10 = 25. Repeating the trial-and-error
exercise from part a. gives us the estimate r = 8 4 . Note that it makes
sense for the rate of decline to be higher than in Example 1.5 because the
assumed population in 1968 is higher – there is more of an assumed decline
to 1978.

c. The higher value from 1960’s and the higher value from 1978.

Here we need to use P 0 = 60 and P 10 = 30. Repeating the trial-and-error
exercise from part a. gives us the estimate r = 6 6 . Note that it makes sense
for the rate of decline to be the same as in Example 1.5 because the assumed
population declines by 50% from 1968 to 1978, just as it did in Example 1.5
when the values used were 50 in 1968 and 25 in 1978.

d. How much difference do you see in r?

The range of values for r is 5 −8 4 , depending on the values used from
the given data estimates. The value we used in the text, r = 6 6 , falls
squarely in that range and thus seems a reasonable choice.

1.2 EXPONENTIAL GROWTH WITH STOCKING OR HARVESTING

1 Consider the flow diagram in Text Figure 1.33.

a. Find the corresponding DDS.

Recalling that inward pointing arrows represent additions and outward
pointing arrows subtractions, the DDS is given by
P t =P t−1 + 0 08P t−1 −50.

b. Use a calculator to predict the population after 2 years if P 0 = 650.

According to the DDS we find the population after 1 year by calculating

P 1 =P 0 + 0 08P 0 −50

= 650 + 0 08 650−50

= 652

Applying the DDS once more give us our projection for year 2:

Population
8%P(t– 1) 50

TEXT FIGURE 1.33 Flow diagram for Exercise 1.2.1.
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P 2 =P 1 + 0 08P 1 −50

= 652 + 0 08 652−50

= 654 16

Thus after 2 years our model predicts a population of about 654.

c. Use Excel to project the population after 15 years.

The model in this problem is in the form of an exponential growth model with
harvesting. Thus we can use the white-tailed deer Excel model, being careful
to enter the appropriate parameter values. Once we have entered the correct
parameter values we drag the model formulas down to year 15 and record the
result. The result is a population of about 704 as shown in Figure 1.8.

3 Draw a flow diagram that corresponds to the following DDS:

P t =P t−1 + 4 P t−1 −40

The addition of 4% of the previous year’s population is represented by an inward
pointing arrow while the subtraction of 40 is represented by an outward pointing
arrow. The result is given in Figure 1.9. Note that there is no minus sign in front
of the “40.”

FIGURE 1.8 Excel output for Exercise 1.2.1.
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5 Extension: In Example 1.8 we determined that an average of 12.23 Mississippi
sandhill cranes were captive-reared and released annually between 1981 and
1993. Text Table 1.3 gives the actual numbers, taken from Table 2 in Valentine
and Lohoefener (1991), for the years 1981–1990.

a. How does 12.23 compare to the average number of cranes that were actually
released?

Here we find the average of the values given in Text Table 1.3:

9 + 4 + 8 + 4 + 10 + 7 + 2 + 10 + 13 + 29
10

= 9 6

Thus the actual average number of cranes released from 1981–90 was 9.6 –

about 2.6 less than the average number we estimated for 1981–93.

b. What factor(s) might account for the difference?

One possibility is that the table of data only extends from 1981 to 1990, so
there could have been large cohorts of cranes released in 1991, 1992, and
1993. It is also possible that the assumed rate of decline used in Example
1.8 (6%) turned out to be higher than what the population actually experi-
enced, thus causing us to overestimate the number of cranes released.

TEXT TABLE 1.3 The Number of Mississippi Sandhill Cranes Captive-
Reared and Released between 1981 and 1990 (Valentine & Lohoefner, 1991)

Year of Release
Number
Captive-released

1981 9
1982 4
1983 8
1984 4
1985 10
1986 7
1987 2
1988 10
1989 13
1990 29

Population
4%P(t– 1) 40

FIGURE 1.9 Flow diagram for Exercise 1.2.3.
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c. Using a rate of decline of 6%, and the actual release values from 1981 to 1990,
estimate howmany cranes there were in 1990. (Note: this exercise will require
a significant modification of the crane Excel spreadsheet.)

The difference in this problem versus what we have done previously is that
there is no longer a single stocking number that we can refer to for all years.
Instead, we have a different stocking number each year that must be added.
We can arrange this by including a separate column in our Excel model where
we store the release data, and then referring to that column for the stocking
number each year. The set-up is given in Figure 1.10. Note how the popula-
tion formula now refers to column C for the stocking number each year.
Figure 1.11 shows the numerical result. The model predicts about 107 cranes
in 1990.

d. Determine, on average, how many cranes must have been released in 1991,
1992, and 1993 in order to end up with 135 cranes in 1993.

After the year 1990 we no longer have release data, so from that year on we
refer to the stocking parameter that we kept in cell C4. The formula version of
the spreadsheet is given in Figure 1.12. Our task is to experiment with differ-
ent stocking numbers until we end up with 135 cranes in 1993. The result is a
stocking number of about 16.3 cranes per year.

FIGURE 1.10 Excel set-up for Exercise 1.2.5.
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FIGURE 1.12 Excel set-up for Exercise 1.2.5d.

FIGURE 1.11 Excel output for Exercise 1.2.5.
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7 When deciding on a real harvesting strategy, it is not just the total number har-
vested that is important. Rather, the sex ratio of the harvest number is also very
important. In fact, Palmer and Storm write, “During the past decade, deer popula-
tions in the Northeast have continued to increase except in states that harvested
markedly more antlerless than antlered deer. (Palmer & Storm, 1995)” In a sen-
tence or two, discuss why the sex ratio of deer harvests should play such an impor-
tant role in controlling deer populations.

Imagine two populations of deer: each has 1,000,000 male deer and 1,000,000
female deer for a total of 2,000,000 in each population. Suppose that from Pop-
ulation 900,000 male deer are harvested, while from Population 900,000 female
deer are harvested. We would expect that even though the same number of deer
were harvested from each, Population 1 will experience much more growth in the
following year than Population 2 because all of the female deer still have the
potential to produce offspring.

1.3 TWO FUNDAMENTAL EXCEL TECHNIQUES

1 Consider the DDS below:

P t =P t−1 + 0 10P t−1 −50

a. Graph the population over a period of 10 years if P 0 = 550.

This is a straightforward graphing exercise where we have a model represent-
ing an exponentially growing population that is undergoing harvesting. We
copy the formula down to year 10, select both the time and population columns
including the column headings, and insert an X,Y-Scatter graph. The result is
shown in Figure 1.13.

540
550
560
570
580
590
600
610
620
630
640

0 2 4 6 8 10 12
Time

Population

FIGURE 1.13 Excel graph for Exercise 1.3.1a.

13TWO FUNDAMENTAL EXCEL TECHNIQUES

0002629632.3D 13 23/1/2016 7:28:54 PM



b. Graph the population over a period of 10 years if P 0 = 450.

Here we need only change the initial population from 550 to 450, and Excel
will automatically update our graph to give the one shown in Figure 1.14.

c. Describe the difference in the behavior of the population in the two cases.

In the first case we see an increasing population while in the second case the
population is decreasing. With an initial population of 450 the 10% growth
rate is not enough to overcome the effects of a harvesting level of 50.

3 Describe the difference in population behavior between Exercises 1.3.1 and 1.3.2.

In Exercise 1.3.1, the first population increases without bound while the second
population crashes to extinction. Neither of these behaviors is present in Exercise
1.3.2. In Exercise 1.3.2, the decreasing population decreases less and less over
time, while the increasing population increases less and less over time. Both of
the populations in Exercise 1.3.2 will eventually level off, or stabilize, at a positive
population value, and we can find that value by dragging the model formula down
far enough that the population is no longer changing.

5 Sketch a graph by hand for each of the following situations.

a. A population where P 0 = 100 and the population is increasing over time at an
increasing rate.

An example sketch is provided in Figure 1.15.

b. A population where P 0 = 200 and the population is increasing over time at a
decreasing rate.

An example sketch is provided in Figure 1.16.

c. A population where P 0 = 50 and the population is decreasing over time at a
decreasing rate.

An example sketch is provided in Figure 1.17.

0
50

100
150
200
250
300
350
400
450
500

0 2 4 6 8 10 12

Time

Population

FIGURE 1.14 Excel graph for Exercise 1.3.1b.
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Time

Population

100

FIGURE 1.15 Example graph for Exercise 1.3.5a.

Time

Population

200

FIGURE 1.16 Example graph for Exercise 1.3.5b.

Time

Population

50

FIGURE 1.17 Example graph for Exercise 1.3.5c.
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d. A population where P 0 = 100 and the population is decreasing over time at an
increasing rate.

An example sketch is provided in Figure 1.18.

7 Consider the DDS given by P t =P t−1 + rP t−1 −50. If the initial population
is 400, use Goal Seek to determine the value for r that results in a population of
800 10 years later.

Here we use the Excel model for a population that is growing exponentially and
undergoing harvesting. Since the growth rate is unknown, we use a stand-in value
of r = 5 initially. We also set the harvesting number to 50 and the initial popu-
lation to 400. We need to copy the formula down to year 10 and then use Goal
Seek to find the growth rate that produces a population of 800 in year 10. The
set-up just before Goal Seek is run is shown in Figure 1.19. The result is a growth
rate of about 17%.

9 Regarding white-tailed deer, recall the Curtis and Sullivan (Curtis & Sullivan,
2001) estimate that deer populations can double every 2–3 years. In Examples
1.9 and 1.10 we based our Excel work on a doubling time of 3 years.

a. Use Goal Seek to rework Examples 1.9 and 1.10 in the text, this time assuming
a doubling time of 2 years.

Reworking Example 1.9 means we need to find the growth rate, r, that would
result in a doubling of the deer population in 2 years. We can start with any
initial deer population, and we use our deer Excel model to find the correct
r (making sure that the harvest number is set to 0 before proceeding). The
set-up just before Goal Seek is run is given in Figure 1.20. The result is an
annual growth rate of approximately 41.4%.
ReworkingExample1.10canalsobewithGoalSeek.The initial numberofdeer

is 3,000,000, and we use Goal Seek to find the new harvesting number that keeps

Time

Population

100

FIGURE 1.18 Example graph for Exercise 1.3.5d.
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the population from growing. The set-up just before Goal Seek is run is given in
Figure 1.21. The resulting harvesting number is about 1,242,641 deer per year.

b. How does the new harvesting number compare to the previous estimate of
780,000?

The harvesting number turns out to be higher than the original 780,000.

FIGURE 1.20 Excel set-up for Example 1.9 in Exercise 1.3.9.

FIGURE 1.19 Excel set-up for Exercise 1.3.7.
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c. Explain why the answer for b. makes sense in the context of the problem.

Because we assume a shorter doubling time and get an increased growth rate
as a result, we should expect to have to harvest more deer to keep the popu-
lation from growing.

1.4 EXPLICIT FORMULAS

For all of the exercises below, use the appropriate explicit formula to find the solution.
1 Consider the DDS given by P t =P t−1 + 0 10P t−1 . Determine the popula-

tion in year 5 if the initial population is 400.

We use the explicit formula for exponential growth and plug in the relevant para-
meters. With t = 5, P 0 = 400, and r = 0 10, we have

P t = 1+ r tP 0

P 5 = 1 + 10 5400

= 644 204

The population in year 5 is projected to be about 644.

3 Consider the DDS given by P t =P t−1 + 0 10P t−1 −5. Determine the pop-
ulation in year 5 if the initial population is 400.

We use the explicit formula for exponential growth with harvesting and plug in
the relevant parameters. With t = 5, P 0 = 400, r = 0 10, and a= −5, we have

FIGURE 1.21 Excel set-up for Example 1.10 in Exercise 1.3.9.
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P t = 1+ r tP 0 + a
1 + r t −1

r

P 5 = 1 + 10 5400−5
1 + 10 5−1

10
= 644 204−30 5255

≈613 68

The population in year 5 is projected to be about 614.

5 Consider the DDS given by P t =P t−1 + 0 10P t−1 −a. If the initial popula-
tion is 500, determine the value for a that results in a population of 600
12 years later.

Here we use the explicit formula for exponential growth with harvesting, and we
have to solve for the unknown a. Plugging in all known parameters gives

P t = 1 + r tP 0 + a
1 + r t−1

r

P 12 = 1 + 10 12500−a
1 + 10 12−1

10

We have introduced a minus sign in front of the a in order to maintain con-
sistency with the problem statement. Next we note that if the population in year
12 is to be 600 then we know P 12 = 600. Thus we have

600 = 1 + 10 12500−a
1 + 10 12−1

10
600≈1569 21−a 21 38

21 38a≈969 21

a≈
969 21
21 38

≈45 33

The harvesting number would need to be about 45.33 per year in order for the
population to be 600 in year 12.

7 Given the initial population estimate of 197 Yellowstone grizzlies in 1993 and
the later estimate of 416 Yellowstone grizzlies in 2002, we found that the pop-
ulation grew by about 8.65% per year.

a. Using the 8.65% growth rate, what would your model predict for the popu-
lation in the year 2193?

Here we use the explicit formula for exponential growth with r = 0 0865,
P 0 = 197, and t = 200:
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P t = 1+ r tP 0

P 200 = 1 0865 200197

P 200 = 3,165,281,631 27

The population in the year 2193 is predicted to be about 3.2 billion bears.

b. Does your answer in part a. seem reasonable? Why or why not?

No, 3.2 billion is unreasonably large for the Yellowstone grizzly population.

c. Suppose that the 1993 Grizzly Bear Recovery Plan had never been
implemented and that the 1993 estimate of a 1% growth rate continued
to hold. How long would it have taken for the population to reach
416 bears?

Here we use the explicit formula for exponential growth where we know the
values of all parameters except time, t. With r = 0 01, P 0 = 197, and a goal
population of 416 bears, we have

P t = 1 + r tP 0

416 = 1 01 t197

2 112≈ 1 01 t

Here we can use trial and error with a calculator to find t, or we can take the
natural logarithm of both sides, which has the effect of bringing any exponents
down in front of the logarithm. We get

ln 2 112 ≈ ln 1 01t

0 7476≈ t ln 1 01

0 7476≈ t 0 00995

0 7476
0 00995

≈ t

75 14≈ t

It would have taken just over 75 years for the grizzly population to reach 416
bears had the growth rate remained at 1% each year.

9 Consider the explicit formula for our harvesting/stocking model. Show that if
there is no stocking or harvesting, then the formula is the same as the explicit
formula for plain exponential growth.

Here we begin with the explicit formula for exponential growth with harvesting
or stocking, and we plug in 0 for the harvesting/stocking number:
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P t = 1 + r tP 0 + a
1 + r t −1

r

P t = 1 + r tP 0 + 0
1 + r t −1

r

P t = 1 + r tP 0

The result is the explicit formula for exponential growth.

11 The U.S. Census in 2000 (see www.census.gov) estimated the population of the
United States to be 281.4 million. Without immigration, the population would
grow by approximately 0.6% each year. Data available at www.census.gov indi-
cates that approximately 1,000,000 immigrants enter the U.S. each year.

a. Create a flow diagram for the U.S. population.

A flow diagram for the U.S. population is given in Figure 1.22.

b. From the flow diagram, give the DDS.

Each inward pointing arrow represents an addition to the previous year’s
population, so the DDS is given by

P t =P t−1 + 0 006 P t−1 + 1,000,000

c. Use the explicit formula to predict the U.S. population in the year 2050.

With 281,400,000 as our initial population in the year 2000, t = 50. Thus
we have

P 50 = 1 006 50281,400,000 + 1,000,000
1 006 50−1

006

P 50 ≈379,509,917 + 58,108,219

P 50 ≈437,618,136

Under the assumed conditions the U.S. population will be approximately
437.6 million in the year 2050.

Population
0.6%P(t– 1) 1,000,000

FIGURE 1.22 Flow diagram for Exercise 1.4.11.
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d. How does your projection compare to the 419.9 million projected for 2050 by
the U.S. Census?

Our projection is about 4% higher than the U.S. Census projection. This indi-
cates that either our assumed growth rate is too high for the years 2000–2050,
our assumed immigration rate is too high, or both.

13 Extension: Following the spirit of the derivation for the explicit formula for an
affine model, find the explicit formula for the general model described in
Exercise 1.4.12. Confirm your result in 1.4.12d by using the explicit formula.

The DDS for the general model in Exercise 1.4.12 is given by

P t =P t−1 + rP t−1 + a0 1 + s t−1

= 1 + r P t−1 + a0 1 + s t−1,

where r, a0, and s are all parameters that can be positive or negative. Our task is to
work step-by-step through a few iterations of the DDS until we can see a pattern.

For t = 1 we get

P 1 = 1 + r P 0 + a0 1 + s 1−1

= 1 + r P 0 + a0 1 + s 0

= 1 + r P 0 + a0

For t = 2 we get

P 2 = 1 + r P 1 + a0 1 + s 2−1

= 1 + r P 1 + a0 1 + s

After substituting for P(1) we get

P 2 = 1 + r 1 + r P 0 + a0 + a0 1 + s

= 1 + r 2P 0 + 1 + r a0 + a0 1 + s

For t = 3 we get

P 3 = 1 + r P 2 + a0 1 + s 3−1

= 1 + r P 2 + a0 1 + s 2

After substituting for P(2) we get

P 3 = 1 + r 1 + r 2P 0 + 1 + r a0 + a0 1 + s + a0 1 + s 2

= 1 + r 3P 0 + 1 + r 2a0 + a0 1 + r 1 + s + a0 1 + s 2
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For t = 4 we get

P 4 = 1 + r P 3 + a0 1 + s 4−1

= 1 + r P 3 + a0 1 + s 3

After substituting for P(3) we get

P 4 = 1 + r 1 + r 3P 0 + 1 + r 2a0 + a0 1 + r 1 + s + a0 1 + s 2 + a0 1 + s 3

= 1 + r 4P 0 + 1 + r 3a0 + a0 1 + r 2 1 + s + a0 1 + r 1 + s 2 + a0 1 + s 3

The pattern seems to be that for any t we have

P t = 1+r tP 0 + a0 1+ r t−1+ 1 + r t−2 1 + s + + 1+r 1 + s t−2+ 1+ s t−1

Next we need to do some algebra on the sum inside the brackets. For starters,

we factor out the term 1+ r t−1to get

P t = 1 + r tP 0 + a0 1 + r t−1 1 + 1 + r −1 1 + s + + 1 + r − t + 2 1 + s t−2

+ 1 + r − t + 1 1 + s t−1

Placing terms with negative exponents in denominators gives

P t = 1+ r tP 0 + a0 1 + r t−1 1 +
1 + s
1 + r

+ +
1+ s t−2

1 + r t−2 +
1 + s t−1

1 + r t−1

Then we have

P t = 1+ r tP 0 + a0 1 + r t−1 1 +
1 + s
1 + r

+ +
1 + s
1 + r

t−2

+
1 + s
1 + r

t−1

We can now recognize the sum inside the brackets as a geometric series with
ratio x = 1+ s

1 + r. This observation allows us to rewrite the sum using the geometric
series formula to get

P t = 1 + r tP 0 + a0 1 + r t−1
1 + s
1 + r

t
−1

1+ s
1 + r −1
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We can use the formula as is, or we can employ some further simplification
with exponents to yield the more succinct version

P t = 1 + r tP 0 + a0
1 + s t − 1 + r t

s−r

The last task is to confirm the result of Exercise 1.4.12d by plugging in all
required parameters. With r = −0 06, a0 = 100, s= 0 10, P 0 = 400, and t = 10,
we get

P t = 1+ r tP 0 + a0
1 + s t − 1 + r t

s−r

P 10 = 94 10400 + 100
1 10 10− 94 10

0 10− − 06

≈215 45 + 1284 45

≈1499 9

The result is about 1500 cranes after 10 years, and this agrees with the Excel
result from 12d.

1.5 EQUILIBRIUM VALUES AND STABILITY

1 Consider the DDS given by P t =P t−1 + 05P t−1 −10.

a. Find all equilibrium values for the DDS.

We need to find P∗ such that

P∗ =P∗ + 05P∗−10

We have

0 = 05P∗−10

10 = 05P∗

200 =P∗

Thus the only equilibrium value is P∗ = 200.
b. Use Excel to confirm that the values found in a. are in fact equilibrium values.

To confirm that P∗ = 200 is an equilibrium value in Excel we need to enter the
DDS and verify that if the DDS starts at 200, it stays at 200. Figure 1.23 shows
the formula for the DDS along with the verification we need.
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c. Determine the stability of any equilibrium values found in a. by producing an
appropriate Excel graph.

We graph the DDS for different starting points near the equilibrium value all on
the same axes. Figure 1.24 shows the result. Because populations that start off
of the equilibrium value continue to get farther away from it, the equilibrium at
200 is unstable. We also note that the horizontal line at 200 provides graphical
confirmation that it is in fact an equilibrium value.

3 Extension:Consider theDDSgivenbyP t =P t−1 + 0 004 5−P t−1 P t−1 .

a. Find all equilibrium values for the DDS.

We need to find all P ∗ such that
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FIGURE 1.24 Excel graph testing for stability in Exercise 1.5.1.

FIGURE 1.23 Excel confirmation for Exercise 1.5.1.
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P∗ =P∗ + 0 004 5−P∗ P∗

We have

0 = 0 004 5−P∗ P∗

A product of real numbers is only zero if at least one of the factors is zero, so
we must have either P∗ = 0 or 5−P∗ = 0. Thus our two equilibrium values are
P∗ = 0 and P∗ = 5.

b. Use Excel to confirm that the values found in a. are in fact equilibrium values.

First we need to implement the DDS in Excel. Figure 1.25 shows the correct
Excel formula. To verify that 0 and 5 are equilibrium values, we plug those
values in for the initial population and note that the population does not change
from those values. Figure 1.26 shows the verification for the equilibrium
value at 5.

c. Determine the stability of any equilibrium values found in a. by producing an
appropriate Excel graph.

FIGURE 1.26 Excel confirmation of equilibrium value for Exercise 1.5.3.

FIGURE 1.25 Excel set-up for Exercise 1.5.3.
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For each equilibrium value we graph the DDS for different nearby starting
points all on the same axes. Figure 1.27 shows the result. Populations that
start a little above 0 are moving away from 0, but populations that start
off of 5 are moving toward 5. Thus we say that the equilibrium at 0 is
unstable and that the equilibrium at 5 is stable. We also note that the hor-
izontal line at 5 provides graphical confirmation that it is in fact an equi-
librium value.

5 Extension: Consider the DDS given by

P t =P t−1 + 0 05 1−
P t−1
10,000

P t−1 −125

a. Find all equilibrium values for the DDS.

We need to find all P∗ such that

P∗ =P∗ + 0 05 1−
P∗

10,000
P∗−125

We have

0 = 0 05 1−
P∗

10,000
P∗−125
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FIGURE 1.27 Excel graph testing for stability in Exercise 1.5.3.
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On the right-hand side of the equation we have a quadratic:

0 = 0 05 1−
P∗

10,000
P∗−125

0 = 0 05−0 000005P∗ P∗−125

0 = −0 000005 P∗ 2 + 0 05P∗−125

Dividing both sides of the equation by the coefficient on the squared term
yields the equation

0 = P∗ 2−10,000P∗ + 25,000,000

We use the quadratic formula to solve:

P∗ =
−b ± b2−4ac

2a

=
10,000 ± −10,000 2−4 1 25,000,000

2

=
10,000 ± 0

2
= 5,000

Because the discriminant turns out to be zero, we end up with only one solu-
tion. Our sole equilibrium value is P∗ = 5,000.
b. Use Excel to confirm that the values found in a. are in fact equilibrium values.

To confirm that P∗ = 5,000 is an equilibrium value in Excel we need to enter
the DDS and verify that if the DDS starts at 5,000, it stays at 5,000.
Figure 1.28 shows the formula for the DDS along with the verification
we need.

FIGURE 1.28 Excel confirmation of equilibrium value for Exercise 1.5.5.
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c. Determine the stability of any equilibrium values found in a. by producing an
appropriate Excel graph.

We graph the DDS for different starting points near the equilibrium value all on
the same axes. Figure 1.29 shows the result. The behavior displayed in the
figure is very different than what we are used to seeing. It appears that popula-
tions that start above 5,000 decrease back toward 5,000, but populations that
start below 5,000 continue to decrease away from 5,000. This is an example of
a semi-stable equilibrium value, which are discussed in Chapter 5. We also
note that the horizontal line at 5,000 provides graphical confirmation that it
is in fact an equilibrium value.

7 Show that for any exponential model where there is no harvesting or stocking the
only equilibrium value is 0.

The DDS for the general exponential model is given by P t =P t−1 + rP t−1 .
We find all P∗ such that P∗ =P∗ + rP∗. Then 0 = rP∗, and we see that when r 0,
the only solution is P∗ = 0. We can safely exclude the case where r = 0 since in that
case we do not have a proper exponential model.

9 The U.S. Census in 2000 (see www.census.gov ) estimated the population of the
United States to be 281.4 million. Without immigration, the population would
grow by approximately 0.6% each year. Data available at www.census.gov indi-
cates that approximately 1,000,000 immigrants enter the U.S. each year.

a. Suppose that instead of growing by 0.6% per year the U.S. population was
declining by 0.6% each year. Give the DDS for this situation.

The DDS is given by P t =P t−1 −0 006P t−1 + 1,000,000.

b. At what value would the U.S. population stabilize in the long run?

Since this is an affine model the population would stabilize at the stable equi-
librium value given by
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FIGURE 1.29 Excel graph testing for stability in Exercise 1.5.5.
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P∗ = −
a

r
= −

1,000,000
−0 006

≈166,666,667

The population would stabilize at about 167 million people.

c. Produce a graph that indicates the U.S. population would stabilize at this value
no matter where it started.

This amounts to producing a graph that shows the equilibrium value is stable.
Such a graph is given in Figure 1.30.

d. If the U.S. government wanted to stabilize the population at 400,000,000, how
many people should it allow to immigrate each year?

Here we have to arrange for the equilibrium value to be equal to 400,000,000.
Assuming the same growth rate of −0.6%, we solve for a:

P∗ = −
a

r

400,000,000 = −
a

−0 006

400,000,000 =
a

0 006
2,400,000 = a

We have found that if the U.S. population were declining by 0.6% each year
and the U.S. government wanted a long-term population of 400,000,000, then
it should allow approximately 2,400,000 people to immigrate to the U.S.
each year.
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FIGURE 1.30 Excel graph testing for stability in Exercise 1.5.9.
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