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Do not worry about your difficulties in Mathemat-
ics, I can assure you mine are still greater.

Albert Einstein

1.1 Introduction

In this chapter, we will learn about the fundamental
nature of solids and how their defining properties
are associated with quantum mechanical concepts of
electrons and their energy. The exposure to the most
essential concepts of solid-state physics will greatly
help us in understanding the nature of electroceramics
and the multiple physical phenomena they can exhibit
that form the basis for a large number of novel device
applications that impact electronic and sensor technol-
ogy. We have purposely tried to avoid the intricacies
of mathematical models in describing these concepts
because the goal here is not to produce another book on
solid-state physics but rather to make use of the essential
features of various theoretical models in understand-
ing the transport properties of electrons, uniqueness
of semiconductors, and the scientific basis behind the
dielectric properties of materials.

1.2 Defining Properties of Solids

Solids can be broadly classified as conductors, semicon-
ductors, and insulators of which dielectrics are a subset.
Another important group of solids are classified as high
temperature superconductors. Because of the unique
physical mechanisms involved in the origin of supercon-
ductivity, these materials are of a special category and
will be treated as an independent class of materials. We
will devote a section on superconductivity later in this
chapter. So far as the other three groups are concerned,
we can differentiate between them on the basis of their
defining properties. For example, a conductor is defined
by its capacity to facilitate the transport of an electrical
current associated with the inherent material property
that we call resistance. Similarly a semiconductor is
defined by its energy gap (also, called bandgap) and a
dielectric by its dielectric property. We discuss in this
chapter, the origin of these properties and how they add
uniqueness to materials.

1.2.1 Electrical Conductance (G)

All materials tend to resist the flow of an electric current
by virtue of its built-in resistance. The magnitude
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2 Fundamentals of Electroceramics

of current, I, is dictated by the resistance, R (or,
conductance, G) when a voltage, V , is applied between
the two ends of a solid sample. This relationship is
given by the famous law of physics universally known
as the Ohm’s law that was conceived in 1825–1826 by
Gerog Ohm of Germany. It states that the current (I)
generated between the two fixed points of a conductor
(such as a metal) is directly proportional to the potential
applied and inversely proportional to its resistance.
Mathematically, it is expressed as Eq. (1.1).

I = V
R

= GV (1.1)

Here G being the conductance that is simply the inverse
of resistance. From the above equation, we can conclude
that I increases as R decreases or it increases with the
increase in conductivity G. The resistance (R) changes
as two reference points between which it is measured is
changed. For example, it increases with the increase in
the distance between the reference points and decreases
if the distance between these points is reduced. That
means that the resistance (or, conductance) is dependent
upon the geometry of the sample. In other words, neither
resistance nor conductance is the intrinsic property of
the sample under consideration. Unless we can develop
the concept of intrinsic resistance of a material, we
would not be able develop theoretical models that are
independent of sample geometry. To accomplish this
goal, let us introduce now a parameter which we shall
call resistivity. It is defined as follows:

𝜌 = R
(A

L

)
(1.2)

Here 𝜌 is the resistivity, L the sample length, and A the
cross-sectional area. The unit of the resistivity is Ω m.
We can see from the above equation that the resistivity
becomes an intrinsic property of materials. No two mate-
rials would have the same value of resistivity.

While defining the resistivity, we assumed the sample
to be uniform in which the current flows uniformly.
However, in reality that may not always be the case. We
therefore need to develop a more basic definition of
resistivity. We can imagine that an electric field prevails
inside the sample when it experiences a potential dif-
ference between any two fixed points. It is actually the
electric field (E) that enables the current flow within the
sample, and therefore, the resistivity must be associated
with the current density (J) that exists within the sample.
We can then redefine the resistivity with respect to E
and J as in Eq. (1.3).

𝜌 =
(V

L

)
⋅
(A

I

)
= E

J
(1.3)

The inverse of the resistivity is called conductivity (𝜎)
and its unit is S m−1 or (Ω m)−1. Replacing the resistivity

with conductivity, we can rewrite Eq. (1.3) in its alterna-
tive formulation as follows:

J = 𝜎E (1.4)

Metals have the highest conductivity among all solids,
and it is greater than 105 (S m−1). In comparison, in semi-
conductors, it varies from 10−6 <𝜎 < 105 (S m−1). The
dielectrics have very small conductivity that is smaller
than 10−6 (S m−1). Based on this information, we can
now distinguish between the three types of solids as in
Eq. (1.5).

𝜎metal ≫ 𝜎semiconductor ≫ 𝜎dielectric (1.5)

In Table 1.1, a list of materials with their electrical con-
ductivity is presented.

1.2.2 Bandgap, Eg

The defining property of a semiconductor is its energy
bandgap that exists between the valence band and the
conduction band. The width of the bandgap is expressed
in electron volt with the symbol of Eg. The unit of
electron volts for energy is defined as the work done
in accelerating an electron through 1 V of potential
difference. For converting 1 J of energy to electron volts,
we need to divide it by the charge of an electron that is
1.602× 10−19 C.

The concept of energy being in bands of solids instead
of just being discrete is based on the band theory of
solids to which we will introduce our readers later in
this chapter. For the time being, let us be satisfied with
the assumption that electrons and other charge carriers
(e.g. holes) can reside only in the valence band or the
conduction band. It is forbidden for any charge car-
rier to be found in the bandgap at absolute zero. The
Fermi–Dirac distribution function (also known as F-D

Table 1.1 Room temperature electrical conductivity of selected
solids.

Materials Electrical conductivity, 𝝈 (S m−1)

Aluminum (Al) 3.5× 107

Carbon (graphene) 1.00× 108

Carbon (diamond) ≈10−13

Copper (Cu) 5.96× 107

Gold (Au) 4.10× 107

Silver (Ag) 6.30× 107

Platinum (Pt) 9.43× 106

Germanium (Ge) 2.17 (depends on doping)
Silicon (Si) 1.56× 10−3 (depends on doping)
Gallium arsenide (GaAs) 1.00× 10−8 to 103
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statistics) with its enormous importance to the quantum
nature of solids completely excludes the possibility that
any electron can be found in the bandgap. Not only that,
this theory also predicts that at absolute zero (0 K), all
electrons are frozen in valence band, and the conduction
band is completely empty. We will deal also with this
magnificent theory later in this chapter. However, it is
also probable that some electrons might get sufficient
kinetic energy to escape the valence band and migrate to
the conduction band. But this probability is allowed only
at temperature ≫0 K according to the F-D statistics.

In general, metals have almost no bandgap, whereas
insulators have large bandgaps. The bandgaps of semi-
conductors lie between these two extremes. If the
bandgap is greater than 2 eV, the material is thought
to be an insulator, though this notion is not always
supported by facts. For example, there are many semi-
conductors with Eg > 2 eV, and they are classified as wide
bandgap semiconductors and not insulators.

The semiconductors are normally classified as nar-
row bandgap, midlevel bandgap, and wide bandgap.
In Figure 1.1, a qualitative picture of bandgap is given,
which can serve for distinguishing among metals,
semiconductors, and dielectrics.

We see in Figure 1.1 that dielectrics have much larger
bandgaps than semiconductors, whereas metals have no
bandgap at all. In fact, the two bands merge in metals
causing an overlapped region, where electrons are shared
by the two bands. We also find in this figure that besides
the bandgap, there is another parameter labeled as Fermi
level, which lies between the upper (conduction band)
and lower (valence band) energy bands. It is defined as
the sum of the potential energy and kinetic energy. For
convenience, for example, in discussing the semiconduc-
tor properties, the potential energy is set at zero corre-
sponding to the bottom of the valence band.

It is important to know that all solids have Fermi
energy, and its location with respect to the bandgap

is commonly referred to as Fermi level. We can now
summarize that

Eg,dielectric ≫ Eg,semiconductor ≫ Eg,metal (1.6)

In Table 1.2, values for the bandgap for some common
semiconductor materials is given at 300 K.

1.2.3 Permeability, 𝝐

From Figure 1.1, we can also conclude based on the argu-
ments advanced in the previous section that the large
bandgap of a dielectric material would inhibit the elec-
trical conduction since it would be difficult for electrons
to gain sufficient energy to overcome the bandgap at
room temperature. This is certainly consistent with
our everyday experience that dielectrics are very poor
carriers of electricity. However, one need to remember
that theoretically even the best of dielectric can conduct
electricity when subjected to a large potential difference,
but the magnitude of the resulting current would be so
small as to be of any practical interest.

The defining property of a dielectric material is the
permittivity, which is also known by its other name of
dielectric constant with the universal symbol of 𝜖. All
materials will get polarized when subjected to an electric

Table 1.2 Some semiconductor materials and their bandgap.

Materials Bandgap (eV)

Ge 0.661
Si 1.12
InSb 0.17
InP 1.344
GaAs 1.424

Source: From http://hyperphysics.phy-astr.gsu.edu/hbase/hph.html.
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Figure 1.1 Comparative representation of insulators, semiconductors, and metals on the basis of their energy bandgaps.
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field. We know that the relationship between the electric
displacement (D), and the electric field (E) is given by the
fundamental equation of electromagnetics which states
that

D = 𝜖0E + P (1.7)

where 𝜖0 is the permittivity of vacuum with the value of
8.85× 10−12 F m−1 and P the electric field-induced polar-
ization. At low electric field, the product 𝜖0E is a very
small number, and therefore, we can approximate D≈P.
Therefore, for low electric fields, Eq. (1.7) takes the form
of Eq. (1.8).

P ≈ 𝜖r𝜖0E (1.8)

The parameter 𝜖r is the relative dielectric constant that
is a unitless quantity and is equal to 𝜖 ⋅ 𝜖−1

0 , where 𝜖 is
the permittivity of the material. The permittivity is spe-
cific to a material similar to the electrical conductivity.
Therefore, we can also use this parameter to distinguish
between the three types of solids as shown in the rela-
tionship in Eq. (1.9).

𝜖r,dielectric ≫ 𝜖r,semiconductor ≫ 𝜖r,metal (1.9)

In Table 1.3, a list of relative dielectric constant (𝜖r) for
selected materials is presented.

1.3 Fundamental Nature of Electrical
Conductivity

We defined in Eq. (1.4) the electric current, I. This deriva-
tion was based on geometrical considerations of a sample
of finite size and length. The question now arises what
causes the onset of current and how do we understand its
true nature. To accomplish this goal, we need to consider
that the current is generated when electrons move from
one point to another under the influence of an applied
electric field. Such a movement will obviously involve a
velocity and mobility.

Table 1.3 Dielectric constant of some selected materials.

Materials Dielectric constant, 𝝐r

Vacuum 1
Air 1.00059
Mica 3–6
Polyvinyl chloride 3.18
Germanium (Ge) 16
Strontium titanate (SrTiO3) 310
Titanium dioxide (TiO2) 173

Source: From http://hyperphysics.phy-astr.gsu.edu/hbase/hph.html.

We can easily visualize a picture in which a traveling
electron will encounter thermally generated phonons in
a crystal lattice and then will acquire an average velocity
that is also called the drift velocity, vd. But what are
phonons and where do they come from? It is quantum
mechanical concept and refers to the unit of vibrational
energy originating from the oscillations of atoms within
a crystal lattice. The atomic oscillations increase with
increasing temperature resulting in larger number of
thermally generated phonons. Phonons are the coun-
terpart of photons and both being quantum mechanical
concepts. They are the two main types of elementary
particles associated with solids.

The magnitude of the drift velocity will be propor-
tional to the applied electric field. The coefficient of
proportionality is called the electron mobility (𝜇e).
Alternatively, it can also be defined with the help of the
following equation:

𝜇e =
(Δvd

ΔE

)
(1.10)

The electron mobility is a very important property and
plays a vital role in designing a transistor. Materials with
larger values of mobility are desired because that trans-
lates to faster transistors. We will discuss this parameter
again in Chapter 7. Its unit is m2 V−1 s−1.

We can easily visualize that electrical conductivity (𝜎e)
and electron mobility (𝜇e) to be related somehow. We
can in fact find this relationship simply by assuming that
there are n number of electrons involved and their trans-
port from one point to another is facilitated by the onset
of mobility (𝜇e) and the applied electric field (E) such that

𝜎e = ne𝜇e (1.11)

where e is obviously the electronic charge. Equation (1.11)
is the standard expression and gains a special importance
while dealing with semiconductor materials where the
conductivity is the sum of the contributions made by
electrons and holes. This is discussed also in Chapter 7.

1.4 Temperature Dependence
of Electrical Conductivity

Resistivity of solids is highly temperature-dependent.
Strong thermal dependence of resistivity is exhibited by
metals and semiconductors. However, their trends are
opposite to each other. They are displayed in Figure 1.2.
We can see here that metal resistivity first remains con-
stant in the low temperature regime until a temperature
is reached above which it starts increasing rapidly as the
temperature increases. At high temperature regime, it
follows approximately a linear relationship with tem-
perature yielding a positive temperature coefficient of
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resistivity
(

Δ𝜌
ΔT

= 𝜂
)

. The semiconductor resistivity, on
the other hand, increases rapidly with decreasing tem-
perature following an exponential thermal dependence.
At sufficiently low temperatures, all semiconductors
become good insulators. At higher temperatures, its
resistivity decreases at a vastly reduced rate such that
the change is almost monotonous. Resistivity of a
typical insulator follows qualitatively the same temper-
ature dependence as semiconductors. Obviously, the
resistivity of an insulator is much greater than that of
semiconductors as can be concluded from Figure 1.1.

In Figure 1.2, we have included the temperature depen-
dence of resistivity also for a superconductor simply to
demonstrate the distinction one can make between met-
als, semiconductors, and superconductors based on the
behavior of their electrical resistivity with temperature.
In superconductors, the resistivity goes through a phase
change at a critical temperature, called the superconduct-
ing transition point below which a normal metal becomes
superconducting. Its resistance vanishes and the material
acquires infinite conductivity and remains in the super-
conducting state so long as temperature remains below
the transition point. Above the critical temperature, it
loses its superconducting nature and behaves like a nor-
mal metal. The thermal behavior of solids, as shown in
Figure 1.2, can be easily explained on the basis of physics
as describe below.

1.4.1 Case of Metals

The thermal behavior of electrical resistivity of metals
can be expressed empirically by Matthiessen’s rule that

Superconductor
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Figure 1.2 Temperature dependence of resistivity of metals,
semiconductors, and superconductors.

is given by Eq. (1.12).

𝜌net = 𝜌0 + 𝜌(T) (1.12)

where 𝜌0 the temperature-independent part and
𝜌(T) the temperature-dependent part. The origin of
temperature-independent part of the resistivity lies in
the presence of impurities and imperfections in the
sample. It dominates at low temperatures following
the 𝜌0 ∝T5 law. Below a certain temperature called,
the Debye temperature, it remains constant. Above the
Debye temperature, the resistivity increases linearly
with temperature obeying the 𝜌≈ 𝜂T relationship. The
temperature-dependent part is due to the thermal vibra-
tions of the lattice. At high temperatures, more and more
phonons are excited impacting the thermal behavior of
resistivity. The knowledge of the thermal dependence
of metal resistivity above room temperature gives us
the value of the temperature coefficient, 𝜂, which has
important practical applications in temperature mea-
suring devices such as thermocouples and thermistors.
We can easily determine its value by measuring the
resistance at some well-defined temperatures. Let us say
that at temperature T0, the resistance is R0, and it is R
at temperature T , which is greater than temperature T0.
Then 𝜂 can be expressed as in Eq. (1.13) (Table 1.4).

𝜂 =
(R − R0)

R (T − T0)
=
(ΔR
ΔT

)
⋅

1
R

(1.13)

1.4.2 Case of Semiconductors

For intrinsic semiconductor, the conduction can only
take place when electrons closest to the surface of the
bandgap acquire sufficient energy to escape the bandgap
and reach the conduction band. The temperature
dependence of the resistivity (𝜌) is given by Eq.(1.14).

𝜌 = 𝜌0 exp
(
−

Eg

2kBT

)
(1.14)

Table 1.4 Temperature coefficient of resistivity (𝜂) of some
common metals.

Metals 𝜼 × 10−3 (per ∘C)

Silver, Ag 3.8
Copper, Cu 3.9
Gold, Au 3.4
Aluminum, Al 4.3
Iron, Fe 6.5
Tungsten, W 4.5
Platinum, Pt 3.92

Nichrome is an alloy of Ni and Cr.
Source: From http://hyperphysics.phy-astr.gsu.edu/hbase/hph.html.
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Figure 1.3 Frequency dependence of real and imaginary parts of dielectric constant. The polarizations with respect to real part of
permittivity are shown as Pd for dipolar polarization, Pi for ionic polarization, and Pe for electronic polarization, respectively.

In Eq (1.14), 𝜌0 is the temperature-independent part of
the resistivity, Eg the bandgap, and kB the Boltzmann
constant. Equation (1.14) tells us that the resistivity of a
semiconductor material increases exponentially as the
temperature decreases. This can be seen from Figure 1.2
as well.

1.4.3 Frequency Spectrum of Permittivity
(or Dielectric Constant)

So far we have paid more attention to metals and semi-
conductor, while discussing the nature of electrical
conductivity. Let us now consider the case of an insula-
tor. We may recall that even a standard semiconductor
material can become a good insulator when cooled to
very low temperatures. The electrical conductivity is
of no special interest while discussing the nature of
insulators. It is the dielectric constant, or polarizability,
that is of greater interest for understanding the dielectric
nature of electroceramics. Comparatively speaking,
electroceramics show much higher permittivity than
semiconductors. Equation (1.7) gives us an expression
for the displacement (D) when an insulator is subjected
to an external electric field (E). Permittivity is strongly
dependent upon the frequency of the applied electric
field. Permittivity measured at any frequency (𝜔) consists
of real and imaginary components as shown in Eq. (1.15).

𝜖(𝜔) = 𝜖′(𝜔) + j𝜖′′(𝜔) (1.15)

Here 𝜖(𝜔) is the measured permittivity at frequency
(𝜔), 𝜖′(𝜔), the real part and 𝜖′′(𝜔) the imaginary part.
The real part is related to the stored electrical energy
of the medium such as a capacitor, and imaginary part
is related to the dissipation of the energy which is also

called the energy lost. The ratio between the two com-
ponents defines the loss tangent. Loss tangent is also
referred to as tan 𝛿 and is a measure of the efficiency
of a capacitor device. Taking into consideration the loss
angle, 𝛿, Eq. (1.15) can also be expressed as in Eq. (1.16).

𝜖 = P
E
(cos 𝛿 + isin 𝛿) (1.16)

There are three types of permittivity that are dipo-
lar, atomic, and electronic. Their presence is distinctly
noticeable when 𝜔 changes from low frequencies to
optical frequencies covering the frequency spectrum of
microwave, infrared, visible, and then finally ultra-violet
as shown in Figure 1.3.1 The dipolar part dominates
between 103 <𝜔< 109 Hz and ceases to exist once the
microwave range (≈1011− 13 Hz) sets in. Then the ionic
polarization begins and it persists for approximately
1012 <𝜔< 1013 Hz. The electronic polarization is the
only polarization that prevails in the optical regime
of 1014 <𝜔< 1017 Hz. Notice that both the ionic and
electronic components go through a resonance that
occurs approximately at 𝜔≈ 1012 Hz and at 𝜔≈ 1015 Hz,
respectively. Comparatively speaking, dipolar polariza-
tion, Pd, is much larger than the ionic polarization, Pi, or
electronic polarization, Pe.

We find a strong resonance of ionic polarization in
the infrared (IR) regime covering the frequency range
between 300 GHz and 430 THz (equivalent wave lengths
being 700–106 nm). The imaginary dielectric constant,
𝜖′′ also undergoes pronounced resonances at frequencies
corresponding to the resonances of the real part of three
types of polarization. We furthermore notice that the

1 https://en.wikipedia.org/wiki/Permittivity
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imaginary part decreases with increasing frequency and
the largest change occurs in the dipolar region. What
actually causes the onset of these polarizations? We shall
discuss this now.

The dipolar polarization that is also known as orien-
tation polarization is randomly oriented dipoles in the
absence of an electric field. However, when an external
electric field is applied, these dipoles orient themselves
in the direction of the field. At frequencies (𝜔) below
1011 Hz the applied field can induce periodic rotation.
At moderately high fields, the rotations become rapid
and energy is absorbed as heat. This is the basis for
microwave heating. As can be seen from Figure 1.3,
this polarization dominates in the frequency domain
covering 0<𝜔 < 1011 Hz.

At moderately high frequencies, molecules may not
rotate because the high energy that is absorbed results
in the emergence of the resonance peaks. On the appli-
cation of electric field with frequencies in the microwave
domain (1011 <𝜔< 1013 Hz), small displacements of ions
from their equilibrium positions can result. As a con-
sequence, a net dipole moment can be induced. These
dipoles will absorb energy that like in the previous case
will give rise to resonance. Such a response is mostly
present in the infrared region. The electronic polariza-
tion, on the other hand, sets in at the optical frequencies
with 𝜔> 1014. The dipolar and ionic polarizations are
negligible at optical frequencies because of the inertia of
molecules to respond to optical frequencies. At optical
frequencies, the square of the refractive index, n, equals
the value of the relative dielectric with good accuracy.
Some examples are given in Table 1.5.

Then there is another type of polarization that occurs
only in heterogeneous materials such as in a ceramic
where grain boundaries are present or at the interface
such as material–metallic electrode interface. Its origin
lies in the limited movements of charges under the influ-
ence of an applied electric field at very low frequencies.
Charges accumulate at the grain boundaries or at the
interfaces giving rise to interfacial polarization. This
effect has no fundamental value but is of considerable
importance to electronic technology.

Table 1.5 Comparison of refraction index and permittivity for
some materials.

Materials 𝝐r n2 Comments

Diamond, C 5.7 5.85 Electronic
Germanium, Ge 16 16.73 Electronic
Sodium chloride, NaCl 5.9 2.37 Electronic and ionic
Water, H2O 80 1.77 Electronic, ionic

and dipolar

1.5 Essential Elements of Quantum
Mechanics

We are well familiar with the fact that quantum mechan-
ics is a powerful branch of physics that provides us
with the requisite tools for understanding the physical
phenomenon that cannot be adequately described by
classical physics. Since its emergence in the early twen-
tieth century, it has dominated the field of solid-state
sciences of which electroceramics is a part. In this
section, we will try to appreciate the essential concepts
that form the pillars of quantum mechanics leading
to a better understanding of the physical properties of
electroceramic materials. Of particular interest are the
concepts of Planck’s radiation law, Einstein’s photoelec-
tric effect, Bohr’s theory of the hydrogen atom, de Broglie
principle of duality of matter and waves, Schrödinger’s
equations, Heisenberg’s uncertainty principle, and the
quantum mechanical interpretation of the periodic table
of elements.

1.5.1 Planck’ Radiation Law

Until 1900, classical physics could explain satisfactorily
most of the physical phenomena observed. However,
a time came when it was not possible to explain some
of experimental results using the concepts of classical
physics. One of them was the true nature of emitted radi-
ation from a black body. Ideally, a black body is a perfect
radiator and an absorber of energy at all electromagnetic
wavelengths. Energy is considered to be continuous
according to classical physics. However, physicists at
the time failed to explain black body radiation using
the concepts of classical physics. In 1901, Max Planck
of Germany took a bold step and postulated that light
energy is not continuous, but rather it exists in discrete
packets which he called quanta. The emitted energy (E)
is proportional to the frequency of emitted radiation (𝜈).

E = nh𝜈 (1.17)

where n = 1, 2, 3, … and h Planck’s constant which is
equal to 6.625× 10−34 J s.

This simple equation tells us that the radiated energy
from a black body can only assume values in integral
steps of h𝜈 with n = 1, 2, 3, … In the vocabulary of
quantum mechanics, such a situation is described as
quantized. That makes radiative energy a quantized
parameter that is one of the cornerstones of quantum
mechanics. The concept of quantization plays a vital role
in quantum mechanics. With this assumption, Planck
was finally able to explain successfully the nature of
radiated energy from a black body. Planck received
Nobel Prize in Physics in 1918 for this very fundamental
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contribution. Equation (1.17) can be written in other
forms as well; one of them being as in Eq. (1.18).

E = nh𝜈 = n h
2𝜋

(2𝜋𝜈) = nℏ𝜔 (1.18)

The symbols ℏ and 𝜔 are reduced Planck’s constant and
angular frequency, respectively. From Eq. (1.18), it fol-
lows that the photon energy, Eph, between any two suc-
cessive quantum number is given by

Eph = nh𝜈 − (n − 1)h𝜈 = ℏ𝜔 (1.19)

It is interesting that neither Planck nor Einstein later, in
explaining the photoelectric effect, used the word photon
in place of light quanta. It was Gilbert N. Lewis, an Amer-
ican Physical Chemist, coined the word photon in 1926
to describe light quanta. Ever since, this word has been
in use universally to mean light quanta.

1.5.2 Photoelectric Effect

The photoelectric effect was discovered by Heinrich
Hertz of Germany in 1887 while experimenting with
electromagnetic waves whose existence he conclusively
proved. Electromagnetic waves were theoretically pre-
dicted in 1864 by James Clark Maxwell of England in
his celebrated “electromagnetic theory of light.” It was
Heinrich Hertz of Germany who had discovered the
photoelectric effect in 1887 while illuminating metallic
surfaces with ultraviolet light. He noticed during his
experiments, the emission of bursts of sparks. It is the
same Hertz who had also discovered radio waves and
experimentally showed the existence of electromagnetic
waves predicted by Maxwell. Today, in his honor, Hz
(Hertz) is used as the unit for frequency.

The photoelectric effect phenomenon could not be
explained on the basis of classical physics. It offered a
dilemma to the physicist of the time and remained unex-
plained until 1905 when Albert Einstein successfully
explained the effect for which he received the Nobel
Prize in Physics in 1921. It is interesting to note that
though he had earlier developed the “special theory
of relativity” that gained him international stature and
respect, it was his work on the photoelectric effect that
was recognized by the Nobel Committee and not the
celebrated “special theory of relativity.” The photoelec-
tric effect is defined as the emission of electrons or other
charged particles from a material when irradiated by
light of suitable frequency. This effect can be observed
by doing a simple experiment with the setup similar to
the one shown in Figure 1.4.

When a cathode made of a metal is irradiated by pho-
tons (light quanta of Planck) of suitable energy, electrons
are emitted. These electrons are collected at the positively
charged anode resulting in the onset of a photocurrent,

Cathode

Vaccum

Anode

0 <V> 0

– + – + – +

P
h
o
to

c
u
rre

n
t, Ip

h
Iph

Photons

Electrons, e–

A

Figure 1.4 Sketch of experimental set up for photoelectric effect.

Iph. However, the emission can take place only when the
Einstein’s equation of electron emissivity is obeyed which
states that

h𝜈 = Ωmax + W (1.20)

Here Ωmax is the maximum kinetic energy of the emitted
particles and W the work function which is a material
constant. From this equation, we can infer that for pho-
toemission to set in the threshold energy equivalent to W
must be overcome. That is W must be equal to the photon
energy of h𝜈0, where 𝜈0 is the frequency corresponding
to the threshold energy. Then Eq. (1.20) takes the form of
Eq. (1.21).

Ωmax = h(𝜈 − 𝜈0) (1.21)

Equation (1.21) tells us that the maximum kinetic
energy of emitted electrons is directly proportional to
frequency with the slope of the straight-line giving us
the experimental determination of the value of Planck’s
constant, h. This is another important implication of
Einstein’s equation of photoemission. In Figure 1.5,

M-3

Maximum kinetic

energy, Ωmax

(emitted electrons) ΔΩmax

Δv

v1 v2 v3 Frequency, v

M-1 M-2

WM-1

WM-3

WM-2

–Ω1

–Ω2

–Ω3

0

Figure 1.5 Kinetic energy of emitted electron vs. frequency for
different metals M-1, M-2, and M-3.
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the maximum kinetic energy as a function of radiation
frequency for three arbitrary metals (M-1, M-2, and
M-3) is plotted. We can easily find that the slope of the
plots gives us the value of the Planck’s constant. The
intercepts on the x-axis gives the values of the threshold
frequencies for the three metals, respectively, which are
labeled as 𝜈1, 𝜈2, and 𝜈3. The intercepts on the negative
side of the y-axis and identified as Ω1, Ω2, and Ω3 are
the potentials that must be applied to stop the photo-
electric effect entirely. It is important to remember that
photoemission is a frequency-dependent function and is
independent of the photo-current, Iph,

When a voltage, V > 0 is applied in the circuit of
Figure 1.4 the photocurrent, Iph, will be amplified and
similarly a negative potential will make it smaller. This
is shown in Figure 1.6. From this figure, we also find
that the photocurrent increases with the increase in the
intensity of light. However, the process of photoemission
itself remains unaffected by the intensity of light.

As the positive potential increases, the photocurrent
is first amplified and keeps on increasing until it begins
to saturate. However, exactly the opposite happens when
the sample is biased with a negative potential. The pho-
tocurrent, as expected, becomes smaller and finally dis-
appears completely when the photoemission stops. This
characteristic negative potential, −V s, is called the “stop-
ping potential.” The work done by an electron in trans-
porting against the “stopping potential” must be equal
to its maximum kinetic energy, Ωmax. Substituting it in
Eq. (1.21), we get Eq. (1.22).

h𝜈 = eVs + W (1.22)

When V approaches the stopping potential, the photo-
emission stops so that for 𝜈 = 0, Vs = −W

e
. In Figure 1.5,

the intercepts along the y-axis at 𝜈 = 0 correspond to
kinetic energies at the stopping potentials which are

Region of saturated

photocurrent

Voltage, V0–Vs

Intensity III

Intensity II

Intensity I

Photocurrent,

Iph

Figure 1.6 Photoelectric current vs. voltage for three different
intensities of light at constant wavelength.

−Ω1 ≡ WM-1

e
,−Ω2 ≡ WM-2

e
, and − Ω3 ≡ WM-3

e
. This enables

us to determine the work function of a metal accurately
because V can be measured more accurately than the
kinetic energy.

Work function is an important physical parameter
that plays crucial roles in solid-state electronics, field
emission, thermodynamics, and chemical processes.
It is defined as the minimum energy required for an
electron to escape from the surface of a solid to reach the
vacuum level. By convention the energy of the vacuum
level is assigned the value of infinity. Its experimentally
determined values vary from one technique to another
depending upon the method used. We present its value
for some selected group of metals which are commonly
used in electronics. A list is presented in Table 1.6. There
are many good applications based on the photoelectric
effect. Some of them are night vision devices, image
sensors, and photomultipliers.

Exercise 1.1
In a photoelectric effect experiment, a polished surface of
Ca with work function of 2.9 eV is radiated with the ultra-
violet (UV) radiation having the wavelength of 250 nm.
What is the velocity of the emitted electrons?

Solution
We have from Eq. (1.20)Ωmax = h𝜈 − W = ch

𝜆
− W . Here,

Ωmax is the maximum kinetic energy of the emitted elec-
tron, c = velocity of light = 3× 108 m s−1, h = Planck’s
constant = 6.63× 10−34 J s, W the work function of
Ca = 2.9 eV. Substituting these values in Eq. (1.20)
we get

Ωmax =
(

3 × 108 × 6.63 × 10−34

1.60 × 10−19 × 250 × 10−9

)
− 2.9 = 2.1 eV

Now, Ωmax =
1
2
me(vm)2 where me = 9.1× 10−31 kg.

Table 1.6 Work function of some commonly used metals.

Metal Work function, W (eV) Average value (eV)

Silver, Ag 4.26–4.74 4.50
Aluminum, Al 4.06–4.26 4.16
Gold, Au 5.1–5.47 5.29
Copper, Cu 4.53–5.10 4.82
Platinum, Pt 5.12–5.93 5.53
Palladium, Pd 5.22–5.6 5.41
Iron, Fe 4.67–4.81 4.74

Source: https://en.wikipedia.org/wiki/Work_function. Licensed under
CC BY 3.0.
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Substituting this for Ωmax, we get the maximum veloc-
ity, vm, for emitted electron to be

vm =

√
2Ωm

me
= 8.6 × 105 m s−1

1.5.3 Bohr’s Theory of Hydrogen Atom

In 1911, Lord (Ernest) Rutherford of England (originally,
from New Zealand; Nobel Prize in Chemistry in 1909)
proposed a model for an atom in which he compared
an atom to an ultra-miniaturized prototype of our solar
system. According to this model, an atom consists of a
nucleus that is surrounded by a number of orbits. The
entire mass of the atom is densely packed at the core of
the nucleus that consists of many subatomic particles of
which neutrons and protons are just two examples. Pro-
ton is positively charged, whereas neutron is electrically
neutral. Both of them are of approximately equal mass,
and each is roughly 1840 times heavier than an electron
with the mass of 9.1× 10−34 kg. The atomic number, Z,
of an element is equal to the number of protons residing
at the nucleus. A very strong Colombian force between
the proton and the electron holds the atom together and
gives stability to the structure.

Niels Henrik David Bohr, a Danish physicist, used
Rutherford’s model of atomic structure to develop his
celebrated theory of the hydrogen atom for which he
received the Nobel Prize in Physics in 1922. This theory
is also considered to be one of the pillars of quantum
mechanics. In the field of optical spectroscopy, it was
well known that the wavelengths of hydrogen spectrum
obeyed an empirical relationship as given in the following
equation.

1
𝜆
= R

(
1
n2

i
− 1

n2
f

)
(1.23)

where 𝜆 is the wavelength of light, R the Rydberg constant
that is equal to 1.097× 107 m−1, ni and nf are integers
associated with specific spectral series. For example,
when nf = 2, then ni = 3, 4, 5, …, then the spectral series
is called the Balmer series. The next series is called the
Paschen series with nf = 3 followed by the Lyman series
with nf = 4. There are many more spectral series for
hydrogen atom (Z = 1), and we need not account for
all of them. It is possible that the integer ni can assume
the value of infinity. We would agree that this type of
empirical explanation does not offer a sound scientific
reasoning. Obviously, it was beyond the capacity of
classical physics to come forward with a sound scientific
theory to explain the experimental results found by spec-
troscopists of the time. This must have inspired Bohr to
look at this problem from a completely different angle,

and for this, he made use of the concept of quantized
photon energy proposed earlier by Planck. Bohr made
three assumptions:

Assumption 1: The electrons can traverse around the
orbits but without emitting or absorbing any radia-
tion. The order of orbits in an atom, beginning with
the first orbit nearest the nucleus, follow the ascending
order of the principal quantum number, n, which can
only have only the integral values of 1, 2, 3, …

Assumption 2: The electrons can transit from one orbit to
another. Because the energy of each orbit is different,
during the process of transition, the electrons can
either absorb or emit radiation in order to satisfy the
law of conservation of energy. In either case, Planck’s
radiation law must prevail, and as such the photon
energy must be equal to h𝜈.

Assumption 3: The angular momentum, L, is quantized
and can have only the values equal to integral multiples
of ℏ. This was his boldest assumption and has the same
importance as Planck’s quantized energy. Quantized L
is called the orbital quantum number.

Mathematically, we can express the third assumption
in the form of Eq. (1.24).

Ln = mern
2𝜔n = nh

2π
= nℏ (1.24)

where me is the electron mass, rn the radius of the nth
circular orbit, 𝜔n, its angular velocity and ℏ =

(
h

2π

)
.

It follows from Eq. (1.24) that 𝜔n = nℏ
mer2

n
. That gives us

rn =
(

nℏ
me𝜔n

) 1
2 . Using this relationship, Bohr accurately

calculated the radii of the orbits and their respective
angular momenta for different spectral series, and these
calculations were found to be in agreement with exper-
imentally determined values. In Figure 1.7, the Bohr’s
model of hydrogen atom is shown. Here p+ and e−
represent the positively charged protons and negatively
charged electrons, respectively. It also shows the energy
emitted by the electron when transiting between the
orbits n = 1, 2, 3.

Since the orbits are quantized, its energies must also
be quantized, which would lead to the onset of discrete
spectra. In the emission and absorption processes, pho-
tons are involved whose energy is quantized. Therefore,
the change in energy during the transition from one orbit
to another must satisfy the following condition.

ΔE = h𝜈 = Ef − Ei (1.25)

where Ei and Ef refer to the energies of the initial and final
orbits involved in the transition.

We know that the hydrogen atom is the simplest
element of the periodic table having the atomic num-
ber, Z= 1. Bohr’s elaborate calculation resulted in the



�

� �

�

Nature and Types of Solid Materials 11

n=2

+

n= 3

n= 1

 

hν

hν

 

e–

e–e–

Figure 1.7 Bohr’s model of hydrogen atom.

ground-state energy, E0 (when n = 1) for the hydrogen
atom to be

E0 = 1
h2

(
mee4

8𝜖2
0

)
= 13.6 eV (1.26)

Similarly, the energy of the nth orbit is given by
Eq. (1.27).

En = −
(13.6

n2

)
eV (1.27)

Substituting these values in Eq. (1.27) we arrive at
Eq. (1.28).

h𝜈 = 13.6

(
1
n2

i
− 1

n2
f

)
(1.28)

Since c = 𝜈𝜆 where c is the velocity of light and 𝜆 its
wavelength, we can rewrite Eq. (1.28) as Eq. (1.29).

1
𝜆
= 13.6

ch

(
1
n2

i
− 1

n2
f

)
≈ R

(
1
n2

i
− 1

n2
f

)
(1.29)

By substituting the values of the universal constants c
and h in ( 13.6

ch
) one gets 1.097× 107 m−1, which is the value

of the Rydberg constant used in spectroscopy.
In summary, we can conclude that the Bohr’s theory

satisfactorily explains the experimental results of the
atomic spectra of the hydrogen atom and thereby could
solve the longstanding problem of classical physics.
Therefore, his assumptions were intuitively correct that
the orbits are quantized and that the Rydberg constant is
not an arbitrary number to fit an experiment but rather
it is the combination of fundamental constants like the
charge of the electron, its mass, Planck’s constant and
the permittivity of vacuum.

It should also be recognized that in spite of the success
of Bohr’s theory in explaining the spectrum of the hydro-
gen atom and giving us the concept of the quantization of
angular momentum it has some fundamental flaws. For
example, it is in violation of the Heisenberg Uncertainty
Principle, and it cannot explain the Zeeman Effect when
the spectral lines split up in several components in the
presence of a magnetic field.

1.5.4 Matter–Wave Duality: de Broglie Hypothesis

Planck gave the concept of energy being quantized,
Einstein gave the concept of photons that can behave like
a particle yet has no mass, and Bohr advanced quantum
mechanics that was in its infancy by proposing the
angular momentum to be quantized. All these ground-
breaking concepts point to the particle-like behavior
of light that was well established to be wave-like by
electromagnetic theory. This leads us to the question
of how can a particle (such as an electron) also acquire
wave-like characteristics?

The answer was provided by Louis de Broglie of France
in 1923 in his famous hypothesis of matter–wave duality.
This led to the development of the famous Schrödinger’s
equation that firmly anchored quantum mechanics as
the new physics. de Broglie based his hypothesis on
two well-established results. He considered Einstein’s
matter–energy equation and Planck’s theory of light
quanta.

Einstein’s matter–energy equation states that

E = mec2 (1.30)

And Planck’s law of radiation says that

E = h𝜈 (1.31)

de Broglie argued that since particles and waves have
the same traits, the two energies must be equal. Combin-
ing these two equations Eq. (1.32) results.

mec2 = h𝜈 (1.32)

Considering that the real particles, such as an electron,
cannot acquire the velocity equal to the velocity of light,
we need to modify the above equation slightly to use it
for real particles. Let us assume that we are dealing with
electrons with the mass, me and velocity, ve. Furthermore,
we can substitute for the frequency

(
ve

𝜆e

)
, where 𝜆e is the

wavelength associated with an electron. These manipula-
tions result in Eq. (1.33).

𝜆e =
h

meve
= h

2π

(
2π
pe

)
= 2𝜋ℏ

pe
(1.33)

where pe is the momentum of the electron. We can also
write Eq. (1.33) as Eq. (1.34) which is the standard form
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of de Broglie’s relationship.

pe =
h
𝜆e

= ℏke (1.34)

where ke is the wave number which by definition is
(

2π
𝜆e

)
.

This simple equation derived from another two
very simple equations may look humble, but it has
far-reaching consequences in solid-state physics and
electronics. de Broglie was awarded the Nobel Prize in
Physics in 1929 for this contribution. Its experimental
proof was given by Clinton Davisson and Lester Germer,
both American Physicists, in 1925 confirming the wave
nature of electron. For this contribution, they too shared
the Nobel Prize in Physics in 1937.

1.5.5 Schrödinger’s Wave Equation

What Newton’s laws of motion and his concept of
conservation of energy are to classical physics so is
the Schrödinger’s equation to quantum mechanics.
He is one of the giants of physics of the twentieth
century and belongs to the class of Sir Isaac Newton.
The matter–wave duality hypothesis of de Broglie
is the nucleating factor for Schrödinger’s equation.
Schrödinger argued that since particles can have a wave-
length associated with them, they must be represented
by a wave equation.

Schrödinger’s equation predicts the future behavior of
electrons in a dynamic frame work. It is the probability
of finding an electron in events to come. A partial dif-
ferential equation describes how the quantum state of a
quantum system changes with time. This is the corner-
stone of quantum mechanics that opened up multiple
avenues to evolve and advance. It was formulated in 1926
by Erwin Schrödinger, a brilliant theoretical physicist
of Austria. It earned him, of course, the Nobel Prize in
physics in 1933. It should be remembered that there
is no formal derivation of Schrödinger’s equation. It is
intuitive and Schrödinger simply wrote it. It was imme-
diately accepted by other geniuses of his time and has
never been challenged. One of the greatest theoretical
physicists of our time, Richard Feynman, is quoted to
have said, “Where did we get that from? It is not possible
to derive it from anything you know. It came out of the
mind of Schrödinger?”

Let us now write the one-dimensional form of
Schrödinger’s equation.

d2𝜓

dx2 +
2me

ℏ2 (E − V )𝜓 = 0 (1.35)

Here𝜓 is the wave function, E the total energy, and V the
potential energy. The kinetic energy of the electron then
is equal to (E −V ).

In its three-dimensional form, Eq. (1.35) becomes
Eq. (1.36) on substituting the first term on the left side
with the Laplacian operator ∇2 =

(
𝛿2

𝛿x2 +
𝛿2

𝛿y2 +
𝛿2

𝛿z2

)
.

∇2𝜓 +
2me

ℏ2 (E − V )𝜓 = 0 (1.36)

The question now arises about the exact nature of the
Schrödinger’s wave function, 𝜓 . What is it, and how is it
significant in a real physical system? The answer is pro-
vided by Max Born (Nobel Prize in Physics in 1954) of
Germany in 1926. He postulated that the quantity |𝜓|2

must represent the probability of finding an electron in
a unit volume at the time at which the wave function,
𝜓 , is being considered. Alternatively, |𝜓|2 predicts the
presence of an electron in a space, dv. That amounts to
normalizing the wave function as in Eq. (1.37).

∫
+∞

−∞
|𝜓|2dv = 1 (1.37)

Equation (1.37) sets the boundary conditions that the
solutions for wave function, 𝜓 , must obey. The other
boundary conditions imposed on the wave functions are
(i) they must be continuous and (ii) mathematically well
behaved. This amounts to telling us that 𝜓(x) must be a
continuously varying function of x and its first derivative
with respect to x, d𝜓/dx, must also be a continuous
function of x.

Another form of the Schrödinger’s equation can be
represented using the Hamiltonian operator that is the
sum of the kinetic and potential energy in quantum
mechanics. The operator is named after Sir William
Hamilton, a reputed physicist of Ireland who lived in
the nineteenth century. He is best known for the devel-
opment of Hamiltonian mechanics that is essentially
the reformulation of Newton’s mechanics. If T is the
kinetic energy and V the potential energy, then the
corresponding Hamiltonian takes the form of Eq. (1.38).

Ĥ = T̂ + V̂ (1.38)

Here the potential energy operation V̂ is equivalent to the
space and time variants of the potential energy, V . The
momentum, p, in operator form is written as:

p̂ = −iℏ∇ (1.39)

Similarly, the kinetic energy operator form is as in
Eq. (1.40).

T̂ =
p̂2

2me
= − ℏ2

2me
∇2 (1.40)

Substituting these two equations in Eq. (1.38), we get
the Hamiltonian operator, Ĥ , as in Eq. (1.41).

Ĥ = − ℏ2

2me
∇2 + V (r, t) (1.41)
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We can now rewrite the time-independent Schrödinger’s
equation in terms of the Hamiltonian Ĥ , as

Ĥ𝜓i = Ei𝜓i (1.42)

Here 𝜓 i is called the eigenfunctions and Ei the eigenval-
ues of energy.

The Hamiltonian operator also lead us to the
time-dependent Schrödinger’s equation which is given
by Eq. (1.43).

Ĥ𝜓 = iℏ
(
𝛿𝜓

𝛿t

)
(1.43)

The probability of finding an electron in the volume
element (dx dy dz) at a time t is then given by|𝜓(x, y, z, t)|2dx dy dz

Exercise 1.2
Express the time-independent Schrödinger’s equation in
terms of the momentum.

Solution
We have the standard form of the time-independent
Schrödinger’s equation containing the energy term in
Eq. (1.36).

(E −V ) is the kinetic energy T of the electron; then it
follows from Eq. (1.36) hat

∇2𝜓 = −
[
ℏ2

2me
T
]
𝜓 (a)

Equation (b) gives us the kinetic energy in term of the
momentum, pe of the electron.

T = k.e. = 1
2

mev2 = 1
2

(m2
ev2

me

)
=

p2
e

2me
(b)

Substituting this in Eq. (a) and after a little rearrange-
ment, we get Eqs. (c) and (d).

∇2𝜓 = − ℏ2

2me

(
p2

2me

)
𝜓 = −

[(
ℏ

2me

)2

p2
e

]
𝜓 (c)

∇2𝜓 = −
(
ℏpe

2me

)2

𝜓 (d)

Equation (d) is the momentum form of Eq. (1.36).

1.5.6 Heisneberg’s Uncertainty Principle

We learned in the previous section that the Schrödinger’s
equation is statistical in nature and can predict the proba-
bility of an event happening but cannot predict accurately
either the position of an electron or its velocity. Similarly,
it is not possible to predict either the momentum in a
particular space in which the electron finds itself nor the
energy it might acquire in a particular instant of time.
The reason being that the uncertainty principle forbids

the measurements of two complimentary parameters
concurrently with arbitrary accuracy. The theory was
developed by Werner Heisenberg (Nobel Prize in Physics
in 1932) of Germany in 1927.

The essence of this theory is that the product of two
complimentary variables cannot be less than a constant
value. For example, if position x and momentum p are
considered, then the uncertainty in position Δx and
momentum Δp is given by the following inequality.

Δx × Δp ≥ ℏ ≈ 10−34 J s (1.44)

Similarly, the uncertainty in energy E and time t can be
expressed as follows:

ΔE × Δt ≥ ℏ ≈ 10−34 J s (1.45)

One can draw the conclusion that if one tries to
measure one physical parameter with arbitrarily high
precision, the uncertainty in measuring the other con-
jugate parameter becomes larger. The more the particle
becomes smaller such as atomic and subatomic particles,
the accuracy in determining their two complimentary
variables cannot exceed the limits of ≈10−34 set by the
uncertainty principle. One should remember that it
is not a reflection on the inaccuracy of measurement
instruments or the methods used for experimentation. It
is simply inherent in the quantum mechanical interpre-
tation of nature. As the particles approach macroscopic
scales, the uncertainty decreases drastically. To illustrate
this point, let us consider a mass m, which is 103 times
greater than the mass of an electron. If the velocity of
the particle is v, its momentum p = mv and Δp = mΔv.
Substituting this in Eq. (1.44) for ΔP, we get Eq. (1.45).

Δx × Δv ≥ ℏ

103me
≈ 10−4 J s kg−1 (1.46)

The uncertainty has decreased by 1000-fold for a
macroscopic system whose characteristics can be deter-
mined individually with greater accuracy. Nevertheless,
it is to be learned from Eq. (1.46) that both the velocity
of a particle and its position cannot be measured with
arbitrary accuracy at the same instant.

1.6 Quantum Numbers

The wave function,𝜓 , describes the probability of finding
an electron at certain energy levels within an atom. Since
it is associated with an electron in an atom it is also
called the atomic orbital. It defines a region in space in
which the probability of finding an electron is high. To
every such electron, there are four quantum numbers
associated with it which are its defining characteristics.
We have already discussed two of them; the principal
quantum number, n, and the orbital quantum number, l.
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The other two are magnetic quantum number, ml, and
the spin quantum number, s. We now describe all four in
some detail.

I. Principal quantum number, n: Allowed values are
only integers ranging from 1 to ∞. It determines
the total energy of the electron; and the number of
orbitals (=n2) having different energy levels.

II. Orbital quantum number, l: Allowed values are from
0 to (n− 1).
The second quantum number is the orbital quantum
number and is directly associated with the principal
quantum number, n. It is also referred to as angular
momentum quantum number and azimuthal quan-
tum number. We already discussed previously that it
also is allowed to have only integral values. It divides
the shells into smaller group of subshells identified
by letters such as s, p, d, f, g, etc. The origin of such a
nomenclature lies in optical spectroscopy where the
emission or absorption processes were identified as
s (sharp), p (principal), d (diffused), f (fundamental),
g (ground), etc. After the discovery of quantum
mechanics, it was realized that these spectral series
correspond to specific values of the orbital quantum
numbers as shown in Table 1.7.
The term “subshells” are preferred by chemists,
whereas physicists prefer the term “orbitals.” The
other designation assigned to the subshells or
orbitals with certain values of l are called the Bohr
designation of atomic subshells with the letter of K,
L, M, N, etc. This designation is followed by experts
of X-ray diffraction. The total number of orbitals
(or subshells) is given by 2n2. That is, there are two
orbitals for n = 1; 8 for n = 2, 18 for n = 3, 32 for
n = 4, and so forth. Table 1.7 lists them all.
If n = 1, then l = 0, the orbital is called 1s; if n = 2 and
l = 0, the orbital is called 2s; and if n = 3 and l = 0,
the orbital is 3s. Other identifiers follow the same
logic. So far as the orbital energy (E) is concerned, it
increases with increasing orbital quantum number,
l. It follows the sequence: Es <Ep <Ed <Ef <Eg.
Their relative energy levels follow the sequence of
1s< 2s< 2p< 3s< 3p< 3d< 4s< 4p< 4d< 4f< 5s –
and so forth.

III. Magnetic quantum number, ml: Its allowed values are
ml = 0 to ±l with total number of ml being (2l + 1).

Table 1.7 Correspondence of spectral series with orbital quantum
number, l from 0 to 4.

Orbital quantum number, l 0 1 2 3 4

Spectral series s p d f g

From Amperé’s law, we know that a moving charge
generates an electric current which in turn can
induce a magnetic field when enclosed in a loop
(such as an orbit). That is the reason that this
quantum number is called the magnetic quantum
number and as such it is supposed to be direc-
tional. It can assume any of the (2l + 1) different
directions. This was indeed shown to be the case
experimentally by Otto Stern and Walther Gerlach,
both German physicists, in 1922. They confirmed
that the magnetic moments are quantized and can
orient only in certain directions. For this ground
breaking work Stern was recognized with the Nobel
Prize in Physics in 1943, but Gerlach was excluded
apparently because of his association with the Nazi
Regime.

IV. Spin quantum number, s: Allowed values + 1
2

or − 1
2
.

In an atomic system, electrons can reside in differ-
ent orbits. They are allowed to move around the orbit
while at the same time spinning around its own axis.
A spinning electron generates a magnetic field with
two well defined orientations. These orientations are
designated as either “up (↑)” or “down (↓).” Alterna-
tively, it can only have the values of =± 1

2
.

In Table 1.8, we present a list of values for orbital and
magnetic quantum numbers with respect to the values of
the principal quantum number. Their resulting spectro-
graphic and Bohr designations are also given there.

1.7 Pauli Exclusion Principle

The four quantum numbers define a wave function of an
electron fully and completely. They define its quantum
state, its energy, and almost any other characteristics
associated with it. The orbital quantum number, l, and
magnetic quantum number, ml, can each have multiple
values for any fixed value of the principal quantum
numbering as outlined in Table 1.8. What happens when
there are a large number of electrons present in a system?
This can cause an enormous challenge to sort out their
quantum states leading to utter confusion.

This is where the selection rule conceived by Wolfgang
Pauli of Austria in 1925 comes to our rescue. This rule is
universally known as the Pauli’s Exclusion Principle for
which he received the Nobel Prize in Physics in 1945. It
states that: No two electrons in an atom can have exactly
the same set of four quantum number; the spins must
be antiparallel. This simply means that there can be
two electrons for each combination of n, l, and ml, but
their spin orientations must be antiparallel. Following
this rule, we can assign 2 electrons to each s-state, 6 to
each p-state, 10 to each d-state, 14 to each f-state, and
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Table 1.8 Relationship between n, l, and ml , and their spectrographic and Bohr designations.

Principal
quantum
number, n

Orbital
quantum
number, l

Magnetic
quantum
number, ml

Number of values
for magnetic quantum
number, ml

Electrons per
orbital = 2n2

Spectrographic
designation

Bohr
designation
of shells

1 0 0 1 2 1s K
2 0 0 1 2 2s L

1 0, ±1 3 6 2p
3 0 0 1 2 3s M

1 0, ±1 3 6 3p
2 0, ±1, ±2 5 10 3d

4 0 0 1 2 4s N
1 0, ±1 3 6 4p
2 0, ±1, ±2 5 10 4d
3 0, ±1, ±2, ±3 7 14 4f

Source: From Leonid 1963 [1]. Azaroff and Brophy (1963).

so forth. They vary in arithmetic progression with four
being the common difference. It is important to note that
this selection rule is not arbitrary, rather it is based on
sound mathematical principles of quantum relativistic
physics. A full mathematical treatment of Pauli exclusion
principle is beyond the scope of this book.

1.8 Periodic Table of Elements

The periodic table of elements was originally devel-
oped by the Russian chemist with the name of Dmitri
Mendeleev in 1869. He arranged all the elements known
until that time (about 60) in rows and columns according
to their atomic weight and chemical properties. Many
more elements have since been discovered since, and
they all can be arranged in the periodic table on the
basis of their atomic numbers, chemical properties,
and electronic configurations. The periodic table is an
indispensable tool available to scientists and engineers
engaged in the study of chemical systems and materials.
The modern periodic table consists of eight columns and
seven rows.

To take the full benefit of the subject matter covered
in this section, it is advisable that readers should have a
modern copy of the periodic table readily available. There
are many sources from which one can get a good copy of
the Periodic Table. The NIST (National Institute of Stan-
dards and Technology) in the United States may be a reli-
able source.

The discovery of quantum numbers greatly shaped
the periodic table resulting in advancement to the fields
of chemistry, physics, and materials science. Elements
found in the same column are referred to as belonging to
the same group such as Groups I, II, III, IV, V, etc., as they

are similar in their chemical properties. There are a total
of eight groups, many of which are subdivided in A and
B subgroups in many of today’s periodic tables. The rows
in the periodic table are called periods. There are seven
periods in which elements are arranged with increasing
values of atomic numbers. For example, hydrogen with
its atomic number (Z) of 1 is the first element of the
periodic table, then comes He with Z = 2 followed by
lithium with Z = 3, and so on. Currently, the highest
atomic number of Z = 118 belonging to the artificially
synthesized ununoctium (also known as eka-radon) with
the chemical symbol of Uuo. It is radioactive and very
unstable. With its discovery in 2002, the seventh period
of the periodic table is complete and a new period begins.
The heaviest naturally found element is uranium-238
(U-238) with Z = 92. It is a well-established radioactive
material with the half-life time of ≈4.5 billion years. The
heaviest stable element is bismuth (Bi) with Z = 83 and
density = 11.34 g cm−3.

Each element has its unique atomic electronic config-
uration based on the number of the principal quantum
number, n, its atomic number, and the number of elec-
trons in each orbit as dictated by the Pauli exclusion prin-
ciple. For example, our lightest element is hydrogen with
Z = 1 only and its electronic configuration is written as
1s1. The rule for writing the electronic configuration of
an element can be described as follows: “The integer on
the left refers to the value on the principal quantum num-
ber, n; followed by the orbital (s, p, d, f, etc.) and then a
superscript giving the number of electrons found in each
orbital.” The filling sequence follows in the order of s, p,
d, f, etc.

The electrons in the outermost orbital are technically
called the valence electrons. The valence electrons play
a decisive role in initiating a chemical reaction and in
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forming chemical bonds between atoms which makes a
structure stable. They can be shared with other atoms giv-
ing rise to chemical bonds known as ionic, metallic, and
covalent. The concept of valence electrons is also very
important to solid-state sciences, materials science, and
electroceramics because they help us in developing mod-
els and theories for understanding electronic properties
and physical phenomena displayed by materials.

Following the rule stated above, electrons in an atom
can be divided between different orbitals. Let us now
write electronic configurations for the second and third
elements of the periodic table. The second element is He
(Z = 2), and its electronic configuration is 1s2, and the
third element Li (Z = 3) has the configuration of 1s22s1

which is equivalent to [He]2s1. This short cut simply
tells us that the first two s-electrons of Li have the same
configuration as He and the third electron moves to the
higher orbital. This makes it easier to assign electronic
configurations of elements with higher values of atomic
numbers.

Let us now consider the elements of the Group VIII that
is the home of the seven noble gases. Each of them rep-
resents the completion of the period in which they reside
and the beginning of the next period. We present their
electronic configuration in Table 1.9.

These elements are called the noble gases because they
are to a great extent chemically inert. They represent

Table 1.9 Elements of Group VIII.

Elements Helium, He Neon, Ne Argon, Ar Krypton, Kr Xenon, Xe Radon, Rn

Atomic number, Z 2 10 18 36 54 86

Atomic electronic configuration 1s2 [He]2s22p6 [Ne]3s23p6 [Ar]3d104s24p6 [Kr]4d105s25p6 [Xe]4f145d106s2 6p6

Table 1.10 Group I – alkali metals.

Elements Lithium, Li Sodium, Na Potassium, K Rubidium, Rb Cesium, Cs Francium, Fr

Atomic number, Z 3 11 19 37 55 87

Electronic configuration [He]2s1 [Ne]3s1 [Ar]4s1 [Kr]5s1 [Xe]6s1 [Rn]7s1

Table 1.11 Group IIA – alkali earth metals.

Elements Beryllium, Be Magnesium, Mg Calcium, Ca Strontium, Sr Barium, Ba Radium, Ra

Atomic number, Z 4 12 20 38 56 88

Electronic configuration [He]2s2 [Ne]3s2 [Ar]4s2 [Kr]5s2 [Xe]6s2 [Rn]7s2

Here the valence electrons are 2s electrons.

the configurations with maximum allowable electrons in
each subshell leaving no vacancy at all.

We stated already that many of the physical proper-
ties and phenomena exhibited by materials can be best
explained based on the value of the valence electrons
present. The tables that follow include some elements
are of great interest (Table 1.10).

Notice that each of these elements have just one
s-valence electrons and represents the beginning of
a new group. Chemically, the alkali metals are highly
reactive (Tables 1.11–1.13).

Ga and In also form very important semiconduc-
tor materials when alloyed with certain members of
Group V. Al, of course, is a heavily used metal for trans-
mission of electrical power and makes good contacts
with semiconductors and dielectrics (Table 1.14).

There is large number of elements classified as tran-
sition metals, and they are found in Groups III through
VIII. We include here in our table only those found in the
fourth period with Z = 22–29. They are characterized by
the occupancy of their 3-d subshell. They exhibit interest-
ing magnetic properties. Chemically, they have multiple
oxidation states (Table 1.15).

Fe, Co, and Ni are the only 3-d elements that are also
strongly ferromagnetic (FM). Ti and Mn are param-
agnetic (PM), Cr is antiferromagnetic (AFM), whereas
the magnetic nature of V is unknown but as V2O5 it is
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Table 1.12 Group IIB – important industrial materials.

Elements Zinc, Zn Cadmium, Cd Mercury, Hg

Atomic number, Z 30 48 80
Electronic configuration [Ar]3d104s2 [Kr]4d105s2 [Xe]4f145d106s2

Significant physical properties Industrial material when
alloyed with Group VI
elements, it becomes a good
semiconductor. Examples:
ZnS, ZnSe, and ZnTe

Industrial material when
alloyed with Group VI
elements, it becomes a good
semiconductor. Examples:
CdS, CdSe, and CdTe

First material in which
superconductivity was
discovered, when alloyed with
Te, it becomes a
semiconductor

They form alloys with Group VI elements to become good semiconductors.

Table 1.13 Group III – an important group of elements used for doping Group IV semiconductors and for making contacts.

Elements Boron, B Aluminum, Al Gallium, Ga Indium, In Thallium, Tl

Atomic number, Z 5 13 31 49 81
Electronic configuration [He]2s22p1 [Ne]3s23p1 [Ar]3d104s24p1 [Kr]4d105s25p1 [Xe]4f145d106s26p1

Table 1.14 Group IV – a very interesting group that begins with highly conductive element (C) and ends with one of the heaviest
elements (Pb) which also becomes a superconductor at low temperatures.

Elements Carbon, C Silicon, Si Germanium, Ge Tin, Sn Lead, Pb

Atomic
number, Z

6 14 32 50 82

Electronic
configuration

[He]2s22p2 [Ne]3s23p2 [Ar]3d104s24p2 [Kr]4d105s25p2 [Xe]4f145d106s26p2

Significant
physical
property

Highly conductive:
in diamond form, it
is an excellent
semiconductor
material

Leading
elemental
semiconductor:
king of
microelectronics

Very good
elemental
semiconductor
material: acquires
excellent properties
when alloyed with
silicon

An important
industrial material;
exhibits
superconductivity
at low temperatures

Heavily used in industrial
products, becomes a
superconductor at low
temperatures: when alloyed
with Titania, it becomes
ferroelectric/nonlinear
dielectric material

Table 1.15 Some important transition metals (found in the fourth period).

Element Titanium, Ti Vanadium, V Chromium, Cr Manganese, Mn Iron, Fe Cobalt, Co Nickel, Ni Copper, Cu

Atomic
number, Z

22 23 24 25 26 27 28 29

Electronic
configuration

[Ar]3d24s2 [Ar]3d34s2 [Ar]3d44s2 [Ar]3d54s2 [Ar]3d64s2 [Ar]3d74s2 [Ar]3d84s2 [Ar]3d104s2

Magnetic
characteristics

PM V2O5 is DM AFM PM FM FM FM DM

diamagnetic (DM). Copper is also diamagnetic and has
completely filled 3d-subshell that excludes the presence
of ferromagnetism. All other members of the transition
metal period have partially filled 3d-subshell.

Rare earth elements: These are also transition elements
and are found in the sixth period. They are also
called the lanthanides. Some examples of rare earths
are cerium, Ce (Z = 58); neodymium, Nd (Z = 60);
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samarium, Sm (Z = 62); europium, Eu (Z = 63); and
gadolinium, Gd (Z = 64).

Radioactive elements: Elements of the seventh period are
called the actinides or radioactive elements. They are
also classified as transition elements. Some of these
include the following thorium, Th (Z = 90); uranium,
U (Z = 92); plutonium, Pu (Z = 94), and americium,
Am (Z = 95).

1.9 Some Important Concepts of
Solid-State Physics

1.9.1 Ceramic Superconductivity

The superconductivity was discovered in 1911 at the
University of Leiden in the Netherlands by Heike Kamer-
lingh Onnes. He was awarded the Nobel Prize in Physics
in 1913 for the production of very low temperatures.
It was in mercury that he found the resistance became
nonexistent when cooled to 4.2 K. He also discovered
superconductivity properties in lead and tin. The table
that follows lists the ground-breaking advancement in
the field of superconductivity since its discovery. Since
1911 until 1987 superconductivity was found mostly in
metallic systems at very low temperatures. It was in 1987
that superconductivity was observed for the first time in
ceramic compounds at relatively high temperatures. This
landmark discovery dramatically changed the field of
superconductivity from being a curiosity of fundamental

science to be of great importance to technology. Some
of these issues we discuss in this section. The nature
of this book does not allow us to discuss this topic in
detail. However, interested readers may wish to consult
a good book on superconductivity for advanced studies;
we recommend the book by Orlando and Delin [2]. This
field has produced a number of Nobel laureates. We list
them in Table 1.16.

As already stated until 1985, superconductivity was
observed only in metals and their alloys with the upper-
most critical temperature of 20 K. Then it increased to
35 K with the discovery of superconductivity in a ceramic
sample of Ba–La–Cu-oxide. The discovery was made in
January of 1986 at IBM Zurich Laboratories by Georg
Bednorz and K. Alex Müller who were awarded Nobel
Prize in Physics in 1987. This landmark discovery was
a paradigm shift in solid-state physics for two reasons:
first, the critical point for superconductivity crossed
the boiling point of Ne (27 K≈−246 ∘C) and second,
the superconductivity was found in a ceramic system
against all prevailing concepts of physics at the time.
By now many more oxide superconductors have been
discovered, and we list some of them in Table 1.17.

It is interesting that the crystal structure of these
oxides happen to be perovskite (ABO3), which is the
leading group in which prominent nonlinear dielectrics
such as ferroelectrics are found.

So far as an explanation of this interesting physical phe-
nomenon is concerned, there is only one unified theory
that can explain superconductivity and even that is not

Table 1.16 List of Nobel Prize in Physics awarded for superconductivity.

Name Year Contribution

Heike Kamerlingh Onnes 1913 Discovery of superconductivity
John Bardeen, Leon N. Cooper, and J. Robert Schrieffer 1972 BCS theory of superconductivity
Leo Esaki, Ivar Giaever, and Brian D. Josephson 1973 Josephson tunneling effect
Georg Bednorz and K. Alex Müller 1987 High temperature superconductivity (ceramic

superconductivity)
Alexi A. Abrikosov, Vitaly L. Ginzburg, and Anthony J. Leggett 2003 Theory of superconductivity and superfluids

Table 1.17 List of some ceramic superconductor materials.

Ceramic superconductors Critical point, TC (K) Number of Cu–O planes/unit cell Crystal structure Crystal unit cell

123 YBCO (YaBa2Cu3O7) 93 2 Perovskite Orthorhombic
2122 BCSCO (Bi2CaSr2Cu2O8) 85 2 Perovskite Tetragonal
2223 BCSCO (Bi2Ca2Sr2Cu3O10) 110 3 Perovskite Tetragonal
2223 TCBCO (Tl2Ca2Ba2Cu3O10) 125 3 Perovskite Tetragonal
1223 HBCCO (HgBa2Ca2Cu3O8) 134 3 Perovskite Tetragonal

Note all critical points are above the liquid nitrogen temperature of 77 K (−196 ∘C).
Source: https://en.m.wikipedia.org/wiki/Hightemperature_Superconductivity. Licensed under CC BY 3.0.
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adequate to handle the superconductivity found in oxide
systems. In 1972, almost 60 years after the discovery of
superconductivity, a macroscopic theory was developed
by three American Physicists named John Bardeen, Leon
Copper, and J. Robert Schrieffer that has been success-
ful in explaining the superconductivity found in metallic
systems at low temperatures. The theory is also known as
BCS theory, and the three physicists were awarded Nobel
Prize in Physics in 1972 for developing this elegant the-
ory. This was the second Nobel Prize for John Bardeen,
the first one was for the discovery of transistors in 1956.

The BCS theory requires a sound knowledge of
advanced physics and therefore is beyond the scope of
this textbook. The central point of this theory is the con-
cept of so-called Copper pairs. In the superconducting
phase Cooper pairs can form when two electrons couple
with antiparallel spins. Cooper pairs can behave very
differently than single electrons that must obey the Pauli
Exclusion Principle, whereas the Cooper pairs behave
more like bosons that can condense in the same energy
levels. The Copper pairs are also called superconduct-
ing electrons. Though the BCS theory has been very
successful in explaining conventional superconductivity
satisfactorily, it appears not to be applicable to ceramic
superconductivity. Various groups of theoreticians are
currently working on this problem, and we hope one day
soon we might have a good theory of superconductivity
found in electroceramics.

1.9.2 Superconductivity and Technology

Superconductivity is a unique physical phenomenon
poised to play a vital role in the evolution of new
technology. A large number of devices and applica-
tions have been proposed based on magnetic and
electronic properties of superconductivity that we will
discuss subsequently in this chapter. Production of
very high magnetic fields, Josephson junctions, and
superconducting quantum interference device (SQUID)
magnetometers are so far the most established tech-
nologies based on low temperature superconducting
materials. They operate only at cryogenic temperatures.
However, a large number of applications, from highly
sophisticated to straightforward and simple, have been
proposed based on ceramic superconductors with criti-
cal temperatures far above cryogenic temperatures. For
these proposals to be more useful, and commercially
viable, room-temperature superconducting materials
have to be discovered. The hope is pinned on new
ceramic materials because it will be possible to produce
them in high volumes and in high quality at reasonable
costs.

Superconducting magnets can produce fields far
greater than those generated by the most powerful

electromagnets. Currently, the highest sustained mag-
netic fields achieved are about 8.3 T (=8.3× 105 G) by
niobium–titanium (Nb–Ti) superconducting magnets
that operate at the extremely low temperature of 1.9 K.
The magnetic fields are measured in the units of Tesla
and Gauss, and they are abbreviated as T and G, respec-
tively. Superconducting magnets are universally used
in magnetic resonance imaging (MRI) machines that
is a powerful diagnostic tool indispensable to health
professionals as well as of great significance to scientists
for new discoveries. One of the most intriguing aspects
of these magnets is the onset of persistent currents.
Once the magnet is energized the windings of Nb–Ti
become superconducting closed loops at about 1.9 K
giving rise to a persistent current following the Faraday’s
law of induction. This law states that a magnetic field
can induce a current in a conducting loop according
to L

(
dI
dt

)
= −a

(
dB
dt

)
where L is the inductance, I the

current, and B the magnetic flux. The current generated
in a superconducting loop can flow for months even in
the absence of an external magnetic field. At this point,
the external power supply can be turned off, and the
magnetic field is sustained by the persistent current. We
will learn more about it later while studying the magnetic
properties of superconducting materials.

Another very powerful superconducting device is the
SQUID magnetometer based on the Josephson junction
effect that establishes the tunneling of the Copper pairs.
There are many other unique applications based on this
effect, and we will discuss some of them when we study
the Josephson effect.

1.10 Signature Properties of
Superconductors

Temperature, magnetic field, and pressure are three
external agents that can greatly alter the fundamental
nature of a superconducting material by switching them
from normal phase to superconducting phase, and vice
versa. Infinite electrical conductivity and the onset of
diamagnetism below a critical temperature are the two
most important properties of a superconductor material.
We discuss both these properties in the next sections
here. It is known that a large number of elements of
the periodic table become superconducting at a critical
temperature and a critical pressure. Recently, it has been
reported that H3S becomes superconducting with a crit-
ical temperature (TC) of 203 K at 150 GPa of pressure.2
This is the highest transition point reported so far for

2 Reported in Physics Today of July 2016 about this discovery made by
Mikhail Eremetes and his team at the Max Planck Institute of
Chemistry in Germany.
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any superconducting material. H3S belongs to the same
family of chemicals as hydrogen sulfide (H2S) which is
present in almost any chemistry laboratory and has a
noxious smell.

1.10.1 Thermal Behavior of Resistivity of a
Superconductor

Superconductivity can be defined most simply by stating
that below a critical temperature a superconductor com-
pletely loses its resistivity resulting in the conductivity to
be infinite. The critical temperature is also known as crit-
ical point or superconducting transition temperature or
even superconducting transition point. Its universal sym-
bol is TC. The temperature dependence of resistance of a
superconductor material is presented in Figure 1.8.

Here we find two distinct phases to exist: one above the
critical point, TC, and the other below this point. As we
can see from the figure, a superconducting material goes
from its normal state at T >TC to its superconducting
state at T <TC undergoing a phase change at T = TC.
The transition from the normal state to the supercon-
ducting state is governed by the relationship described
by Eq. (1.47).

𝜎 ≈ C
T − TC

(1.47)

When T = TC the conductivity, 𝜎, is infinite. Thermo-
dynamically, it is a phase change of the second order.
Equation (1.47) is the standard form of the Curie–Weiss
law that is obeyed by ferromagnetic and ferroelec-
tric materials where we also encounter similar phase
transitions at their respective critical temperatures
called the Curie temperatures, TC. We will learn about

0

Normal state

T>Tc

Superconducting

state

T<Tc

0

Resistance,

R (Ω)

Critical point, Tc Temperature (K)

Figure 1.8 Resistivity as a function of temperature for a
superconducting material.

ferroelectricity and ferromagnetism in the other chapters
in this book.

The state of infinite conductivity persists so long as
the temperature is below the critical point of TC. It is
a significant result and obviously of great importance
to power transmission technology. All metals lose part
of the original electric power by Joule heating (≈I2R)
due to a nonzero resistance. Over the course of time,
this loss can be significant. The hope is that one day
we will be able to use superconducting wires instead of
metallic wires to transmit electric power from one point
to another and thereby completely eliminate the loss of
power.

We can easily imagine the benefit of such a system to
consumers and industry. This dream can only be fulfilled
if a room temperature superconducting material is dis-
covered. Today, we are not there, but science is work-
ing diligently to reach that goal post. The discovery of
ceramic superconductor has given us a roadmap to reach
this destination and the race is intense.

1.10.2 Magnetic Nature of Superconductivity:
Meissner–Ochsenfeld Effect

We concluded in the previous section that all supercon-
ductors become ideal conductors (𝜎→∞) below their
critical temperatures. They also become ideal diamag-
netic materials (magnetic susceptibility,𝜒 = − 1) in the
superconducting phase. This remarkable property was
confirmed by the Meissner–Ochsenfeld effect, which is
referred erroneously in many circles only as the Meissner
effect. The Meissner–Ochsenfeld effect was discovered
in Germany in 1933 by Walther Meissner and Robert
Ochsenfeld. It states that in the superconducting phase,
the magnetic flux lines are expelled after it reaches
a certain depth below the surface. This is called the
London penetration depth and is associated with the
superconducting electron density. It decays exponen-
tially within the interior of the superconducting phase.
Once the London penetration depth is reached, the
magnetic field stops penetrating the sample, which then
becomes an ideal diamagnetic material. Diamagnetism
is characterized by the capacity of a material to oppose
the penetration of magnetic flux lines below its surface.
This is in contrast to the nature of a ferromagnetic or a
paramagnetic material in which magnetic flux lines can
penetrate unopposed. The Meissner–Ochsenfeld effect
cannot be explained by classical physics, and the explana-
tion is provided by quantum mechanics establishing the
fact that the superconductivity is a quantum mechanical
phenomenon. Mathematically, the London-penetrating
depth is given by

𝜆L =
(
𝜖0mec2

ne2

) 1
2

(1.48)
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YBCO sample

 

Central
magnets 

Top magnet

Figure 1.9 Magnetic double levitation by 123 YBCO in
superconducting state.

where n is the superconducting electron density. The
parameters 𝜖0, c, me, and e are physical constants as
defined already above.

Another critical property associated with supercon-
ductivity is called the coherence length. It is related to
the energy gap and the Fermi velocity of the supercon-
ducting phase. It bears no relationship with the London
penetration depth. Both the coherence length and the
London penetration depth have been experimentally
determined for a number of superconducting materials.
Its magnitude usually is in the nanometers range.

The Meissner–Ochsenfeld effect can be demonstrated
easily by cooling a 123 YBCO ceramic sample below its
critical point using liquid nitrogen (≈77 K).

Once superconductivity sets in, the sample becomes
diamagnetic facilitating the levitation of a magnet in air
above the sample surface, which can be seen in Figure 1.9.
As expected, the magnetic flux lines are expelled result-
ing in the magnetic levitation. In Figure 1.9, the double
levitation was achieved by floating a ceramic magnet on
top of another magnet.3

It is not only the temperature that defines the super-
conducting phase. Also under the influence of an
external magnetic field, H , the superconducting phase
can switch to the normal phase. The magnitude of the
field that can induce this phase change in called the
critical magnetic field (HC), and it is found to be strongly
temperature-dependent as we can see from Figure 1.10.
Here, each combination of HC1-T1 and HC2-T2 is capable
of inducing switching of the superconducting phase to
the normal phase.

At absolute zero, the critical magnetic field, HC,
reaches its maximum value of (H0). Experimentally,

3 R.K. Pandey, unpublished results. This experiment was done in the
Electronic Materials Labs of Electrical and Computer engineering
department at Texas A&M University circa 1989.
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Figure 1.10 Temperature dependence of critical magnetic field in
a superconductor material.

it has been established by studying a large array
of superconducting materials that the temperature-
dependence of the critical magnetic field is described by
Eq. (1.49).

HC = H0

(
1 −

(
T
TC

)2
)

(1.49)

We can conclude from Figure 1.10 that at any tempera-
ture below the superconducting critical temperature, TC,
the superconducting phase can be destroyed by the appli-
cation of a magnetic field greater than the critical field,
HC. This observation plays an important role in designing
a superconducting magnet that can produce very large
fields without being plagued by any loss of power as is
the case for normal electromagnets using metallic wires.

Exercise 1.3
Find the temperature at which the superconducting
phase will switch to the normal phase if the needed
critical field, HC, is 80% of the maximum field, H0 and
the critical temperature of the superconducting material
is 90 K.

Solution
From Figure 1.10, we can infer that HC <H0 and T <TC
in Eq. (1.49). By substituting the values of the parameter
given in the problem in this equation, we find that: T

90
=√

0.2. That is, T = 40.5 K.

Another very interesting result of the Meissner–
Ochsenfeld effect is the fact that a persistent current can
be produced in the superconducting phase that can last
for months even in the absence of an applied magnetic
field. It is estimated that it can last for approximately
105 years. This phenomenon cannot be understood with
the help of the electromagnetic theory. It is found that
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it is a quantum mechanical phenomenon just like the
superconductivity itself. This is because of the flux quan-
tization in the superconducting phase. The quantized
flux, 𝜙, is given by the following equation:

𝜙 ≈ n
(

h
2e

)
with n = 1, 2, 3,… (1.50)

Here, h and e are Planck’s constant and electronic charge,
respectively. From the above equation, we see that 𝜙 can
assume values only as 𝜙1 = h/2e, 𝜙2 = h/e, 𝜙3 = 3h/2e,
and so on. The first quantized flux, 𝜙1, is called the
fluxoid and normally written as 𝜙0. Its numerical value
is 2.068× 10−15 T m2 (or Wb). In the superconducting
phase, the magnetic flux can exist only discretely in units
of the fluxoid. This is a remarkable result originating
from the Meissner–Ochsenfeld effect. Quantization of
magnetic flux is another unique property of a supercon-
ducting material and is an important consideration in
designing a superconducting magnet. It also plays an
important role in finding applications of the Josephson
junction in high-speed data transfer. We will describe
the Josephson effect in the next section.

1.10.3 Josephson Effect

It was in 1962 that Brain David Josephson of Great Britain
predicted theoretically the tunneling of Copper pairs in
a junction sandwiched between two superconducting
arms. This is a macroscopic quantum phenomenon uni-
versally associated with the onset of a current because of
tunneling through a junction by the Copper pairs. The
uniqueness of the effect lies in the fact that the tunneling
current flows even when no potential is applied to the
junction. One should be careful in not confusing the
tunneling current associated with Copper pairs with
the persistent current we discussed with respect to
superconducting magnets.

The Josephson junction is also known as a weak link
in engineering. The Josephson effect is the basis for
such practical and very important devices as SQUID
magnetometers, superconducting qubits, rapid single
flux quantum (RSFQ) digital electronics that can operate
at very high speeds with minimal of power consumption,
oscillators, and voltage calibrators. The standard for
1 V is based on the Josephson effect. Apparently NIST
produces this standard by connecting thousands of
Josephson junctions in series. Josephson was awarded
the Nobel Prize in Physics in 1973 for his landmark
prediction of the tunneling by Copper pairs. Electron
tunneling is one of the landmark contributions of quan-
tum mechanics. It is based on the fundamental idea of
the matter–wave nature of electrons as predicted by de
Broglie.

There are two types of tunneling effects: one being
metal–insulator–superconductor with the acronym of
M-I-S tunneling; and the other the superconductor–
insulator–superconductor (S-I-S) tunneling. The idea
for the first type of tunneling was advanced by Ivar
Giaever, a Norwegian-American physicist. He showed
experimentally the electron tunneling through a junction
sandwiched between a normal metal and superconduc-
tor in 1960, and so it is appropriately called the Giaever
tunneling. He shared the Nobel Prize in Physics with
Leo Esaki and Brian Josephson in 1973 for the tunneling
phenomena in solids.

A typical configuration for an M-I-S or S-I-S tunneling
is shown in Figure 1.11. Let us first discuss the M-I-S tun-
neling process. In the M-I-S experiment, the upper sam-
ple is a normal metal. When a current, I, is injected in the
junction, its transport first follows the path from a metal
to an insulator. If the insulation layer is thick, no volt-
age drop will occur in the configuration. If it is, however,
between 1 and 2 nm, then the electrons can acquire suffi-
cient energy to overcome the barrier and reach the super-
conducting part of the structure and then finally exit it
to complete the circuit. If the superconductor is in the
normal phase (T >TC), then the I–V relationship will be
governed by the Ohm’s law as shown in Figure 1.12 by the
dashed line.

But when the superconducting arm is kept at T <TC,
then the electron tunneling will happen manifesting itself
in the appearance of a tunneling current at the apparent
potential equivalent to

(
Δ
e

)
where Δ is the bandgap of

the superconductor and e the electron charge. The struc-
ture will remain in this state as long as T <TC. As soon as
the superconductor reverts back to its normal phase, the
tunneling current will disappear and we will be left with
the ohmic I–V characteristics of the device.

Now let us discuss the S-I-S tunneling that is the back-
bone of the Josephson effect. If we replace the metal in
the upper arm of the structure of Figure 1.11 with a super-
conducting material that is identical to the superconduct-
ing material in the lower arm of the configuration, then

Superconductor

Very thin insulating layer
Current, I

Metal (or superconductor)

Figure 1.11 Configuration of M-I-S or S-I-S tunneling junctions.
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Figure 1.12 I–V characteristics of Giaever junction consisting of
S-I-M configuration.

we will have a Josephson junction. Once again, we apply
a current to the structure, but this time we do not have
normal electrons available to give us as the characteristic
ohmic plot. Noting happens no matter how large a cur-
rent we inject so long as the structure is at T >TC. As
soon as the samples are cooled to T <TC we notice the
appearance of a current, ±Ic, even when V ≈ 0 which is
a situation unique to superconductivity because there is
no resistance present in the superconducting state and
therefore ohmic current does not exist. This is shown in
Figure 1.13.

The current that develops at V ≈ 0 is the result of the
Cooper pair tunneling through the very thin insulating
barrier. This current is called the Josephson current; it

Current, I

Normal
electron
tunneling

Normal
electron
tunneling

0
Voltage, V

+Ic

–Ic

Copper pair
Tunneling

–

2Δ

e

2Δ

e

Figure 1.13 I–V characteristics of Josephson junction consisting
of S-I-S configuration.

was he who on the basis of the famous BCS (Bardeen,
Copper, and Schrieffer) theory of superconductivity
predicted that the probability of Copper pairs tunneling
through a barrier is the same as that of an electron. It
is an ordered coherent process in which a macroscopic
wave function travels from one superconductor to the
other. The experimental proof of the Josephson junction
was provided by Phillip Anderson and John Rowell, both
of the USA, in 1963.

But what are the Cooper pairs? In the BCS theory,
Leon Cooper argued that in the superconducting phase,
two electrons with anti-parallel spin bind loosely to form
a pair and move with the same speed, but in opposite
directions. This assumption is the core of the BCS theory
which successfully explained the quantum nature of
superconductivity.

Now back to the Josephson junction story. After the
development of the Josephson current, the Cooper pairs
wander until they gain sufficient energy to overcome
the bandgap, Δ. At that point, the binding energy of the
Cooper pairs breaks down releasing the normal elec-
trons to travel through the barrier. As soon as V ≈ 2Δ

e
,

the current appears, which is the result of the normal
electron tunneling while the structure is maintained in
the superconducting phase by keeping the temperature
T <TC. The tunneling occurs at V = ± 2Δ

e
positions as

shown in Figure 1.13.
We now need to understand the very nature of the

Josephson current, ±Ic. We know that this is the current
that develops even when there is no potential applied
to the circuit. But it has one limitation; it cannot keep
on increasing in magnitude uncontrolled. As soon as it
reaches a critical value, it stops increasing and a voltage
appears at the junction. The structure switches from a
state of zero voltage to a state of a finite voltage. This is
the basis for high-speed digital electronics with superior
attributes than those found in the best of semiconductor
devices that dominate the present-day field of micro-
electronics. A Josephson junction can be manipulated
by the applications of a potential, both DC and AC, as
well as by a magnetic field resulting in some interesting
applications. Let us briefly examine some of these cases.

Case I: Application of a DC potential
If the potential is of such a magnitude that it exceeds
the value of

(
2Δ
e

)
, the Cooper pairs will disintegrate

into two normal electrons giving rise to the tunneling
effect as shown in Figure 1.13. However, if the equiva-
lent energy, E ≤ 2Δ

e
, the Cooper pairs will be retained

intact but will begin to oscillate back and forth emit-
ting electromagnetic waves with a specified frequency.
This is the basis for fabricating oscillators that are
extremely accurate and can be integrated in many
applications.
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Case II: Application of an AC potential
If instead of a DC potential, we now subject the
Josephson junction to an electromagnetic field, then
we will naturally induce an AC potential across the
junction. Since frequency can be measured more
accurately than a voltage, AC modulated Josephson
junctions are used for producing very accurate volt-
meters, some of which are used for calibrating other
voltmeters.

Case III: Application of an external magnetic field
The Josephson junctions are extremely sensitive to
even the smallest magnetic field applied to it. This
unique response to the magnetic field is exploited
in the design and construction of the world’s most
sensitive magnetometer universally known as the
SQUID. They are so sensitive that they can even detect
the feeble and very weak magnetic fields present in
organs such as the human heart (10−10 T≈ 0.1 μG) and
brain (10−13 T≈ 10 nG). These highly sensitive magne-
tometers are indispensable tools for scientific studies
requiring determination of extremely small magnetic
fields. The magnetic response of the Josephson junc-
tion resulted in the discovery of quantized magnetic
flux that is defined in Eq. (1.50). Some caution should
be exercised when referring to the Bohr magneton, 𝜇B,
and quantized magnetic fluxoid, 𝜙0. Bohr magneton
refers to the magnetic moment of an electron having a
value of 9.274× 10−21 J T−1, whereas the fluxoid is the
magnetic flux (B) at the quantized level corresponding
to the first principal quantum number (n = 1). Both
are physical constants.

1.11 Fermi–Dirac Distribution Function

The F-D distribution function or F-D-statistics is a beau-
tiful piece of theoretical work and impacts solid-state
physics and solid-state electronics in a very significant
way. It helps us in understanding how the population and
depopulation of quantum energy states vary with tem-
perature which becomes instrumental in understanding
the properties of conductors and semiconductors at a
thermal equilibrium. Before this powerful theory was
published in 1926 first by Enrico Fermi of Italy and soon
after that by Paul Dirac of England, it was not possible
to fully understand the contributions made by electrons
in the specific heat of solid and magnetic susceptibility.
Classical physics was not at all in the position to solve
these physical properties of solids. The picture changed
drastically once the Pauli exclusion principle became the
accepted fact of life from 1925 onward. Fermi and Dirac
applied the restrictions imposed on electrons by the
Pauli exclusion principle and were successful in devel-
oping the F-D statistics. Both received the Nobel Prize

in Physics, Dirac with Schrödinger in 1933 and Fermi in
1938, but not for the development of the F-D statistics.

The objective of the F-D statistics are twofold: (i) To
find the number of particles in each energy state at
thermodynamic equilibrium and (ii) To find the number
of electrons (also called particles in statistical environ-
ments) between the neighboring energy states of E and
E +ΔE.

In solids, we are dealing with a large number of par-
ticles at any one time (for example, ≈1026 mol−1), and
at a thermal equilibrium, the properties of solids are
dependent upon factors such as the Coulomb potential
between each pair of electrons, Coulomb interactions
between electrons and protons at the nucleus and the
appropriate solution of Schrödinger equation for each
set under consideration. We can easily visualize what a
daunting task it would be without resorting to statistical
methods.

There are two statistical models that are useful
when dealing with solids: (i) The classical model of
Maxwell–Boltzmann statistics and (ii) the F-D distri-
bution of quantum statistics. Now let us examine the
fundamental difference between the particles dealt with
by each of these two types of statistical models.

The classical model of Maxwell–Boltzmann: Here, the
particles are assumed to be atoms, ions, and molecules.
They are distinguishable from each other because they
do not interact mutually, and their energy is continu-
ous. All phenomena dealing with the classical particles
at thermal equilibrium can be explained satisfactorily
by the classical model.

The quantum mechanical model of F-D: This model is
applicable to electrons that obey the Pauli exclusion
principle with spin being ± 1

2
. They are indistinguish-

able from each other because they can electrostatically
interact mutually. Since they are subjected to
restrictions imposed by the principles of quantum
mechanics, their energy states must be considered
degenerate which means that they are not con-
tinuous but discrete. The electrons that obey the
F-D-distribution function are called fermions. It was
Dirac himself who coined the name fermions; appar-
ently in honor of Enrico Fermi. Thermal properties
of metals and semiconductors are the two prime
examples where the F-D statistics is applicable.

The degeneracy is defined by the number of magnetic
quantum number for each state. For example, when l = 1,
the state is p and ml is 0, ±1. By definition this is a three-
fold degenerate state. Similarly when ml has five values
(for l = 2 and state being d) the degeneracy is fivefold. By
inference, then when l = 0, the state is s, and there are no
corresponding values for ml; then the energy is said to be
single-fold degenerate.
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Besides the F-D statistics, there is another quantum
statistics called the Bose–Einstein distribution function.
Here the particles are also indistinguishable, but with
integral values of spin. These particles are called bosons.
This model is used for those cases where bosons are
the particles. Atomic and nuclear physics as well as
chemistry take full advantage of this model.

Now let us try to make some mathematical distinction
between these three statistical models. For this, we con-
sider that there are Ni particles that must be distributed
in Ei energy states at the thermal equilibrium with tem-
perature T .

For classical particles that obey the M-B statistics, the
formulation of Eq. (1.51) is used.

Ni = A exp
(
−

Ei

kBT

)
(1.51)

where A is a constant and kB the Boltzmann constant.
Generalization of the above expression can be done by

using the concept of probability, f (E), which simply tells
us the statistical probability of finding a particle with
energy, E. Then we can convert the above equation into
Eq. (1.52).

f (E) = A exp
(
− E

kBT

)
≈ A

exp
(

E
kBT

) (1.52)

When, however, degeneracy is present as is the case
with quantum statistics, we can express the probability
simply by defining the probability as: f (E) ≈

(
Ni

gi

)
. The

probability functions for the two quantum statistics can
then be expressed as in Eqs. (1.53) and (1.54).

f (E) = 1

A exp
(

E
kBT

)
+ 1

for F-D statistics

(1.53)

and

f (E) = 1

A exp
(

E
kBT

)
− 1

for B-E statistics

(1.54)

Having made the distinctions between the three types
of statistical models, we need to concentrate now on
the F-D statistics that is of paramount importance to
our needs. Let us consider once again that there are
Ni electrons to be distributed in Ei available energy
states having degeneracy of gi when the system is in
thermodynamic equilibrium at temperature, T . Then the
general formulation of the F-D statistics is described by

the expression of Eq. (1.55).

Ni =
Agi exp

(
−Ei

kBT

)
1 + A exp

( Ei

kBT

) (1.55)

Let us at this point introduce two new terms, the
Fermi function, F(E) which is nothing else than a sub-
stitute for the general term probability, f (E) = (Ni/gi)
and the Fermi energy, EF. We are using the term Fermi
function, F(E), and not the general term of probability,
f (E), just to be consistent with the convention. By setting
A = exp

(
EF

kBT

)
, and after some rearrangement, we can

rewrite Eq. (1.55) as Eq. (1.56).

F(E) = 1(
exp

(Ei − EF)
kBT

)
+ 1

(1.56)

What is the Fermi energy (EF) but what exactly does it
mean? While dealing with semiconductor materials we
constantly encounter the terms Fermi energy and Fermi
level, and it is not uncommon to confuse one with the
other. It is important to distinguish between them for the
sake of accuracy.

Fermi energy is defined as the difference in kinetic
energy that exists between the highest and the lowest
occupied quantum states at absolute zero temperature
(T = 0 K). In general, the lowest occupied state is defined
as the state with zero kinetic energy. In semiconductors,
the lowest energy state corresponds to the top of the
valence band, whereas for metals it is the bottom of the
conduction band. The Fermi energy is the kinetic energy,
whereas the Fermi level is the sum of both the kinetic
energy and the potential energy. Furthermore, Fermi
energy is always defined with respect to absolute zero
temperature, whereas the Fermi level can be referred to
at any temperature. In contrast to the Fermi energy, the
Fermi level for a metal at absolute zero corresponds to
the highest occupied state.

Let us now go back to Eq. (1.56) and interpret its impor-
tance. We discuss three specific conditions which are the
following:

Case I: When T = 0 K and Ei <EF, the exponential term
in the denominator becomes ≈0 making F(E) = 1. That
means that all energy states are fully occupied below
the Fermi energy.

Case II: When T = 0 K and Ei >EF. The exponential term
now approaches∞ rendering F(E)= 0. This means that
all energy states above EF are totally empty.

Case III: If Ei = EF, then F(E) = 1
2
. This means that the

probability of occupancy at Ei = EF is always 50% no
matter what the temperature at equilibrium might be.
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Case IV : At high temperatures, Ei −EF ≪ kBT . Then
Eq. (1.56) reduces to

F(E) = exp
{
−
(Ei − EF

kBT

)}
≈ exp

(
− ΔE

kBT

)
(1.57)

We can easily recognize it as another way for writing
the M-B distribution function (see Eq. (1.52)). We infer
from this that at sufficiently large thermal energies, the
F-D statistics yields the same result as the M-B statis-
tics. This then means that at elevated thermal equi-
librium, electrons can be statistically described by the
M-B distribution just as we would do for the atoms,
ions, and molecules.

Case V : For very low temperatures but above T = 0 K, if
EF −Ei ≫ kBT , then the Fermi function is given by

F(E) ≈ 1 − exp
(Ei − EF

kBT

)
≈ 1 (1.58)

This simply means that even at very low temperatures,
the probability of occupation is 100%, which is the
same as at T = 0 K (see Case I above).

Figure 1.14 is the typical plot for the F-D distribution.
This, in fact, gives us the graphical picture of all the
five cases we just discussed. Notice that the transfer of
fermions from the upper half of the curve to the lower
half occurs when T > 0 K and passes through the 50%
point of the F(E) axis. The population-depopulation of
energy states must go through the 1

2
-point. This situation

will reproduce itself time, and again, as the temperature
rises and more and more electrons migrate from the
upper half of the plot to its lower half. The probability of
100% occupancy of all available energy states is guaran-
teed at absolute zero. The Fermi energy, EF, can now be

100%

F(E)

0

Energy, E

50%

Occupied
T> 0

Empty

T= 0 K

Fermi
energy, EF

Figure 1.14 Fermi–Dirac distribution plot: Fermi function vs.
energy at T = 0 and T > 0.

defined also as the cut-off point between the populated
and depopulated energy states.

We have so far discussed the conditions for popula-
tion and depopulation of energy states according to the
F-D statistics. Now we need to examine: (i) How many
energy states might be there between the energy levels E
and E + dE and (ii) What is the quantitative nature of the
Fermi energy, EF.

The technical term for the number of energy states
found between the E and E + dE levels is density of
states, Z(E)dE. The calculation to find a mathematical
expression for Z(E) is quite involved. We shall leave it for
Chapter 7, where we will study the essential elements of
semiconductors. The concept of density of states plays an
important role in understanding the physical principles
involved on semiconductor devices and therefore it will
be more beneficial to deal with this topic there. For the
time being, let us just give its mathematical formulation
which is shown in Eq. (1.59).

Z(E)dE =

[
4πV (2me)

3
2

h3

]
⋅ E

1
2 ⋅ dE = A ⋅ E

1
2 ⋅ dE

(1.59)

where V = the volume with N number of electrons con-
tained therein, me and h being the electron mass and the
Planck constant, respectively. A is a constant containing
all the parameters under the square brackets. The numer-
ical expression for the Fermi energy can be derived from
the density of state, Z(E)dE and is given by Eq. (1.60).

EF ≈
(

h2

8me

)
⋅
(3N
πV

) 2
3
≈ h2

8me

(3n
π

) 2
3 (1.60)

Here n = number of electrons per unit volume.
The temperature corresponding to the Fermi energy is

called the Fermi temperature, TF; and the velocity with
which the electrons travel at the Fermi energy is called
the Fermi velocity, V F. The Fermi temperature is defined
as TF ≈

(
EF

kB

)
and the Fermi velocity as VF ≈

(
pF

me

)
, where

pF is the Fermi momentum which is equal to
√

2meEF.
The values of these parameters for some common metals
is given in Table 1.18 [3].

Exercise 1.4
Consider a system with fivefold degeneracy and number
of electrons to distribute in these energy states are only 3.
Find the permissible distribution function, Ω.

Solution
For the first electrons, there are five choices available; for
the second there are four choices, and for the third there
are three choices. The distribution function is then:

Ω = 5.4.3
3!

= 5!
3!2!

= 10
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Table 1.18 Fermi energy, Fermi temperature, and Fermi velocity
for some common metals [3].

Metal

EF, Fermi
energy
(eV)

TF, Fermi
temperature
× 104 (K)

VF, Fermi
velocity
× 106 (m S−1)

Na 3.24 3.77 1.07
Cu 7.00 8.16 1.57
Ag 5.49 6.38 1.39
Au 5.53 6.42 1.40
Al 11.7 13.6 2.03

Exercise 1.5
Consider the case of sodium with atomic weight is 23,
density equal to 0.968 g cm−3, and the electronic config-
uration [Ne]3s. Calculate its Fermi energy, Fermi temper-
ature, and Fermi velocity.

Solution
The Fermi energy can be found using Eq. (1.60) and from
its value then we can calculate the other two param-
eters. The electronic configuration tells us that Na is
monovalent. Therefore, the number of atoms per unit
volume is simply given by n = dNA

A
, where d is the density,

NA = Avogadro’s number = 6.0× 1023 per atomic weight,
A (here A is grams per mole). Substituting for these
parameters in Eq. (1.60) we get

n =
dNA

A
= (0.968 × 6.02 × 1023)

23
≈ 2.54 × 1021 cm−3

Substituting it then in Eq. (1.60) and dividing the value
of Fermi energy obtained in joules by electron charge
(=1.60× 10−19 C), we get EF = 3.38 eV for Na. This is in
agreement by 96% of the experimentally obtained value
of 3.24 eV.

The Fermi velocity, vF is obtained by using the rela-
tionship vF ≈

√
2meEF

me
. Substituting for me and EF, we get

vF = 1.11× 106 m s−1. Note EF needs to be multiplied
by electron charge to convert it from electron volts to
joules.

Finally, the Fermi temperature TF ≈ EF

kB
≈ (3.24×1.6×10−19)

1.38×10−23

≈ 3.75 × 104 K.
In conclusion, the calculated values for Na are

EF = 3.24 eV, V F = 1.11× 106 m S−1 and TF = 3.75× 104 K.
These values are in good agreement with the values
reported in literature.

1.12 Band Structure of Solids

The free electron theory is capable of explaining almost
all physical phenomena associated with metals. But it

fails when it comes to insulators and semiconductors. In
metals electrons are supposed to be free so that they can
cause electrical conduction to take place. This is not the
case for insulators where the electrons are bound and not
free to roam around to produce electrical conduction.
A similar picture we can visualize for semiconductors
which by definition are bad insulators. The failure of the
free electron theory made it essential to find a suitable
theoretical model that could explain the basic nature
of solids other than metals. So far we have learned that
discrete energy states exist in single atoms, but the
picture is very different when many atoms are involved
as is the case of solids. A solid can be visualized in which
positive and negative ions are present simultaneously
and the electrons are bound. When separation between
two atoms becomes infinitesimally small, the avail-
able energy states lose their respective discrete states
and form bands. This is the consequence of the Pauli
Exclusion Principle.

Three theoretical models are often used in solid-state
sciences to understand how these energy bands originate
in solids. They are Kronig–Penney model, Ziman model,
and Feynman model. Each of them explains the physical
mechanisms for the formation of allowed and forbidden
bands. But they all require solid skills in mathematical
manipulations. We will not go into those details here and
will limit ourselves to some simpler approach that would
satisfy our needs. That would be the approach by consid-
ering a simplified version of the Kronig–Penney model.
This model was developed in 1931 by Ralph Kronig of
Germany and William Penney of England.

The solids in this model are treated as a highly ordered
periodic three-dimensional structure built on the basis
of unit cells that repeat themselves in space. Each cell is
identical in every respect to the other. We will recognize
such a well-defined solid to be nothing else than a highly
symmetric crystal lattice. To simplify the calculation
Kronig and Penney considered the case of a one dimen-
sional lattice of atoms. In such an arrangement, the atoms
will experience the effects of periodic potentials varying
with the lattice period. Figure 1.15 gives a graphical

aa

V(r)

X-direction

Figure 1.15 Linear array to atoms with a period of a.
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representation of this concept. Here the atoms are found
along the x-axis with the period of a.

By careful analysis of the time-independent
Schrödinger equation, we can find the eigenfunctions
and eigenvalues that would satisfy the mathematical
conditions for the electrons in the potential field with
the period of a. The wave function that would satisfy this
condition was proposed by Felix Bloch of Switzerland,
and it is expressed mathematically as follows:

𝜓nk(r) = exp(ik ⋅ r)unk(r) (1.61)

where k is the wave vector and uk(r) is the periodicity of
the lattice such that uk(R+ r)≈uk(r), where R is defined
as the position vector capable of generating an infinite
number of lattice points. The concept of a position vector
is related to the reciprocal lattice in crystallography. We
will visit this topic in Chapter 4, where we well cover the
essential elements of crystallography. The parameter n is
as always equal to an integer, 1, 2, 3, … For each value of
k, there could be multiple solutions for the Schrödinger
equation corresponding to the values of n. If unk(r) = 0
and n = 1 then Eq. (1.61) reduces to 𝜓k(r)≈ exp(ik ⋅ r),
which represents a plane wave of a free electron.

The most important results that follow from the
Kronig–Penney model are (i) Presence of forbidden and
allowed energy bands in a solid; (ii) Switch from one
energy state to another is discontinuous; and (iii) The
discontinuity occurs at k = ±n

(
π
a

)
. Notice that it also

tells us that in solids, the wave vectors are also quantized.
With respect to these values of k, the Schrödinger’s wave

function can be given by Eqs. (1.62) and (1.63).

𝜓1 = exp
{

i
(nπx

a

)}
+ exp

{
−i

(nπx
a

)}
= 2 cos

(nπx
a

)
(1.62)

𝜓2 = exp
{

i
(nπx

a

)}
− exp

{
−i

(nπx
a

)}
= 2 sin

(nπx
a

)
(1.63)

For 𝜓1 the maxima occurs when x = 0, a, 2a, …, na.
Exactly, at these values of x, the minima for the wave-
function 𝜓2 occur. From this, we can infer that there are
two values of wave function for the same value of k, indi-
cating that for the same values of k, there could be two
values of energy, E, as well. We present graphically these
results in the E–k diagram as depicted in Figure 1.16.

We find in this figure that for each set of k, there is a cor-
responding allowed energy band. Sandwiched between
the successive allowed energy bands, there are the for-
bidden energy bands where no electrons are allowed to
reside. The first allowed band is called the first Brillouin
zone; similarly the second and third bands are called the
second and third Brillouin zones, respectively. They are
named after the French physicist with the name of Léon
Nicolas Brillouin who made valuable fundamental con-
tributions of in many fields of physics.

Theoretically, it is possible to have infinite number of
bands and as such an infinite number of energy states.
But because of the limited number of electrons available
in all types of solids, in reality there are only a few allowed
and forbidden energy bands. The most important bands
relevant to solid-state electronics and optics are the

Third allowed
zone

Forbidden band I
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Figure 1.16 E–k diagram showing allowed and forbidden energy bands in a solid.
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valence band, conduction band, and the bandgap. We all
are familiar with these bands as they are the fundamental
nature of semiconducting materials. Of course, the same
picture prevails also in insulators. In metals, however, the
conduction band overlaps the valence band eliminating

the possibility of the presence of a bandgap. The Fermi
level is found in the forbidden gap of semiconductors
and insulators, but it is buried inside one of the allowed
bands for metals and semimetals. This is what we find in
Figure 1.1.

Glossary

Allowed band In solids according to quantum
mechanics, energy states exist in bands and are not
discrete as is the case with electrons in an isolated
atom.

Bandgap It is the energy band that is sandwiched, for
example, in a semiconductor material, between the
valence band and conduction band. No electrons are
allowed to find themselves in this band. Therefore, it
is also called the forbidden gap. It width is measured
in electron volt.

Brillouin zones The allowed energy bands in a solid are
grouped as the first allowed band, the second allowed
band, the third allowed band, and so forth. They are
also referred to as the first Brillouin zone, the second
Brillouin zone, the third Brillouin zone, respectively.
Léon Nicolas Brillouin (1869–1969) was a brilliant
French physicist who gave the concept of Brillouin
zones in a crystal lattice. He made also many more
ground-breaking contributions.

Cooper pairs In superconducting materials, electrons
form pairs with antiparallel spins and do not obey
Pauli Exclusion Principle like the normal electrons.
Leon N. Cooper, one of the recipients of Nobel Prize
in Physics in 1972 with John Bardeen and Robert
Schrieffer, showed that the Copper pairs are
responsible for the superconductivity phenomenon.

Critical field It refers to the critical magnetic field that
can induce switching of the superconducting state
into normal state. This is a signature property of a
superconducting material.

Critical point The critical temperature at which a
superconducting material becomes a normal
conductor. This is the other signature property of a
superconducting material.

Fermi energy This is the difference in kinetic energy
between the highest and lowest occupied states of
solid at absolute zero (0 K). This is the characteristic
property of all solids and plays a vital role in
describing the fundamental nature of metals and
semiconductors at a thermal equilibrium.

Fermi level By definition is the sum of the kinetic
energy and potential energy of electrons in a solid.
Unlike Fermi energy, it can be referred to at any
temperature. In semiconductor, it is common to refer
to Fermi level instead of Fermi energy. Here the

bottom of the valence band corresponds to the
potential energy equal to zero. Then the Fermi level
for an intrinsic semiconductor becomes equal to the
width between the bottom of the valence band and
the position of the Fermi level in the bandgap. Fermi
level changes with temperature and also with the
doping level of the extrinsic semiconductor.

Forbidden band The energy band in which no
electrons are supposed to be present. Same as the
bandgap of a semiconductor material.

Frequency spectrum Dielectric constant vs. frequency
plot of an insulator in which the dipolar, ionic, and
electronic components of the permittivity are
identified.

Josephson effect It is the physical phenomenon
specific to superconductors which was discovered by
Brian David Josephson of England in 1962. The effect
describes the tunneling of the Copper pairs through a
very thin insulating layer sandwiched between two
superconducting layers. It has many practical
applications including detecting extremely small
magnetic fields.

Magnetic levitation When a normal material becomes
superconducting below the critical temperature, its
acquired diamagnetism prevents the penetration of
magnetic fluxes within the superconducting material.
As a result fluxes are expelled back causing a magnet
to be levitated above the superconducting surface and
being suspended in air (as in Figure 1.9). This also has
many applications and represents another signature
property of a superconductor.

Matter–wave-duality This is the true nature of an
electron as proposed by Louis de Broglie of France in
1923. According to his hypothesis, an electron can
behave simultaneously as a particle and a wave. This
concept is the corner stone of quantum mechanics,
and it has led to the discovery of the celebrated
Schrödinger equation. de Broglie received the Nobel
Prize in Physics in 1929 for this contribution.

Persistent current A current generated by a magnetic
field in a superconducting ring that can persist for a
very long time even after the originating magnetic
field is withdrawn.

Phonon In a crystal lattice, temperature can set up
oscillations of atoms. The unit to measure the



�

� �

�

30 Fundamentals of Electroceramics

resulting vibrational energy is referred to as phonons
and is a quantum mechanical concept. It is considered
to be an elementary particle associated with a solid
and is used to describe a mechanical wave.

Photon What a phonon is to a mechanical wave so is a
photon to an electromagnetic wave, or more
precisely, to an optical wave. It is a quantum of energy
associated with light and originally introduced by
Planck.

Potential field In a solid with perfectly ordered lattice
and periodicity in space, the potential energy can vary
from a minimum to a maximum value. This facilitated
the discovery of allowed and forbidden energy bands
in a solid using the model proposed by Kronig and
Penney.

Quantization In quantum mechanics, when a
parameter can assume values in steps of 1, 2, 3, …
(equivalent to the value of the principal quantum
number, n), then the parameters are called quantized.
Some examples are orbital quantum number, l;
Planck’s photon energy, h𝜈; and magnetic flux, 𝜙, in
superconducting state.

Quantum numbers A set of four numbers identified as
principal quantum number (n), orbital quantum
number (l), magnetic quantum number (ml), and spin
quantum number

(
± 1

2

)
are jointly referred to as

quantum numbers. They are used to describe the
quantum mechanical properties of an electron.

SQUID It is the abbreviation for “superconducting
quantum interference device” that is based on the
Josephson junction. These are very precise
magnetometers capable of detecting extremely small
magnetic fields.

Superconductivity A special class of physical
phenomenon occurring in solids below a certain
temperature is called superconductivity. As the name
suggests a superconducting material has zero
resistance and as such infinite conduction. Such
materials can deliver lossless electrical power
(P = I2R) at a long distance and as such they possess
enormous technical value for mankind.

Work function It is a material parameter of enormous
scientific and technical importance. Its commonly
used symbol is W, and it can be defined in many
different ways. For example, in a photoelectric
experiment, it is the threshold energy that must be
exceeded by the photon energy radiating a metallic
surface before electrons can be emitted. It is also
measured in electron volts. Its general definition is
the following: this is the energy that an electron must
acquire before it can escape a surface in order to
reach its ultimate destination that is the vacuum level
with infinite energy.

Problems

1.1 Consider a sample of GaAs with the following
dimensions: length = 5 mm, width = 1 mm, and
thickness = 1 mm. The electrical conductivity
of GaAs is 1× 10−8 S m−1. Assume that the two
parallel faces (5 mm long) are fully metallized.
Find the electric field that must be applied to
generate a current density of 1 μA m−2.

1.2 Using the values of the dielectric constant given in
Table 1.3 calculate the polarization that develops
when 10 V is applied to a cube sample of 1 mm
dimension of Ge, SrTiO3, and TiO2. Comment on
the result.

1.3 Find the maximum kinetic energy with which the
electrons will emit when the samples of metals
listed in Table 1.6 are irradiated by a UV light of
0.2 μm wavelength. Comment on your result.

1.4 Find the stopping potential for photoemission for
all the metals listed in Table 1.6 when the samples
are irradiated by a UV light of 0.2 μm wavelength.

1.5 Describe the mechanism for population and
depopulation of states involved in Fermi–Dirac
statistics. Find the temperature at which there
is 1% probability that a state with the energy of
0.1 eV above the Fermi energy will be occupied by
an electron. Comment on your result.

1.6 Find the velocity and the momentum of the
electron with de Broglie wavelength of 1 nm.
Comment on your result.

1.7 Describe the Pauli exclusion principle and show
how it leads to the quantum mechanical interpre-
tation of the Periodic table of elements.
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