
JWBS174-c01 JWBS174-Choi December 17, 2015 15:37 Printer Name: Trim: 6.125in × 9.25in

1
MATLAB AND SIMULINK BASICS

� Arithmetic operators.
� Vector and matrix manipulation.
� Symbolic math.
� Script file (m-file) and user-defined functions.

1.1 OPERATING ON VARIABLES AND PLOTTING GRAPHS
IN MATLAB

The fundamental MATLAB commands can be categorized into six groups, each
of which is covered in one subsection. The first four subsections deal with the
operations of different variable types and the last two subsections deal with the
plotting commands that are frequently used in this book. On a PC that is installed
with MATLAB, start MATLAB. A command window will appear where one can
type in and execute MATLAB commands. Execute the set of commands/codes in
the boxes and check the results. This self-study method is one of the fastest ways to
master the basic MATLAB commands.

In a report, document what each command does. Focus on the specific actions
and purposes, rather than the execution results. For commands that return an error
message, document the reasons. Follow this guideline for all exercises in Section 1.1.

A sample report is available from the companion website. For information to
access this website, refer to the guide at the beginning of this book.

Problem-Based Learning in Communication Systems Using MATLAB and Simulink, First Edition.
Kwonhue Choi and Huaping Liu.
© 2016 The Institute of Electrical and Electronics Engineers, Inc. Published 2016 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/go/choi_problembasedlearning

1

CO
PYRIG

HTED
 M

ATERIA
L

JWBS174-c01 JWBS174-Choi December 17, 2015 15:37 Printer Name: Trim: 6.125in × 9.25in

2 MATLAB AND SIMULINK BASICS

1.A Operation of scalar variables.

1. X 6. X*Y-X*3-Y 11. X=12e6

2. X=12 7. X=Yˆ2 12. clc

3. X=X+2 8. Z=sqrt(Y) 13. x=rand

4. Y=X+3 9. X=2; Y=4; Z=X+Y 14. x=rand

5. Y*6 10. Z=XˆY 15. help rand

In addition, explain why the same command executed twice in item 13 and item
14 generates different results.

1.B Operation of complex numbers.

1. i 6. Z=X*Y 11. angle(Z)

2. j 7. real(Z) 12. who

3. X=1+3*j 8. imag(Z) 13. whos

4. Y=-2+j ; 9. conj(Z) 14. clear

5. Z=X+Y 10. abs(Z) 15. who

1.C Operation of vectors.

1. X=2 : 2: 10 12. Y=[2; 1; 4; -3] 23. Y=rand(1,5)

2. Y=1 : 5 13. Z=Y’ 24. Y=rand(4)

3. Z=X + Y 14. Z(1) 25. Y=[7 3 -1 2]

4. Z=X.*Y 15. Z(2) 26. mean(Y)

5. Z=X*Y 16. Z(1:3) 27. var(Y)

6. Z=X./Y 17. Z(2:4) 28. min(Y)

7. Z=X/Y 18. length(Z) 29. max(Y)

8. 2*Y 19. X=[2 4 8 16] 30. [a b]=min(Y)

9. Z=0 : 10 20. Y=log2(X) 31. sort(Y)

10. sum (Z) 21. Yˆ2 32. Y=[Y 5]

11. Y=[2 1 4 –3] 22. Y.̂ 2 33. Z=[Y(3:4) X(1:2)]

1.D Operation of matrices.

1. X=[3 6 -2 -1; 0 5 2 1; 7 -1 4 8]; 11. Y(1, :)=X(2, :) 21. Z=X.̂ 2 +3*Y

2. X(2,1) 12. Y(2, :)=X(1, :) 22. max(Z)

3. X(2,3) 13. Y(3, :)=[1 2 3 4] 23. [T1 T2]=max(Z)

4. X(1, :) 14. Z=X – Y 24. mean(Z)

5. X(:, 2) 15. Z=X*Y 25. max(mean(Z))

6. X(1:2,:) 16. Z=X*Y’ 26. max(max(Z))

7. X(: , 2:3) 17. Z=X.* Y 27. Z=rand(4)

8. Y=[1 0 2; 3 2 1; 2 3 4] 18. Z=Xˆ2 28. X=inv(Z)

9. Y’ 19. Z=X.̂ 2 29. Y=X*Z

10. Y=zeros(3,4); 20. Z=2.̂ X 30. size(Z)

JWBS174-c01 JWBS174-Choi December 17, 2015 15:37 Printer Name: Trim: 6.125in × 9.25in

USING SYMBOLIC MATH 3

1.E Plotting some basic functions.

1. x=0:0.1:10 9. plot(x,y2) 17. plot(x,y1)

2. y1=sin(x) 10. y3=exp(-x) 18. subplot(3,1,2)

3. y2=cos(x); 11. plot(x,y3,’r’) 19. plot(x,y2)

4. plot(x) 12. legend(’sin(x)’,’cos(x)’,’exp(-x)’) 20. subplot(3,1,3)

5. plot(y1) 13. axis([-5 15 -3 3]) 21. plot(x,y3)

6. plot(x,y1) %Compare to 5 14. axis([0 10 -2 2]) 22. semilogy (x,y3)

7. grid 15. figure 23. help plot

8. hold on 16. subplot(3,1,1) 24. help semilogy

1.F Boolean operations and plotting graphs over a limited range of the x axis.

1. A=[0 1 2 3 4]; 7. C=([1 0 1 1 1]==[1 0 1 0 0]) 13. y=(1<x)&(x<4);

2. A<3 8. C=([1 0 1 1 1]∼=[1 0 1 0 0]) 14. plot(x,y); axis([0

10 -2 2]); grid;

3. B=(A>2) 9. x=0:0.01:10; 15. y=1<x<4;

4. C=([1 1 0 0] & [1 1 1 0]) 10. y=(x<3); 16. plot(x,y); axis([0

10 –2 2]); grid;

5. C=([1 1 0 0] | [1 1 1 0]) 11. figure

6. C=∼[1 0 1 0 0] 12. plot(x,y); axis([0 10 -2 2]); grid;

In addition, explain the difference between items 13 and 15.

1.2 USING SYMBOLIC MATH

In the symbolic math in MATLAB, the characters (or words) such as a, b, and temp
are treated as symbolic variables, not numeric variables. Mathematical expressions
can be computed or manipulated in symbolic forms. Find out what else can be done
using symbolic math in the following problems.

2.A Write down what each of the lines in the following box does and capture the
execution result.

>>syms a b c x t
>>y=sin(t);
>>diff(y)
>>int(y)
>>int(y, t, 0, pi)
>>z=int(xˆ2*exp(-x),x,1,3)
>>double(z)
>>limit(sin(t)/t,t,0)
>>symsum(xˆ2, x,1,4)
>>T=solve(a*xˆ2+b*x+c,x)

JWBS174-c01 JWBS174-Choi December 17, 2015 15:37 Printer Name: Trim: 6.125in × 9.25in

4 MATLAB AND SIMULINK BASICS

>>T2=solve(a*xˆ2+b*x+c,b)
>>a=1;b=2;c=3;
>>z=eval(T)
>>a=t;
>>z=eval(T)

2.B Verify the following quantities by using the symbolic math. Capture the calcu-
lation results.

∫
∞

−∞
e−z2

dz =
√
𝜋, (1.1)

∞∑
r=1

(1
3

)r
=
(1

2

)
, (1.2)

lim
x→∞

(
1 + 1

x

)x
= e. (1.3)

2.C Calculate the following integral by using the symbolic math. Be sure to perform
double(c) after symbolic integration. Also explain why executing double () is needed
to obtain the solution.

c = ∫
2

1
sin(z)e−zdz. (1.4)

1.3 CREATING AND USING A SCRIPT FILE (m-FILE)

The commands and functions we have covered so far are all executable directly in
the command window. Using a “script file,” which is also called an “m-file” in the
earlier versions of MATLAB, users can execute various algorithms or can implement
user-defined functions. In this book, the traditional term “m-file” will be used to refer
to a MATLAB “script file.”

3.A Follow the steps below and learn how to create and execute an m-file.

Step 1. Open a new script file editing window.

Step 2. [WWW]Shown in the box below is an m-file that plots y = x sin(ax), for the
cases of a = 0.1, 0.25, 0.3, 0.4, 0.5, 0.6, 0.7, and 0.8 over the range 0 < x < (10 +
D), where D = the last digit of your student ID number. Write this m-file and save
it as CH1_3A.m. The m-file name must begin with a letter; files with a name that
begins with a number will not execute in MATLAB. Be sure not to use a space or
mathematical operator (e.g., +, −, /, *) in the file name.

NOTE: For the parts with the superscript [WWW] prefixed, the companion website
provides the supporting file or the required data. For information to access this
website, refer to the guide section: “ABOUT THE COMPANION WEBSITE” at the
beginning of this book.

JWBS174-c01 JWBS174-Choi December 17, 2015 15:37 Printer Name: Trim: 6.125in × 9.25in

CREATING AND USING A SCRIPT FILE (m-FILE) 5

clear
x=0:0.1:(10+The last digit of your student ID number);
for n=1:8

a=n/10;
if (a==0.2)

a=0.25;
end
y(n,:)=x.*sin(a*x);

end
plot(x,y)
xlabel(’x’)
ylabel(’y=x sin(ax)’)
legend(’a=0,1’,’a=0.25’,’a=0.3’,’a=0.4’,’a=0.5’,’a=0.6’,’a=0.7’,’a=0.8’)
grid on

3.A-1 Add a comment to explain each line in the m-file. Capture the commented
m-file.

3.A-2 Execute the m-file you have created. You can either click ‘run’ button in the
menu bar of the m-file editor or press the F5 key on the keyboard or type the m-file
name in the command window as

>>CH1_3A

Capture the result. To capture a figure, you may navigate to ‘Edit/Copy Figure’ in the
menu of the figure and then paste it in your report.

3.A-3 Execute the following commands in the MATLAB command window. Based
on the results, document the meanings of the two variables. Do not capture the
execution results.

>>x
>>y

3.B Let us write an m-file to plot sine waveforms of 10 different frequencies by
properly modifying the m-file created in 3.A.

3.B-1 Consider 10 sine waveforms whose frequencies are 1, 2, 3, 4, …, 10 Hz.
In your code, calculate the smallest period (the highest frequency) among these
waveforms and denote it by T. Then, overlay the 10 sine waveforms in the range of
−2T < t < 2T, the range of the time axis (x axis) in the graph. Use legend() to label
the 10 waveforms. Use a ‘for’ loop as done in the m-file in 3.A.

Capture the m-file and the execution result.

JWBS174-c01 JWBS174-Choi December 17, 2015 15:37 Printer Name: Trim: 6.125in × 9.25in

6 MATLAB AND SIMULINK BASICS

3.B-2 Use the command mesh() to plot the 10 sinusoids in a three-dimensional plot.
Then click the axis rotation button in the menu of the figure to rotate the axis of the
graph. Execute the m-file and capture the plot.

3.C The objective of this problem is to write an m-file to find the position of the
maximum value in each column (or row) of a matrix and to calculate the mean of
each column/row of the matrix.

3.C-1 [WWW]The m-file below, by using rand(), generates a 10 (row) × 9 (column)
matrix A. The elements of the matrix are independent and identically and uniformly
distributed between 0 and 3. By using max() twice, the m-file finds the maximum
elements of A and its row and column indexes.

%Do not append ’;’ at the end of the lines in this m-fie in order to see the result
of each line.
clc; clear
A=3*rand(9,10)

[B C]=max(A)
[D E]=max(B)

Max=D
Position=[C(E) E]

(a) Add a comment for each line to explain what it does. Capture the m-file.
(b) Execute the m-file. Capture all the execution results displayed in the command

window. You may need to scroll up or down the command window to avoid
missing any part of the execution results.

(c) Is the execution result of each line what you expected to see?

3.C-2 In the m-file of 3.C-1, add the part that computes the mean (use the function
mean()) of each row of the matrix. Also add the function to find the row with the
largest mean value. Capture the m-file and the execution result.

3.D [WWW]The m-file below plots the discontinuous function y(t) given in equation
(1.5) using logical operators.

y(t) =

{
sin

(
2𝜋 × 5t + 𝜋

3

)
1 ≤ t ≤ 2,

0 0 ≤ t < 1 or 2 < t ≤ 5.
(1.5)

clear;
t=0:0.01:5;
x=(1<=t)&(t<=2);
x2=sin(2*pi*5*t+pi/3);
y=x.*x2;
plot(t, y); axis([-1 6 -2 2])

JWBS174-c01 JWBS174-Choi December 17, 2015 15:37 Printer Name: Trim: 6.125in × 9.25in

[A]USER-DEFINED MATLAB FUNCTION 7

f(t)

t(s)1/2
1

2

FIGURE 1.1 Periodic function f (t).

3.D-1 (a) Add your explanation to each line as a comment and capture the m-file.
(b) Execute this m-file and capture the result.

3.D-2 Write an m-file to plot f (t) in Fig. 1.1 using sin() (or cos()) and Boolean
operators (==, >, < , <=, >=). Capture your m-file and the execution result.

1.4 [A]USER-DEFINED MATLAB FUNCTION

Similar to many other programming languages, MATLAB also supports the use of
user-defined functions to avoid repeatedly editing the main body of a code. User-
defined functions are similar to the built-in MATLAB commands or functions; they
follow certain syntax and are normally saved in the same folder where the main m-file
is located in, but it can be saved in a different folder. Through the following problem
you will learn how to write and to use user-defined MATLAB functions.

4.A Let us write a MATLAB function that converts a number in linear scale into dB
scale. In MATLAB, open the script file editor and write the following m-file. Save
the m-file as lin2dB.m (if you click “save,” the default file name will be lin2dB.m).

function xdB=lin2dB(x)
xdB=10*log10(x);

4.A-1 Execute lin2dB(100) in the command window. Capture the result.

4.A-2 Execute lin2dB([1 2 10 20 1/10]) in the command window. Capture the result
and check whether or not the results are correct.

4.B Let us write a MATLAB function that plots the Gaussian probability density
function.

4.B-1 Write the following m-file and save it. Add your comments explaining what
each line does or means.

function plot_gaussian(m, v)
x=m+sqrt(v)*(-5:0.01:5);
fx=1/sqrt(2*pi*v)*exp(-(x-m).̂ 2/(2*v));
plot(x,fx)

JWBS174-c01 JWBS174-Choi December 17, 2015 15:37 Printer Name: Trim: 6.125in × 9.25in

8 MATLAB AND SIMULINK BASICS

4.B-2 Execute plot_gaussian(0, 1) in the command window and capture the result.

4.B-3 Try a few arbitrary values for the arguments (i.e., the mean m and variance v)
of plot_gaussian(). Capture your results.

4.C Write a user-defined function swap(A,row0col1,c,d) that swaps two rows (or
columns) of a matrix. If row0col1 is 0, then swap(A, row0col1,c,d) swaps the c-th row
and the d-th row of a matrix A and returns the swapped matrix. If row0col1 is 1, then
swap(A,row0col1,c,d) swaps the c-th column and the d-th column of a matrix A and
returns the swapped matrix.

4.C-1 [WWW]An incomplete version of swap.m is provided below. Complete all
parts marked by ‘?’ and add a comment for each line you are completing.

function e=swap(A,row0col1,c,d)
e=A;
if row0col1==0

e(d,:)=A(c,:);
e(?,:)=A(?,:);

end

if row0col1==1
??;
??’

End

4.C-2 Execute the following command lines and capture the results. Check whether
or not your swap function works correctly.

>>x=rand(4,5)
>>y=swap(x,0,2,4)
>>z=swap(y,1,5,1)

1.5 DESIGNING A SIMPLE SIMULINK FILE

Complete all of the following steps but document only the results of Step 5.F-2 and
Step 5.G-6 in a report.

5.A Creating a new Simulink design file.

Step 5.A-1 Start MATLAB.

Step 5.A-2 In the command window, execute simulink to start Simulink as shown
below. You can also start Simulink from the menu bar, which might be different for
different MATLAB versions.

JWBS174-c01 JWBS174-Choi December 17, 2015 15:37 Printer Name: Trim: 6.125in × 9.25in

DESIGNING A SIMPLE SIMULINK FILE 9

>> simulink

Step 5.A-3 Press ‘Cntrl+N’ keys when the Simulink Library browser window is
active. A Simulink design window, which we call “design window” in short hereafter,
will open. Alternatively, you can use the shortcut icon in the menu bar, which may
be different for different Simulink versions.

5.B Adding blocks to the Simulink design window.
In the design window, you can import and add various functional blocks from the

Simulink library.

Step 5.B-1 The left side of Simulink Library browser window provides a list of the
function blocks.

Let us add a block that generates a sine waveform in the new Simulink model. The
sine waveform generator is one of the Simulink sources. A click on Simulink/Sources
will show all the blocks in the source directory. In order to get familiar with Simulink,
you might navigate to different categories such as Math Operations and Logic and
Bit Operations to check out the blocks in these directories.

Step 5.B-2 Click the block Sine Wave in Simulink/Sources and drag it into the
empty design window created in Step 5.A-3. This can also be done by right-clicking
the block and then choose ’Add…’.

Step 5.B-3 Browse through the Simulink/Sinks category and add the Scope block
in your design window as shown in Fig. 1.2.

If you are not sure in which directory (category) your desired block is, you can
search for it by entering the block name in the search input field in the menu of
Simulink Library Browser window.

5.C Connecting the blocks.
In order to get a desired system function, we must properly connect the output

of each block to the input of another block. Let us connect the output of the Sine
Wave block to the input of the Scope block. This can be done by simply clicking and
dragging the output port of the Sine Wave block to the input port of the Scope. One
can click on the source block and then ‘Cntrl+click’ on the destination block.

5.D Setting block parameters and simulation time.

Sine Wave Scope

FIGURE 1.2 Adding blocks to a new design.

JWBS174-c01 JWBS174-Choi December 17, 2015 15:37 Printer Name: Trim: 6.125in × 9.25in

10 MATLAB AND SIMULINK BASICS

The Simulink blocks typically have their default parameters. Double-click the
block to open the parameter setting window where a description of that block is also
provided.

NOTE: The same block may have different names, parameter names, and proce-
dures to set its parameters in different Simulink versions. If the instructions do not
work for your Simulink version, you may use the completed Simulink design files
uploaded on the companion website.

Step 5.D-1 Open the parameter setting window of the Sine Wave block. Check all
the parameters and try to understand what each of these parameters means.

Step 5.D-2 In this tutorial, we consider an example to generate sin(4𝜋t). Read the
description of the Sine Wave block and properly set Amplitude, Bias, Frequency
(rad/s), Phase (rad) to generate sin(4𝜋t). Note that in MATLAB pi is a reserved
variable equal to 𝜋.

Set the parameter Sample time of Sine Wave block to 1/100. The note below
provides some details about the parameter Sample time that is required for most of
the blocks to be used later.

NOTE: All the signals generated in Simulink blocks have their own Sample time
parameter. The Sample time parameter sets the sample time interval of the signal
generated by the block. Typically, Sample time should be set much smaller than the
inverse of the Nyquist rate. Such setting will make the sampled signal look like a
continuous signal when plotted. On the contrary, too small a value for Sample time
will increase simulation time. Note that for blocks with input port(s), Sample time of
-1 simply copies (inherits) the Sample time of the input signal(s).

Step 5.D-3 Open the Scope display window by double-clicking the Scope block.
Then, in the menu bar of the Scope display window, click the icon named Configu-
ration Properties (or Parameters in some old versions) to open the Scope parameter
setting window.

(a) The parameter Number of ports (Number of axes or simply Axes in some old
versions) determines the number of input ports of the Scope block. Set it as
1, since only one Sine Wave block’s output will be monitored.

(b) Click the Logging (History or Data History in some old versions) tab and
unselect the check box Limit data points to last.

Be aware that the graphical user interface such as the menu bar and the parameter
input fields might be different for different versions of Simulink.

Step 5.D-4 There is one input field in the menu bar of the design window. That
input field is for a parameter Simulation stop time. The number typed in that field
determines the execution time of the simulation, that is, the time up to which point
the signal is generated and processed, not the actual time required for running the
simulation. In this tutorial, we want to see 20 cycles of the output waveform of the
Sine Wave block set in Step 5.D-2, that is, sin(4𝜋t). Thus, we set the Simulation stop
time to 20 × (2𝜋∕4𝜋) = 10 seconds. Type in 10 in that input field.

JWBS174-c01 JWBS174-Choi December 17, 2015 15:37 Printer Name: Trim: 6.125in × 9.25in

DESIGNING A SIMPLE SIMULINK FILE 11

5.E Saving the files.
By using ‘File/Save as’ in the menu bar, save your design (currently untitled*). In

the Simulink versions before R2012a, the file extension is *.mdl. For R2012a and
newer versions, the file extension is *.slx by default, but the extension *.mdl is still
supported. You can save your design in any folder of your choice. Save your design
file as a new file.

5.F Running the simulation and observing the output waveforms.

Step 5.F-1 On the left side of the Simulation stop time input field, there is a play
button. Click it to run the simulation.

Step 5.F-2 If the simulation is complete, double-click the Scope block to open the
Scope display window. Capture the Scope display window. Examine whether the
waveform displayed in the Scope display window displays 20 cycles of the desired
sine waveform, that is, sin(4𝜋t).

Step 5.F-3 Change the parameters of the Sine Wave block to generate a different
sine waveform and capture your result. Examine whether the waveform is generated
as you set.

5.G Adding more blocks and observing multiple waveforms.
Before proceeding to the following steps, be sure to restore the parameters of Sine

Wave to those set in Step 5.D-2 to generate sin(4𝜋t).

Step 5.G-1 If more than one block of the same function are needed for the design,
you can copy and paste the one configured by right-clicking it and selecting copy in
the pop-up menu and then right-clicking anywhere else in the design and selecting
paste. You can also copy and paste the block by ‘Cntrl+C’ and ‘Cntrl+V’. Add one more
Sine Wave block using copy and paste. By default, the pasted block will be named
Sine Wave1.

Step 5.G-2 Search for the block Add (or Sum) in the Simulink library browser and
add it to the slx (or mdl) file.

Step 5.G-3 Referring Step 5.D-3, set Number of ports of the Scope block to 3.
Then, set Layout to 3×1 (no need in some old versions). Now the Scope block should
display three input ports.

NOTE: Throughout this book, be sure to properly set Layout dimension of the
Scope blocks to separately display the input signals as done here.

Step 5.G-4 Change the parameter Amplitude of Sine Wave into 2 to generate
2 sin(4𝜋t) and set the parameters of Sine Wave1 to generate sin(5.2𝜋t).

Step 5.G-5 Connect the blocks as shown in Fig. 1.3. To connect an output of a
block to the inputs of multiple destination blocks, left click and drag for connecting
to the first destination block. Then, right-click and drag for connecting to the rest of
the destination blocks.

Step 5.G-6 Run the simulation. Capture the Scope display window.

JWBS174-c01 JWBS174-Choi December 17, 2015 15:37 Printer Name: Trim: 6.125in × 9.25in

12 MATLAB AND SIMULINK BASICS

ScopeAdd
Sine Wave1

Sine Wave

FIGURE 1.3 A test design for sine waveform generation and observation.

Step 5.G-7 You can change the viewing ranges of the x axis (time axis) and y
axis in the Scope display window using the zoom icons in the menu bar. Locate the
corresponding icons for Zoom (to zoom in on data in both the x and y directions),
‘Zoom X-axis’, ‘Zoom Y-axis’, and Autoscale. Autoscale displays the whole graph.
Selecting any of the other three allows you to use the cursor to specify any viewing
range.

1.6 CREATING A SUBSYSTEM BLOCK

In a Simulink model, right-clicking any component will pop-up a menu that allows
the user to ‘Create Subsystem from Selection’, among many other functions. This
feature allows us to group certain parts, for example, the frequently used parts of a
design, into a single subsystem. The subsystem can be saved as a “user-defined” block
to enrich the library Simulink provides. For a complex design with large number of
components, creating subsystems will make the design a lot easier to read and to
understand.

In this section, we design two user-defined blocks, a Sound Source and a Spectrum
Viewer, that will be used frequently later in other chapters. Complete all of the
following steps but document only the results of 6.C-1 and 6.C-2 in a report.

6.A Creating the Sound Source subsystem block.

Step 6.A-1 [WWW]Download sound.mat from companion website and save it in
your work directory. Design a new Simulink model as shown in Fig. 1.4.

Set the parameters of each block as follows. Do not change other parameters not
mentioned here.

Analog
Filter Design

From File

untitled.mat

butter

FIGURE 1.4 Design for the subsystem named Sound Source.

JWBS174-c01 JWBS174-Choi December 17, 2015 15:37 Printer Name: Trim: 6.125in × 9.25in

CREATING A SUBSYSTEM BLOCK 13

Sound Source

Out1

FIGURE 1.5 Creating a subsystem Sound Source.

1. From File
� File name = sound.mat

2. Analog Filter Design
� Passband edge frequency[rads/s] = 2*pi*4e3

Step 6.A-2 Select both blocks. This can be done either by pressing and holding your
primary mouse button (typically the left button) while dragging the cursor to box in
all components you want to select or by holding down the ‘Shift’ key while selecting
the individual components one by one. To select all components in the design, you
can simply use ‘Cntrl+A’.

Then right-click one of the selected blocks to activate a pop-up menu and select
‘Create Subsystem from Selection’, or simply press ‘Ctrl+G’. Change the default sub-
system name, Subsystem, into Sound Source as shown in Fig. 1.5. Save the current
design as Sound_Source.mdl/slx in a directory.

Step 6.A-3 Double-click the Sound Source block to see the internal design. Capture
the internal design window.

6.B Creating the Spectrum Viewer subsystem block

Step 6.B-1 Open a new design window and design a new Simulink model as
shown in Fig. 1.6. Note that the Spectrum Analyzer was named Spectrum Scope
in earlier versions of Simulink. Be sure to use the Signal Specification block in
the Simulink/Signal Attribute category and use the Spectrum Analyzer block in DSP
System Toolbox/Sinks.

Step 6.B-2 For old Simulink versions that provide Spectrum Scope, instead of
Spectrum Analyzer, set the parameters of Spectrum Scope as follows. Do not change
any parameters not mentioned here.

inherit

Signal Specification

Spectrum
Analyzer

FIGURE 1.6 Design for the subsystem named Spectrum Viewer.

JWBS174-c01 JWBS174-Choi December 17, 2015 15:37 Printer Name: Trim: 6.125in × 9.25in

14 MATLAB AND SIMULINK BASICS

1. Scope Properties tab
� Spectrum Units = dBm (only for the versions that have this parameter)
� Buffer input : Select (check the box)
� Buffer size = 1024
� Number of spectral averages = 200

2. Axis Properties tab
� Frequency range = [-Fs/2 … Fs/2] (only for the versions that have this parame-

ter)
� Minimum Y-limit = -40
� Maximum Y-limit = 25

For Simulink versions that provide Spectrum Analyzer, instead of Spectrum
Scope, set the parameters of Spectrum Analyzer as follows.

1. Open the Spectrum Analyzer display window and browse ‘View/Spectrum Set-
tings’ from the menu bar or click the icon named Spectrum Settings on the
toolbar. Then, set the parameters as shown below. Do not change any other
parts not mentioned here.
� Main options/Type = Power
� In Main options, change RBW(Hz), which is default selection into Window

length and set Window length = 1024.
� Windows options/Overlap (%) = 6.25
� Trace options/Units = dBm
� Trace options/Average = 200

2. Browse View/Configuration Properties… from the menu bar or click the icon
named Configuration Properties on the toolbar. Set the parameters as follows.
� Y-limits (Minimum) = -40
� Y-limits (Maximum) = 25

The details of the parameter settings above have been tested in several Simulink
versions. For some other Simulink versions or future versions, you may need to
investigate a bit more, but the process will be pretty similar.

Step 6.B-3 Set the parameters of the Signal Specification block as follows. Do not
change other parameters not mentioned here.

� Sample time = 1/16e4

Step 6.B-4 As done in Step 6.A-2, select all and create the subsystem. Change the
subsystem name from Subsystem into Spectrum Viewer. Save the current design as
Spectrum_Viewer.mdl/.slx.

6.C Testing the subsystems created.
In this section, we observe the output spectrum of the Sound Source user-defined

block created in 6.A using the Spectrum Viewer user-defined block created in 6.B.

6.C-1 Design a new mdl/.slx as shown in Fig. 1.7. To import Sound Source and
Spectrum Viewer to your new design window, open Sound_Source.mdl/.slx and

JWBS174-c01 JWBS174-Choi December 17, 2015 15:37 Printer Name: Trim: 6.125in × 9.25in

CREATING A SUBSYSTEM BLOCK 15

Sound Source Spectrum Viewer

In1Out1

FIGURE 1.7 Design for testing the user-defined blocks Sound Source and Spectrum Viewer.

Spectrum_Viewer.mdl/.slx that you have saved as mentioned in in 6.A and 6.B and
copy and paste them.

Capture the competed design window.

6.C-2 Set Simulation stop time to 3 seconds and run the simulation. After simulation
is finished, capture the Spectrum analyzer display window. Follow the guidelines in
the note below for capturing the window.

NOTE: Before capturing the Spectrum Analyzer display window, be sure to
decrease the height of the window to get a width:height ratio of about 7:1 for the
graph portion as shown in Fig. 4.4 in Chapter 4. Also do not autoscale or change the
axis limits unless you are instructed to do so. Follow this guideline throughout all
the problems in this book that require the Spectrum Analyzer display window.

