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1
Scaling of Forces

There are a number of important forces in the field of microelectromechanical systems
(MEMS). However, their relative importance does not necessarily match the importance
they have in the macroworld. This chapter is concerned with the scaling of these forces to
small dimensions. Weight, elastic, electrostatic, capillary, piezoelectric, magnetic and dielec-
trophoretic forces are examined and a scaling factor identified for all of them.

1.1 Scaling of Forces Model

The integration of complex and powerful systems in silicon for a large variety of applications
stems from the miniaturization of electronic devices and components. Electromechanical
components that were bulky, heavy and inefficient can now be miniaturized using MEMS
technology. Here, mechanical moving parts are used both for sensing devices and actuators.
The main forces present in the operation of these components depend on the geometrical
dimensions, and thereby, when the dimensions are scaled down, the magnitudes of these
forces change, creating a different scenario compared to the macroworld.

Given a force F that depends on a number of geometrical dimensions ai and on a number
of parameters 𝛾j, we have

F = F(ai, 𝛾j). (1.1)

When all dimensions are scaled by the same factor 𝛼, the force changes to

F𝛼 = F(𝛼ai, 𝛾j), (1.2)

provided all the parameters 𝛾j do not depend on the geometrical dimensions. The ratio of the
forces before and after the dimension scaling is given by

F𝛼

F
=

F(𝛼ai, 𝛾j)

F(ai, 𝛾j)
. (1.3)
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2 Understanding MEMS

Generally, when analytical models are used in simplified cases, the result of equation (1.3)
provides a direct relation to a power n of the scaling factor 𝛼,

F𝛼

F
= 𝛼n, (1.4)

meaning that when the dimensions are scaled down by a factor 𝛼, the force scales down by a
factor 𝛼n.

1.2 Weight

As our first application of the rule provided by equation (1.3) we consider the scaling of
weight. Imagine that we have a body of length L, width W and thickness t. The weight of this
body is given by

F = 𝜌mgLWt, (1.5)

where 𝜌m is the material density and g the acceleration due to gravity. If all dimensions are
scaled by a factor 𝛼, the length becomes 𝛼L, the width becomes 𝛼W and the thickness becomes
𝛼t, and so the scaled weight is

F𝛼 = 𝜌mg𝛼L𝛼W𝛼t = 𝛼3𝜌mgLWt, (1.6)

and the ratio of forces after and before scaling is given by

F𝛼

F
= 𝛼3. (1.7)

Equation (1.7) tells us that the weight scales down as the third power of the scaling factor,
so if we reduce all dimensions by a factor of 10 (𝛼 = 0.1), the weight is multiplied by a factor
of 𝛼3 = 0.001).

It will become clear in the next sections that when electromechanical structures are minia-
turized, the weight loses the importance it has in the macroworld and other forces become the
main players.

1.2.1 Example: MEMS Accelerometer

A MEMS accelerometer has an inertial mass made up of a plate of silicon bulk material
of 500 μm side and 500 μm thickness. Calculate the force developed when subject to an
acceleration ten times that due to gravity.
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Taking into account that the density of silicon is 2329 kg∕m3 and that the volume is
500 × 500 × 500 × 10−18 m3, the force is given by

F = 2.85 × 10−5 N.

If all dimensions are reduced by a factor of 10 (𝛼 = 0.1) the weight reduces to F𝛼 = 2.85 ×
10−8 N.

1.3 Elastic Force

A body is deformed when it is subject to an external force. In equilibrium, the elastic force
is the restoring force that compensates the external force. If the deformation is elastic, the
initial dimensions of the body are recovered after the external force disappears. In a one-
dimensional geometry and according to Hooke’s law [1], the elastic force, F, is proportional
to the deformation length 𝛿, collinear with the force,

F = k𝛿, (1.8)

where k is the stiffness constant that is not independent of the geometry as will be shown in
Chapter 3; for example, for a cantilever of rectangular cross-section with length L, width W
and thickness t, subject to a force applied at the tip (see Figure 1.1), the stiffness is given by

k = EWt3

4L3
, (1.9)

where E is Young’s elasticity modulus. We now proceed as in Section 1.1 and calculate the
forces F and F𝛼 before and after scaling:

F = EWt3

4L3
𝛿, F𝛼 = E𝛼W𝛼3t3

4𝛼3L3
𝛼𝛿 = 𝛼2 EWt3

4L3
𝛿. (1.10)

The ratio between these two quantities is therefore

F𝛼

F
= 𝛼2. (1.11)

h W

FL

Figure 1.1 Geometry of a cantilever loaded at the tip
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1.3.1 Example: AFM Cantilever

In atomic force microscopy tiny cantilevers with a very sharp tip are used to detect the force.
The cantilever acts as a soft spring. Calculate the force that will deflect the cantilever by 1 μm
for L = 200 μm, W = 5 μm and h = 2 μ m.

By equation (1.9), k = 0.081 N/m, and by equation (1.8),

F = 8.1 × 10−8N.

Applying a dimension scaling with 𝛼 = 0.1, the force reduces to F𝛼 = 8.1 × 10−10 N.

1.4 Electrostatic Force

The electrostatic force between two plates is due to the electric field, E, that builds up when an
electric potential V is applied between them.1 This is a very common way to make mechanical
parts move in today’s microelectromechanical devices.

If we consider one of the two plates charged with a charge density 𝜎, as shown in Fig-
ure 1.2(a), Gauss’s law [2] allows to calculate the electric field created by the charged sheet as

∮ ⃖⃖⃗D⃖⃖⃖⃗dS = ∫ 𝜎dS = Q. (1.12)

Signs in equation (1.12) are taken as positive for an electric field directed outward from the
differential volume, and ⃖⃖⃖⃗dS is taken positive also directed outward from the face. As the
electric field is normal to the charged surface, only integrals extending over the top and bottom
surfaces of the volume are different from zero, so that

∫top
𝜖EdS + ∫bottom

𝜖EdS = Q, (1.13)

𝜖EA + 𝜖EA = Q, (1.14)

where A is the area of the surface. Then

E = Q
2𝜖A

. (1.15)

The Coulomb force that such a field exerts on the parallel plate with a charge of −Q and at a
distance g is

F = −QE = − Q2

2𝜖A
. (1.16)

1 We denote the electric field by E to distinguish it from the Young’s modulus E.
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Figure 1.2 (a) Gauss’s law for a sheet of charge 𝜎, and (b) electric field and Coulomb force exerted on
the upper plate

Since Q = CV and C = 𝜖A∕g,

F = 𝜖AV2

2g2
. (1.17)

As can be seen the force is downwards, that is to say, it is attractive between the plates and
does not depend on the sign of the applied voltage as it is squared in the force equation (1.17).
When we apply the scaling method we find that

F𝛼 = 𝜖A𝛼2V2

2g2𝛼2
. (1.18)

In equation (1.18), A is the area of the plates which scales as 𝛼2, and g is the value of the gap
between plates. The scaling factor of the force is

F𝛼

F
= 𝛼0 = 1. (1.19)

This is a very important result showing that the electrostatic force is independent of the scaling
factor and can be very high compared to other forces in the microworld. However, it can be
correctly argued that reducing the distance between plates increases the electric field and the
devices may be damaged by breakdown. To prevent this situation, we can consider a different
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scaling scenario in which the value of the electric field is kept constant. As the electric field is
E = V∕g, equation (1.18) can be written as

F = 𝜖AV2

2g2
=

𝜖AE2g2

2g2
= 𝜖AE2

2
, F𝛼 = 𝜖A𝛼2E2

2
(1.20)

and hence

F𝛼

F
= 𝛼2. (1.21)

Here we see that in this scenario the scaling follows an 𝛼2 rule instead.

1.4.1 Example: MEMS RF Switch

In a MEMS RF switch two metal plates 250 × 250 μm2 are driven by a voltage of 9 V. Calculate
the force required to close the 5 μm gap between them.

If we suppose that between the two plates there is air, the permittivity is 𝜖 = 8.85 × 10−12

F/m, and the force can be calculated from equation (1.18):

F = 𝜖AV2

2g2
= 8.85 × 10−12 250 × 10−6 × 250 × 10−6 × 92

2 × 52 × 10−12
= 8.96 × 10−7 N.

If the dimensions are scaled by a factor of 𝛼 = 0.1 the force remains equal if equation (1.19)
applies or 8.96 × 10−9 N if equation (1.21) applies.

1.5 Capillary Force

On the surface of a liquid the molecules are attracted by the other molecules inside the volume
but do not have the attraction from the surroundings above the surface. This creates a situation
where the molecules rearrange in order to expose the minimum surface. If an observer wants
to increase the surface exposed to the ambient, he necessarily has to do some work. This work,
dW, is proportional to the increase in area, dA [3]:

dW = 𝛾dA. (1.22)

The proportionality constant 𝛾 is the surface tension and has units of J/m2 or, equivalently,
N/m. Thus the surface tension is a measure of the surface energy per unit area.

When a liquid drop is in equilibrium, there is a pressure increase ΔP inside the drop, known
as Laplace pressure, to prevent collapse. ΔP is related to the surface tension by

ΔP = 𝛾C, (1.23)
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Figure 1.3 Parallel plates with droplet of liquid in between

where C is the curvature of the drop given by

C = 1
R
+ 1

R∗ , (1.24)

in which R and R∗ are the radius of two mutually orthogonal circles drawn at a tangency point
of the drop surface. R is the radius of the circle that lies inside the drop, and R∗ that of the one
lying outside and takes negative sign. This is shown in Figure 1.3, where the example of two
parallel plates having a drop of liquid trapped inside is considered.

Due to equilibrium of surface tensions, a liquid on a substrate has a contact angle 𝜃 shown
in Figure 1.3 (see also Section 7.5). We have that

h
2
= R∗ cos 𝜃, (1.25)

hence

ΔP = 𝛾
( 1

R
− 2 cos 𝜃

h

)
. (1.26)

In many MEMS applications R ≫ h, and then equation (1.26) simplifies to

ΔP ≃ −𝛾 2 cos 𝜃
h

. (1.27)

Equation (1.27) shows that if the contact angle 0 < 𝜃 < 𝜋∕2, then ΔP < 0 and the force is
inwards with respect to the liquid, whereas for 𝜋∕2 < 𝜃 < 𝜋, ΔP > 0 and the force is outwards.
If we suppose that the plates shown in Figure 1.3 are circular with radius R, then the force
developed by capillarity between the two plates is

F = 𝜋R2ΔP = −𝛾 2𝜋 cos 𝜃R2

h
. (1.28)

When the geometrical dimensions are scaled,

F𝛼 = 𝛾
2𝜋 cos 𝜃𝛼2R2

𝛼g
, (1.29)

and the ratio is given by

F𝛼

F
= 𝛼1. (1.30)
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1.5.1 Example: Wet Etching Force

We have a MEMS process involving wet etching of a sacrificial layer between two parallel
circular plates of radius R = 2500 μm. If the gap between the plates is g = 2 μm, the surface
tension is 𝛾 = 72.9 × 10−3 N/m and the contact angle between the liquid and the substrate is
70◦, calculate the force between the plates.

As the contact angle is smaller than𝜋∕2, the force is attractive and the value can be calculated
from equation (1.28):

F = 𝛾
2𝜋 cos 𝜃R2

g
= 72.9 × 10−3 2𝜋 cos 70(2500 × 10−6)2

2 × 10−6
= 0.48 N.

1.6 Piezoelectric Force

Piezoelectricity is a property of some materials that generate electric charge when mechanically
stressed and undergo a deformation when biased by an electric field. This phenomenon arises
from a change in the crystallization of a material when subject to a process of simultaneous
application of a high electric field and a high temperature known as ‘polling’. Electrical dipoles
are generated during polling that remain in the material thereafter. Piezoelectric layers can be
used as displacement actuators or as force generators against a restraint.

The main equation of the direct piezoelectric effect is

D = dT + 𝜖E, (1.31)

where D is the electrical displacement vector, d the piezoelectric coefficient, 𝜖 the permit-
tivity of the material, E the electric field and T the mechanical stress. In equation (1.31) the
piezoelectric effect is anisotropic (see Chapter 4) and d is a tensor.

It can be seen that the electrical displacement D has two components: one conventional due
to the electric field applied, and the other due to the mechanical stress. Conversely, the inverse
piezoelectric effect is described by the equation

S = sT + dTE (1.32)

where S is the strain (or relative deformation), s the compliance and dT the transpose of the
piezoelectric coefficient tensor. When an electric field is applied, assuming that the material
has a force restraint F working against deformation, equation (1.32) can be written as

S = −s
F
A
+ dE, (1.33)

where A is the cross-section of the material. Equation (1.33) shows that in the absence of
any restraint (F = 0), the maximum displacement, or maximum stroke, is Smax = dE and the
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Figure 1.4 Force as a function of stroke

maximum stress (F∕A)max happens for zero deformation (S = 0) and is given, as shown in
Figure 1.4. by

F
A

||||max
= d

s
E. (1.34)

If we consider, as an indicator for the scaling scenario, the maximum force value, or blocking
force, and that the applied electric field is given by V∕t, where t is the material thickness and
V the applied voltage, the force scales as

F = dAV
st

. (1.35)

Applying the scaling model,

F𝛼

F
= 𝛼1, (1.36)

and if the scaling is performed at constant electric field, then

F𝛼

F
= 𝛼2. (1.37)

1.6.1 Example: Force in Film Embossing

We have a piezoelectric material 2 μm thick and 200 μm × 200 μm in area. We apply a voltage
of 10 V across the film and we want to know the deformation in the direction of the electric
field that is achieved. Calculate the value of the maximum force that can be put in a wall
preventing the deformation of the material, such as occurs in film embossing. We know that
the film is made of ZnO, d = 12 × 10−12 CN−1 and s = 7 × 10−12.

We first calculate the maximum strain Smax,

Smax = dE = d
V
t
= 6 × 10−4, Δt = St = 1.2 nm,
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and the maximum force (or blocking force) for zero deformation is given by

F = A
V
t

d
s
= (200 × 10−6)2 100

2 × 10−6

12 × 10−12

7 × 10−12
= 0.34 N.

As can be seen, the piezoelectric actuators can generate large forces but small displacements.

1.7 Magnetic Force

One important MEMS application is the measurement of magnetic field for compasses [4, 5].
One way to detect a magnetic field uses the Lorentz force that develops when a wire carrying
an electric current intensity I is immersed in a magnetic flux density B. If we know the intensity
value and the length of the wire L, the Lorentz force is given by

F = I ⃖⃗L × ⃖⃗B (1.38)

where × indicates the cross product of the magnetic field vector and the wire length vector.
This force is orthogonal to both the magnetic field and the wire direction. If the magnetic field
and the wire are orthogonal, then the magnitude of the force is simply given by

F = ILB. (1.39)

When scaling equation (1.39), one has to take into account that decreasing dimensions, most
of the time, require also reducing the cross-section of the wire. If the current I is constant in
the scaling, then the current density will increase and the ohmic losses will also increase as
the resistance of the wire increases. It is then useful to consider that the magnitude that is kept
constant in the scaling is the current density J = I∕A, where A is the cross-section of the wire.
Hence, equation (1.39) can be written as

F = JALB, F𝛼 = J𝛼2A𝛼LB = 𝛼3JALB, (1.40)

and the ratio is given by

F𝛼

F
= 𝛼3. (1.41)

1.7.1 Example: Compass Magnetometer

A magnetometer for a compass has to detect the Earth’s magnetic field within the range of
0.25 × 10−4 T to 0.65 × 104 T. Calculate the force produced by a value B = 0.5 × 10−4 T in a
wire of length 2000 μm conducting an electrical current of intensity I = 10 mA.

Using equation (1.40),

F = 10 × 10−3 × 2000 × 10−6 × 0.5 × 10−4 = 1 × 10−9N.
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1.8 Dielectrophoretic Force

The dielectrophoretic force is the force that a non-uniform electric field exerts on a particle [6,
p. 5]. The particle can be modelled as an electric dipole as shown in Figure 1.5.

The force acting on the dipole is

⃖⃗F = Q⃖⃖⃗E(r⃗ + ⃖⃗d) − Q⃖⃖⃗E(r⃗). (1.42)

Linearizing the electric field by the first term of the Taylor expansion,

⃖⃖⃗E(r⃗ + ⃖⃗d) = ⃖⃖⃗E + ⃖⃗d∇⃖⃖⃗E(r⃗), (1.43)

and substituting in equation (1.42),

⃖⃗F = Q ⃖⃗d∇⃖⃖⃗E(r⃗). (1.44)

In the limit we consider that when r → 0 the dipole moment ⃖⃗p = Q ⃖⃗d remains finite. According
to a more detailed derivation in Chapter 6, the dipolar moment of a particle can be written as
an effective dipole moment peff ≃ Qd, and then

⃖⃗F = ⃖⃖⃖⃖⃖⃗peff∇⃖⃖⃗E. (1.45)

The effective dipole moment is shown to be (see Chapter 7)

peff = 4𝜋𝜖1R3K⃖⃖⃗E, (1.46)

where R is the particle radius, 𝜖1 is the medium permittivity and K is the Clausius–Mossotti
factor

K =
𝜖2 − 𝜖1

𝜖2 + 2𝜖1
, (1.47)

in which 𝜖2 is the particle permittivity.

r
→

r
→

d
→

d
→

+
–Q

+Q

Figure 1.5 Dielectrophoretic force
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The force on the particle is

⃖⃗F = 4𝜋𝜖1R3K⃖⃖⃗E∇⃖⃖⃗E. (1.48)

As the electric field is irrotational,

⃖⃗E∇⃖⃖⃗E = 1
2
∇(⃖⃖⃗E⃖⃖⃗E) = 1

2
∇|E|2. (1.49)

The dielectrophoretic force is

⃖⃗F = 2𝜋𝜖1R3K∇|E|2. (1.50)

Equation (1.50) indicates that the force has the same direction as the gradient of the square of
the modulus of the electric field and depends on the third power of the particle radius. If we
suppose, as an example, that the electric field is created by a charge Q ∗ located at the origin
of our system coordinates, the electric field has spherical symmetry and is E = Q∗∕r2.

The dielectrophoretic force on a sphere of radius R is then given by

⃖⃗F =
8𝜋𝜖1R3KQ∗2

r5
. (1.51)

If the scaling scenario considers that the radius of the particle and the distance from the particle
to the centre are equally scaled, then the scaling factor is

F𝛼

F
= 𝛼−2. (1.52)

If the distance is not scaled, then

F𝛼

F
= 𝛼3. (1.53)

1.8.1 Example: Nanoparticle in a Spherical Symmetry Electric Field

Consider a polystyrene nanoparticle of radius 300 nm (𝜖r = 2.5) and assume that ∇|E|2 =
3.3 × 1023 V2/m3. Calculate the force at a distance 10 times the diameter of the sphere.

Taking into account that the Clausius–Mossotti factor is 0.333, the force is F = 6.59 ×
10−9 N.
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1.9 Summary

The different forces involved in microelectromechanical devices scale differently when the
dimensions are scaled down. Looking at the 𝛼n scaling law, the larger the value of n the more
significantly the forces are reduced when the dimensions are reduced. As far as the forces
examined in this chapter are concerned, the weight is the force that will become less and less
important in the microworld. On the other hand, in the examples shown in this chapter we
can also see that the forces present in common examples of today’s MEMS devices vary quite
widely in magnitude.

Table 1.1 shows a comparison of the scaling laws and a summary of the results of the
examples worked in this chapter. It can be seen that the capillary and piezoelectric forces are
quite significant (of the order of tenths of newtons), whereas magnetic and elastic forces, for
the examples selected, are quite small.

Table 1.1 Summary of scaling laws and examples of the magnitude of forces

Force Scaling law Magnitude (N) Example

Weight 𝛼3 2.85 × 10−5 1.2.1
Elastic 𝛼2 8.1 × 10−8 1.3.1
Electrostatic 𝛼0, 𝛼2 8.96 × 10−7 1.4.1
Capillary 𝛼1 4.8 × 10−1 1.5.1
Piezoelectric 𝛼1, 𝛼2 3.4 × 10−1 1.6.1
Magnetic 𝛼1, 𝛼3 1 × 10−9 1.7.1
Dielctrophoresis 𝛼−2, 𝛼3 6.59 × 10−9 1.8.1

Problems

1.1 Calculate and plot the elastic restoring force of a cantilever having width W = 10 μm
and thickness h = 3 μm and for lengths from 20 μm to 2000 μm, when the deflection at
the tip is 10% of the length. Take E = 164 × 109 Pa.

1.2 For a silicon cantilever such as the one depicted in Figure 1.1, what is the most effective
way to reduce the elastic constant k by a factor of 10 by changing only one of the
dimensions? Similarly, what is the most effective way to increase k by a factor of 10?

1.3 We have an accelerometer based on an inertial mass from a cubic volume of silicon of
500 μm side. Find the density of silicon and calculate the force that creates such mass
when accelerated at 60 times gravity. If the inertial mass is supported by a flexure having
an elastic constant of 100 N/m, find the mass displacement when the two forces reach
equilibrium. If the edge of the cubic volume is at 5 μm distance of a fixed electrode, find
the capacitance value before the acceleration is applied to the mass and after. Assume
that there is air in between the plates.

1.4 We have two plates of silver of area 250 μm × 250 μm and 50 μm thick. The upper
plate is fixed and the bottom plate can move vertically. Calculate the minimum voltage
that should be applied between the plates in order to start lifting the bottom plate.
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1.5 We have two parallel electrodes at a distance of 4 μm in air, with a voltage VCC =
10V applied between them. The permittivity 𝜖1 of air is equal to the permittivity of
the vacuum 𝜖0. One of the electrodes is covered by a dielectric 2 μm thick having a
permittivity of 𝜖2 = 𝜖0𝜖r with 𝜖r = 3.9. Calculate and plot the electric field in the air
and inside the dielectric.

1.6 A thin cylindrical capillary of 5 mm diameter is immersed in water. The surface tension
is 𝛾 = 72.8 × 10−3 N/m, the liquid density is 𝜌m = 103 kg/m3 and the acceleration due
to gravity is g = 9.8 m/s2. Calculate the height of the water inside.

1.7 Compare the surface energy of a drop of liquid, assumed spherical in shape with radius
r, with its volume.

1.8 We have a spherical drop of 2 mm radius. If the surface tension is 𝛾 = 72.8 × 10−3 N/m,
calculate the surface energy change if the drop radius is stretched by Δr and find the
change in the internal pressure in equilibrium.

1.9 A piezoelectric actuator has to produce a displacement in the bottom plate of a reservoir
to eject droplets of ink to produce 600 dots per inch. Assume that the ink dot thickness
is 1 μm and that there is just one drop per dot. Calculate the diameter of the dot, the
volume of the drop and the radius of the drop (assumed to be equal to the radius of the
ejecting nozzle). Calculate the vertical expansion required for a piezoelectric actuator
acting on a cylindrical ink reservoir of 2 mm diameter. The thickness of the piezoelectric
material is 10 μm.

1.10 We have a flexure made of gold and an electrical current of 10 mA circulates through
it. If we immerse the flexure in a magnetic field normal to the plane of the flexure,
calculate the force and indicate the direction of the movement. Take L = 2000 μm,
B = 0.25 × 10−4 T and the elastic constant of the flexure kx = 0.01 N/m.

1.11 We have a 300 nm diameter polystyrene nanoparticle immersed in air, and an electric
field created by a sphere carrying a total charge of Q. The distance between the particle
and the sphere is 10 times the polystyrene sphere diameter. Calculate the force and the
direction. Repeat the calculation if the medium is changed to ethylene glycol. Ethylene
glycol has a relative permittivity of 37 and polystyrene 2.5.


