Introduction

Camera imaging technology has evolved from a time-consuming, multi-step chemical
analog process to that of a nearly instantaneous digital process with a plethora of image
sharing possibilities. Once only a single-purpose device, a camera is now most com-
monly part of a multifunctional device, for example, a mobile phone. As digital single
lens reflex (DSLR) cameras become more sophisticated and advanced, so also mobile
imaging in products such as smartphones and tablet computers continues to surge for-
ward in technological capability. In addition, advances in image processing allow for
localized automatic enhancements that were not possible in the past. New feature algo-
rithms and the advent of computational photography, for example, sophisticated noise
reduction algorithms and post-capture depth processing, continue to flood the market.
This necessitates an ever expanding list of fundamental image quality metrics in order
to assess and compare the state of imaging systems. There are standards available that
describe image quality measurement techniques, but few if any describe how to per-
form a complete characterization and benchmarking of cameras that consider combined
aspects of image quality. This book aims to describe a methodology for doing this for
both still and video imaging applications by providing (1) a discourse and discussions on
image quality and its evaluation (including practical aspects of setting up a laboratory
to do so) and (2) benchmarking approaches, considerations, and example data.

To be most useful and relevant, benchmarking metrics for image quality should pro-
vide consistent, reproducible, and perceptually correlated results. Furthermore, they
should also be standardized in order to be meaningful to the international community.
These needs have led to initiatives such as CPIQ (Camera Phone Image Quality), orig-
inally managed by the I3A (International Image Industry Association) but now run as
part of standards development within the IEEE (Institute of Electrical and Electronics
Engineers). The overall goal of this specific CPIQ work is to develop an image quality
rating system that can be applied to camera phones and that describes the quality deliv-
ered in a better way than just a megapixel number. In order to accomplish this, metrics
that are well-correlated with the subjective experience of image quality have been devel-
oped. Other imaging standards development includes the metrics by Working Group
18 of Technical Committee 42 of the International Organization for Standardization
(ISO) and the International Telecommunication Union (ITU). Theses standards bod-
ies have provided, and continue to develop, both objective and subjective image qual-
ity metrics. In this context, objective metrics are defined measurements for which the
methodology and results are independent of human perception, while subjective met-
rics are defined measurements using human observers to quantify human response.
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In following chapters, the science behind these metrics will be described in detail and
provide groundwork for exemplary benchmarking approaches.

1.1 Image Content and Image Quality

Before delving into the specifics related to objective and subjective image quality camera
benchmarking, exploration of the essence of photography provides justification, motiva-
tion, and inspiration for the task. As the initial purpose for photography was to generate
a permanent reproduction of a moment in time (or a series of moments in time for
motion imaging), an understanding of what constitutes the quality of objects in a scene
will necessitate what to measure to determine the level of image quality of that per-
manent reproduction. The more a photograph or video represents the elements of a
physical scene, the higher the possible attainment of perceived quality can become.
The efforts to create the first permanent photograph succeeded in the mid-1820s when
Nicéphore Niépce captured an image of the view from his dormer window—a common-
place scene with buildings, a tree, and some sky. The image, produced by a heliographic
technique, is difficult to interpret when observing the developed chemicals in the origi-
nal state on a pewter plate (see Figure 1.1). In fact, the enhancement of this “raw” image,
analogous to the image processing step in a digital image rendering, produces a scene
with more recognizable content (see Figure 1.2). But, even though key elements are still
discernible, the image is blurry, noisy, and monochrome. The minimal sharpness and
graininess of the image prevent discernment of the actual textures in the scene, leaving
the basic shapes and densities as cues for object recognition. Of note is the fact that the
west and east facing walls of his home, seen on the sides of the image, are simultane-
ously illuminated by sunlight. This is related to the fact that the exposure was eight hours

Figure 1.1 Image of first permanent photograph circa 1826 by N. Niépce on its original pewter plate.
Source: Courtesy of Gernsheim Collection, Harry Ransom Center, The University of Texas at Austin.
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Figure 1.2 Enhanced version of first permanent photograph circa 1826 by N. Niépce. Source: Courtesy
of Gernsheim Collection, Harry Ransom Center, The University of Texas at Austin.

in length, during which the sun’s position moved across the sky and exposed opposing
facades (Gernsheim and Gernsheim, 1969). Needless to say, the monochrome image is
void of any chromatic information.

That we can recognize objects in the rustic, historic Niépce print is a comment on the
fundamentals of perception. Simple visual cues can convey object information, lighting,
and depth. For example, a series of abstract lines can be used to depict a viola as shown
in Figure 1.3. However, the addition of color and shading increases the perceived realism
of the musical instrument, as shown in the center image. A high quality photograph of
a viola contains even more information, such as albedo and mesostructure of the object
which constitute the fundamental elements of texture, as shown on the right. Imaging
that aims for realism contains the fundamental, low level characteristics of color, shape,
texture, depth, luminance range, and motion. Faithful reproduction of these physical
properties results in an accurate, realistic image of scenes and objects. These proper-
ties will be described in general in the following sections and expanded upon in much
greater detail in later chapters of the book, which define image quality attributes and
their accompanying objective and subjective metrics.

1.1.1 Color

Color is the visual perception of the physical properties of an object when illuminated
by light or when self-luminous. On a basic level, color can describe hues such as orange,
blue, green, and yellow. We refer to objects such as yellow canaries, red apples, blue
sky, and green leaves. These colors are examples of those within the visible wavelength
spectrum of 380 nm to 720 nm for the human visual system (HVS). However, color is
more complex than perception of primary hues: color includes the perception of light-
ness and brightness, which allows one to discriminate between red and light red (i.e.,
pink), for example, or to determine which side of a uniformly colored house is facing
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Figure 1.3 Three renditions of a viola. Left: line sketch; middle: colored clip art (Papapishu, 2007);
right: photograph. Each shows different aspects of object representation. Source: Papapishu,
https://openclipart.org/detail/4802/violin. CCO 1.0

Figure 1.4 Example illustrating
simultaneous contrast. The center
squares are identical in hue, chroma,
and lightness. However, they appear
different when surrounded by
backgrounds with different colors.

the sun based on the brightness of the walls. These are relative terms related to the
contextualized perception of the physical properties of reflected, transmitted, or emitted
light, including consideration of the most luminous object in the scene. Color percep-
tion is also impacted by the surrounding colors—even if two colors have the same hue,
they can appear as different hues if surrounded by different colors. Figure 1.4 shows an
example of this phenomenon called simultaneous contrast. Note in this example that the
center squares are identical. However, the surrounding color changes the appearance of
the squares such that they do not look like the same color despite the fact that they are
measurably the same.

There are other aspects of the HVS that can influence our perception of color. Our
ability to adapt to the color cast of our surroundings is very strong. This chromatic adap-
tation allows us to discount the color of the illumination and judge color in reference
to the scene itself rather than absolute colorimetry. When we are outside during sun-
light hours, we adapt to the bright daylight conditions. In a similar manner, we adapt
to indoor conditions with artificial illumination and are still able to perceive differences
in color. Perceptually, we can discern colors such as red, green, blue, and yellow under
either condition. However, if we were to measure the spectral radiance of a physical
object under two strongly varying illuminant conditions, the measurements would be
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Figure 1.5 Example illustrating
chromatic adaptation and
differences between absolute and
relative colorimetry. The fruit basket
in the original photo clearly exhibits
varying hues. A cyan bias is added to
the original photo to generate the
middle photo. With chromatic
adaptation, this photo with the cyan
cast will have perceptible hue
differences as well, allowing the
observer to note a yellowish hue to
the bananas relative to the other fruit
colors. However, the bottom photo
illustrates that replacing the bananas
in the original photo with the
cyan-cast bananas (the identical
physical color of the bananas in the
middle cyan-cast photo) results in a
noticeably different appearance.
Here, the bananas have an
appearance of an unripe green state
because chromatic adaptation does
not occur. Source: Adapted from
Fairchild 2013.

substantially different. An example is presented in Fairchild (2013) in which a fruit bas-
ket that is well-balanced for daylight exhibits distinct hue differences among the fruit.
This is illustrated in the top photo in Figure 1.5. Relative to other fruit in the basket,
apples on the right look red, oranges look orange, bananas look yellow, and so on. A cyan
cast can be added to the photo such that its overall appearance is distinctly different
from the original photo. However, with some time to adapt to the new simulated illu-
mination conditions as presented in the middle photo, chromatic adaptation should
occur, after which the fruit will once again begin to exhibit expected relative color such
as the bananas appearing to have a yellowish appearance and the apples on the right
having a reddish appearance. If, however, the bananas (only) in the original photo are

5
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replaced with those having the cyan cast, the chromatic adaptation does not take place;
the bananas take on an unripe green appearance relative to the other fruit colors. So, too,
the physical spectral reflectance is distinctly different for the bananas in the original and
cyan-cast versions, though interpreted differently in the middle and bottom examples.
At times, due to the adaptive nature of the HVS, we can perceive color that is not phys-
ically present in a stimulus. A physiological example is part of our viewing experience
every day, though we don’t usually make note of the phenomenon. The signal of light
detection in the eye travels to the brain via the optic nerve. This region is a blind spot in
our vision because there are no light sensors present in the retina in this position. How-
ever, the HVS compensates for the two occlusions (one from each eye) and fills in the
regions with signals similar to the surrounding are such that the occlusions of the optic
nerves are not normally noticed. This filling in phenomenon encompasses both color
and texture. In fact, the HVS is even adaptable to the level of filling in blindspots with
highly detailed patterns such as text (though experimental observers could not actually
read the letters in the filled-in region) (Ramachandran and Gregory, 1991)! Therefore,
it should not be surprising that there are conditions that can result in the HVS filling
in information as the signal to the eye is processed even if a blindspot is not present.
As such, there can be a perception of a color even when there is no physical stimu-
lus of a hue. An example of such a phenomenon is the watercolor illusion in which the
HVS detects a faint color filling in shapes which have an inner thin chromatic border
of the perceived hue surrounded with an adjacent darker border of a different hue. The
filled region’s hue is lighter than the inner border, however. Figure 1.6 shows shapes
with undulating borders, which typically instill stronger filling in than linear borders.
As should be seen due to the illusion, the regions within the shapes have an apparent
watercolor-like orange or green tint whereas the regions outside of the shapes do not
have this faint hue. However, the inside of the shapes are not orange or green,; all regions
on either side of the undulating borders are physically the same and would have the same
colorimetric values if measured, that is, the value of the white background of the page.
An object has many physical properties that contribute to its color, including its
reflectance, transmittance or emittance, its angular dependency, and its translucency.
Thus, quantifying color has complexity beyond characterizing the spectral nature of

Figure 1.6 With a thin chromatic border bounded by a darker chromatic border, the internal region is
perceived by the HVS to have a faint, light hue similar to the inner chromatic border even though the
region has no hue other than the white background on the rest of the page. The regions within the
shapes fill in with an orange or green tint due to the nature of the undulating borders and the hue of
the inner border.
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the color-defining element, such as a chromophore, dye, or pigment. Suppose we have
a satin bed sheet and a broadcloth cotton bed sheet which are spectrally matching in
hue, that is, having the same dye. However, we are able to discern a material difference
because the satin sheet looks shiny and the broadcloth looks dull in nature. This
difference in material appearance is because the satin has a woven mesostructure with
very thin threads that generates a smooth, shiny surface when illuminated whereas the
surface of the broadcloth is more diffuse due to thicker thread, lower thread count and
a different weave, thus lacking the degree of shininess of satin. Yet, the color of the satin
and broadcloth have matching color from a spectral standpoint. Another example of
the complexity of color is the challenge of matching tooth color with a dental implant.
Because teeth are translucent, the appearance of the whiteness is dependent on the
lighting characteristics in the environment. Similar to placing a flashlight beam near
the surface of marble, light can pass through a tooth as well as illuminate it. Thus,
the challenge in matching a tooth appearance includes both a lightness and whiteness
match as well as opaqueness. If a dental implant has a different opaqueness from the
actual damaged tooth, there will be lighting environments in which the implant and
tooth will not match even if the physical surface reflections of the white are identical.

Color measurements using colorimetry take into account the spectral properties of
the illuminant, the spectral properties of the object, and the HVS. However, colorime-
try has fundamental limitations when applied to the plethora of illuminants, objects,
and people in the real world. In order to generate equations to estimate first-order color
perception, data of (only) 17 color-normal observers were combined to generate the
1931 standard observer (Berns, 2000). That it was necessary to have more than one
observer to make a standard observer is indicative of the inter-observer variability that
exists in color perception. More recent works have confirmed that while this observer
metamerism does exist, the 1931 standard observer remains a reasonable estimate of the
typical color-normal observer (Alfvin and Fairchild, 1997; Shaw and Fairchild, 2002).
In addition, inter-observer variability has been noted to be up to eight times greater
than the differences inherent in the comparisons between the 1931 standard observer
and five newer alternatives (Shaw and Fairchild, 2002). Thus, colorimetric quantifica-
tion of colors incorporating the 1931 standard observer may predict color accuracy to
a certain match level though an individual observer may not perceive the level as such.
This becomes especially important considering the quality of colors in a scene that are
captured by a camera and then observed on display or in printed material—the source
of the colors of the scene, the display, and the printed material are composed of fun-
damentally differing spectral properties, but are assumed to have similar color for a
high quality camera. In fact, color engineering could indeed have generated colors in
a camera capturing system that match for the 1931 standard observer, but that match-
ing approach does not guarantee that each individual observer will perceive a match or
that the colorimetric match will provide the same impression of the original scene in the
observer’s mind.

Colorimetric equations are fundamental in quantifying the objective color image qual-
ity aspects of a camera. Measurements such as color accuracy, color uniformity, and
color saturation metrics described later in the book utilize CIELAB colorimetric units
to quantify color-related aspects of image quality. If, for example, the color gamut is
wide, then more colors are reproducible in the image.



8

Camera Image Quality Benchmarking

Quantifying the color performance, for example, color gamut, provides insight into
an important facet of image quality of a camera system. However, as noted in previ-
ous examples, the appearance of color is more complex than the physical measurement
of color alone, even when accounting for aspects of the HVS. Higher orders of color
measurement include color appearance models, which account for the color surround
and viewing conditions, among other complex aspects. Color appearance phenomena
described in the examples above should point to the importance of understanding that
sole objective measurements of color patches do not always correspond to the actual
perception of the color in a photo. Challenges in measuring and benchmarking color
will be discussed in more detail in further chapters.

A fundamental characteristic of object recognition in a scene is the identification of basic
geometric structure. Biederman (1987) proposed a recognition-by-components theory
in which objects are identified in a bottom-up approach where simple components are
first assessed and then assembled into perception of a total object. These simple com-
ponents were termed geometrical ions (or geons) with a total of 36 volumetric shapes
identified, for example, cone, cylinder, horn, and lemon. Figure 1.7 has four examples
showing how geons combine to form visually related, but functionally different, com-
mon objects. For example, in the center right a mug is depicted, whereas in the far right
the same geons are combined to form a pail.

The vertices between neighboring geons are very important in distinguishing the over-
all object recognition: occlusions that overlap the vertices confuse recognition, whereas
occlusions along geon segments can be filled in successfully (though this may require
time to process perceptually). Biederman provides an example of the difference between
these two scenarios (Biederman, 1987). Figure 1.8 contains an object with occluded ver-
tices and a companion image in which only segments are occluded. The latter image on
the right can be recognizable as the geons that comprise a flashlight whereas the former
object is not readily discernible.

This bottom-up approach described above differs from Gestalt theory, which is fun-
damentally a top-down approach. “The whole is greater than the sum of the parts” is a
generalization of the Gestalt concept by which perception starts with object recognition
rather than an assimilation of parts. An example that bridges bottom-up and top-down
theories is shown in Figure 1.9 (Carraher and Thurston, 1977). Top-down theorists point
out that a Dalmatian emerges out of the scene upon study of the seemingly random

(a) (b) (© (d)

Figure 1.7 Examples showing how geons combine to form various objects. Far left: briefcase; center
left: drawer; center right: mug; far right: pail. Source: Biederman 1987. Reproduced with permission of
APA.
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Figure 1.8 An example of an occluded object. Left: the vertices are occluded, making discernment of
the object difficult. Right: only segments are occluded. In this right image, the object is more
recognizable as a flashlight. Source: Biederman 1987. Reproduced with permission of APA.

Figure 1.9 Animage associated with ~ Pt -~ = T Ay .
top-down processing in order to :
recognize the shape of a Dalmatian
exploring the melting snow. Source:
Republished with permission of John
Wiley & Sons Inc, from Optical
lllusions and the Visual Arts, Carraher
and Thurston, Van Nostrand
Reinhold Company, 7th printing,
1977; permission conveyed through
Copyright Clearance Center, Inc.

collection of black blobs, while more recent research points to bottom-up processing for
observers who found other objects in this scene such as an elephant or a jogger stretch-
ing out (van Tonder and Ejima, 2000). Regardless of the standpoint of bottom-up or
top-down processing, shape is an important element of faithful scene reproduction.
Therefore, the spatially related aspects of an image will impact the perceived quality of
the camera performance as pertaining to shape reproduction. Objective camera image
quality metrics that are critical to shape quality include the spatial frequency response
(SER), resolution, bit depth, and geometric distortion. For example, a sharper image
should increase the ability of the observer to see edges and, thus, shape and form in the
image. Greater quality of shape and form, in turn, provides better camera image quality.

9
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Figure 1.10 Influence of texture on appearance of fake versus real fruit. The fruits on the left in the top
panoramic photo are all fake while the fruits on the right are real. Closer inspection of the pear
surfaces can be seen in the bottom pair of images. The fake pear is on the left and the real pear is on
the right. The texture appearance of the fake pear is composed of red paint drops.

1.1.3 Texture

Variations in apparent surface properties are abundant in both natural and synthetic
physical objects. The HVS is adept at distinguishing these texture properties of objects.
For example, in the field of mineralogy, an extensive vocabulary has been defined to
describe the visual appearance of rock material (Adelson, 2001). These terms include
words such as greasy, vitreous (glassy), dull, dendritic, granular, porous, scaly, and felted.
While some of these terms such as greasy and scaly may conjure up specific visual dif-
ferences, many of the mineralogists’ terms refer to subtle changes in surface properties.
This highlights the sophistication of the HVS as well as the importance of being able to
generate realistic representations of objects in imaging systems. Appearance of mate-
rial properties has been the focus of ongoing research and publications in the fields of
perceptual psychology and computer graphics (Adelson, 2001; Landy, 2007; Motoyoshi
et al., 2007; Dorsey et al., 2008; Rushmeier, 2008). Related to food appearance, there
are fake products on the market that mimic real food. The top panoramic image in
Figure 1.10 contains both fake and real fruits. Material properties that might provide
clues as to which is which include texture and glossiness—attributes needing closer
inspection. The bottom pair of images shows a crop of the fake pear surface on the left
and the real pear surface on the right. In fact, the fake pear does have texture, but it is
made with red paint drops whereas the real pear on the right has naturally occurring
darker spots and even some surface scratches present in the lower right. As arranged in
the panoramic photo at the top, the fake fruits are all on the left. This example shows
that the appearance of material properties, for example, texture of fruits, influences the
perception and interpretation of objects.

In photographic images, texture enhances object recognition. With changes in texture,
an object can transform from appearing pitted and rough to appearing very smooth and
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Figure 1.11 Left: the original image; right: after applying a sigma filter similar to one that would be
used to reduce image noise (See Chapter 4 for more information on sigma filters.). Note the loss of
texture in the hair, skin, and clothing, which lowers overall quality even though edges of the face, eyes,
and teeth remain mostly intact.

shiny. Texture elements can also provide contextual information such as the direction of
wind across a body of water. Many objects contain important texture elements such as
foliage, hair, and clothing. Loss of texture in these elements can degrade overall image
quality. As texture decreases, objects can begin to appear waxy and melted as well as
becoming blurry. Figure 1.11 shows an example in which the original image on the left
has been filtered on the right to simulate an image processing algorithm that reduces
image noise (though in this particular example, the original image does not suffer from
noise in order to accentuate the filtering result for demonstration). As can be seen,
the filtering reduces the quality of the image because of blurring of the hair, skin, and
clothing. Thus, objective image quality metrics that quantify texture reproduction are
important for camera benchmarking.

1.1.4 Depth

Depth is an important aspect of relating to objects in the physical world. In a
three-dimensional (3D) environment, an observer is able to distinguish objects in part
by discerning the physical differences in depth. For example, an observer can tell which
objects in a room may be within reach compared to objects that are in the distance
due in part to binocular disparity of the left and right eyes. However, two-dimensional
(2D) images are able to convey a sense of depth despite the lack of a physical third
dimension. Several visual cues provide depth information in conventional pictorial
images (Coren et al., 2004):

o Interposition (object occlusion)
e Shading (variations in amount of light reflected from object surfaces)

11
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o Aerial or atmospheric perspective (systematic differences in contrast and color when
viewed from significant distances)

o Retinal and familiar size (size-distance relation based on angular subtense and previ-
ous knowledge of objects)

e Linear perspective (convergence of parallel lines)

o Texture gradient (systematic changes in size and shape as distance to viewer changes)

o Height in the plane (position relative to the horizon)

An additional visual cue for depth, specific to video imaging, is relative motion (motion
parallax). When present, all of these visual cues are processed by the HVS in order
to interpret the relationship between objects and illumination in the scene. However,
because these are cues related to pictorial images, they are fundamentally monocular
in nature. Thus, binocular aspects of the HVS, for example, convergence and binocular
disparity, are not utilized to determine depth in these cases. In addition, the monocular
function of lens accommodation for pictorial viewing is defined by physical distance to
the picture, not by the various distances to objects that may be depicted in the scene.
Thus, accommodation does not serve as a depth cue in the two-dimensional image sce-
nario. However, realistic imaging is still able to convey depth and dimensionality with
pictorial information void of 3D.

These visual cues for depth are dependent on camera image quality—images with ele-
ments such as sharp edges, high bit depth, and good color reproduction provide quality
that is able to represent depth more fully even in a 2D scene. For example, an image that
is blurry, low in bit depth, and monochrome has noticeably less perceptual depth to the
objects in the scene compared to an image with high sharpness, sufficient bit depth, and
color. Figure 1.12 contains a photograph pair demonstrating this comparison. The top
image is monochrome, limited in bit depth, and noticeably blurry. In this image, the
source of the surface modulations is non-obvious and the visual interpretation of the
curvature and interposition has ambiguity. However, in the bottom version, the color
and increased sharpness enable the viewer to better interpret the depth within the scene,
including the structure of the sugar granules on the surface of the striped candy.

Without illumination or self-luminance, scene content would not be discernible: light
is a fundamental aspect of perception and imaging. Scene content contains objects
that are illuminated or self-luminated by photons. The quantity of photons and surface
reflectance or transmittance properties determine the luminance levels within a scene.
For example, an object illuminated by candlelight will have a very small number of
incident photons compared to the quantity when illuminated by sunlight. Color and
surface properties determine the reflectance levels of the illuminated object. Shiny,
metallic surfaces reflect a large percentage of incident light as do white, glossy objects.
Dull, black objects and occlusions inhibit photon travel, resulting in low reflectance.
The HVS adapts to both light and dark conditions, expanding to an optimal range
for a given environment (Fairchild, 2013). Yet, adaptation is not complete—this can be
ascertained in one’s cognition of being in a moonlit environment versus a daylight envi-
ronment. Thus, images should be able to represent both a form of absolute luminance
and luminance range. If the camera’s exposure of a scene is not sufficient, the image will
look too dark compared to an ideal representation of the scene or what the observer
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Figure 1.12 Top: monochrome
candy ribbons with low sharpness
and bit depth, bottom: colorful
candy ribbons with substantial
sharpness. Note that the bottom
image is more able to convey a sense
of depth versus the top image.

recalls; the absolute luminance is not optimal. At worst, the image might be completely
dark with indiscernible scene content. Conversely, if the camera’s exposure of a scene is
too high, the image will look too light at best and completely washed out at worst. For
either case, the image quality can vary widely when observing an exposure series for a
given scene.

Similarly, the lower the dynamic range of the rendered image, the more limited the
image will be regarding representation of luminance range in the scene. As such, ren-
derings with low dynamic range can lower the quality of scenes with high dynamic range.
For example, glossy objects have high dynamic range when illuminated with direct light.
Research has shown that rendering glossy objects with more dynamic range increases
observer perception of glossiness (Phillips et al., 2009). Thus, as an example, an image
with lower dynamic range will have more limitations in representing the attribute of
glossiness of an object compared to an image with higher dynamic range.

Figure 1.13 contains a tetraptych of images demonstrating variations in luminance
levels and dynamic range. The first three images show an exposure series that shows how
changes in the absolute luminance levels emphasize and reveal highlights and shadows
in the scene: the underexposure by 2 f-stops of the camera allows one to see details in the
shale gorge wall and sunlit trees in the background while the overexposure by 2 f-stops

13
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Figure 1.13 Variations in luminance levels and dynamic range for an example scene. (a)
Underexposed by 2 f-stops. (b) Normal exposure. (c) Overexposed by 2 f-stops. (d) Normal exposure
with localized tonemapping.

allows one to the see details in the clothing on the models. The final image has localized
tone mapping applied to the scene, which results in a rendition with optimized dynamic
range in which more highlight and shadow details are apparent; this scene has optimized
exposure and dynamic range, which in turn results in higher image quality.
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Contributed by Hugh Denman

Motion within a scene is extremely informative for distinguishing and recognizing
objects. Perception of motion allows us to determine critical aspects such as the
velocity, that is, speed and direction, and the dimensionality of moving objects around
us as well as depth in the scene. In this way, motion provides salient information
to assess our environment. In fact, motion is of such critical importance that it is
encoded by the HVS as a first-order, low level visual percept, similar to edge and texture
perception. This contrasts with the naive supposition that visual perception supplies
a continuous stream of “images” of the scene, and that higher-level processes infer
motion by comparing successive images (Sekuler et al., 1990; Nakayama, 1985).

Broadly speaking, there are three sorts of stimuli which give rise to the perception of
motion. The first may be termed “actual motion,” generated by moving elements in the
scene or by the motion of the observer. The second is the well-known “apparent motion”
effect. If a static stimulus is presented in a succession of spatial locations, with an interval
of less than 100 ms between presentations, the stimulus will be perceived to move con-
tinuously, rather than being perceived to disappear and reappear in different locations
(which, incidentally, is the percept if the interval increases above 100 ms). For example,
a row of lights, each of which is briefly lit in succession in an otherwise dark scene, cre-
ates the impression of a single moving light if the delay between each light’s blink is less
than 100 ms. This effect has long been exploited in visual entertainments, from flip-book
animations to the kinetoscope and the cinema. While the term “persistence of vision”
continues as a description of the apparent motion phenomenon, this dates to an early
misconception of the eye as a sort of camera in which a retinal after-image is retained
between stimuli (Anderson and Anderson, 1993). The more neutral term “beta move-
ment” is preferred—Max Wertheimer coined this in the founding monograph of Gestalt
psychology, “Experimentelle Studien iiber das Sehen von Bewegung” (Wertheimer, 1912).

The same monograph describes the third sort of motion stimulus, the “phi phe-
nomenon,” in which the subject perceives motion without perceiving anything move.
Consider a pair of stimuli, each depicting the same object (a small disc is often used),
with a small spatial distance between the object positions. If these stimuli are presented
in continuous alternation, with a very short switching interval (less than 30 ms), a
flickering image of the object is perceived in both locations simultaneously—and a
perception of motion between the object locations is also induced. This motion has
no contour: the motion percept is not affected by the shape of the stimulus object
(Steinman et al., 2000). Because the motion percept is not associated with any moving
object, Wertheimer termed this “pure” motion perception, and concluded that motion
perception is “as primary as any other sensory phenomenon”.

It is now known that there is an area within the visual cortex, designated MT or V5,
which encodes an explicit representation of perceived motion in terms of direction and
speed. This area is also concerned with the somewhat related task of depth perception.
The motion percepts arising here can be experienced “out-of-context” through various
motion aftereffect visual illusions (Anstis, 2015). For example, if one stares at a waterfall
for a few minutes and then looks away, a perception of upward motion is superimposed
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on the scene—this is due to neuronal adaptation within area MT. There are accounts of
patients with damage to this area who experience akinetopsia: the inability to perceive
motion. Temporary disruptions to motion perception, arising from migraines or
consumption of hallucinogens, are termed episodes of cinematographic vision.

Motion perception has been extensively studied using random-dot cinematograms.
These consist of a series of images, each depicting a field of dots. Most of the dots appear
in a different, random position in each image, but a subset of dots are made to move
from image to image. A sample random-dot cinematogram is shown in Figure 1.14a and
b. When presented statically, side-by-side, these two images should appear to contain
entirely random dot fields. However, if presented in alternating superposition, one pair
of dots will be seen to correspond (via motion) from frame to frame, while the others are
appearing and disappearing. In Figure 1.14c and d, the pair of dots that have apparent
motion have been highlighted in red.

The principal psychophysical parameter determined by these experiments is the max-

imum displacement at which motion can be detected, denoted d,,,,. Dots that are dis-
placed by more than this amount are not perceived as moving, but rather as disappearing
and reappearing in a new location. That this sort of correspondence can be readily estab-
lished in temporal succession, but not in spatial (i.e., side-by-side) presentation, is due
to the specialized motion perception machinery of the HVS.
d,.. increases with eccentricity (i.e., toward the periphery of vision), from about
9 minutes of arc at the center of the visual field, to about 90 minutes of arc at 10
degrees off-axis. Thus, motion perception is an attribute of vision whose performance
improves off-axis, unlike most others such as color perception and acuity. d,,,, can
also be increased by low-pass filtering the stimulus (for example, introducing a blur by
squinting). This suggests that the presence of high spatial frequencies can prevent the
perception of motion. Random-dot cinematograms have also been used to investigate
motion metamerism: a pair of stimuli in which the dots follow distinct motion trajec-
tories can induce indistinguishable motion percepts, if certain statistics of the motions
are identical.

Stimuli giving rise to apparent motion effects, such as random-dot cinematograms as
shown in Figure 1.14, can be ambiguous regarding the underlying, continuous motion
paths. For example, a pair of dots displaced by the same distance from one image to the
next could have traveled in parallel, or could have crossed paths en route to the new posi-
tions. This is shown in Figure 1.14e and f. Such ambiguities are resolved at a low level:
there is no perception of ambiguous motion, nor a conscious choice of motion hypoth-
esis. Thus, the machinery of motion perception consists not only of correspondence
matching apparatus, but also apparently the imposition of constraining assumptions
such as parsimony, inertia and rigidity of objects (Ramachandran and Anstis, 1986;
Gepshtein and Kubovy, 2007).

Camera systems rely on the apparent motion effect to capture convincing video—the
frame rate must be high enough to induce the motion percept. As mentioned above,
this beta movement effect requires playback rates of about 10 frames per second, or
higher. For example, cinema has traditionally used 24 frames per second (fps) for play-
back rate. In addition, for realistic motion presentation, the capture rate must match the
intended playback rate. Thus, regarding benchmarking image quality, the camera frame
rate capture and playback directly impact the visual quality.
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Figure 1.14 Random-dot cinematogrames. (a) First frame of a two-frame cinematogram. (b) Second
frame of a two-frame cinematogram. (c) The same frame shown in (a), with moving dots shown in red.
(d) The same frame shown in (b), with moving dots shown in red. (e) A plausible motion hypothesis for
a two-frame cinematogram in which the dots move from the positions in black to those in red. (f)
Another plausible motion hypothesis for a two-frame cinematogram in which the dots move from the
positions in black to those in red.

As well as the frame rate, the exposure time per frame (shutter speed) affects the
perception of motion. Longer exposure times introduce motion blur, which increases
the perceived smoothness of motion but reduces the visual detail in each frame. A lack
of motion blur at lower frame rates (24—30 fps) can result in motion judder: jerky
movement of objects in the scene. In cinema, the shutter speed is varied according to
the motion content and directorial intent. Consumer cameras typically choose frame
rate and frame exposure time automatically, to enable correct exposure according to the
light level. This excludes the possibility of manipulating the quality of motion capture
by manipulating these parameters.
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It is clear that once the essential technical requirements for motion capture are met,
the motion capture performance of a camera is highly dependent on the nature of the
motion itself to be captured. Tests for the motion capture performance of cameras are
not yet highly developed, and standardized motion test targets are only beginning to
appear. However, several metrics for digital video quality are available and these can be
utilized to assess the motion capture performance of a camera. These are discussed in
later chapters.

1.2 Benchmarking

Now that we have explored these six key aspects of the essence of imaging—color,
shape, texture, depth, luminance range, and motion—we can begin to explore the task
of image quality benchmarking. Photographic technology has evolved immensely since
Nicéphore Niépce captured the first permanent photograph with his camera obscura
in the late 1820s. As mentioned at the beginning of this chapter, cameras have been
primarily single-purpose devices over the past centuries: for capturing still images
and/or video—though of varying complexity and capability. More recently, mobile
phone cameras have evolved from low-resolution, low quality gadgets into fully-fledged
photographic and videographic tools, dwarfing placement of traditional cameras in the
marketplace. Because of this revolutionary development, the imaging industry has been
revitalized regarding the necessity of being able to specify and characterize image quality
in a reliable and consistent way, and in a way that also correlates with human vision.

The process of objective and subjective camera image quality benchmarking varies
both in breadth and depth, depending on the intent of the benchmarking. A key com-
ponent of benchmarking is determining what questions need to be answered—if one can
envision the type of information needed from the process, then the steps to obtain the
benchmarking will become clearer. For example, is the benchmarking intended to com-
pare isolated components of the system such as the sensor or the optics? Then, objective
metrics and specialized equipment for characterizing these components can be utilized.
If, however, the intention follows the main topic of this book—that of camera system
benchmarking—then the integrated behavior of the components needs to be incorpo-
rated into the analysis. Typically, this means quantification of key image quality aspects
as listed below:

Exposure and tone
Dynamic range
Color

Shading

Geometric distortion
Stray light

Sharpness and resolution
Texture blur

Noise

Color fringing

Image defects
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The integrated measurement of these aspects of image quality provides a means of
predicting how a consumer will perceive photographs from a particular camera. Sub-
sequently, benchmarking is possible when comparing results from multiple cameras.
Objective and subjective metrics used to quantify these attributes are described in detail
in following chapters. Note that many of the attributes listed above are dependent on the
spatial scale. For example, sharpness and resolution of an image will be perceived differ-
ently for a given photograph, depending on how close the image is viewed or how much
magnification is applied to generate the size of the viewed image, whereas the quality of
the exposure and tone of the image typically remains constant under these conditions.
Thus, benchmarking should incorporate the use case of the still image or video clip in
order to provide more meaningful and appropriate results.

In order to expand on this use case topic, let us return again to the early days of pho-
tography. The process to view early photography captured on glass plates was commonly
one in which a photograph was generated by a contact print method—a print made by
shining light through the glass negative placed in direct contact with the light sensitive
emulsion layer of the paper. For this situation, no magnification of the image in the nega-
tive was applied to the viewed image: the size of the objects in the negative was the same
as the size of the objects in the print. As glass plates transitioned to film made of flexible
cellulose support, the print-making process commonly held to that of contact prints.
However, as film evolved, film machinery configurations and standards led to the size
of 35 mm film for motion pictures (Fullerton and Séderbergh-Widding, 2000; Dickson,
1933), which then became popularized by Leica for still photography. In order to make
photographic prints from this film format, the film was no longer placed directly on the
photosensitive paper, but was instead projected onto the paper from a distance by means
of a lens. For this situation, the photograph became a magnified version of the image in
the negative because the print size could be several times larger than the original image.
As such, the image quality aspects of the photograph could differ significantly from what
was directly measured in the film image. For example, to print a traditional 4R 4 X 6 inch
(10 x 15 c¢m) print, the 35 mm negative is magnified approximately three times in height;
to print a traditional 5R 5 X 7 inch (13 X 18 cm) print, the 35 mm negative is magnified
approximately four times in height, and so on. Thus, small changes in spatially related
image quality properties of the negative become increasingly more important as the
source of the image becomes smaller and the size of the photographic output becomes
larger, magnifying the aspects of these scale-dependent image quality attributes.

Considering how this aspect of magnification relates to the state of benchmarking
digital camera image quality, suppose that one captures a digital image using a mobile
phone. Early phones had cameras with digital sensor resolutions of 640 X 480 pixels,
or 0.3 megapixels (MP), that is, not a lot of information compared to current camera
phones with sensors that strongly exceed this resolution. Given that the resolution of the
phone displays coincident with these VGA (Video Graphics Array) sensors were even
less, the process of displaying a photo actually required a downsampling of the image.
This reduction in pixel resolution in essence increased the perceived image quality of
the scale-dependent attributes, such as sharpness and resolution, from what the sensor
captured. Thus, it is not a surprise that people were disappointed with the quality of 4R
4 % 6 inch prints when they first tried printing photos from their early camera phones
because the typical print assumed 1800 X 1200 pixels (2 MP) minimum resolution for
baseline image quality and their cameras were only capturing 0.3 MP images.
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Even with the current advancement of resolutions of camera phone displays and
sensors, most often the screen resolution on phones is significantly lower than that
of the sensor such that the display on a phone limits the consumer from viewing the
native image quality of the camera. For example, a phone with a 4 MP display for a
16 MP camera would have to downsample the camera image height by approximately
two times to show on the display for the typical use case of observing camera phone
image quality. If, however, the consumer were to magnify the image by zooming in on
the phone display, then the perceived quality for this use case would be closer to that
of the native camera resolution. Another use case example is to observe the quality
of an image on a computer display. Depending on the resolution, physical size, and
viewing distance for a given monitor (among other conditions), the perceived image
quality of a photo would vary. For example, 4k UHD (ultra high definition) monitors
are 3840 x 2160 pixels (8 MP). For sensors with smaller resolution than 4k UHD, the
image would have to be magnified. However, for sensors with a resolution of 8 MP or
higher, the impact of resolution on image quality would be similar.

Thus, the current limitations of image quality are not really about the megapixel reso-
lution of the sensor, at least for most use cases of cameras with 8 MP sensors or higher.
Often, other performance factors of the camera system such as the pixel size, the full
well capacity of the image sensor, optics, and the image signal processing (ISP) pipeline
are the limiting factors above the sensor resolution. However, the use case(s) for the
benchmarking will dictate how important the magnification (digital zoom) aspect is for
comparing cameras.

Suppose you want a general benchmark comparison of how consumer cameras com-
pare. One way to approach the task is to generate the image quality assessment for each
camera given the type of scene content and application categories that are important to
the consumer. The concept of photospace, based on the probability distribution of sub-
ject illumination level and subject-to-camera distance in photos taken by consumers,
has been used to define the scene content categories that are important to include in
development analysis related to benchmarking (Rice and Faulkner, 1983). For example,
scene content such as a macro photo of a check for bank deposit, a photo of friends in
a dimly lit bar, a typical indoor portrait, an indoor stadium sports event, and a daylight
landscape photo are all common and important scenes for the typical consumer, rep-
resenting various illumination levels and subject-to-camera distances. As such, these
examples of photospace would provide salient scene categories to include in a compar-
ative assessment.

Modes of viewing photos or videos of these scenes include applications such as view-
ing on the display of the source camera or camera phone, viewing on a tablet computer,
viewing on a UHD monitor or television, or enlarging the photo to hang on a wall as
artwork. A simple matrix example adapted from concepts by I3A CPIQ is shown in
Figure 1.15 with image quality assessment of the various combinations of scene content
and application use cases (Touchard, 2010). Various means can be used to populate the
matrix such as an image quality scale value or simplified assessment such as symbols
or colors conveying the benchmark assessment. From this type of assessment, a general
benchmark comparison can be made between cameras for given combinations of scene
content and application use cases.
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What one should notice in the example benchmark matrix in Figure 1.15 is that the
uses cases include different aspects of scene content such as illumination level, distance
from the camera to the subject, and motion of the subject as well as application of
the image such as magnification of the viewed output. The key image quality aspects
listed earlier in the chapter should be quantified for each use case in the matrix.
Most commonly, this involves quantifying the behavior of a camera based on specific
individual image quality metrics for these aspects of color, shape, texture, depth,
luminance range, and motion.

Many image quality metrics exist for defining objective image quality. More recently,
objective metrics have begun to expand into the realm of subjective evaluation, result-
ing in perceptually correlated image quality metrics. For example, ISO 15739, written
by the Technical Committee 42 of the ISO, incorporates a noise metric extension that
predicts the subjective impact of a noise pattern (ISO, 2013). In addition, the image
quality metrics by the CPIQ working group of the IEEE Standards Association contain
equations to predict the subjective quality loss to a photograph for a given metric value
(IEEE, 2017). However, as technology continues to evolve, image quality attributes also
continue to migrate, necessitating new and revised means of quantification. These chal-
lenges become continually important as new hardware and software aspects introduce
more and more spatially localized characteristics into the images and video frames.

Because image quality is in essence a subjective matter, quantifying subjective image
quality is just as important as quantifying objective image quality. Systematic science,
as established in the field of psychophysics, can be used to measure and quantify what
observers perceive about image quality. Chapter 5 will define and discuss this type
of subjective evaluation as it relates to image quality metrics. Further discussion on
subjective evaluation will continue in subsequent chapters. As noted above, a set of
objective measurements can only address the image quality attributes being measured,
which makes it possible that a benchmarking approach is not comprehensive. Thus,
subjective evaluation should be incorporated into any comprehensive image quality
benchmarking approach, either by ensuring that objective metrics contain perceptually
correlated metrics or by including subjective image quality metrics themselves into the
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benchmarking formula. The remainder of this book will spell out the reasoning and
details behind this premise.

1.3 Book Content

The following section provides summaries of the remaining book content, providing the
reader with a concise explanation of the aim of each chapter.

Chapter 2 will provide a broad overview of image quality as well as the necessary defini-
tions of the key terms that will be used through the book. First, image quality itself will
be defined; then we will define its attributes and how they are categorized. We will also
define the difference between global and local attributes. A section will be devoted to
defining the specifics and differences of objective versus subjective image quality assess-
ment methods.

In Chapter 3, we will describe image quality attributes in more detail. When attempting
to quantify image quality using objective measurements, one usually divides the overall
impression into several separate “nesses”—sharpness, graininess, colorfulness, and so
on—examples of attributes of image quality (Engeldrum, 2000). Each of these attributes
has their own distinct signature. Starting out from the categorization of local, global,
or video-specific, this chapter will describe each of the attributes in detail, providing
many example images and figures. The chapter will conclude with a discussion about
measurable attributes versus unmeasurable artifacts for still images as well as video.

The fourth chapter will first describe the different hardware and software components
that constitute a digital camera and its architecture. In particular, we will describe how
digital camera components (the lens, the image sensor and the image signal processing
(ISP)) all contribute to the performance and image quality of a camera. We will establish
the connection between each component and the image quality attributes described in
the previous chapter. Finally, for each component, we will detail the key parameters that
influence image quality (e.g., aperture of the lens, etc.).

Many psychophysical methods exist for quantifying subjective image quality with
human observers. Chapter 5 will review key psychometric techniques, such as category
scaling, forced-choice comparisons, acceptability ratings, and mean opinion score
(MOS), and will emphasize the strengths and weaknesses of each methodology. The
review will also explore the similarities and differences between still and video subjec-
tive evaluation techniques and how these are able to quantify important perceptual
aspects of the human visual system’s assessment of image quality. Particular focus will
be on the anchor scale method and how that can be used to quantify overall image
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quality in just noticeable differences (JNDs) for still images in such a way that JNDs of
various attributes can be combined to predict image quality of the camera.

Objective image quality metrics are by definition independent of human perception.
Even so, by carefully choosing the methodology, it is possible to provide objective met-
rics that can be well-correlated with human vision. The content of Chapter 6 will provide
an overview of existing metrics connected to the image quality attributes discussed in
Chapter 3. We will describe in detail the “best” metrics for each of the attributes and
also discuss pros and cons if there is more than one metric from which to choose for a
given attribute. For instance, sharpness can be measured using resolution bars, sinu-
soidal Siemens stars, or slanted edges. Each of these methods will provide different
results in some situations and it is important to understand the underlying reasons for
the discrepancies. Moreover, practical issues, such as the choice of correct white point in
color measurements, will be addressed in order to minimize the confusion which often
arises because of the complexities.

In order for objective image quality metrics to be more meaningful to benchmarking,
they need to be well-correlated with perception. Two approaches to accomplishing this
are typically used, either through methods involving models of the human visual system,
or by employing more empirical methods where some known aspect(s) of the human
visual system can be taken into account, for example, correlations of adjacent pixels,
and so on. Furthermore, some methods may be dependent on comparing the result
to some known reference, while other methods may not. In Chapter 7, a large num-
ber of such methods will be discussed, including concepts such as mean square error
(MSE) and peak signal to noise ratio (PSNR). We will also discuss methods to correlate
the results of measurements on sharpness and noise to how these attributes are sub-
jectively experienced. We will introduce the concept of contrast sensitivity functions
(spatial and temporal), opponent color spaces, and so on, but also metrics mostly used
in video quality assessment, such as the structural similarity index (SSIM) and similar.
The importance of viewing conditions will also be stressed.

When it comes to performing accurate and repeatable measurements, it is absolutely
critical to establish and define the so-called protocols. The protocols provide a full
description of the testing conditions that are required when performing image quality
measurements. Chapter 8 will successively go over the protocols to be applied for
objective and then subjective measurements. We will show how protocols are specific
to each of the individual image quality attributes or parameters being measured.
Discussion will include how protocols, such as those specifying lighting conditions, can
vary as test equipment technology evolves.

The first step to building a camera benchmark is to determine the key image quality
attributes to be measured; then a method must be established to weight and combine
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them to obtain a global scale so that one can benchmark all cameras against each other.
In Chapter 9, we will show how a comprehensive camera benchmark should combine
subjective and objective image quality assessment methodologies, and how some can
substitute some others when correlation is established. We will describe the ideal bench-
mark and will show that, given the intrinsic subjectiveness of image quality, various
approaches nearing the ideal might reach different conclusions. The chapter will also
describe a number of existing camera benchmarking systems and will point to the ones
that are the most advanced. Example benchmarking data will be shared for a collection
of cameras, highlighting how various individual metrics can sway results. Finally, we will
detail the possible evolution to move even closer to the ideal benchmark and highlight
the technologies that remain to be developed to achieve this goal.

The concluding chapter will restate the value and importance of a benchmarking
approach that includes perceptually correlated image quality metrics. The section will
also highlight future computational photography and hardware technologies that will
be entering the mainstream consumer electronics market and how they impact the
future of image quality metrics. Discussion will cover the challenges of benchmarking
systems for the continually evolving camera imaging technology, image processing, and
usage models.

Summary of this Chapter

o The more a photograph represents the elements of a physical scene, the higher the
possible attainment of perceived quality can become.

o Key aspects of the essence of photography are color, shape, texture, depth, luminance
range, and motion.

e Objective image quality evaluation involves making measurements, for which the
results as well as methodology are independent of human perception.

e Subjective image quality evaluation is fundamentally a measurement quantifying
human perception.

o Image quality is fundamentally a perceptual matter—it should include the perspective
of an observer. Therefore, quantifying the subjective component is just as important as
quantifying the objective component for the purpose of benchmarking image quality
of cameras.

e To be most useful and relevant, benchmarking metrics for image quality should pro-
vide consistent, reproducible, and perceptually correlated results.

o Image quality is use case dependent: that which is deemed acceptable for one specific
case may be unacceptable in other cases.

o The conditions under which a particular image or video is captured are important
to define and understand when evaluating image quality. For example, camera per-
formance under bright levels of illumination will almost certainly yield better image
quality compared to capturing under dim levels of illumination.

e The conditions under which a particular image or video is viewed are important to
define and understand when evaluating image quality. For example, viewing an image
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on a mobile phone screen will almost certainly yield a different impression compared
to a large format print of the image made on a high quality printer and hung on a wall.

o A set of objective measurements can only address the image quality attributes being
measured, which makes it possible that a benchmarking approach is not comprehen-
sive.

e Objective image quality metrics become more meaningful when the visual correlation
is defined.

e Comprehensive benchmarks incorporate both objective and subjective image quality
evaluation.
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